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ABSTRACT
We determine the e†ect of rotation on the luminosity of supermassive stars. We apply the Roche

model to calculate analytically the emitted radiation from a uniformly rotating, radiation-dominated
supermassive conÐguration. We Ðnd that the luminosity at maximum rotation, when mass at the equator
orbits at the Kepler period, is reduced by D36% below the usual Eddington luminosity from a corre-
sponding nonrotating star. A supermassive star is believed to evolve in a quasi-stationary manner along
such a maximally rotating ““ mass-shedding ÏÏ sequence before reaching the point of dynamical instability ;
hence this reduced luminosity determines the evolutionary timescale. Our result therefore implies that
the lifetime of a supermassive star prior to dynamical collapse is D36% longer than the value typically
estimated by employing the usual Eddington luminosity.
Subject headings : stars : formation È stars : interiors È stars : rotation

1. INTRODUCTION

Recent observations provide strong evidence that super-
massive black holes (SMBHs) exist and are the sources that
power active galactic nuclei and quasars (for a review and
references, see, e.g., Rees 1998). However, the scenario by
which SMBHs form is still very uncertain (for an overview,
see, e.g., Rees 1984). One promising route is the collapse of a
supermassive star (SMS). Once they form out of primordial
gas, sufficiently massive stars will evolve in a quasi-
stationary manner via radiative cooling, slowly contracting
until reaching the point of onset of relativistic radial insta-
bility. At this point, such stars undergo catastrophic col-
lapse on a dynamical timescale, possibly leading to the
formation of an SMBH (Bisnovatyi-Kogan, Zeldovich, &
Novikov 1967 ; Zeldovich & Novikov 1971 ; Shapiro & Teu-
kolsky 1983).

Because most objects formed in nature have some
angular momentum, rotation is likely to play a signiÐcant
role in the quasi-stationary evolution as well as the Ðnal
collapse of an SMS. The slow contraction of even a slowly
rotating SMS will likely spin it up to the mass-shedding
limit, because such stars are so centrally condensed. At the
mass-shedding limit, matter on the equator moves in a
Keplerian orbit about the star, supported against gravity by
centrifugal force and not by an outward pressure gradient.
The SMS evolves in a quasi-stationary manner along the
mass-shedding curve, simultaneously emitting radiation,
matter, and angular momentum until reaching the onset of
radial instability.

In this paper, we derive the luminosity of a uniformly
rotating SMS as a function of its spin rate, up to the mass-
shedding limit. The magnitude of the luminosity is crucial
because it determines the evolutionary timescale of the star
as it evolves. Elsewhere we use the result to follow the slow
contraction of a cooling, rotating SMS to the onset of
dynamical instability (Baumgarte & Shapiro 1999, hereafter
Paper II). Here, however, we focus on the emitted Ñux and
total integrated luminosity from a stationary SMS as a
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function of its rate of rotation (for an overview of previous
work on SMSs and references, see, e.g., Zeldovich &
Novikov 1971 ; Shapiro & Teukolsky 1983 ; Paper II).

Even though our calculation, which is analytic up to
quadrature, is rather simple and straightforward, we have
not been able to Ðnd a similar argument in the literature.
Previous analytical arguments have dealt with more general
rotation laws, but they adopt the slow rotation approx-
imation and emphasize gas-pressure atmospheres (see, e.g.,
Kippenhahn 1977). While detailed numerical calculations of
luminosities of rotating stars have been carried out for
select main-sequence and massive stars (see, e.g., Tassoul
1978, Table 12.1, and references therein ; Langer & Heger
1997), we cannot Ðnd a calculation for an SMS. Hence,
independent of its relevance to the evolution of SMSs prior
to catastrophic collapse, our result may be of interest to
stellar modeling of rapidly rotating stars in the limit of very
high mass, where our calculation is applicable.

Our paper is organized as follows : in ° 2 we enumerate
and justify our assumptions. In ° 3 we brieÑy review the
Roche approximation, which we use to describe the outer
layers of a rotating SMS. In ° 4 we derive the Ñux and
luminosity from the star. In ° 5 we brieÑy summarize our
results and compare them with previous calculations of
rotating main-sequence stars.

2. BASIC ASSUMPTIONS

Our analysis relies on several explicit assumptions, all of
which we expect to hold to high accuracy in SMSs. In par-
ticular, we assume that the star is

1. dominated by thermal radiation pressure,
2. fully convective,
3. uniformly rotating,
4. characterized by a Rosseland mean opacity that is

independent of density,
5. governed by Newtonian gravitation, and
6. described by the Roche model in the outer envelope.

For large masses, the ratio between radiation pressure,
and gas pressure, satisÐesP
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(see, e.g., Shapiro & Teukolsky 1983, eqs. [17.2.8] and
[17.3.5]) ; here the coefficient has been evaluated for a com-
position of pure ionized hydrogen. For stars with M Z 104

we can therefore neglect the pressure contributions ofM
_

,
the plasma in determining the equilibrium proÐle, even
though the plasma may be important for determining the
stability of the star (Zeldovich & Novikov 1971 ; Shapiro &
Teukolsky 1983). A simple proof that SMSs are convective
in this limit is given in Loeb & Rasio (1994). This result
implies that the photon entropy per baryon,
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is constant throughout the star and so is Hereb B 8(s
r
/k)~1.

a is the radiation density constant, is the baryon density,n
Band k is BoltzmannÏs constant. As a consequence, the equa-

tion of state of an SMS is that of an n \ 3 polytrope :
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where P is the pressure, o the mass density, m the atomic
mass unit, and the mean molecular weight [cf. Claytonk6
1983, eq. (2-289) ; note that Clayton adopts a di†erent deÐ-
nition of b, which is related to ours by bClayton \ b/(1] b)].

The third assumption, that the star is uniformly rotating,
is probably the most uncertain of our assumptions. Never-
theless, it has been argued that convection and magnetic
Ðelds provide an e†ective turbulent viscosity, which
dampens di†erential rotation and brings the star into
uniform rotation (Bisnovatyi-Kogan et al. 1967 ; Wagoner
1969).

In the high-temperature, low-density, strongly ionized
plasma of an SMS, Thomson scattering o† free electrons is
the dominant source of opacity. This opacity is independent
of density and justiÐes our fourth assumption.

We assume that gravitational Ðelds are sufficiently weak
that we can apply Newtonian gravity. SMSs of interest here
have (see Paper II), so this assumption certainlyR/M Z 400
holds. Relativistic corrections are important for the stability
of SMSs but can be neglected in the analysis of the equi-
librium state.

Finally, the Roche approximation provides a very accu-
rate description of the envelope of a rotating stellar model
with a soft equation of state, as in the case of an n \ 3
polytrope (for numerical demonstrations, see, e.g., Papaloi-
zou & Whelan 1973 and Paper II). Since our analysis is
based on this approximation, we will brieÑy review it
together with some of its predictions in the following
section.

In applications to SMSs our analysis neglects electron-
positron pairs and Klein-Nishina corrections to the
electron-scattering opacity, which is valid for M Z 105 M

_(see, e.g., Fuller, Woosley, & Weaver 1986).

3. REVIEW OF THE ROCHE MODEL

Stars with soft equations of state are extremely centrally
condensed : they have an extended, low-density envelope,
while the bulk of the mass is concentrated in the core. For
an n \ 3 polytrope, for example, the ratio of central density
to average density is The gravitational force ino

c
/o6 \ 54.2.

the envelope is therefore dominated by the massive core,
and it is thus legitimate to neglect the self-gravity of the

envelope. In the equation of hydrostatic equilibrium,
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this neglect amounts to approximating the Newtonian
potential ' by

'\ [M
r
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(here we adopt gravitational units by setting G4 1). In
equation (4) we introduce the centrifugal potential '

c
,

which, for constant angular velocity ) about the z-axis, can
be written

'
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Integrating equation (4) yields the Bernoulli integral

h ] '] '
c
\ H , (7)

where H is a constant of integration and
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is the enthalpy per unit mass. Evaluating equation (7) at the
pole yields

H \ [M
R
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since h \ 0 on the surface of the star and along the'
c
\ 0

axis of rotation. In the following we assume that the polar
radius of a rotating star is always the same as in theR

pnonrotating case. This assumption has been shown numeri-
cally to be very accurate (e.g., Papaloizou & Whelan 1973).

A rotating star reaches mass shedding when the equator
orbits with the Kepler frequency. Using equations (6) and
(7), it is easy to show that at this point the ratio between
equatorial and polar radius is
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The corresponding maximum orbital velocity is
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(Zeldovich & Novikov 1971 ; Shapiro & Teukolsky 1983).

4. LUMINOSITY OF ROTATING STARS

According to our assumptions, the pressure in super-
massive stars is dominated by radiation pressure

PB P
r
\ 13aT 4 . (12)

In the di†usion approximation, the radiation Ñux is every-
where given by

F \ [ 1
3io

$U . (13)

Here U is the energy density of the radiation,

U \ aT 4\ 3P , (14)

and i is the opacity (which we assume to be dominated by
electron scattering, Inserting equations (13) andi \ies).
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(14) into the equation of hydrostatic equilibrium (4) yields
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c
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In polar coordinates in an orthonormal basis, the magni-
tude of the Ñux is
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Evaluating the gradients of ' and in the envelope yields'
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Introducing the dimensionless spin and radius parameters
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and denoting

FEdd\ M
ir2 , (20)

the usual Eddington Ñux from a spherical star, we can
rewrite equation (17) as

F
FEdd

\ [1[ 2(23)3a2z3 sin2 h ] (23)6a4z6 sin2 h]1@2 .

(21)

Note that, from equation (7), the surface of the star is
deÐned by

'] '
c
[ H \ 0 , (22)

or equivalently2
427 a2z3 sin2 h [ z] 1 \ 0 . (23)

Given a and h, the value of z on the surface can be found by
solving this cubic equation. Equations (15) and (22) imme-
diately imply that the Ñux is normal to the surface of the
star.

Evaluating equation (21) at the surface, we plot the emer-
gent Ñux F as a function of h for di†erent values of a in
Figure 1. Note that at the mass-shedding limit, when a \ 1,
the Ñux vanishes at the equator (where z\ 3/2 and
sin h \ 1). This, of course, is an immediate consequence of
hydrostatic equilibrium: at mass shedding, the centrifugal
force exactly balances the gravitational force at the equator,
so that the pressure gradient vanishes (eq. [4]). For
radiation-dominated stars, equation (15) then implies that
the Ñux has to vanish.

The total luminosity can be found by integrating

L \
P
A

F Æ dA \
P
A

FdA (24)

over the surface A of the star. The surface element dA can

2 Expanding eqs. (17) and (23) to lowest order in a2 shows that they are
in perfect agreement with eqs. (39) and (30) in Kippenhahn (1977) for
uniform rotation. KippenhahnÏs treatment allows for nonuniform rotation
but is restricted to slow rotation.

FIG. 1.ÈThe Ñux F as a function of polar angle for di†erent values of
Note that, at the mass-shedding limit a \ 1, the Ñux vanishesa \)/)shedd.on the equator.

be written
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Here we have introduced
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Di†erentiating equation (23), the latter can be expressed as
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Putting the pieces together, we Ðnd that the luminosity is
given by
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where is the usual Eddington luminosityL Edd

L Edd\ 4nM
i

. (32)
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FIG. 2.ÈLuminosity L as a function of the orbital velocity ). At the
mass-shedding limit, the luminosity is reduced by 36%.

It proves most convenient to evaluate equation (31) numeri-
cally. In Figure 2, we plot the resulting luminosity L as a
function of the spin parameter a. Obviously, for nonrotating
stars with a \ 0, we recover For maximally rotat-L \ L Edd.ing stars, however, the luminosity is reduced by about 36%:

L shedd\ 0.639L Edd . (33)

Accordingly, adopting the Eddington luminosity for a
supermassive star that evolves along the mass-shedding
limit would underestimate its lifetime by about 36%.

5. DISCUSSION

We Ðnd that the luminosity of an SMS rotating at
breakup velocity is reduced by about 36% compared with
the luminosity of a nonrotating SMS of the same mass.

It is difficult to compare this result with previous numeri-
cal calculations of massive, rotating stars, which are sum-
marized in Table 12.1 in Tassoul (1978 ; compare the
discussion in Kippenhahn 1977). No calculations seem to
have been performed for stellar masses greater than 62.7

The luminosities of these 62.7 models at breakupM
_

. M
_velocity are indeed reduced below the nonrotating, spher-

ical luminosities, but only by 7%, much less than what we
Ðnd. However, the physical conditions in 62.7 stars areM

_very di†erent from those in SMSs and do not satisfy our
assumptions (see ° 2). For example, at these moderate
masses, the stars are not dominated by radiation pressure ;
according to equation (1), b B 1 for these stars and b varies
with both the location in the star and the orbital velocity.3
Also, the total opacity, at least close to the surface of the
moderate-mass stars considered previously, is no longer
dominated by electron scattering and contains non-
negligible contributions from bound-bound and bound-free
absorption. These contributions introduce a dependence on
density, so our assumption 4 no longer holds. More speciÐ-
cally, spinning up the star may decrease the density in the
envelope and therefore decrease the opacity and hence
increase the luminosity. This would partly compensate for
the decrease in the luminosity due to rotation and would
decrease the e†ect that we Ðnd for true SMSs. Finally, we
note that moderate-mass stars are not fully convective.

Our result is important because the luminosity deter-
mines the timescale of the evolution and hence the lifetime
of SMSs, which are believed to evolve along a mass-
shedding sequence. This lifetime has been used in several
calculations of SMS evolution. We adopt our new result in
Paper II, where we analyze the secular evolution of SMSs
up to the onset of radial instability.

This paper was supported in part by NSF grants AST
96-18524 and PHY 99-02833 and NASA grant NAG 5-7152
to the University of Illinois at Urbana-Champaign.

3 Note that, if b were strictly independent of position and spin rate, the
right-hand sides of eqs. (20) and (32) would be reduced by a constant factor
of (b ] 1)~1, and the luminosity of a rotating star (eq. [31]) would still be
reduced by the same amount below the luminosity of its nonrotating
counterpart.
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