
THE ASTROPHYSICAL JOURNAL, 526 :707È715, 1999 December 1
1999. The American Astronomical Society. All rights reserved. Printed in U.S.A.(

DYNAMICAL EVOLUTION, LIGHT CURVES, AND SPECTRA OF SPHERICAL AND COLLIMATED
GAMMA-RAY BURST REMNANTS

A. PANAITESCU AND P. ME� SZA� ROS

Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802
Received 1998 June 1 ; accepted 1999 July 16

ABSTRACT
We present an analytical approach to the dynamical evolution of Ðreballs or axisymmetric jets

expanding into an external medium, with application to gamma-ray burst remnants. This method leads
to numerical calculations of Ðreball dynamics that are computationally faster than hydrodynamic simu-
lations. It is also a very Ñexible approach that can easily be extended to include more complex situ-
ations, such as a continuous injection of energy at the reverse shock and the sideways expansion in
nonspherical ejecta. Some features of the numerical results for the remnant dynamical evolution are dis-
cussed and compared with the analytical results. We Ðnd that the ratio of the observer time at which the
jet half-angle reaches twice its initial value to the time at which the light cone becomes wider than the jet
is substantially smaller than predicted analytically. The e†ects that arise from the remnantÏs curvature
and thickness further reduce this ratio, such that the afterglow light-curve break that is due to the
remnantÏs Ðnite angular extent overlaps the weaker break that is due to the jetÏs sideways expansion. An
analysis of the e†ects of the curvature and thickness of the remnant on the afterglow light curves shows
that these e†ects are important and should be taken into account for accurate calculations of the after-
glow emission.
Subject headings : gamma rays : bursts È methods : analytical È radiation mechanisms : nonthermal

1. INTRODUCTION

Previous work on the dynamics of gamma-ray burst
(GRB) remnants was done analytically (Sari 1997 ; Vietri
1997 ; Wei & Lu 1998 ; Chiang & Dermer 1999 ; Rhoads
1999) or was based on hydrodynamical codes (Panaitescu &

1998 ; Kobayashi, Piran, & Sari 1999). AnalyticalMe� sza� ros
treatments of the major afterglow features &(Me� sza� ros
Rees 1997 ; Vietri 1997 ; Waxman 1997 ; Wijers, Rees, &

1997 ; Rees, & Wijers 1998 ; Sari, Piran,Me� sza� ros Me� sza� ros,
& Narayan 1998 ; Rhoads 1999) have used asymptotic solu-
tions where the remnant Lorentz factor is a power law in
radius and the postshock energy density is determined only
by the ejecta bulk Lorentz factor. The advantages and
drawbacks of the analytical and numerical approaches are
evident : the former may not lead to sufficiently accurate
results but is more Ñexible and sometimes more powerful,
while the second provides accuracy at the expense of sub-
stantial computational e†orts and may lack Ñexibility in
including more sophisticated features.

In this work we further develop the semianalytical
approach presented by Panaitescu, & Rees (1998,Me� sza� ros,
hereafter PMR98), with the aim of obtaining a method that
allows fast computations of remnant dynamics without
making recourse to laborious hydrodynamic numerical
codes, while retaining enough physical details to allow an
accurate calculation of the afterglow light curves and
spectra.

2. REMNANT DYNAMICS

2.1. Model Assumptions and Features
We assume that, at any time during its evolution, the

remnant is axisymmetric, i.e., there are no angular gradients
in the shocked Ñuid, and all relevant physical parameters
are functions of only the radial coordinate. This is equiva-
lent to assuming that the initial energy distribution in the
ejecta and the external gas are isotropic and that, in the case
of a jetlike ejecta, the physical parameters of the remnant

respond on a short timescale to the e†ect of sideways expan-
sion of the shocked gas. We also assume that the Lorentz
factor within the shocked Ñuid is constant. Other features
taken into account in the model are (1) a delayed energy
injection (Rees & 1998), where for deÐniteness weMe� sza� ros
shall use a power-law energy injection, (2) an inhomoge-
neous external Ñuid ; for simplicity we consider an external
density that is a power law in the radial coordinate, which
includes the homogeneous and the constant-velocity pre-
ejected wind cases (Vietri 1997 ; et al. 1998), andMe� sza� ros
(3) the above-mentioned sideways expansion, if the ejecta
are not spherical (Rhoads 1999). Each of these features
brings or modiÐes a speciÐc term in the di†erential equa-
tions shown below, which give the evolution of the mass,
kinetic, and internal energy of the remnant.

2.2. External Medium
In the next sections we shall consider only homogeneous

external media ; nevertheless, the model we developed is
applicable for a more general case, where the external gas
density varies as a power law with the radius oex(r)\being the deceleration radius, deÐned as theo
d
(r/r

d
)~a, r

dradius at which the fastest (initial) part of the ejecta, moving
with Lorentz factor sweeps up an amount of external!0,gas equal to a fraction of its own mass!0~1 M0\ E0/!0 c2 :

r
d
\
C (3[ a)E0
)0 n

d
m

p
c2!02

D1@3
, (1)

being the energy of the leading ejecta, being the solidE0 )0angle of the cone within which it was released, and beingn
dthe external particle density at The is the radius atr

d
. r

dwhich the deceleration of the Ðreball that is due to the
interaction with the external gas becomes important. Note
that has only a weak dependence on a.r

dThe continuous interaction with the external gas
increases the remnant mass

[dM]ex \ )(r)oex(r)r2 dr , (2)
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where )(r) is the remnant solid angle at radius r, which is
larger than the initial because of the sideways expansion.)0The evolution of the half-angle h of the remnant is dh \ c

sdt@/r, where is the comoving frame sound speedc
s
\ c/J3

and dt@\ (bc!)~1dr is the comoving time, ! and b being the
Lorentz factor and speed of the shocked ejecta. The
remnant solid angle )\ 2n(1[ cos h) evolves as

r
d)
dr

\
S)(4n [ ))

3(!2[ 1)
. (3)

The interaction of the remnant with the external medium
decelerates the remnant and heats it. Using energy and
momentum conservation for the interaction between the
remnant and the inÐnitesimal swept-up mass one[dM]ex,obtains that the comoving frame internal energy of the
newly shocked gas is (![ 1) times larger than its rest-mass
energy, and the changes in the remnant internal energy U
and total kinetic energy K are given by

[dU]ex \ A(![ 1)c2[dM]ex (4)

and

[dK]ex 4 (Mc2] U)[d!]ex \ [(!2[ 1)c2[dM]ex . (5)

The multiplying factor A in the right-hand side of equation
(4) was introduced to account for possible radiative losses in
the shocked external gas. It represents the fraction of the
internal energy of the shocked external gas that is not radi-
ated away. Thus A\ 0 corresponds to a fully radiative
remnant, which implies radiative electrons and strong coup-
ling between electrons and protons, while A\ 1 is for a
fully adiabatic remnant.

2.3. Delayed Energy Injection
As was suggested by Rees & (1998), it is pos-Me� sza� ros

sible that the initial instantaneous deposition of energy in
the Ðreball is not uniform in the entire ejecta, in the sense
that some parts of it have been given more energy and have
been accelerated to higher Lorentz factors, the slower ejecta
catching up with the faster ones as these are decelerated by
the interaction with the surrounding medium. The entire
process is fully characterized by the energy distribution

in the ejecta at the end of the initial phase of(dE/d!)injacceleration, with all other relevant quantities resulting
from the kinematics and energetics of the ““ catching up.ÏÏ
The velocity of the incoming ejecta satisÐes (freeb

f
r \b

f
ct

expansion), where t is the lab-frame time : t \ t
dwith b(r) being the speed of the deceler-] /

rd
r [cb(r)]~1dr,

ated ejecta. We assume that there is a signiÐcant delayed
energy injection only at so that equation (1) remainsr [ r

d
,

valid. Thus the Lorentz factor of the delayed ejecta!
fentering the decelerated part of the Ðreball is given by

d!
f

dr
\ [

Ab
f
b

[ 1
B !

f
3 b

f
ct

. (6)

Using the energy and momentum conservation, one can
calculate the increase in the remnant kinetic and internal
energies resulting from the delayed injection :

[dU]inj \ [!!
f
(1[ bb

f
)[ 1]c2[dM]inj (7)

and

[dK]inj4 (Mc2] U)[d!]inj
\ !

f
[1[ !2(1[ bb

f
)]c2[dM]inj , (8)

where

[dM]inj \
AdE
d!
B
inj

o d!
f
o

!
f
[ 1

\ F(!
f
, !)MINJ

dr
r

(9)

is the inÐnitesimal injected mass, !) being a functionF(!
f
,

that depends on the details of the delayed energy injection
and being the total mass of the delayed ejecta (seeMINJPMR98). In the numerical calculations, we shall consider
the particular case of a power-law injection : (dE/d!)inj P(Rees & 1998) for where!
f
~s Me� sza� ros !

m
\!

f
\!

d
, !

mand are the minimum and maximum Lorentz!
d
4!(r \ r

d
)

factors of the delayed ejecta.

2.4. Adiabatic Cooling : Remnant Volume
The delayed energy input at the reverse shock that moves

into the incoming ejecta and the heating of the external Ñuid
by the forward shock increase the internal energy of the
remnant. This energy is lost adiabatically and radiatively. If
they were acting alone, adiabatic losses would accelerate the
remnant ; in the presence of the external Ñuid, they recon-
vert internal energy into kinetic energy, which mitigates the
remnant deceleration. This is described quantitatively by

[dU]ad\ [(cü [ 1)(d
r
V @/V @)U (10)

and

[dK]ad 4 (Mc2] U)[d!]ad\ [![dU]ad , (11)

where is the comoving volume of theV @\ V RS@ ] V FS@shocked ejecta (located behind the reverse shock) and of the
swept-up external gas (behind the forward shock), and iscü
the adiabatic index of the remnant gas for hot gas).(cü \ 4/3
In equation (10), denotes the inÐnitesimal variation ofd

r
V @

the comoving volume due only to the radial expansion of
the gas, excluding the inÐnitesimal increases that are due to
the addition of shocked Ñuid and to the sideways expansion
(we neglect the adiabatic losses that are due to the sideways
expansion, representing the acceleration of the outer parts
of the Ñuid in the direction perpendicular to the radial
direction of the Ñow).

At this point we need a prescription for calculating
For the radiative losses, one also has to calculated

r
ln V @.

the comoving volume V @in order to determine the comoving
energy density, which is necessary for the computation of
the magnetic Ðeld. We consider two models : model 1, where
we assume that the lab-frame increase in the thickness of the
shocked Ñuid (external or delayed ejecta) is due only to the
addition of new gas, and model 2, where we assume that the
comoving densities of the two shocked Ñuids are uniform
behind each shock and have the values set by the shock-
jump equations. Only model 1 is consistent with the
assumption that ! is constant in the entire shocked Ñuid, as
this assumption implies that the remnant is neither dilating
nor contracting in the radial direction. Model 2 implies the
existence of a velocity gradient in the shocked Ñuid ; never-
theless, this gradient is expected to be small and the
assumption of constant ! within the remnant may still be
used safely for the calculation of the relativistic e†ects.

2.4.1. Model 1

The comoving volume is V @\ )r2!*, where * is the
lab-frame thickness of the remnant, determined by the rela-
tive motion of the forward and reverse shocks : d*\ (bFSThe lab-frame reverse shock speed can be cal-[ bRS)dt. bRSculated with a Lorentz transformation from the speedb@RS,
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of the reverse shock measured in the frame of the ejecta
entering this shock. The assumption that the frame thick-
ness of the already shocked Ñuid remains constant (or,
equivalently, that the Ñow velocity is uniform within the
remnant) implies that therefored

r
ln V @\ d ln (!r2),

d
r
V @

V @
\ 2

dr
r

] d!
!

, (12)M1

and allows the calculation of and from !, theb@RS bFSremnant bulk Lorentz factor :

bRS@ \ (!@[ 1)(cü!@] 1)
b@!@[cü (!@ [ 1)] 1]

,

bFS \ (![ 1)(cü !] 1)
b![cü (![ 1)] 1]

. (13)

where is the Lorentz factor of the!@\ !!
f
(1[ bb

f
)

shocked delayed ejecta measured in the frame of the incom-
ing ejecta located just ahead of the reverse shock. After all
the delayed ejecta has caught up with the remnant, or if
there is no such delayed injection, is set equal to b, thebRSspeed of the contact discontinuity.

2.4.2. Model 2

In this model, the two volumes and can be calcu-V RS@ V FS@lated from the masses of the shocked gases (eqs. [2] and [9])
and from the comoving densities, assumed to be uniform in
each shell and having the same value as in the proximity of
the shocks. The comoving densities and behind theoRS@ oFS@reverse and forward shocks are determined by the com-
oving densities of the unshocked Ñuids, and and byo

f
@ oex,the Lorentz factors of the shocked gases, !@ and ! :

oRS@ \ cü!@ ] 1
cü [ 1

o
f
@ ,

oFS@ \ cü!] 1
cü [ 1

oex . (14)

Reverse shock.ÈThe comoving density of the ejecta
ahead of the reverse shock can be calculated by equating

given by equation (9) with the mass[dM]inj !
f
o
f
@ )

f
r2dl

that is swept up by the reverse shock as the remnant moves
from r to r ] dr, where is thedl\ ct o db

f
o\ (b

f
/b [ 1)dr

inÐnitesimal lab-frame distance relative to the contact dis-
continuity covered by the reverse shock, and )

f
(!

f
, r) [)

is the solid angle of the delayed ejecta. The assumption of
isotropy within the ejecta beaming cone does not hold in
the delayed energy input case, our one-dimensional model
including the delayed energy injection being applicable
only to spherical ejecta for any lab-frame times and to
beamed ejecta for times when the sideways expansion is
negligible : The end result is)

f
D )D)0. o

f
@ \

so(!
f
2 b

f
/)0 r2ct)(dM/d!)inj, V RS@ \ (M0] /

rd
r [dM]inj)/oRS@can be calculated by integrating equation (9) and using the

Ðrst equation in (14). From andd
r
(ln V RS@ )\[d(ln oRS@ )

equations (6) and (14), one can write

d
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f
b

[ 1
B
d! , (15)M2

where !) is a function of the details of the delayedG(!
f
,

injection. After the end of the delayed injection, the com-
oving volume of the shocked delayed ejecta is considered
constant.

Forward shock.ÈThe volume of the shocked external
Ñuid can be calculatedV FS@ \ (M0!0~1] /

rd
r [dM]ex)/oFS@using the second equation in (14) and the swept-up mass

obtained by integrating equation (2). From the second
equation in (14), it can be shown that

d
r
V FS@

V FS@
\ a

dr
r

[ cü
cü!] 1

d! . (16)M2

2.5. Di†erential Equations for Remnant Dynamics
The remnant dynamics is given by the di†erential equa-

tions describing the evolution of the total kinetic and inter-
nal energies, coupled through the adiabatic losses :

dU \ [dU]inj ] [dU]ad ] [dU]ex (17)

and

dK 4 (Mc2] U)d!\ [dK]inj ] [dK]ad] [dK]ex , (18)

where the quantities in the right-hand side terms are given
by equations (4), (5), (7), (8), (10), and (11). By substituting
the term from equation (18) in equation (17)[dU]ad ([dU]adappears in the expression of see eq. [11]), one[dK]ad ;arrives at whichd[M(![ 1) ] !U]\ (!

f
[ 1)[dM]inj,simply states that the net variation of the total energy of the

adiabatic remnant equals the input of energy through the
delayed injection (global energy conservation).

With the aid of all the relevant equations previously
derived, equations (17) and (18) can be used to calculate
d!/dr and dU/dr, i.e., the evolution of the Ñow Lorentz
factor and of the comoving internal energy. These equations
are solved numerically together with equation (6) for !

f
,

with equation (3) for ), and with the di†erential equation
for the remnant mass resulting from equations (2) and (9) :

r
dM
dr

\ F(!
f
, !)MINJ] (3[ a)

)
)0

A r
r
d

B3~a M0
!0

. (19)

The initial conditions for the set of di†erential equations for
remnant dynamics are given by the values of the relevant
quantities at (see PMR98) : U \r \ r

d
!
f
\ !\ 0.62!0,0.62AM0 c2, M \ (1] !0~1)M0, )D)0.

3. NUMERICAL RESULTS FOR THE REMNANT DYNAMICS

The remnant Lorentz factor ! and the internal energy U
determine the electron random Lorentz factor and the mag-
netic Ðeld, both necessary for the calculation of the after-
glow emission. Thus we are interested in solving the
remnant di†erential equations to calculate the evolution of
! and U with the observer time T ,

dT \ (1] z)(1[ b)dt \ (1] z)
A !
J!2[ 1

[ 1
B dr

c
, (20)

where z is the source redshift. Equation (20) gives the time
when the radiation emitted along the line of sightTCDtoward the observer and from the contact discontinuity

arrives at Earth. If most of the radiation comes from the
Ñuid close to forward shock, then it is necessary to calculate
the observer time using the Lorentz factor of this shock. For
a relativistic remnant thus!FS D J2! ; TFS \TCD/2.

Equations (1) and (18) show that the remnant dynamics is
determined by the energy per solid angle in thev04E0/)0,ejecta, the jet initial solid angle, which determines when the
jet sideways expansion becomes important, the parameters

and a characterizing the surrounding medium, then
d
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remnant initial Lorentz factor and the remnant radi-!0,ative efficiency. In the case of an adiabatic remnant running
into a homogeneous external medium, cancels out from!0the expression for !(T ) ; thus it is an irrelevant parameter,
from the observerÏs point of view. However, is an impor-!0tant parameter for a radiative remnant, or if the external
medium is not homogeneous. The remnant dynamics is also
determined by the parameters of the delayed energy injec-
tion, which for a power-law injection are s, and!

m
, !0, MINJ(or, equivalently, the entire injected energy The e†ectEINJ).of some of these parameters can be assessed from Figures

1È3.

3.1. Spherical Remnants
Figure 1 shows the evolution of [d log !/d log r for a

spherical remnant with no delayed energy input, running
into a homogeneous external medium. The nonrelativistic
phase, deÐned by !\ 2, sets in at for a fully radi-r \ 10r

dative remnant and at for an adiabatic one. Anr \ 100r
danalytical treatment of the remnant dynamics leads to

[d log !/d log r \ (3[ a)/(1 ] A), as long as the remnant
is relativistic. Thus, if a \ 0, !P r~3 for a radiative
remnant and !P r~3@2 for an adiabatic one. These results
hold for in the former case and forr

d
> r >!01@3 r

d
r
d
> r >

in the latter. The values shown in Figure 1 at early!02@3 r
dtimes (i.e., in the relativistic phase) are consistent with the

analytical expectations. Due to the fact that the r~3 phase is
short-lived for a radiative remnant, this regime is not
strictly reached for the case shown in Figure 1 (!0\
500), where the steepest !-decay attained is proportional to
r~2.85. Only Lorentz factors allow this phase to!0[ 103
develop fully at very early observer times (T \ 0.1 day). In
the case of a pre-ejected wind (a \ 2), we obtained numeri-
cally the analytical results !P r~1@2 and !P r~1 for an
adiabatic and a radiative remnant, respectively (these cases
are not shown in Fig. 1).

Figure 2 shows the e†ect of a delayed energy input on the
dynamics of an adiabatic remnant, assuming a homoge-
neous external gas and a power-law distribution of energy
per Lorentz factor in the delayed ejecta. The minimum
Lorentz factor of the ejecta determines the observer time!

m

FIG. 1.ÈEvolution of [d log !/d log r for adiabatic (A\ 1) and radi-
ative (A\ 0) spherical remnants, with no delayed injection and homoge-
neous external medium. Parameters : z\ 1, cm~3 and!0\ 500, n

d
\ 1

as given in the legend, in units of ergs sr~1. Thick curvesv04E0/)0correspond to model 1, while thin lines are for model 2. Obviously, the
numerical results are the same for both models of adiabatic losses if the
remnant is fully radiative (A\ 1). Note that a larger energy per solid angle
in the ejecta leads to a longer relativistic phase.

FIG. 2.ÈE†ect of a power-law delayed energy input on the dynamics of
an adiabatic spherical remnant interacting with a homogeneous external
medium. The inset shows the evolution of the kinetic and lab-frame inter-
nal energy, in units of initial remnant energy. The parameters of the injec-
tion are and s, as given in the legend. Other!

m
\ 10, EINJ \E0,parameters are z\ 1, ergs sr~1, and cm~3. As for Fig. 1,v0\ 1052 n

d
\ 1

model 1 solutions are shown with thick lines, while model 2 solutions are
indicated with thin curves. The continuous thin curve is for the case with
no delayed injection (added for comparison). Note that the di†erences
between the solutions obtained with the two models for adiabatic losses
are larger at times when most of the injection takes place, indicating that
the adiabatic cooling of the delayed shocked ejecta is the source of these
di†erences.

when the injection ends. A sudden energy input (i.e., large
parameter s), resembling the collision of a second shell with
the leading Ðreball, may lead to a temporary Ñattening of !
as a function of r, as shown by the small value of [d log !/
d log r at T D 3 days for s \ 10. The Ñux of the synchro-
tron radiation emitted by the remnant at a frequency l
above the synchrotron peak (of the power perl

p
lFl,decade) is proportional to !8`4bT 3 if the electrons radi-

ating at l are adiabatic and proportional to !4`4bT 2 if the
same electrons are radiative, where b is the slope of the

FIG. 3.ÈEvolution of [d ln !/dr for adiabatic beamed ejecta. The
remnant dynamics depends on the initial solid angle of the ejecta (given in
the legend in steradians) and on the initial energy per solid angle (given in
the legend in ergs sr~1). Other parameters arez\ 1, cm~3, a \ 0,n

d
\ 1

and The meaning of thick and thin curves is the same as for Figs.!0\ 500.
1 and 2. The parts indicated with a continuous curve for the ()0\ 10~3,

models correspond to T between and i.e., when thev0\ 1054) T
b

Tnr,remnant opening angle is more than twice the initial one and the remnant
is still relativistic (![ 2).
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spectrum above For b D 1, as observed inl
p
: FlP l~b.

most afterglows, the remnant Ñux varies like !12T 3 and
!8T 2 for adiabatic or radiative electrons, respectively. This
means that the afterglow corresponding to the remnant
evolution shown in Figure 2 for s \ 10 should exhibit a
substantial brightening, with increasing as fast as T 3Fl(adiabatic electrons) or T 2 (radiative electrons) at T D 3
days.

3.2. Conical Remnants
Before the e†ect of the sideways expansion becomes

important, the bulk Lorentz factor of an adiabatic jetlike
remnant running into a homogeneous external medium is
given by

!\ !
d
(r/r

d
)~3@2 . (21)

The radius at which the remnant Lorentz factor hasr
jdecreased to (i.e., when an observer located on the jetÏsh0~1

symmetry axis ““ sees ÏÏ the jetÏs edge, if the jet sideways
expansion until is ignored) is given byr

j
r
j
\ (!

d
h0)2@3rd . (22)

Using equations (20) and (21) it can be shown that we have
r P T 1@4 and !P T ~3@8. For the area visible to ther [ r

jobserver no longer increases as (!T )2P T 5@4 (as it did when
but increases as thus the light-curver \ r

j
) (rh0)2P T 1@2 ;

decay should steepen by a factor T ~3@4.
The remnant is still relativistic (![ 2) at if Ifr

j
, h0 [ 30¡.

the jet is sufficiently narrow, then the sideways escape may
have an important e†ect on the remnant dynamics before
the onset of the nonrelativistic phase. Taking the radius at
which the jetÏs half-angle is twice the initial one as the deÐ-
nition of the radius at which the sideways expansionr

bbecomes important, and using the equation for derived byr
bRhoads (1999), we obtain

r
b
\ (75/4)1@3r

j
\ [(75/8)!02 h02]1@3rd . (23)

Equation (23) is valid only if the remnant is still relativistic
at Since the remnant Lorentz factor at isr

b
. r

b
!
b
\

(Rhoads 1999), this condition reduces to(2/5J3)h0~1 h0>
0.1 rad D 6¡ sr).()0> 4 ] 10~2

Equations (22) and (23) show that r
b
/r

j
D (75/4)1@3D 2.7,

where we used for consistency with RhoadsÏs!
d
\!0/J2,

result, which is close to the value derived by PMR98.0.62!0Therefore, the jet edge e†ect should always be seen before
that of the sideways expansion. Since T P r4 for ther \ r

b
,

ratio of the observer times at which the sideways expansion
and jet edge phases begin should be T

b
/T

j
\ (r

b
/r

j
)4D 50.

As shown by Rhoads (1999), during the sideways escape
phase, ! decreases exponentially with radius :

!\ !
b
e~(r~rb)@re . (24)

The exponential constant can be cast in the form r
e
\

Thus, during the exponential regime(!0 h0)2@3rd \ 0.47r
b
.

[d ln !/d(r/r
d
)\ (!0 h0)~2@3 . (25)

With the aid of equations (20) and (24), one can show that
in the exponential regime !P T ~1@2 ; thus the nonrelativis-
tic phase begins at UsingTnr \ (1/4)!

b
2 T

b
\ (75h02)~1T

b
.

equation (1), the times and can be calculated :T
j
, T

b
, Tnr

50T
j
\ T

b

\ (75h02)Tnr\ 1.0
A1 ] z

2
BAv0, 54

n0

B1@3
)0, ~34@3 days , (26)

where is the initial energy per solid angle in units ofv0,541054 ergs sr~1, is the external medium number density inn0cm~3, and sr.)0\ 10~3)0,~3The dynamics of adiabatic conical remnants is shown in
Figure 3, where we assumed a homogeneous external
medium. As can be seen, the exponential regime (i.e., the
Ñattest part of each curve) is less evident for ejecta whose
solid angle is larger than D10~2 sr, when the onset of the
nonrelativistic regime occurs before the sideways expansion
has a signiÐcant e†ect on the remnant dynamics.

For a jet with ergs and srE0\ 1051 )0\ 10~3 (h0\ 1¡),
which is the case shown in Figure 3 with dotted lines, equa-
tion (26) predicts that the jet edge is seen at hr, andT

j
\ 0.5

that the exponential regime starts at day and endsT
b
\ 1.0

at days. Numerically we obtain that !\ h~1 atTnr \ 44
hr, h being the jet half-angle, days andT

j
\ 1.0 T

b
\ 0.35

days for model 1, and 1.2 hr, 0.35 days, and 41Tnr\ 37
days, respectively, for model 2. Note that the numerical and
analytical results are in good agreement for Tnr.The discrepancy for the and values arises from theT

j
T
bfact that, in the analytical derivation, the e†ect of the side-

ways expansion on the remnant deceleration during the
power-law phase was ignored. Because there is some side-
ways expansion during this phase, the jet half-angle h is
increasingly larger than and ! drops below h~1 after ith0,has reached the value thus the analytical underesti-h0~1 ; T

jmates the numerical one. Numerically we found that when
!\ h~1, the jet angle is In the analytical treat-h

j
\ 1.2h0.ment presented by Rhoads (1999), the increase in the swept-

up mass due to the jet broadening during the power-law
phase is ignored, which means that, for the same radius, the
analytical ! is larger than the numerical one ; thus the ana-
lytical comoving time and the jet angle at given r are smaller
than the values obtained numerically. Therefore, the ana-
lytical overestimates the time when NumericallyT

b
h \ 2h0.

we found that, at as given by equation (26), the jet angle isT
bh \ 2.5h0.For the jet whose dynamics is shown in Figure 3h0\ 1¡

equation (25) predicts that during the exponen-(!0\ 500),
tial phase which is less than the[d ln !/d(r/r

d
) \ 0.23,

values shown in Figure 3 at times after and beforeT
b

Tnr :0.33^ 0.08 for model 1 and 0.30^ 0.07 for model 2. This is
consistent with the fact that [d ln !/d(r/r

d
)P r

e
~1P r

b
~1

and that the numerical is smaller than the analytical one.r
bThe same conclusions have been reached by comparing

the analytical and numerical results for other values of )0and the most important of them being that!0, T
b
/T

j
\

7È10, which is 5È7 times smaller than was obtained analyti-
cally.

4. SYNCHROTRON LIGHT CURVES FROM BEAMED EJECTA

The calculation of the afterglow light curve is described in
PMR98, and consists in integrating the remnant synchro-
tron emission over its dynamical evolution, over the elec-
tron distribution in each inÐnitesimal layer of swept-up
external gas and over the angle relative to the jet axis. The
electron distribution is initialized as a power law and
evolved through synchrotron and adiabatic cooling. We
assume an electron index p \ 3 and assume that electrons
acquire 10% of the internal energy after shock acceleration.
We also assume a turbulent magnetic Ðeld that stores 10~4
of the shocked-gas internal energy ; i.e., the magnetic Ðeld
intensity is 2 orders of magnitude weaker than the equi-
partition value, which leads to negligible radiative losses
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and an adiabatic remnant evolution. For a more general
case where there could be substantial radiative losses, some
of the remnant dynamics equations are altered as follows.
The factor A in equation (4) is set to 1, and a new term is
added to equation (17), representing the radiative losses.
The second term in the right hand side of equation (17),
representing the adiabatic losses, is split into a term for the
adiabatic losses of the baryons and another one for the
electrons. The electronic adiabatic losses act simultaneously
with the radiative losses and are put together in a di†eren-
tial equation for electron cooling (eq. [13] in PMR98).

The calculation of the photon arrival time takes into
account both the geometrical curvature of the remnant
(photons emitted by the Ñuid moving o† the observerÏs line
of sight toward the center of the shell arrive later than those
emitted along this central line of sight) and the thickness of
the shocked Ñuid, whose light crossing time is not negligible
compared to the observer time since the main burst. Here
we assume that there is a negligible mixing behind the
forward shock, such that the electron distribution in any
remnant inÐnitesimal layer is the one injected when that
layer was added to the shocked structure, evolved through
adiabatic and radiative losses. The shell thickness at the
time when a new inÐnitesimal layer of swept-up external gas
is added can be obtained from the remnant comoving
volume, whose calculation is described in ° 2.4.

The e†ect of the sideways expansion on the optical after-
glow seen by an observer located on the jet axis is shown in
Figure 4a. The initial energy per solid angle is the same for
all remnants ; only the jet initial half-angle is changed.h0The afterglow brightness should be independent of untilh0when the Ñow Lorentz factor has become sufficiently lowT
j
,

that the observer sees the edge of the jet. This feature is
better seen if the sideways expansion is ““ switched o†,ÏÏ
because in the case where it is taken into account there is a
nonnegligible jet broadening until T

j
.

For the afterglows shown in Figure 4a ! decreases to h~1
at 0.086, and 1.8 days for 3¡, and 9¡,T

j
\ 0.005, h0\ 1¡,

respectively, if the jet broadening is not taken into account
(i.e., at all times), and 0.009, 0.16, and 4.1 days,h \ h0respectively, if the sideways expansion is accounted for.
These are the times when photons emitted from the forward
shock along the remnant centerÈobserver line (which is the

jet axis in this case) arrive at the observer. Photons emitted
from the Ñuid located closer to the contact discontinuity
arrive up to twice later. For photons emitted fromT \ T

j
,

the forward shock regions moving at an angle !~1 o† this
central line of sight arrive at T \ (1[ cos !~1)(r/
c) D (2!2)~1(r/c), which is factor 8 larger than the arrival
time from the forward shock as can beTFS\ (16!2)~1(r/c),
shown using equations (20) and (21).

The times when the half-angle of the jets whose after-
glows are shown in Figure 4a reach twice their initial values
are 1.3, and 27 days, for h \ 1¡, 3¡, and 9¡, respec-T

b
\ 0.08,

tively. The optical light curves shown in Figure 4a steepen
smoothly around while the light curves of the non-T

b
,

broadening jets maintain the decay slopes they had before
(of course, has no meaning for a jet of constantT

b
T
bopening). The light-curve steepening that can be seen for the

nonbroadening jet around T \ 10 days is due toh0\ 9¡
the passage of the cooling break through the optical band.

It can be noticed that the slopes of the light curves for
nonbroadening jets shown in Figure 4a are not constant
after the given above and before as the remnantT

j
Ïs T

b
,

geometrical curvature delays the photon arrival time from
regions o† the jet axis. Moreover, the received power per
solid angle being proportional to [!(1[ b cos d)]~4, where
d is the angle relative to the central line of sight at which an
inÐnitesimal emitting region moves, implies that at thisT

jpower per solid angle from the jet edge is 16(d \ h
j
\ !

j
~1)

times smaller than that from d \ 0, which leads to the con-
clusion that it should take longer than just to see anT

jafterglow dimming rate in excess of that existent until DT
j(this is conÐrmed by the numerical results shown in Fig. 5d).

Put together with the fact that (see previousT
b
D (7È10)T

jsection) this suggests that the e†ects arising from seeing the
jet edge and from the sideways expansion may not be so
clearly distinguishable for the observer.

For the sideways expanding jets shown in Figure 4a, the
nonrelativistic phase begins at 18, and 32 daysTnr\ 11,
(forward shock times) for 3¡, and 9¡, respectively,h0\ 1¡,
while for the jets where sideways expansion was not taken
into account in the dynamics days, independent ofTnr\ 59
h0.The e†ect of the sideways expansion in the case where the
observer is located o† the jet axis, at an angle relative tohobs

FIG. 4.ÈOptical light curves and the e†ect of sideways expansion for beamed ejecta. For both panels the magnitudes are calculated with model 1.R
cThick curves are for the light curves obtained by taking into account the sideways expansion of the ejecta, in both the dynamics and the integration of light,

while thin curves are for the case where the jet broadening is ignored. Parameters are z\ 1, cm~3, a \ 0, and ergs sr~1. The electron andn
d
\ 1 v0\ 1053

magnetic Ðeld energy densities are 10~1 and 10~4 of the internal energy density. The distribution of the shock-accelerated electrons is assumed to be a power
law of index [3. (a) The observer is located on the axis of the jet, whose initial half-angle is given in the legend. Note that the jetÏs progressive broadening
leads to dimmer afterglows. (b) A jet of initial half-angle is seen at di†erent angles. Note that for the sideways expansion yields afterglowsh0\ 3¡ hobs [h0that have brighter peaks than in the case where the jet broadening is not taken into account.
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this axis, is illustrated in Figure 4b. The major di†erence
from the case is that, shortly after the light curvehobs\ 0
rises, which happens later for larger the broadening ofhobs,the jet yields a brighter afterglow than in the case where the
sideways expansion is ignored. This is due to the fact that
for broadening jets there is some shocked Ñuid approaching
the observer line of sight toward the remnant center, along
which the relativistic e†ects are maximal, while for non-
broadening jets it is only the decrease of the remnant bulk
Lorentz factor that ““ brings ÏÏ the observer into the cone of
the relativistically beamed radiation and thus to see the
afterglow.

In Figure 5 we illustrate the importance of integrating the
remnant emission over the angle relative to the observer
and of taking into account the Ðnite thickness of the source,
i.e., the time delays introduced by the location within the
remnant where the radiation is released. The curves shown

FIG. 5.ÈE†ects of the remnant geometrical curvature and thickness on
the observed light curve. The upper three panels show the model 1 radio,
optical, and X-ray afterglows for a jet with seen by an observerh0\ 1
located on its symmetry axis. Other parameters are as for Fig. 4. Thick
broken lines show the light curves whose calculations took into account
both the source curvature and the thickness, thin broken lines show those
for which the curvature was ignored, and stars indicate the case where it
was assumed that all the radiation is emitted from the location of the
forward shock. The evolution of the radio (dotted line), optical (dashed line),
and X-ray (long-dashed line) light-curve slopes for the Ðrst two cases is
shown in panel d. The relevant forward shock times are indicated on the
abscissa. days and days are the times when the peak ofT

O
\ 0.005 T

R
\ 3.1

the synchrotron emission from the least energetic electrons freshly injected
by the forward shock passes through the optical and radio bands, respec-
tively. For comparison, (a) and (b) also show with continuous thin lines the
light curves obtained with model 2. The X-ray afterglows in the two models
for the comoving volume are indistinguishable.

with thick broken lines correspond to afterglows where
both of the above e†ects are taken into account. The curves
shown with thin broken lines represent afterglows where the
integration over the polar angle was ““ switched o†,ÏÏ in the
sense that the light curve has been calculated as if all the
emitting Ñuid were moving directly toward the observer.
However, to account for the fact that at times and inT \ T

jthe presence of the relativistic e†ects the observer receives
radiation only from the Ñuid moving within !~1 o† the
central line of sight, the afterglowÏs brightness at hasT \ T

jbeen corrected by a factor As can be(!h)~2D (!h0)~2.
seen, ignoring the e†ect arising from the geometrical curva-
ture of the source leads to a substantial overestimation of
the early radio afterglow (Fig. 5a), introduces errors of more
than 1 mag in the early optical afterglow and of mag atD12later times (Fig. 5b), and underestimates the X-ray afterglow
by a factor [4.

The evolutions of the slope of the afterglows obtained by
accounting for the shell curvature are given in Figure 5d,
where we also show with vertical lines the important
forward shock times. For the parameters chosen here for
the electron fractional energy and for the magnetic Ðeld
intensity, the spectral cooling break is always between
optical and X-ray and above the synchrotron peak ; thus the
electrons radiating at this peak, in radio, and in optical are
adiabatic, while those radiating in X-ray are radiative. Fol-
lowing the analytical treatment of et al. (1998),Me� sza� ros
one can derive the following asymptotic afterglow light
curves for the case discussed here :
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(29)

where p \ 3 for the light curves shown in Figure 5. The
afterglow slope is expected to steepen at all frequencies by

when the jet edge is seen, while the changes in the same[34slope due to the jet sideways expansion are expected to be
[1/12 in radio, [p/4 \ [3/4 in optical, and

in X-ray. It should be noted here that in[(p[ 1)/4 \ [12the derivation of equations (27)È(29) the time evolution of
the remnant speciÐc intensity at the synchrotron peak was
calculated assuming that all the electrons radiate at this
peak (the electrons being adiabatic), which is a rough
approximation given that the injected electron distribution
(and implicitly the peak energy of their synchrotron
emission) changes substantially during an adiabatic time-
scale, which is comparable to the age of the remnant.

The afterglow slopes shown in Figure 5d for the case
where the ““ angular e†ect ÏÏ is ignored exhibit the trends
predicted by equations (27)È(29). The largest di†erence is
shown by the optical light curve at times between andDT

juntil after It results mostly from the fact that at theseT
b
.
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times the optical band is above but close to the synchrotron
peak, the integration over the electron distribution in the
shell leading to a spectrum that does not exhibit a pure
[(p [ 1)/2 slope (the electrons radiating in optical are
adiabatic), as assumed in the derivation of the analytical
light curves, but to a smooth transition between the slope13below the synchrotron peak and the [p/2 slope above the
cooling break (see Fig. 6).

Note from Figure 5d that taking into account the curva-
ture of the emitting shell delays the jet edge break, as
expected, until times comparable to The e†ect of theT

b
.

remnant thickness on the afterglow slope evolution (not
shown in Fig. 5d) is similar, but weaker, to that of the
remnant curvature. Figure 6 shows that the spectrum calcu-
lated by taking into account the time delays and Lorentz
boosting factors over a curved shell is harder than if the
shell is assumed planar. A photon emitted by the gas
moving o† the observerÏs central line of sight is at most
twice less blueshifted than one emitted along this line,
nevertheless the former was radiated at a smaller radius,
when ! and the synchrotron peak frequency (which scales
as !4) where larger, the end result of the integration over the
equal arrival-time surface being a harder spectrum.

The upper three panels of Figure 5 also show the light
curve obtained with model 1 if it is assumed that all the
radiation is emitted from the location of the forward shock,
i.e., if the light-travel time across the source is neglected.
The di†erences are minor in the X-ray because the electrons
emitting at high energies are radiative and cool fast ; thus
the X-ray emission from the Ñuid that is not located close to
the forward shock is negligible, but signiÐcant di†erences
can be seen in the radio and optical light curves, as the
electron radiating in these bands are adiabatic and thus

FIG. 6.ÈSpectral evolution of the afterglow shown in Fig. 5 and the
e†ects of the remnant curvature on the observed spectrum. Thick dotted
curves are for spectra whose calculation included the shell curvature, while
thin dotted lines are for the case where it was ignored. The squares con-
nected by a continuous line indicate the synchrotron peak of the radi-l

pation integrated over the power-law distribution of the electrons freshly
injected by the forward shock, while circles show the peak of the radi-l

cation from the electrons that cool radiatively on a timescale equal to that
of the adiabatic losses. In both cases the Doppler factor corresponding to
the motion toward the observer (the jet axis, in this case) was used. From
right to left the observer times for each spectrum are 0.01, 0.1, 1, 10, and
100 days. Note that the integration over the equal arrival-time surface
yields harder spectra and spectral peaks above Also note the smoothl

p
.

transition from the 1/3 power-law spectrum at to the [p/2 \ [3/2l\l
pone at and the absence of a perfect [(p [ 1)/2 \ [1 power law forl[l

cl
p
\ l\l

c
.

occupy the entire volume of the remnant. Also shown in
Figures 5a and 5b with continuous lines are the afterglows
calculated with model 2 for the remnant comoving volume.
Note that the largest di†erence between the optical light
curves within two models amounts to D1 mag in the late
afterglow. These di†erences are due mostly to the prescrip-
tion for the comoving volume, which leads to di†erent mag-
netic Ðelds and shell thicknesses, and not to the adiabatic
losses.

5. DISCUSSION

We have presented an analytical treatment for the
dynamics of an expanding Ðreball, capable of following its
evolution from the onset of the deceleration phase (r D r

d
)

until arbitrarily large times. The di†erential equations for
the remnant dynamics given here are valid in any relativistic
regime. The major assumption underlying the analytical
derivations is that, at any time, the remnant is axisym-
metric.

This analytical treatment takes into account a possible
delayed energy input resulting from an impulsive but
uneven deposition of energy in the ejected material. For
beamed ejecta, it also takes into account the intensiÐcation
of the remnant deceleration due to the increase of the solid
angle of the remnant and, thus, of the rate at which it
sweeps up external gas. The results presented in the pre-
vious section illustrate the e†ect of these two factors. The
treatment of the adiabatic losses and the calculations of the
magnetic Ðeld and remnant thickness require a prescription
for how to calculate the remnant volume. We considered
two models for this : model 1, which is based on the assump-
tion that, if the accumulation of swept-up gas is subtracted,
the remaining increase of the lab-frame volume is due only
to the r2 increase of the remnant area, and model 2, which is
based on the assumption that the density proÐle behind
each shock is uniform. The two models for the comoving
volume calculation lead to signiÐcant di†erences in
remnant dynamics when there is a sharp delayed energy
input, as shown in Figure 2, and in the case of beamed
ejecta, as shown in Figure 3. There are also signiÐcant dif-
ferences among the radio and optical afterglows calculated
within the two models for the remnant volume, as illus-
trated in Figures 5a and 5b.

We have compared the features of the dynamics of
beamed ejecta calculated numerically with some analytical
results derived from those presented by Rhoads (1999). The
most important di†erence is that the ratio of the observer
times when the jet half-angle h reaches twice its initialT

b
,

value due to the sideways expansion, and when theT
j
,

remnant Lorentz factor has decreased to h~1, is analytically
overestimated to D50, while the numerics lead to a value

is the time when the afterglow is expected to[10. T
jsteepen by T ~3@4 because of the Ðnite angular opening of

the ejecta, while at the afterglow should further steepenT
bby at most T ~p@4, where p is index of the injected electron

distribution, due to the intensiÐcation of the remnant decel-
eration caused by the continuous jet broadening. The after-
glow slope evolutions shown in Figure 5d suggest that,
because of the remnant curvature, the deÐned aboveT

jactually underestimates the time when the Ðnite angular
extent of the remnant yields a substantial steepening of the
light curve, and that jet edge break overlaps with the
weaker light-curve steepening due to the jet sideways
expansion.
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We have compared the numerical light curves with the
asymptotic behaviors expected analytically and we have
analyzed the importance of integrating the remnant emis-
sion over its angular opening, as the Doppler boosting and
the photon arrival time are functions of the angle between
the direction of motion of the emitting Ñuid region and the
direction toward the observer. Figure 5 shows that this
e†ect is quite important, and should be taken into account
for accurate afterglow calculations. We have also found that
the thickness of the source is an important factor, though
less than the shell curvature, in the calculation of radio and
optical afterglows. Lastly, the afterglow spectrum at fre-

quencies around the peak and the cooling breaks, and
between these breaks (if they are not too far from each
other), may be poorly approximated as a power law, partic-
ularly if the electrons radiating at the frequency of interest
are adiabatic (see Fig. 6), implying that they have been
injected over a wide range of radii and bulk Lorentz factors.
In this case, a numerical integration of the electron injection
and cooling is necessary in order to obtain an accurate
afterglow emission.
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