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ABSTRACT
We use current observations on the number statistics of gravitationally lensed optical arcs toward

galaxy clusters to derive an upper limit on the cosmological mass density of the universe. The gravita-
tional lensing statistics from foreground clusters combine properties of both cluster evolution, which is
sensitive to the matter density, and volume change, which is sensitive to the cosmological constant. The
uncertainties associated with the predicted number of lensing events, however, currently do not allow
one to distinguish between Ñat and open cosmological models with and without a cosmological constant.
Still, after accounting for known errors, and assuming that clusters in general have dark matter core
radii of the order D35 h~1 kpc, we Ðnd that the cosmological mass density, is less than 0.56 at the)

m
,

95% conÐdence. Such a dark matter core radius is consistent with cluster potentials determined recently
by detailed numerical inversions of strong and weak lensing imaging data. If no core radius is present,
the upper limit on to 0.62 (95% conÐdence level). The estimated upper limit on is consis-)

m
increases )

mtent with various cosmological probes that suggest a low matter density for the universe.
Subject headings : cosmology : observations È cosmology : theory È gravitational lensing

1. INTRODUCTION

A large number of cosmological probes now suggest that
the universe is spatially Ñat with a low mass density (e.g.,
Perlmutter et al. 1998 ; Riess et al. 1998 ; Lineweaver 1998 ;
Guerra & Daly 1998 ; Bahcall & Fan 1998). In addition to
the mass density, gravitational lensing statistics have
allowed limits to be placed on the cosmological constant.
However, current limits on the cosmological constant from
gravitational lensing arguments are based only on lensing
statistics from foreground galaxies (e.g., Kochanek 1996b ;
Falco, Kochanek, & Mun8 oz 1998 ; Cheng & Krauss 1999 ;
Cooray, Quashnock, & Miller 1999 ; Cooray 1999a ; Quast
& Helbig 1999).1 An alternative approach is to consider
lensing statistics from foreground galaxy clusters (e.g., Wu
& Hammer 1993 ; Bartelmann et al. 1998 ; Cooray 1999b). It
is well known that galaxy cluster evolution is strongly sensi-
tive to the cosmological mass density of the universe (e.g.,
Bahcall & Fan 1998 ; Viana & Liddle 1998). Since lensing
statistics are sensitive to the cosmological constant, it is
likely that the number of lensed arcs due to galaxy clusters
can provide strong constraints on both the mass density
and the cosmological constant.

Since the Ðrst suggestion that lensed optical arcs can be
used as a cosmological probe (Wu & Hammer 1993), several
studies have addressed speciÐc issues related to the sta-
tistical calculation. These include the e†ect of a cosmo-
logical constant (Wu & Mao 1996) and background source
evolution (Hamana & Futamase 1997). The numerical
works by Bartelmann et al. (1998), using simulated clusters
in three cosmological models, suggested that current obser-
vational statistics on lensed arcs are consistent with predic-
tions in an open universe with In Cooray()" \ 0) )

m
D 0.3.

(1999b, hereafter C99), we extended the predictions to
general cosmologies and also predicted the existence of
lensed radio and submillimeter sources toward foreground

1 We note that other techniques, such as the luminosity distance to
Type Ia supernovae at high redshifts (e.g., Perlmutter et al. 1998 ; Riess et
al. 1998), also allow constraints to be placed on the cosmological constant.

clusters. Here, we extend the calculation in C99 by includ-
ing various uncertainties in the predicted number of lensed
optical sources in order to study the possibility of obtaining
limits on cosmological parameters based on the observed
number.

In ° 2, we describe our calculation and inputs for the
prediction. In ° 3, we compare the predicted number of
lensed arcs to the observed number and use a reliable lower
limit on the observed number to derive an upper limit on
the cosmological mass density of the universe. We follow
the conventions that the Hubble constant, is 100 h kmH0,s~1 Mpc~1, the present matter energy density in units of the
closure density is and the normalized cosmological)

M
,

constant is Unless otherwise noted, quoted errors are)".
1 p statistical errors.

2. GRAVITATIONAL LENSING STATISTICS

In this section, we brieÑy describe our calculation and,
especially, foreground lensing clusters (° 2.1) and back-
ground sources (° 2.2). We also introduce a nonsingular
isothermal sphere model to describe the galaxy cluster dark
matter proÐle, which is primarily motivated by recent deter-
minations of the cluster potentials using high-performance
numerical inversions of combined strong and weak lensing
data from a sample of galaxy clusters.

2.1. Foreground L enses
The di†erential probability that a beam moving from a

background source will encounter a foreground lens with a
path length of isdz

L

dq\ n(z
L
)alens

c dt
dz

L
dz

L
, (1)

where is the number density of foreground lenses atn(z
L
)

redshift while is the lensing cross section (e.g., Fuku-z
l
, alensgita et al. 1992).

Using the Press-Schechter mass function (Press &
Schechter 1974, hereafter PS), we can write the comoving
number density of galaxy clusters, dn(M, z), at redshift z and
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mass (M, M ] dM), as

dn(M, z)
dM

\ [
S2

n
o6
M

dp(M, z)
dM

d
c

p2(M, z)
exp

C [d
c
2

2p2(M, z)
D

,

(2)

where is the comoving background matter density,o6
p2(M, z) is the variance of the Ñuctuation spectrum aver-
aged over a mass scale M, and is the linear overdensityd

cof a perturbation that has collapsed and virialized. Taking
an approach similar to the one presented in Viana & Liddle
(1998), we write p(M, z) as a function of the comoving
radius, R, which contains mass M at the current epoch :

p(R, z)\ p8(z)
A R
8 h~1 Mpc

B~c(R)
, (3)

where

c(R)\ (0.3!] 0.2)
C
2.92] log10

A R
8 h~1 Mpc

BD
. (4)

Here, !\ 0.23^ 0.05 (Peacock & Dodds 1994) is the cold
dark matter (CDM) shape parameter ; our results are insen-
sitive to its speciÐc value (e.g., Viana & Liddle 1998). In
order to calculate growth evolution as a function of redshift
in various cosmologies, we write asp8(z)

p8(z)\
p8(0)
1 ] z

g[)
m
(z)]

g[)
m
(0)]

, (5)

where, following Carroll, Press, & Turner (1992), the growth
suppression factor is

g()
m
)\ 5

2
)

m

C
)

m
4@7 [)" ]

A
1 ] )

m
2
BA

1 ] )"
70
BD~1

. (6)

The normalization for comes from the local tem-p8perature function (Pen 1998) :

p8(0)\ 4
5
6
0
0
(0.53^ 0.05))

m
~0.46 , )" \ 0 ,

(0.53^ 0.05))
m
~0.53 , )

m
] )" \ 1 .

(7)

In order to model the cluster-lensing potential, we use the
nonsingular singular isothermal sphere model with the
observed velocity dispersion and an a priori determined
value for the core radius of the dark matter potential of the
cluster. The evidence for a core radius in the dark matter
proÐle of galaxy clusters primarily comes from the existence
of gravitationally lensed arcs in the radial direction from the
cluster center. For simple models of the cluster potential
involving singular isothermal models, such arcs are located
at a distance equivalent to the core radius of the cluster
potential proÐle. Also, recent numerical inversions of galaxy
clusterÈlensing potentials using Hubble Space T elescope
and other ground-based high-quality images clearly suggest
the presence of a small core radius (Tyson, Kochanski, &
DellÏAntonio 1998 ; I. DellÏAntonio 1999, private commu-
nication). Thus, it is necessary that we consider a lensing
model that allows for the possible presence of a core radius.
Following Hinshaw & Krauss (1987), we consider a iso-
thermal sphere model with a core radius and write the
density proÐle as

o \ pvel2
2nG(r2] r

c
2) , (8)

where is the dark matter velocity dispersion and is thepvel r
ccore radius of the dark matter proÐle of the cluster. The

conventional singular isothermal sphere (SIS) is recovered
when is zero. The lensing cross section for the non-r

csingular isothermal model is given by

alens\ 16n3
Apvel

c
B4ADOLDLS

DOS

B2
f (b) , (9)

where and are observer-to-lens, observer-to-DOL, DOS, DLSsource, and lens-to-source distances. These distances are
calculated under the Ðlled-beam approximation. In equa-
tion (9), f (b) is a correction factor that takes into account
the nonsingular behavior of the density proÐle (see Hinshaw
& Krauss 1987) :

f (b) \ 1 ] 5b [ b2
2

[ Jb(4] b)3@2
2

, (10)

where b is the ratio of core radius to critical radius of the
lensing potential, with the latter measured at the redshift of
the cluster :

b \ r
c
cH0(1] z

L
)

4npvel2
A DOS
DLS DOS

B
. (11)

When the SIS model is considered, b \ 0 and f (b)\ 1. For
small core radii, especially for the present case involving
galaxy clusters, one can usually ignore higher order b terms
associated with f (b) ; we consider, however, the full formula
in deriving cosmological parameters. Finally, the di†eren-
tial optical depth for the nonsingular isothermal model is

dq\ 16n3
GP

Mmin

= Cpvel(M@)
c

D4 dn(M@, z
L
)

dM@
f (b)dM@

H

] (1] z
L
)3
ADOLDLS

DOS

B2 c dt
dz

L
dz

L
. (12)

The total optical depth to a given background redshift, isz
s
,

given by

q(z
s
) \
P
0

zs dq
dz

L
dz

L
. (13)

To calculate the lensing optical depth, we take a two-step
approach in order to relate a clusterÏs velocity dispersion to
its mass. We relate velocity dispersion to cluster tem-
perature, using the recently updated p-T relation (Wu,
Fang, & Xu 1998),

pvel(T ) \ 102.57B0.03
A T
keV
B0.56B0.09

km s~1 , (14)

and then to mass, using a partly theoretical M-T relation
(e.g., Barbosa et al. 1996),

T (M, z) \ (6.8^ 0.5) h2@3 keV
C)

m
*

c
()

m
, z)

178
D1@3

]
A M
1015 h~1 M

_

B2@3
(1] z) . (15)

We have allowed for an extra uncertainty in the M-T rela-
tion by comparing various normalizations that have been
suggested in the literature. Also, we note that b is dependent
on cluster mass through velocity dispersion (eq. [11]). It is
likely that cluster core radii are also dependent on individ-
ual cluster masses. Even though such variations have been
observationally determined for galaxies (e.g., Lauer 1985),
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there is still no observational evidence for a dependence of
galaxy cluster core radii with other physical properties, such
as the X-ray luminosity or temperature. For the purpose of
this calculation, we take a constant value for the core
radius, based on the mean value of cluster core radii from
numerical inversions (D35 h~1 kpc ; I. DellÏAntonio 1999,
private communication). When deriving cosmological
parameters, we vary the exact value of the core radius to
investigate the parameter dependences on it ; as we Ðnd
later, our limit on is weakly dependent on the core)

mradius.
In Figure 1, as an illustration, we show the lensing optical

depth due to foreground clusters with total masses greater
than 7.5] 1014 h~1 for a background source at a red-M

_shift of 1, as a function of for open and Ñat cosmologies)
mand considering a lensing potential in which f (b)\ 1 (SIS

model). Figure 1 shows the 95% upper and lower con-
Ðdences that were produced in each case when we con-
sidered all the possible errors we have so far discussed. The
uncertainty in the optical depth is primarily dominated by
the error associated with the normalization of the PS mass
function ; since the number density of massive clusters is
strongly sensitive to the exponential term in equation (2),
small changes in can produce order-of-magnitudep8changes in the number density. The di†erence between Ñat
and open cosmological models is primarily due to the
increase in lensing probability with the addition of )".
However, this di†erence is small, and when errors in obser-
vations are also considered, it is impossible to study the
possible existence of a cosmological constant by using
lensed arc statistics. Therefore, taking a conservative
approach, we combine the upper curve valid for Ñat cosmol-
ogies with the lower curve deÐned by open models to
combine the 95% conÐdence range in the predicted number
of lensed sources.

2.2. Background Sources
In order to obtain reliable predictions on the number of

lensed arcs, it is important that both the background source

FIG. 1.ÈOptical depth for strong lensing for a background source at a
redshift of 1, due to foreground massive clusters. Shown are the 95%
conÐdence ranges for both Ñat (dot-dashed lines) and open (solid lines)
cosmologies with and without a cosmological constant. Given the large
uncertainty associated with the optical depth and the small di†erence
between Ñat and open cosmological models, it is unlikely that lensed arc
statistics can be used to reliably place limits on the cosmological constant.

evolution and e†ects such as ““ magniÐcation bias ÏÏ
(Kochanek 1991) be included in the calculation. Our
description of background sources comes from the Hubble
Deep Field (HDF; Williams et al. 1996). We use the HDF
redshift and magnitude distribution and the luminosity
function from Sawicki, Lin, & Yee (1997). Such an approach
allows us to reliably account for the true redshift distribu-
tion of background sources, instead of an empirical dis-
tribution or a constant redshift, while also accounting for
intrinsic evolutionary e†ects, which has shown to be impor-
tant for lensing predictions (e.g., Hamana & Futamase
1997).

By using the probability that a source at redshift z is
strongly lensed [q(z, and the number of unlensed)

m
, Mmin)]background sources between rest-frame luminosity L and

L ] dL and between redshifts z and z] dz ['(L , z)dL dz],
we can write the number of lensed galaxies, in thatdN1 ,
luminosity and redshift interval as (see also Maoz et al.
1992)

dN1 (L , z)
dz

\ q(z, )
m
, Mmin)

]
P C

'
AL
A

, z
B dL

A
D

f (A, L , z)q(A)dA . (16)

Here, the integral is over all allowed values of A, the ampli-
Ðcation of the brightest lensed image ; q(A) is the probability
distribution of ampliÐcations ; and f (A, L , z) is the probabil-
ity of observing the brightest image given A, L , and z. Our
assumption that the lenses are nonsingular isothermal
spheres implies that the minimum ampliÐcation, is aAmin,function of b. In general, the probability distribution of
ampliÐcations can be written as

q(A)dA\ 2Amin2 A~3 dA . (17)

In Figure 2, we show as a function of b, which isAmincalculated following Cheng & Krauss (1999). In practice we
use a Ðtting function that returns for a given value of b,Aminwith an accuracy of better than 0.1% at all interested values
of b in the present calculation. For simplicity, we assume
that f (A, L , z) is a step function, A), so that a lensed#(mlim,
image with apparent magnitude brighter than ismlimdetected. For a given value of the core radius and the veloc-

FIG. 2.ÈMinimum ampliÐcation vs. b, the ratio of core radius to criti-
cal radius at the redshift of the lensing cluster.
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ity dispersion, b is determined from equation (11). For
massive clusters discussed here with velocity dispersions of
the order km s~1 and at redshifts D0.2,Z1000 b [ 0.07
and Compared with the SIS model, the additionAmin[ 5.
of a small core radius produces only slight changes in the
lensing probability. As described in Kochanek (1996a), the
e†ect of a core radius is to increase the magniÐcation bias
while increasing the e†ective lensing cross section ; the
overall e†ect is that the presence of a core radius is not
signiÐcantly di†erent from that of an SIS model.

We assume that the brightness distribution of back-
ground galaxies at any given redshift is described by a
Schechter function (Schechter 1976), in which the comoving
density of galaxies at redshift z and with luminosity between
L and L ] dL is

/(L , z) dL \ /*(z)
C L
L *(z)

Da(z)
e~L@LR(z) dL , (18)

where, as before, both L and L * are measured in the rest
frame of the galaxy. Following Cooray, Quashnock, &
Miller 1999, we can write the expected number of lensedN1
sources as

N1 \ ;
i

q(z
i
, )

m
, Mmin)

P
2

=
A~1~a(zi)eLi@LR(zi)e~Li@ALR(zi)

] #(mlim, A)
2

(A[ 1)3 dA , (19)

where the sum is over each of the background galaxies. The
index i represents each galaxy ; hence, and are,z

i
, L

i
, m

irespectively, the redshift, rest-frame luminosity, and appar-
ent magnitude of the ith galaxy.

Since for an individual galaxy is unknown because ofL
iuncertain K-corrections, following Cooray et al. (1999), we

estimate the total average bias by weighting the integral in
equation (19) by a normalized distribution of luminosities

drawn from the Schechter function appropriate for theL
iredshift of galaxy i. We calculated the magniÐcation biasz

ifor individual redshift intervals for which the Schechter
function parameters are available in Table 1 of Sawicki et
al. (1997). In principle, the uncertainties in the Schechter
function parameters at a given redshift can a†ect the calcu-
lation of the bias, but in practice only the uncertainty in the
power-law slope a has a signiÐcant e†ect. The e†ect of
varying a on the lensing statistics was discussed in Cooray
et al. (1999) for lensing statistics involving foreground gal-
axies in the Hubble Deep Field, which is also valid for the
present case involving galaxy clusters ; the general e†ect,
which is due to uncertainties tabulated in Sawicki et al.
(1997), is that the constraints on cosmological parameters
vary by less than 5%, when a is in general varied by the
quoted 1 p uncertainties in Sawicki et al. (1997). Here, we
take a conservative approach and allow the largest possible
bias, so that the expected number is overestimated by an
amount as suggested above. The only e†ect of this approach
is to increase slightly our upper limit on )

m
.

In Figure 3, we show the expected number of lensed arcs
toward foreground massive clusters with total mass greater
than h~1 and assuming a zero coreMmin\ 7.5] 1014 M

_radius for the lensing potential. We deÐne an arc as a lensed
source that is ampliÐed by a factor equal to or greater than
10. To make a direct comparison to both observations and
prior predictions, we impose a limiting V -band magnitude

FIG. 3.ÈExpected number of lensed arcs on the whole sky with ampliÐ-
cations greater than 10 and V -band magnitudes brighter than 22 toward
foreground massive clusters. The shaded range shows the 95% conÐdence
upper and lower limits on the expected number of lensed arcs, while the
horizontal lines show the range of current observed numbers. We use the
lower limit on the current observed number to impose an upper limit
on )

m
.

of 22. Our numbers can be compared directly with previous
estimates, especially those of Bartelmann et al. (1998). This
study predicted D2400 arcs in an open universe with )

m
D

0.3 and D36 arcs in an EinsteinÈde Sitter universe. The
number expected in a Ñat universe with and)

m
D 0.3 )" D

was D280. Our estimates for an EinsteinÈde Sitter uni-0.7
verse range from D0.1 to 60, while for a universe)

m
D 0.3

(independent of they are D50È7000 (with the higher)"),
end allowed by the cosmological constant). The primary
reason for a lower number of arcs with in the study by)"Bartelmann et al. (1998) was their assumption that clusters
are di†erent in universes with a cosmological constant, such
that their concentration is lower. Based on numerical simu-
lations performed by the Virgo Consortium, however,
Thomas et al. (1998) studied a series of clusters in four
di†erent cosmologies, including an open model with )

m
\

0.3 and a Ñat model with a cosmological constant of )" \
0.7. The authors concluded that clusters do not exhibit dif-
ferences between open and Ñat cosmologies with and
without a cosmological constant and that cluster structures
cannot be used to discriminate between the two pos-
sibilities. If Thomas et al. (1998) are correct, then the inclu-
sion of a cosmological constant is not expected to change
cluster mass proÐles to an extent that would a†ect the gravi-
tational lensing rate. In any case, such systematic e†ects are
unlikely to be nearly as large as the current uncertainty in

which dominates the present calculation on the lensingp8,rate. Ignoring this case, our predictions are generally consis-
tent with Bartelmann et al. (1998). As we have demonstrated
in Figure 1, lensed arc statistics are unlikely to provide
useful limits on the cosmological constant. The same is true
for alternatives to the cosmological constant, such as scalar
Ðeld and quintessence models that have recently been intro-
duced (e.g., Steinhardt, Wang, & Zlatev 1998).

3. CONSTRAINTS ON )
m

In order to derive a limit on based on the number of)
mlensed arcs, we require knowledge on the observed number

of such lensing events. Current surveys of clusters are based
on their X-ray luminosities rather than masses. For an
example, the luminosity cuto† of the follow-up Extended
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Medium-Sensitivity Survey (EMSS) cluster arc survey by
Le et al. (1994) is 8] 1044 h~2 ergs s~1, measured inFèvre
the EMSS band of 0.3È3.5 keV. Converting this to a total
mass by following through a recently derived L -T relation
(Arnaud & Evrard 1999) in addition to the above M-T
relation suggests a reliable lower limit on the mass of
7.5] 1014 h~1 . We have taken the lowest limit onM

_mass by considering all cosmologiesÈsince the M-T rela-
tion and L estimates are di†erent under varying cosmol-
ogies. The current observed arc statistics (e.g., Le etFèvre
al. 1994 ; Luppino et al. 1999), when converted to a whole-
sky number, suggest that the number of arcs toward above-
deÐned massive clusters and with ampliÐcations greater
than 10 down to a V -bandÈlimiting magnitude of 22 is
between 1500 and 2500 (e.g., C99 ; Bartelmann et al. 1998).
Ignoring the upper value, which is likely to be unreliable, we
use the lower estimate to derive an upper limit on Since)

m
.

the lower estimate is based on the observed number, this
allows us to put a reliable upper limit on We also vary)

m
.

this lower limit to study its e†ects on our constraints.
In order to derive a constraint on we adopt a Bayes-)

m
,

ian approach, and take a uniform prior for between 0)
mand ]1. This is primarily due to the fact that we do not yet

have a precise determination of and, based on various)
m
,

theoretical arguments, we do not wish to consider cosmol-
ogies in which this quantity lies outside the interval [0, 1].
Since the prior for is uniform, the posterior probability)

mdensity is simply proportional to the likelihood.
The likelihood LÈa function of the probability)

m
Èis

of the data, given The likelihood for n observed arcs (at)
m
.

redshifts when is expected is given by Cooray et al.z
j
) N1

(1999) :

SL(n)T \ <
j/0

n
q(z

j
)e~N1

G
1 ] pq2

CN1 2
2

[ nN1 ] n(n [ 1)
2

DH
.

(20)

We have taken into account the uncertainty in the predicted
lensing rate by introducing which is the fractional 1 ppq,error on q, and then mariginalizing the likelihood over the
variance of it. In order to constrain we also need the)

m
,

redshifts of the observed arcs. Using published data onz
jindividual lensing clusters, we obtained a median redshift

for the lensed arcs of As we Ðnd below, changingz6 D 1.6.
this mean redshift to a reasonably di†erent value does not
change our constraints on the greatly.)

mWhen the observed lower limit is compared with predic-
tions, we Ðnd that at the 95% conÐdence when)

m
[ 0.62

there is no core radius (SIS). When we include a core radius
of 35 h~1 kpc, the upper limit on decreases to 0.56 at the)

m95% conÐdence level ; the change in the upper limit on is)
monly a minor e†ect. If the core radius were to be as large as

100 h~1 kpc, then the derived upper limit on could be as)
mlow as 0.29 at the 95% conÐdence level. However, such a

large core radius for the cluster dark matter proÐle is ruled
out, leaving the possibility for only a much smaller core
radius of the order 30È40 h~1 kpc. When the e†ective
median redshift of lensed arcs is changed to a lower number,
as D1, the upper limit increases to 0.58 from 0.56, while
when the redshift is increased to a value of 3.0 from 1.6, the
upper limit on at the 95% conÐdence decreases to 0.52.)

mWhen we increase the lower limit from 1500 to 2000, our
upper limit on with a model involving a core radius of)

m35 h~1 kpc decreases to 0.52 from 0.56. This is primarily due

to the fact that the expected number of lensing events varies
by orders of magnitude when is changed from 1 to 0,)

mwith the variation in the expected number larger at the
lower end of values. For such a small core radius, the)

mlimit on is consistent with current estimates based on)
mother cosmological probes, such as Type Ia supernovae and

galaxy cluster abundances. We note that our limit on )
mdoes not mean that the universe is open without a cosmo-

logical constant, but rather that lensed arc statistics are not
sensitive enough to the cosmological constant to see its
e†ects above the current uncertainties. In general, the upper
limit on with a cosmological constant is slightly higher)

mwhen compared with an open model. However, this di†er-
ence is rather small (approximately a few percent ; see Fig. 1)
and cannot be distinguished using current observations on
cluster number counts and lensed arcs.

3.1. Uncertainties and Systematic E†ects
Using a lower limit on the observed number of lensed

arcs, we have derived an upper limit on A major uncer-)
m
.

tainty is likely to come when estimating a lower limit on the
observed number of arcs, since it is based only on optical
follow-up observations of EMSS clusters (e.g., Henry et al.
1992). As a reliable approach, we have taken the lower limit
allowed by the observed number of lensed arcs toward this
sample. In reality, the true number is likely to be higher, but
the lower limit allows us to safely consider upper limits on
cosmological parameters, especially the cosmological mass
density. The present observational number of lensing events
is unlikely to be improved unless large samples of clusters
are followed up at optical wavelengths. Several attempts are
currently underway (e.g., Luppino et al. 1999) ; however, all
such surveys are still based on the EMSS sample. It is likely
that the optical follow-up observations of additional cluster
catalogs, such as the ROSAT Bright Cluster Survey (BCS;
Ebeling et al. 1998), can greatly improve our knowledge on
the lensing statistics from galaxy clusters, allowing better
constraints on the cosmological parameters.

In addition to current low-number statistics, other uncer-
tainties are likely to come from the conversion of obser-
vations, such as cluster X-ray luminosity, to mass. However,
at each step, we have considered various estimates such that
the predicted number of lensed arcs is overestimated ; this
approach allows us to consider a reliable limit on whose)

m
,

upper limit may have been systematically increased by our
procedure. We have also investigated the e†ect of a core
radius on arc statistics. As found, for luminous optical arcs
with ampliÐcations greater than 10, the e†ect of a core
radius on our prediction of the number of lensing events is
minimal. The upper limit varies only from 0.62 to 0.56 at the
95% conÐdence when a reasonable core radius of size 35
h~1 kpc is introduced. Increasing a core radius as high as
100 h~1 kpc reduces the upper limit by a factor of D2 ;
however, such a large core radius is ruled out by current
observations of gravitational lensing of clusters (e.g., the
nonexistence of radial arcs at large distances from the
cluster center).

4. SUMMARY AND CONCLUSIONS

Using a lower limit on the observed number of lensed
arcs due to clusters, we have calculated an upper limit on

Due to large uncertainties in the predicted number of)
m
.

lensed sources, primarily dominated by the error in wep8,are unable to place limits on the cosmological constant.
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However, after considering possible known errors and care-
fully taking into account various estimates such that the
upper limit on is not reduced, we conclude that)

m
)

m
[

at the 95% conÐdence.0.62
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