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ABSTRACT

We show how analysis of a quasar high-magnification microlensing event may be used to construct a
map of the frequency-dependent surface brightness of the quasar accretion disk. The same procedure
also allows determination of the disk inclination angle, the black hole mass (modulo the caustic velocity),
and possibly the black hole spin. This method depends on the validity of one assumption: that the
optical and ultraviolet continuum of the quasar is produced on the surface of an azimuthally symmetric,
flat equatorial disk, whose gas follows prograde circular orbits in a Kerr spacetime (and plunges inside
the marginally stable orbit). Given this assumption, we advocate using a variant of first-order linear
regularization to invert multifrequency microlensing light curves to obtain the disk surface brightness as
a function of radius and frequency. The other parameters can be found by minimizing y* in a fashion
consistent with the regularized solution for the surface brightness. We present simulations for a disk
model appropriate to the Finstein Cross quasar, an object uniquely well suited to this approach. These
simulations confirm that the surface brightness can be reconstructed quite well near its peak and that
there are no systematic errors in determining the other model parameters. We also discuss the obser-

vational requirements for successful implementation of this technique.

Subject headings: accretion, accretion disks — gravitational lensing —
quasars: individual (2237 +0305) — relativity

1. INTRODUCTION

Because of their great distance and small intrinsic size,
it is not possible to obtain a resolved optical image of
a quasar with current technology. The angular size of a
quasar optical emission region is of order 10~ ® arcsec, a
scale so small as to require a baseline of several thousand
kilometers to resolve. Thus, until optical VLBI becomes
practical, quasar structure will need to be probed by other,
indirect, means. Reverberation mapping provides an
instructive example of the difficulties of such indirect
approaches, for it has proven difficult both to implement
and to interpret. We believe that the subject of this paper,
microlensing by stars in an intervening galaxy, is a more
promising method.

The circumstantial evidence that black holes power
quasars is convincing: accretion onto a black hole can be
very efficient in converting rest-mass energy to photons (up
to 40%) or to bulk momentum (forming radio jets/lobes) in
a compact region that has an effective temperature near
where quasar spectra peak. There is statistical evidence that
quiescent black holes in the nuclei of galaxies at low redshift
could be the remnants of quasars. Also, quasars have
properties very similar to those of Seyfert galaxies, for some
of which there is good spectroscopic evidence for a central
black hole. The nature of the accretion flow is quite uncer-
tain, however, although it is probably geometrically thin
since angular momentum will support the accretion flow
against collapse and geometrically thick disks are by nature
inefficient (if quasar disks were thick, there would be prob-
lems producing the huge luminosities observed within a
reasonable mass budget).

Attempts to constrain the character of the innermost ac-
cretion flow by means of spectral modeling have made little
progress for several reasons. There are major systematic
uncertainties about fundamental issues (e.g., the vertical dis-
tribution of energy dissipation, the physics to include in
radiation transfer solutions). In addition, any particular
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model depends on a sizable number of free parameters
(mass of the central black hole, accretion rate, viscosity
parameter, inclination angle), so parameter estimation is
tricky.

Analysis of a microlensing event is potentially a more
powerful tool. Rather than guess a specific model for the
accretion disk, the history of magnification in the event can
be used to infer the disk surface brightness directly as a
function of radius and frequency. The only assumptions
required are that the continuum emission surface is geo-
metrically flat, that the material forming it follows circular
orbits, and that general relativity determines the dynamics
of both the matter and the photons.

To apply this technique requires study of a particular
gravitationally lensed quasar. Many are now known, and
some appear to undergo occasional fluctuations due to indi-
vidual stars in the lens galaxy magnifying the quasar, a
phenomenon referred to as microlensing. The Einstein
Cross is particularly well suited to this problem for a
number of reasons that we will detail in § 1.3. Several
authors have attempted to constrain the character of the
accretion disk in this system by comparing predicted light
curves to the data compiled during microlensing events
(Jaroszynski, Wambsganss, & Paczynski 1992; Rauch &
Blandford 1991; Jaroszynski & Marck 1994; Czerny,
Jaroszynski, & Czerny 1994). However, the results have all
been somewhat inconclusive because of the ordinary spec-
tral modeling difficulties described above.

The remainder of this paper is organized as follows. In
§ 1, we describe how a caustic crossing can be used to per-
form the mapping and discuss why the Einstein Cross is
such a suitable target for this sort of study. In § 2, we discuss
the model in detail, considering our assumptions, the inver-
sion technique, and error propagation. In § 3, we present a
variety of simulations of caustic-crossing events and
demonstrate that we can measure most model parameters.
We show some examples of the accuracy with which the
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intensity at the accretion disk may be determined and
discuss how the reliability of the results depends on the
quality of the observational data, on the character of the
monitoring, and, to some degree, on the character of the
regularization scheme. In the final section, we discuss the
results and present our conclusions.

1.1. Smooth Thin Disk

For a standard thin accretion disk with constant accre-
tion rate and no advection of heat, the energy generation
per unit area as a function of radius is given by

=3 R0, 1)

where My, is the mass of the black hole, M is the accretion
rate, r is the radius within the disk, and Ry is a correction
factor that combines outward advection of energy associ-
ated with the angular momentum flux and relativistic effects
(Page & Thorne 1974; notation from Krolik 1998). Ry is a
function of the black hole spin a, = a/Mpgy.

Though equation (1) describes the functional dependence
of the energy released with radius, it does not specify
whether this energy is thermal or mechanical and does not
specify the dissipation as a function of height within the
accretion disk. The appearance of a standard thin accretion
disk can vary significantly depending on how and where the
energy is released. To further our understanding, it would
be very desirable to actually measure the local spectrum.

One potential method to achieve this is to observe a
quasar during the sort of high-magnification microlensing
event that occurs when a caustic crosses the source (Grieger,
Kayser, & Refsdal 1988; Grieger, Kayser, & Schramm
1991; Gould & Gaudi 1997). Grieger et al. (1991) advocate
inverting the microlensing light curve to obtain the one-
dimensional surface brightness of the quasar, P,(x)=
[ I(x, y)dy, where I(x, y) is the specific intensity of the
quasar at sky coordinates (x, y). Their method is quite
elegant but relies on first-order regularization (the assump-
tion that the quasar profile is smooth). This assumption is
problematic for black hole models since the energy release
increases rapidly toward smaller radii, and relativistic
effects can cause sharp peaks in the quasar profile. These
sharp features are smoothed out when this method is used
(see Fig. 1).

We believe a better approach is to solve instead for the
surface brightness at the accretion disk, with the relatively
benign assumptions that the disk is planar, axisymmetric,
and isotropically emitting (in the fluid frame), and most
importantly, likely to vary smoothly with radius. This
approach provides a better inversion of the quasar profile if
the disk assumptions are correct. This method recovers the
spectrum as a function of radius at the accretion disk, which
can then be compared with disk atmosphere models or
other spectral modeling. In addition, it can help constrain
disk parameters, such as the inclination angle, without
relying on a specific accretion disk spectral model.

1.2. High-Magnification Microlensing Event

The spectrum of a quasar as a function of time is a con-
volution of the lensing magnification with the surface
brightness of the quasar. Near a fold caustic, two bright
images merge (Schneider, Ehlers, & Falco 1992). The
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F1G. 1.—Plot of recovered one-dimensional disk profile as a function of
impact parameter for a face-on accretion disk using the Grieger et al.
(1991) technique. The solid line is the model profile; the dotted line is
recovered profile. The parameter « is the distance across the source perpen-
dicular to the caustic line in units of gravitational radii.

resulting magnification has the specific form

Alx, t) = Ay + Olx —v(t—ty)], (2

K
VX vc(t - tO)

where A, is the magnification due to the additional images,
x is the position on the quasar plane perpendicular to the
causticc, K is the strength of the caustic [units of
(distance)'/?], v, is the speed of the caustic (assumed to be
positive), ® is the step function [@(x) =1 for x>0, 0
otherwise], and ¢, is the time at which the caustic crosses
the x = 0 point measured relative to the center of the source
(Schneider & Weiss 1986). This equation is valid whenever
the source size is small compared to the Einstein ring radius
of the microlensing star. If that ratio is small, there is only a
small probability of any of a number of problems that might
invalidate equation (2). The list of potential problems
includes (1) the possibility that the source is projected
behind a cusp (where the caustic curve discontinuously
changes direction) or behind the crossing of multiple fold
caustics; (2) significant curvature in the caustic; and (3)
variation of K or A4, along the caustic on the scale of the
source. Grieger et al. (1988) demonstrate that a source of
size smaller than ~ 10% of the Einstein radius of the typical
lensing mass is necessary for the second and third assump-
tions to be valid.

1.3. Microlensing Laboratory: The Einstein Cross

The Einstein Cross is a quasar (z = 1.695) lensed into
four images by a nearby (z = 0.0394) barred spiral galaxy
(Huchra et al. 1985). The luminosity distance to the quasar
is D, =3 x 10?8 hsd! cm, where h,s = Hy/(75 km s~ 1!
Mpc™1), assuming Q,, = 1, A = 0.
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This quasar has been observed to undergo fluctuations
due to microlensing roughly once per year (Irwin et al.
1989; R. Webster 1998, private communication). It is partic-
ularly well suited for studying microlensing because the
lensing galaxy is nearby. This happy coincidence makes the
time delays between the four images all less than a day, so
that it is easy to distinguish intrinsic variability from micro-
lensing variability. It also makes the stellar velocities pro-
jected onto the source plane quite high, so that microlensing
is frequent, and also makes individual events comparatively
brief (only about a month, in contrast to the years-to-
decade timescales characteristic of more distant lenses). In
addition, the Finstein radius projected onto the quasar
plane is quite large compared to the quasar size, validating
the assumptions made in the previous subsection and also
making the microlensing variations strong.

The models of Witt, Kayser, & Refsdal (1993) suggest
that for image A

B re 1/2 s

K = 8(5.8 x 106 cm) My, )
where rg = 5.8 x 10'® cm (m/0.2)'/? h;4/? is the Einstein
radius projected to the quasar plane (Schneider et al. 1992),
m is the typical mass (in Solar units) of a star causing micro-
lensing, and My = Myy/10° M. In equation (3), and in the
rest of the paper, we adopt r, = GM/c* as the unit of dis-
tance. For concreteness, we will use K = 8 in our simula-
tions. The parameter A, can be approximated by {(4,> =
|(1 — 6)? — 92|~ 1, where y is the shear (Witt et al. 1993). For
image A, the estimated range of the microlensing param-
eters is ¢ = 0.3-0.4 and y = 0.4-0.5, giving A, = 3-9; we
use A, = 6 in our simulations.

2. MICROLENSING OF AN ACCRETION DISK

2.1. Caustic Crossing

As the caustic crosses the quasar, the observed light curve
is a convolution of the magnification, equation (2), and
P (x):

F (1) = f A(x, t)P(x)dx . 4)
Note that if the flux within a wave band can be measured
outside of the caustic and subtracted, then the dependence
on A, disappears, and the K parameter becomes degenerate
with an arbitrary scaling of P,(x). As discussed by Grieger et
al. (1991), equation (4) can be inverted using regularization
to find P,(x). Similar techniques have been used for measur-
ing the limb darkening of stars during Galactic micro-
lensing events (Gaudi & Gould 1999; Albrow et al. 1999).

2.2. Black Hole Geometry

Near a black hole, relativistic effects cause Doppler
beaming of the emitted radiation, gravitational red shifts,
and bending of photon trajectories. To image the surface of
an accretion disk, these relativistic effects must be
accounted for using a relativistic transfer function (defined
in Cunningham 1975). To compute the transfer function (see
eg. [5] below), we make several simplifying assumptions: (1)
that the accretion disk is thin, i.e., h < r; (2) that the gas
follows prograde circular orbits outside the marginally
stable radius r,, and undergoes free fall within r,, with
constant angular momentum and energy equal to those
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obtaining at r,; (3) that the disk is flat and lies in the
equatorial plane of the black hole; and (4) that the gas emits
isotropically in its rest frame; i.e., there is no limb darkening
in the accretion disk atmosphere. The first two assumptions
are appropriate if pressure gradients cause forces much
smaller than the gravitational force in the z and r directions,
respectively. This condition is not met in advection-
dominated accretion flows or slim accretion disks
(Beloborodov 1998). In the case of slim accretion disks, the
orbital frequency is nearly Keplerian and deviates by less
than 20% when Mc?/Lg,, < 1000; however, the disk scale
height can become a large fraction of the radius, which
changes the emitted angle of radiation relative to the disk
normal and can cause shadowing, which we do not take
into account. The third assumption is inappropriate if the
disk is warped; however, Bardeen-Petterson precession
(Bardeen & Petterson 1975) can align the disk and black
hole by the time the gas reaches the inner radii. The fourth
assumption is a simplification for greater ease in the inver-
sion computation since the disk can be viewed from only
one angle and thus at most one emitted angle can be
observed at each radius/azimuth of the disk. For each
radius, there is a limited range of emitted angles that are
observed, so our inversion will give some sort of average of
the intensities within that range. Figure 2 shows the range
of emitted angles (in the fluid rest frame, u, is the cosine of
the normal to the disk) for a disk inclined at 30°. For a
face-on disk, only one emitted angle is seen at each radius
for all azimuths, so this assumption simply corresponds to
mapping the specific intensity of the disk at u,(r). We could
have assumed some limb-darkening law, but this is not war-
ranted by the crudeness of the inversion technique.

Figure 3 shows the disk geometry. The inclination angle
of the accretion disk, u = cos i, is i = 0° when the disk is
face-on and 90° when the disk is edge-on. The caustic cross-
ing angle ¢, is measured with respect to the (a, f) coordi-
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F1G. 2—Maximum g, = cos 0, where 0 is the angle between the disk
normal and the direction of the photon in the fluid rest frame (upper curve)
and minimum g, (lower curve). The disk parameters are i = 30° and a, =
0.998.
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FI1G. 3.—Geometry of the accretion disk. The disk axis points up out of
the page, while the S-axis lies in the page. The line parallel to the y-axis is
the caustic.

nates, which are defined so that the f coordinate lies
parallel to the projection of the disk axis onto the sky plane
(in Fig. 3, the disk spin axis is pointing out of the page), with
the black hole at the origin. We will use units of r,for the («,
p) coordinates.

The rotation of the accretion disk causes beaming of the
radiation, leading to a hot spot on the approaching side and
a cold spot on the receding side. For an exactly face-on disk,
the disk is symmetric, so no hot/cold spots exist, but a dip
occurs inside the inner edge of the disk. In Figure 4 we show
P (x) for a blackbody accretion disk at two frequencies. As
the disk becomes more edge-on, the profile becomes more
asymmetric as the Doppler aberration becomes stronger. If
the temperature of the disk decreases outward, then the size
of the hot spot will increase for smaller frequencies and
become less asymmetric, as can be seen by comparing
Figures 4a and 4b. Figures 4c and 4d show P (x) for differ-
ent caustic crossing angles, showing that the hot spot is
oblong.

2.3. Prediction of the Light Curve

With these assumptions and parameter choices, the
observed flux may be predicted from the run of intensity
with radius:

F(voa t) = IdadﬁA[X(“, ﬁ), t]gsl(vo/g, re) H (5)

where g = v,/v, is the redshift between the observer and the
emitter and I(v,, r) is the specific intensity at the accretion
disk (we have assumed it is independent of the emitted
angle). The relation between the caustic coordinate and the
black hole coordinates is x(a, §) = & cos ¢, + f sin ¢, (see
Fig. 3). The physical variables v, and r, may be related via a
Jacobian to « and f through their functional dependence on
redshift g(u,, a,), the inclination angle of the disk p,, and
the black hole spin a,. The magnification A depends on v,,
to, d., K, and A, for a total of seven model parameters.

Vol. 524

We compute the transfer function by shooting rays from
infinity at a grid in («, ) until they cross the equatorial
plane. The computational method is based on Rauch &
Blandford (1994) and is described in Agol (1997). We use a
nested grid of rays that is more finely sampled toward the
center to resolve the inner parts of the accretion disk in
greater detail. For a given observed frequency v,, we
compute v, as well as the emitted radius at each (o, ) and
interpolate these on the (prespecified) grid of radii and fre-
quencies at the accretion disk.

To compute a normal transfer function, we would then
simply sum over the grid. In this case, we multiply each ray
by a further factor that describes the magnification due to
the microlensing at any particular time and then sum over
the grid. This procedure may be summarized as

Fo=Tl,, ©)

where i = 1, Ny (Ny = N, x N, is the number of observed
frequencies times the number of observed times) labels each
measured observed frequency/time and j = 1, N; (NN, is the
number of emitted frequencies times the number of emitting
radii) labels each emitted frequency/radius pair. The matrix
T contains the integration and interpolation factors.

2.4. Regularized Inversion

Attempting to directly invert equation (6) for I given an
observed set of F is impossible since the matrix T is gener-
ally singular, so that noise in the light curve is magnified
strongly during inversion. This fact requires the intro-
duction of some sort of a priori knowledge in order to make
inversion feasible. Regularization is a particularly useful
way to do this, as discussed in Press et al. (1992), because
the “prejudice” injected into the solution is usually rela-
tively benign and also relatively controllable. The essence of
the linear regularization method is to minimize both the
deviation of the model from the data and also the deviation
of the model from “smoothness,” as defined by some sort of
differencing operator. In our case, at any given frequency,
we expect the emitted intensity I, to be smooth as a func-
tion of radius, but not the one-dimensional profile P,

In our specific implementation of the method, we also
impose several other restrictions on the solution. We expect
that the emitted intensity in the fluid frame diminishes as
the black hole event horizon is approached; we therefore
require 1,(r) to approach zero as r approaches r,. In fact,
because those regions are so strongly redshifted from
almost any inclination angle, the intensity in the fluid frame
is almost completely unconstrained by the data, so physical
assumptions have a very strong impact on the solution in
this region. Similarly, we also require I, to approach zero at
very large radii, for there is little energy available there to
dissipate. Particularly at low frequency, it may sometimes
be desirable to relax this constraint. In addition, we would
like the inverted intensities to be positive definite; to
achieve this, we maximize A; = (}; I;w;)/N;, where w; is a
weighting factor. The most appropriate weighting is w; = r?
since the radiating area associated with each logarithmic
radius interval scales as r?. Finally, for any choice of grid,
there will always be some radius/emitted frequency pairs
that are not constrained by the data because Doppler shifts
push v, outside the observed region (these are the intensities
for which the corresponding column of T is all zeros). In
order to prevent those frequencies from contributing to the
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P,(x)

FI1G. 4—Plots of the disk one-dimensional profile for a disk with My = 1,71 =1 M yr~%, and a, = 0.998. (a) and (b) compare inclination angle: i = 0°
(solid line), 30° (dotted line), and 60° (dashed line) for ¢, = 0°. (c) and (d) compare ¢, = 0° (solid line), 30° (dotted line), 60° (short-dashed line), and 90° (long-
dashed line) for i = 30°. Left panels: v = 5.5 x 10'° Hz. Right panels: v = 3.6 x 10'* Hz.

smoothing condition, we require that the associated inten-
sities be zero.

Combining all these considerations leads to the following
regularization operator:

1 M
93:_2{ Z (Iiwi_Ii—vai—NV)z+NI(IIW1)2
AI i=Ny+1
+ NIy, WN1)2 + N‘}' Z (ijj)z} , (7
{Jj: if Tij=ovi

where N, is the number of frequency grid points at the
accretion disk. The first sum describes the smoothness as a
function of radius at each frequency, the two isolated terms
give the boundary conditions at the innermost and outer-
most radii, and the last sum is the factor encouraging mini-

mization of those I; unconstrained by data. Note that the
specific intensity vector is ordered with all the frequencies at
one radius grouped together, so that I; and I;_y, give the
intensity at the same frequency but adjacent radii. The
smoothing operator # has the useful property of providing
a model-independent measure of the “smoothness” of dif-
ferent solutions, because of the normalization by 4;. Other
differencing schemes might also be used; in the examples we
have explored, it makes little difference to the outcome.

Although the regularization condition is designed to be
relatively innocuous, no such injection of prejudice can be
altogether free from consequences (we will discuss the effect
of our particular choice in § 3.2). We stress that the details of
the regularization condition are always subject to “tuning”
in the light of either theoretical expectations, or, better, the
implications of real data.
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To solve for I, we minimize the following function:

1 2
f(I)=FFX + A%, 8)

with

2=y (Z—filT”’f‘F ) , o)

i=1 0;

where 4 is a constant and o, is the error on F;. We start with
a direct solution of 9f/dI = 0, setting A; = 1,

I

-1
I= <MTM + Ai H) M'G=OM'G,  (10)

where M;; = T;;/0;, G, = F;/o;, and H is defined such that
% =1-H-1 We then update A; from the solution and
iterate until 4; converges. In some instances, A; can
become negative after an iteration. If this happens, we reset
A; to be 0.1 times its value at the previous iteration and
recalculate the step.

We assume that the magnification outside the caustic, A,
can be measured from the light curve and subtracted. Then,
the parameter K (the caustic magnification factor) is com-
pletely degenerate with the disk surface brightness since a
decrease in magnification corresponds to an increase in the
surface brightness of the source. Consequently, we can
determine the shape of the surface brightness profile, but
not its absolute level.

Several other parameters also remain to be determined
after the direct inversion for the surface brightness profile.
We call them, collectively, § = (¢,,v,, i, ¢.a,). To find them,
we fix 4 and compute y% over a coarse grid in this five-
dimensional parameter space. Starting from the { giving the
smallest ¥ in this grid, we refine our estimate of these
parameters using the Levenberg-Marquardt method. We
compute the partial derivatives of x> with respect to the
axes in ¢ space by finite differences. If a parameter with
boundaries goes out of bounds, we fix it at the value where
it went out of bounds and keep it fixed throughout the rest
of the minimization. This generally occurred with a, when it
was near 0 or 1 and for y and ¢, when the disk was face-on.
Fixing this improved estimate for the best-fit {, we increase
4 and re-solve for the surface brightness profile until y* =
N;.

The number of degrees of freedom against which to
compare x? is not clearly defined for several reasons. One is
that many of the model parameters are not entirely free; for
several (u, Mgy, v,) there are prejudices or constraints from
other experiments. Another reason is the variable weight
given the smoothing constraint vis-a-vis the data, as we are
minimizing y2 + A% rather than y2. In the limit of large A,
there is effectively only one free parameter for each fre-
quency in the fit to the I;; in the limit of A = 0, there are as
many free parameters as there are grid points. Given these
considerations, N is an upper bound to the true number of
degrees of freedom; by raising A until y> = N, we ensure
that we do not overfit the data.

2.5. Errors

The word “error ” has several different meanings in this
context, and it is important to distinguish them. First of all,
the errors in the inferred intensities have different properties
from the errors in the model parameters. Second, both are
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potentially subject to systematic error as well as random
error.

We will begin by estimating the random error in the
intensities 1. Formally, we may say that

32 =Y <aF > o2, (11)
J

J

where 0I,/0F; = ¥, Qu T;,;/07 (see eq. [10]), and we assume
the fluxes have uncorrelated errors. The 4 =0 case is of
special interest because it reveals which I; (ie., which
frequency/radius pairs) are so constrained by the data that
even without regularization they may be reliably deter-
mined. In this limit, 01,/0F; = T;;*, so the uncertainty in I,
is given by 617 = W', where Wj; = ¥, T;; T;/(0,0). W~!
can be computed by singular value decomposition; in prac-
tice, we replace the singular values with a small number. We
show an example of this procedure in Figure 9.

The “formal accuracy ” of our inversion is illustrated by a
plot of U,=1I{/6I, (the superscript “r” stands for
“recovered intensity”) as a function of frequency and
radius, computed from equation (11) (Fig. 9). The results for
both 4 = 0 and the maximum A consistent with the data are
shown. In the case 4 = 0, we use the original I; instead of
the recovered values to compute U;. The formal accuracy
depends on the true surface brightness: for a given radius,
U, tends to peak where the flux is largest. Also, U; dimin-
ishes at large radii, since those radii aren’t monitored for
long enough to truly determine I;.

In real solutions A # 0, and the smoothing operator cor-
relates the intensities at neighboring radii sharing the same
frequency. The uncertainties in this case are most easily
estimated by a Monte Carlo procedure in which the light
curves are perturbed by random realizations of noise in the
data. The distribution of I; after re-solving each of these
realizations gives the random error in I;. In evaluating these
estimates, it is important to understand that points weakly
constrained by the data have little sensitivity to measure-
ment errors because they are primarily determined by the
smoothness constraint. As a result, their random errors are
artificially small.

To check for systematic errors in the intensities, we will
compute the difference between the original and recovered
surface brightness, Al; = I — I, where superscript “o”
stands for “ original.” The systematic error is, of course, far
more strongly model dependent than the random error. It
depends on the real intensity distribution, the character of
the data (particularly the sampling), and the inversion
scheme. These considerations will be discussed at greater
length in § 3.2.

We estimate the uncertainties in the model parameters ¢
in two ways: through the same Monte Carlo procedure as
for the I; and through mapping out the x> found by direct
solution of the original data (at fixed A) for different choices
of {. Examples will be shown in §§ 3.2 and 3.3.

3. SIMULATIONS

3.1. Range of Parameters Examined

To determine how the inversion works in practice, we
performed simulated inversions, varying the parameters
describing the underlying model, the parameters describing
the data set, and the parameters specifying the details of the
solution technique. By varying the model parameters, we
learn about whether the method is sensitive to the intrinsic
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nature of the quasar or the microlensing event; by varying
the observational parameters, we determine what the
requirements will be for successful experiments; by varying
the solution parameters, we learn how to tune the solution
technique for optimum results.

3.1.1. Model Parameters {

In all of our simulations we assume that the intrinsic
radiated intensity in the fluid frame is a blackbody at the
local effective temperature, isotropic in the outer half-space.
Detailed non-LTE spectra computed for our fiducial
parameters (see the next several paragraphs) are consistent
with both the observed optical/ultraviolet spectrum and the
microlensing size constraint for the Finstein Cross, given
the freedom to choose an extinction correction and macro-
lens magnification (Hubeny & Agol 1999). However, we
examined a number of possibilities for the other parameters
defining the intrinsic character of the quasar and the micro-
lensing events.

Although we do not know the mass of the black hole, we
may set reasonable bounds on what it could be. If the
intrinsic bolometric luminosity is 3 x 10*® ergs s~ ! (Rauch
& Blandford 1991), the quasar would be at its Eddington
limit if Mgy ~ 2 x 108 M. On the other hand, the size of
the optical emitting region is limited to no more than
~2 x 10'° cm at ~ 10! Hz (quasar rest frame) from micro-
lensing (Wambsganss, Paczynski, & Schneider 1990). If this
equals the radius of maximum emission for an accretion
disk (~10r,), then Mgy~ 10° M. On this basis we
suppose that the true mass is between 2 x 10® and 10° M.
Our choice for the fiducial model will be 10° M.

The units we used in the simulations are r, for length and
At, the sampling rate, for time. The units of v, are then
r,/At:

V. M At
=02 < B 12
be =0 9<5000km s—1><109 MO) (1 day)’ (12)

1

where V, is the caustic velocity in km s™* with distance
measured at the quasar plane, while time is measured at the
observer. The caustic velocity, V,, is quite uncertain, but it is
likely to be in the range 3000-5000 km s~ ! (Wyithe,
Webster, & Turner 1999). For At = 3 days, this corresponds
to 0.5 < v, < 4, the range we span in our simulations. In the
fiducial model, we choose v, = 1.

We try values of ¢, between 0 and 2x, with n/2 for our
fiducial model. We choose ¢, = 0 for our fiducial model,
and we also try t, = 5 to see whether this technique works
when the central time of the monitoring does not coincide
with passage of the caustic line across the center of the black
hole. There are no observational estimates of the inclination
angle; however, unification arguments for radio-loud active
galactic nuclei suggest that quasars are less face-on than
blazars but closer to face-on than radio galaxies, so we
choose a fiducial inclination of 30°. We also look at cases
with 8 =0 and 0 = 60°. Because accretion can spin up
black holes, and because Kerr holes permit more efficient
accretion than Schwarzschild black holes, we choose a;, =
0.998 for our fiducial model, but we also study one example
with a = 0. The last parameter is the accretion rate. With
the fiducial choices for the other parameters, the observed
spectrum is best reproduced with i &~ 1 = M/(1 My yr™?).

3.1.2. Observational Parameters

We vary the number of observations, time-sampling
interval, signal-to-noise ratio (S/N), and number of

QUASAR MICROLENSING 55

observed wave bands, as well as the model parameters. It is
especially important to determine how the quality of the
result depends on the number of observations because these
observations must be targets of opportunity and thus will
impact other observations at a given telescope. We explore
what happens for experiments with between 5 and 41 obser-
vations (in all cases, we assume uniform spacing). The ratio
between At and the duration of the microlensing event is
implicitly given by v,.

We try two choices for the S/N (as measured outside the
microlensing event): 100 for each image in the best case,
and 50 in the worst case (these were chosen based on cur-
rent ground-based errors; R. Webster 1998, private
communication).

Since disks are broadband emitters, a broad range of
observing frequencies is necessary. Observations in the four
wave bands V, B, R, and I (or equivalent) should be routine;
observations in U, J, H, K, or in the UV with the Hubble
Space Telescope (HST) will be much more difficult to
obtain but will yield much more information. To see just
how important the additional bands are, we try using just
ground-based data in four or eight bands, or eight ground
plus three HST bands in the best case. The short-
wavelength bands are especially important for hot disks,
since the deepest part of the potential well is seen at the
shortest wavelengths.

3.1.3. Solution Parameters

Several considerations determine the number of fre-
quency and radius points at which we may solve for the
surface brightness. The number of frequency points is not
simply equal to the number of colors at which the quasar is
monitored because of the extensive Doppler shifting. We
found that in practice the best solution grids in both fre-
quency and radius space were logarithmic. We solve for the
intensity at frequencies equally spaced logarithmically
between 3 x 10'* Hz and 10 H and radii equally spaced
logarithmically from r, to r,,, with r,, = 500r,. In the
initial testing of the inversion using the fiducial model, we
found that the smallest number of radii and emitted fre-
quencies for which we could obtain y?> = N for some A was
15 radii and 10 frequencies, which we subsequently used for
all the simulations.

3.2. Best-Case Simulation

For our “best-case” simulation (designated Al in Table
1), we fixed { at the fiducial parameter choices. The obser-
vational parameters were: 41 observations, S/N = 100, and
11 spectral bands.

Figure 5 shows the light curves for this example, with the
observed bands deredshifted for z = 1.695. Note that the
higher frequencies, which come from nearer to the black
hole, are magnified more strongly than the lower fre-
quencies. Figure 6 shows the original and reconstructed
disk intensity, I(v,, r,), as a function of frequency and radius
for the best-fit parameters for this best case (see Table 1).
The overall shapes are reproduced quite well. Figure 7
shows the same results in a different format: we have multi-
plied surface brightness times r2 and plotted the data differ-
ently for clarity. Note that the low and high frequencies and
small and large radii are poorly constrained since the simu-
lated light curve covers only —20r, <r < 20r, and 1600
A < 4 < 3 um. Consequently, at these points the regulariza-
tion tries to make the flux per log radius constant as a
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vL, (10%erg/cm?/s)

time (At)

FiG. 5—Light curves with noise added (points). The top two curves
have been shifted upward by the amount indicated for clarity. The solid
lines are the light curves from the reconstructed disk profile.

function of radius. Figure 8 shows the ratio of the recon-
structed to the original one-dimensional profile, P, (x)
(computed from I}) for run Al.

To discuss the reliability of this solution, we begin by
contrasting the region in the r,-v, plane, where the random
error is predicted to be relatively small with the region
where the actual error is small. As can be seen in Figure 9,
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the region of large U; for 4 # 0 largely, but not entirely,
coincides with the region of large I?/| Al;|. Moreover, both
of these regions follow a track defined, not surprisingly, by
the requirement that r2 I, (r,) is relatively large. Elsewhere
in the plane, the contribution to the flux is so small that the
intensity is virtually unconstrained by the data.

Where U; ~ I{/| Al,]|, the error is predominantly random
error, and 61, is a good predictor of its magnitude (in fact, in
this region AI; has a Gaussian distribution of the correct
width). However, there is also a zone on the large radius
side of the high-intensity track where the systematic error is
as large or larger than the random error. The nature of this
systematic error is revealed by studying Figure 7. The
smoothing condition tends to raise the intensity in regions
where it should be small and diminish it where it is large.
Because U, is rarely large enough to be interesting where I;
is small, it is the latter effect that dominates in the region of
the r,-v, plane highlighted in Figure 9. At least within the
context of this model, this systematic error is not the result
of the specific choice of smoothing constraint: we have tried
a second-order linearization scheme to see if we could get
rid of the systematic deviation; however, we still found that
the recovered intensity was flatter than the original. If we
relax the condition that the intensity should be zero at the
last radial bin, then the intensity approaches a constant for
each frequency at large radius.

We performed a regularized inversion using the Grieger
et al. (1991) technique for comparison. Figure 10 shows
their inversion on a data set equivalent to run Al. Since the
regularization constraint attempts to smooth P,, the
Doppler peaks are smoothed over, and the noise from the
light curve still appears to be present in the P,.

After maximizing A consistent with y> = N, we then fix 1
and vary each component of ¢, minimizing y? with respect

Fi1G. 6.—Specific intensity I (r,) vs. emitted frequency and radius. The shaded surface is the original surface brightness, while the skeleton plot is the

surface brightness recovered.
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log(I,r? (erg r2/cm?/s/Hz/ster))

log(r./r,)

F1G. 7—Specific intensity 1,(r,) times r2 vs. r, for each emitted fre-
quency. The solid curves are the original I, 2, while the dashed curves are
the minimum and maximum values of the recovered I,7? for 20 simula-
tions. Each curve is shifted upward by 2 with respect to the curve below;
the zero point is for the lowest curve. We have not plotted negative
intensities.

to the other parameters. This procedure shows how well
each parameter can be constrained for a given simulation,
or whether there are other local minima. In Figure 11 we
show the Ay? for each model parameter. For this particular
model, the physically interesting parameters, inclination
angle (1) and caustic velocity (v,), have well-defined minima.
The time of origin crossing (t,) and the caustic crossing
angle (¢,) are also well behaved. The black hole spin has a
rather flat Ay? distribution. However, the minimum does lie
at the correct value. Figure 11 also has a histogram of the
parameters from each noise realization, showing that the
minimum of the y? distribution has few outliers.

3.3. Varying Model Parameters

Table 1 shows the results of varying the model param-
eters, keeping the observational parameters fixed at the

=\

o o
ratio Ii&t“,{,,;
X

Fic. 8.—Ratio of recovered to original one-dimensional disk profile as
a function of position and observed frequency.
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F1G. 9—a) I}/A; and (b) formal accuracy, U, of reconstructed disk
profile for A = 1.1 and (c) 4 = 0. The dotted line in (b) shows where the
peak of B, occurs at each radius.

“best-case” values. Runs A1-A10 each have recovered
surface brightnesses that look similar to that of A1, and the
U, are quite similar. Runs Alla and A12 reproduce the
intensities well for the lowest frequencies and for radii
outside r,,; however, the recovered intensities are nonzero
inside r,,,,, contrary to the input model.

Table 1 shows the true parameters and the average and
standard deviation of the recovered parameters, {, mea-
sured for 20 Monte Carlo realizations. In all the cases we
examined, the distribution of recovered parameters is cen-
tered near the true model parameters, showing that there
are no systematic offsets introduced by our inversion. This
is encouraging since it means that this technique has the
potential to measure important global properties of the acc-
retion disk/black hole system.

Run A2 shows that we can determine the time that the
caustic crosses the black hole rather accurately. We have
also tried cases with t, = +10, and we find that these are

A\
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o VN
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F1G. 10.—Ratio of recovered to original one-dimensional disk profile as
a function of position and observed frequency, using the technique of
Grieger et al. (1991).
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FiG. 11.—Change in y? vs. each parameter for the A1 case. The vertical lines show the values of the original parameters. The histograms show the best-fit
parameter results of 20 light curve realizations, with the right-hand axis labeling the number in each bin.

also measured quite well and that the intensity is repro-
duced as well as in the A1 run.

Runs A3 and A4 show that we can distinguish between
different caustic velocities, which means that we can con-
strain the black hole mass in terms of the lens velocity. Runs
A5 and A6 show that we can measure the disk inclination
angle for a wide range of intrinsic angles. Runs A7, A8, A9,
and A10 show that we can measure the angle at which the
caustic crosses the accretion disk rather accurately. In some
cases there is a degeneracy between ¢, and 2x — ¢, when
the disk inclination is small, but this should not affect the
recovered surface brightness since the disk is approximately
symmetric in this case.

Figure 12 shows the y? topology for each parameter for
run A10, a somewhat special case in which ¢. = n. The
parameters ¢, and p have local minima away from the
correct minimum ; however, these can be ruled out because
some inferred intensities have large negative excursions in
the false minimum.

Constraining the spin can be difficult, particularly when
¢. ~ . For example, in run A10, a, is not constrained at all

(see Fig. 12). x* has as deep a minimum at a, = 0 as it does
at the correct value a, = 0.998. Only if the coarse search in {
space is lucky enough to discover the true minimum will the
Levenberg-Marquardt procedure home in on the correct
value. It is not clear why some ¢, are more favorable for
determining a,.

Whether a; can be constrained at all depends on how
strongly one believes in the model. If no emission is permit-
ted inside the marginally stable orbit (run A11b), a, can be
constrained because there is a sizable difference between the
marginally stable orbit around a Schwarzschild black hole
(6r,) and a maximal Kerr black hole (~7,). However, if one
is unwilling to make this assumption, the distinction
between the spins largely disappears (runs Alla and A12).
The reason for this indistinguishability is shown in Figure
13, which shows a contour plot for the redshift as a function
of position for black holes with spins a, = 0.01 and a, =
0.99, including the regions inside r,.. The two plots are
almost identical around 10r,, where most of the observed
radiation comes from in this model. Figure 14 shows the y2
(minimized over all other parameters) versus a, and recov-
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TABLE 1
MoDEL PARAMETERS FOR MONTE CARLO RUNS (FOR N, = 41, S/N = 100, AND N, = 11)
Model to(At) v (r,/At) u o, ag A
Al true........ooeeuenns 0 1 0.866 n/2 0.998
avg. +sd............ —-01 + 02 0.96 + 0.06 0.84 + 0.02 1.56 + 0.03 0.96 + 0.05 0.01-1.9
A2 true.......oooeeuenns 5 1 0.866 n/2 0.998
avg. +sd............ —48 + 0.2 0.96 + 0.06 0.84 + 0.02 1.58 + 0.02 0.97 + 0.03 0.002-1.7
A3 true.......oooennennt 0 2 0.866 n/2 0.998
avg. +sd............ —0.10 + 0.13 1.95 + 0.095 0.83 + 0.03 1.58 + 0.03 0.93 + 0.08 0.01-1.6
Adtrue..............nl 0 0.5 0.866 /2 0.998
avg. +sd............ —0.18 + 0.2 0.50 £+ 0.02 0.85 + 0.02 1.57 + 0.02 0.97 + 0.03 0.001-2.3
AS5true.........oeeunnt 0 1 1.0 0.998
avg. +sd............ —0.06 + 0.07 1.02 + 0.04 0.999 + 0.001 1.53 + 0.08 0.99 + 0.02 0.0001-1.8
A6 true...........o.ennt 0 1 0.5 /2 0.998
avg. +sd............ —0.03 + 0.08 095 + 0.05 0.50 + 0.02 1.57 + 0.01 0.92 + 0.06 0.005-1.8
AT true.......oooeeuenns 0 1 0.866 /4 0.998
avg. +sd............ —0.02 + 0.13 099 + 0.04 0.84 + 0.01 0.83 + 0.05 0.95 + 0.11 0.01-1.7
A8 true...........o.nnt 0 1 0.866 3n/4 0.998
avg. +sd............ —0.03 + 0.1 1.01 + 0.03 0.86 + 0.01 2.33 + 0.04 0.99 + 0.02 0.003-1.9
A9 true........ooeeuennt 0 1 0.866 3n/2 0.998
avg. +sd............ 01 + 0.1 098 + 0.06 0.84 + 0.02 4.72 + 0.02 0.95 + 0.05 0.006-1.9
A10 true ............... 0 1 0.866 n 0.998
avg. +sd............ 0.03 + 0.07 1.03 + 0.03 0.86 + 0.01 3.16 + 0.08 0.99 + 0.03 0.005-1.8
Allatrue.............. 0 1 0.866 /2 0.
avg. +sd............ —0.46 + 0.26 095 + 0.07 0.78 + 0.06 1.57 + 0.02 0.17 + 0.32 0.005-0.8
A11b* avg. +sd....... —022 + 0.24 0.87 + 0.07 0.87 + 0.02 1.57 + 0.02 0.09 + 0.12 0.001-4.4
Al2 true ............... 0 1 0.866 /2 0.5
avg. +sd............ —0.29 + 0.20 091 + 0.09 0.83 + 0.07 1.57 + 0.02 0.55 + 0.25 0.03-0.7

* We have constrained r > r,,.

ered parameters for 25 simulations assuming that emission
occurs only outside of r,.. The 2 has a clear minimum near
the correct spin, and the simulations show that the spin can
be rather accurately recovered. Since r,, increases with
decreasing spin, we can hope to obtain only a lower limit on
a, by assuming r > r,,.. Indeed, the x* versus a, is flat in the
case of zero spin (Al1a).

If the disk is much hotter than we have assumed, then the
parameters will not be as well constrained as those that we
have used, as we would then sample only the outer regions
of the disk. To illustrate this point, we have run a somewhat
unrealistic model, A13, with the fiducial accretion rate but a
black hole mass of 2 x 10® M, (near the Eddington limit).
A standard blackbody accretion disk around a black hole
with this mass cannot fit the observations as its spectrum is
too steep and the magnification must be much larger than

in standard models of the lens galaxy. The error on the
measured spin is much larger than for run A1 (see Table 2).
The U; for run A13 are comparable to those in run Al, so
the intensities are recovered similarly well.

To see how well we can perform the inversion when the
assumption of smooth radial variation is incorrect, we
multiplied the accretion disk intensity by

log (r) — log (1)
log (rout) - log (rin) ’

which makes the disk three logarithmically spaced annuli
(runs A14 and A15). Surprisingly, the recovered model
parameters, {, are accurate. Whether the radial variations
can be discovered depends on the number of observations.
In run A14 (15 observations), the correct overall shape is

1 + sin [67: (13)

TABLE 2
MONTE CARLO PARAMETERS (FOR t, = 0, u = 0.866, ¢, = 7/2, a, = 0.998 MODEL)

Model N, S/N N, v, v, (measured) to(At) u o, a, i
Al13*...... 41 100 11 1 0.93 + 0.07 —02 + 04 0.85 + 0.04 1.58 + 0.06 0.89 + 0.19 0.01-2
Al4P...... 15 100 11 29 26 + 03 —0.04 + 0.06 0.90 + 0.04 1.57 + 0.03 0.87 + 0.19 0.07-0.9
AlsP...... 41 100 11 1 0.98 + 0.06 0.05 + 0.20 0.88 + 0.05 1.57 + 0.02 0.79 + 0.20 0.002-0.18
M2a...... 21 100 11 1 0.99 + 0.04 —0.13 + 0.15 0.84 + 0.01 1.58 + 0.02 0.98 + 0.05 0.5-5.2
M2b...... 21 100 11 2 19 + 013 —0.12 + 0.07 0.82 + 0.02 1.59 + 0.03 0.93 + 0.07 0.2-4.8
M2 ...... 15 100 11 29 27+ 03 —0.09 + 0.1 0.83 + 0.03 1.59 + 0.03 0.95 + 0.06 0.6-6.6
M2d...... 11 100 11 4 39 £ 03 —0.03 + 0.07 0.83 + 0.03 1.56 + 0.03 09 + 0.1 1.7-11
M2e ...... 5 100 11 10 8§ +2 0. + 0.15 0.75 + 0.1 148 + 0.28 093 + 0.11 9-38
M3a...... 41 50 11 1 0.94 + 0.07 —0.25 + 0.22 0.83 + 0.03 1.58 + 0.03 0.94 + 0.14 0.006-1.1
M3b...... 11 50 11 4 39 £ 03 —0.03 + 0.14 0.81 + 0.06 1.55 £ 0.1 0.88 + 0.17 0.8-8.6
Mda ...... 15 100 8 29 2.8 +0.24 —0.04 + 0.08 0.84 + 0.03 1.57 + 0.03 09 + 0.1 0.004-5.
M4b...... 41 100 4 1 0.88 + 0.09 —0.6 + 04 0.80 + 0.06 1.61 + 0.05 0.85 + 0.14 0.25-3.3

? This run has My, = 0.2
® The intensities have been multiplied by eq. (13).
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FiG. 12.—Plot of Ay? (minimized over all other parameters) vs. each parameter for run A10. The solid vertical lines show the original parameters. The
dotted lines show the absolute value of the sum of the inverted intensities that are negative (the scale is from 0 to 1).
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F16. 13.—Redshift as a function of position for black holes with spin
a, = 0.01 (solid line) and a, = 0.99 (dashed line).

found but the radial modulation not reproduced; in run
A15 (41 observations), the radial dependence of the recov-
ered intensities is more nearly correct. This indicates that
the inversion is accurate only if our smoothness model
assumption is met on the smallest scale probed by the sam-
pling. Figure 15 shows the results of run A14.

We have not tried breaking the assumption of azimuthal
symmetry, as the transfer function is computed assuming it.

3.4. Varying Observation Parameters

The question of how many observations are necessary is
addressed with runs M2a-M2d (Table 2). First, we compare
fewer observations (21) at the same sampling rate (M2a) and
for the same duration (M2b). In each case, the rms scatter of
the model parameters is remarkably small compared to run
Al. Thus, if the underlying model is correct, it appears that
we can determine the model parameters with a high degree
of accuracy with relatively few observations.
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FI1G. 14—Plot of the %2 vs. a, (minimized over all other parameters) for
cases Al and A10, but with the additional assumption that emission occurs
only outside r,,.. The filled circles show y? for ¢, = n/2 (case A1) while the
open circles show A10. The solid histogram shows the resulting a, mea-
sured for 25 Monte Carlo simulations for A1; the dotted line is for A10.

A smaller number of observations, however, impairs our
ability to reconstruct the true surface brightness of the acc-
retion disk, as the inversion relies more upon the smoothing
constraint than on the actual data. This can be seen in
Figure 16, which shows the derived formal accuracies for
various numbers of observations.

20 T T T T T T T T T T

log(1,(r./1,)? (erg/cm?/s/Hz))

log(r./T,)

F1G. 15.—Original (solid lines) and recovered (dotted lines) disk profiles
for blackbody disk with fluctuations added (model A14). Each curve shows
a different frequency (from 3 x 104 to 10° Hz, shifted by 2 units for clear
separation. The dotted lines show the maximum and minimum recovered
intensities from 20 Monte Carlo realizations, with only positive intensities
plotted.

log(r/r,)

Fi1G. 16—U; as a function of radius for various numbers of obser-
vations at a single frequency in the quasar rest frame: N, = 41 (A1; solid
line), N, = 21 (M2b; dotted line), N, = 11 (M2d; short-dashed line), and
N, = 5(M2e; long-dashed line).

The total amount of information about the intensities
that may be gleaned also depends on the number of obser-
vations. It is obvious that the number of frequencies at
which the intensity may be inferred scales in proportion to
the number of bands whose light curves are measured. In
addition, comparing Al with M2b-M2d shows that the
number of radial points with reliable solutions increases
slowly with increasing number of observation times N,.
This is because each observation constrains most strongly
the minimum radius where the caustic crosses. Since the
observations are spaced linearly, while the radii are spaced
logarithmically, the number of radial points constrained by
the data is oclog (Fpay/Tmin) o log (T/At) oc log (N,), where
T is the total duration and r,,, and r,;, are radii corre-
sponding to the radial limits of the region with a reliable
solution. In addition, U; oc N}'? (see Fig. 16), in the usual
fashion of signal-to-noise ratios.

In addition to the number of observations, the S/N of
each observation affects the quality of the inversion. Runs
M3a-M3b with S/N = 50 demonstrate this dependence.
For run M3a, the recovered parameters have similar errors
to those in run A1, except for the errors on the spin. For run
M3b, the errors on recovered parameters are roughly
double those in run M2d. For fixed model parameters and
fixed number of observations, on average the errors on I are
directly proportional to the errors on F; in other words,
{U;» oc S/N, where the average is over 20 simulations. For
individual simulations, the U; depend on A, which causes
scatterin U,.

Next, we look at the dependence of the solution on which
frequencies are observed. Run M4a shows that the best-fit
model parameters, {, are not strongly dependent on the
infrared frequencies. However, excluding infrared bands
reduces U, at the lowest frequencies. Run M4b shows that
the best-fit ¢ are strongly dependent on observing the ultra-
violet frequencies. This run has the largest errors on model
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parameters and poorest agreement with the true param-
eters. In addition, the U; at the highest frequencies are
strongly reduced for this run. Comparing runs Al, M4a,
and M4b, we find that the number of frequencies (at the
accretion disk) constrained by the data oc N,, which shows
why broad frequency coverage is crucial for mapping out
the disk spectrum.

Runs A1, A3, and A4 show that both the number of radial
points with reliable recovered intensities and U; are insensi-
tive to the total duration of the monitoring within the range
of uncertainties in v,. Run A2 shows that the time at which
we begin the observations does not strongly affect the
derived parameters or surface intensity, as long as we catch
the region near the peak.

4. DISCUSSION

4.1. Observational Requirements

Experimental design depends on which questions are the
goal and on the degree of accuracy with which one aims to
answer them. Consequently, this discussion, much like our
earlier discussion of the experimental errors, divides accord-
ing to whether the primary aim is to map the surface bright-
ness of the disk or to infer the model parameters.

If the goal is to obtain a map of the disk intensity as a
function of radius and frequency over as large a region in
the r,-v, plane as is possible, it pays most to invest in multi-
ple monitoring bands because the number of radius-
frequency pairs for which it is possible to find a solution is
oc N, but rises only logarithmically with N,. We expect the
intensity to vary as a power law in radius, so a better obser-
vation strategy might be to space observations logarithmi-
cally in time; however, this will be difficult to achieve in
practice, which is why we have assumed equal time spacing.
The accuracy of the solution is directly proportional to the
S/N in the data. To map the regions nearest to the black
hole, the highest UV frequencies are crucial (although this
depends on the assumption that the spectral peak moves to
higher frequencies at smaller radii); however, lower fre-
quencies are required if one is interested in obtaining a
broadband spectrum. Note also that a higher sampling fre-
quency increases the chance that one will obtain monitoring
data during the time when the caustic line is near the black
hole. To obtain high formal accuracy for a broad range in
radius requires a light curve that is finely sampled for a long
time period. To determine the intensities, the model param-
eters must also be well defined. When the observations are
too few or the S/N too small, the uncertainties in { contrib-
ute to the uncertainty in I,.

If the goal is to simply constrain the model parameters,
and one believes that the model is correct, then only a small
number of observations may be required (five observations
were sufficient in our simulations to constrain all model
parameters to better than 20% at 1 ¢; 11 observations for
<10% 1 o accuracy). Since the black hole mass and caustic
velocity are quite uncertain, it may be necessary to have
more observations to be sure to obtain the few near the
peak of the caustic crossing that are essential for success.
The highest frequencies are most important for constraining
model parameters.

In our simulations we assumed that only statistical errors
affected the fluxes, and that these errors can be estimated
from the observational data. There might also be systematic
errors in the fluxes due, for example, to emission-line contri-
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butions, inaccurate calibration between bands, or cosmic
rays. The quality of the result could also be affected by these
problems.

4.2. Under What Circumstances Might the Model Fail?

The inversion scheme we propose assumes a model that is
plausible—a geometrically thin relativistic accretion disk in
which azimuthal variations are quickly smoothed out,
microlensed by a caustic system whose basic length scale is
much larger than the size of the bright region of the disk.
However, we are by no means guaranteed that even this
general framework is correct. In this section we discuss
what would happen if our method were attempted but one
of these assumptions were invalid.

The most basic of our assumptions is that the surface
brightness varies smoothly as a function of radius. Given
sufficiently dense sampling with good S/N, even quite sharp
gradients could be recognized by our procedure. On the
other hand, if the sampling is inadequate, the existence of
such features would appear only as a troubling inability to
find a solution with adequate 2, unless 4 is taken to be very
small.

Another potential source of trouble is departures from
azimuthal symmetry. In the absence of microlensing,
“spots” can modulate the light curve on the orbital period
if they are in the relativistic portion of the disk and the
inclination is relatively large (Abramowicz et al. 1991). In
this case, that would mean periods of ~31M(r/10r,)**(1
+ z)/2.7 days (in the observed frame). Because the largest
observed variations in the Einstein Cross are ~10% on
year-long timescales, this effect cannot be too strong in this
system. However, there might be a range of spot brightness
in which they are too weak to show up in the ordinary light
curve, yet strong enough to cause some periodic modula-
tion of the light curve during a microlensing event (Gould &
Miralda-Escudé 1997). Because the likely duration of a
microlensing event (a few weeks) is several to 10 times the
orbital period for the brightest part of the disk, it is possible
that this effect might be seen directly in the light curve. If
not, they might still make it difficult to find a solution with
acceptable y2. Particularly if the break in azimuthal sym-
metry is approximately oce’® and the disk is nearly face-on,
a strong spot might be confused with Doppler boosting,
leading to a mistaken inference for the disk inclination.

Several physical effects might make disks geometrically
thick—radiation pressure support if the Iluminosity
approaches Eddington (Abramowicz et al. 1988), gas pres-
sure support if the ions retain most of their heat (Rees et al.
1982; Narayan & Yi 1995), or an optically thick outflow. If
any of these mechanisms acts, the orbital velocity at the
photosphere would no longer be that corresponding to cir-
cular free fall in the equatorial plane of the black hole, so
the general relativistic transfer function we apply would no
longer be valid. We would expect, then, difficulties in
finding a solution with acceptable y2, but the portion of our
solution describing the outer regions of the disk should be
only weakly affected.

The surface brightness model we have used for the inver-
sion simulations is roughly consistent with both the
observed spectrum (given the uncertainty in reddening) and
the current microlensing size constraint, but it is not unique.
If the actual spectrum has strong emission in the far ultra-
violet (which could be true if the reddening is greater than
our estimate), the observable portion of the spectrum will be
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dominated by emission far from the horizon, weakening all
the relativistic effects. If so, the disk inclination and black
hole spin will be poorly constrained.

Uncertain reddening can have other effects, also. Because
we can expect it to be uniform across the face of the disk, it
should not affect the inferred radial profile of the disk, but it
could well introduce additional uncertainty into our esti-
mate of the intrinsic disk spectrum at any given radius.

Our assumption that the bright part of the disk is small
relative to the caustic length scale is unlikely to be broken,
except in the outer regions of the accretion disk. In this
case, for which the microlensing optical depth is ~1 (Witt
& Mao 1994), the caustic scale is essentially the size of
the Einstein ring due to a single star. Consequently, the
ratio between the disk size and the caustic scale is only
~0.01M o(r/10r )m ™~ '/%(h/0.75)'/?, where m is the mean mass
of microlensing stars in Solar units, so, according to the
Grieger et al. (1988) criterion, the caustic assumption is
likely to be valid out to 100r,. In our fiducial model, for
example, the flux at 100r, peaks at an observed wavelength
1[(1 + 2)/2.7] um, where we have scaled to the redshift of
the Einstein Cross.

However, there might be difficulties in practice from a
related problem: measuring A, F,. Again, if the disk size is
much smaller than the Einstein radius of a single star, then
A, is approximately constant during a high-amplification
event; thus, the same criterion for success applies as in the
previous paragraph. Of course, observations when the
quasar is outside the caustic are still required to measure
A,. Given the expectation that the quasar is smaller at
higher frequencies, observing at the highest frequencies will
provide the best constraint on 4,. To determine how these
difficulties and those listed in § 1.2 will affect the inversion,
we are currently running simulations of full microlensed
light curves appropriate for the Einstein Cross, to which we
will apply our inversion algorithm (Wyithe & Agol 1999).

In any of these instances of model inappropriateness, the
impact on specific inferred parameters depends somewhat
on details of the inversion procedure. For example, if the
procedure we have outlined is followed (i.e., minimizing y2
by varying ¢ at fixed A, then raising A until x2 meets our
definition of acceptability), difficulty in achieving satisfac-
tory x* reduces the ultimate 1. This means that, in effect,
more degrees of freedom are “spent” on fitting the I(r, v),
leaving fewer for defining . If the problem is lack of
smoothness in the radial profile, this transfer of effort is
reasonable; if the problem is different, however, and if one
cares about the accuracy of the { parameters, one might
choose to modify the procedure in a way that keeps 4 fixed
at a relatively large value.

One disadvantage of using linear regularization is that
the intensities are not required to be positive definite,
though it is impossible to emit a negative number of
photons. We have tried to incorporate this by trying three
other methods: maximum entropy, replacing I; by log (I;) in
4%, and the method of projections onto convex sets. Each
technique finds solutions that are local minima with large
%2. Another useful technique might be to make the further
assumption that the spectrum at each radius can be
described as a blackbody and then solve for the temperature
as a function of radius. These methods are all nonlinear, and
thus intrinsically slow. They therefore impede the explora-
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tion of parameter space but might be interesting for future
work.

4.3. Multiple Microlensing Events

Of the five parameters in ¢, three (t,, v., and ¢,) will
change from one event to the next, but the other two (a, and
i) should remain fixed. Since we expect roughly one event
per year, it should be possible to combine observations of
several events in order to more tightly constrain a, and i.

4.4. Connection to X-Ray Microlensing Events

The optical and ultraviolet continua of quasars are not
the only portions of the spectrum radiated by the inner part
of the accretion disk. The X-ray continuum must also come
from somewhere near that region. It, too, should therefore
be microlensed in much the same way as the optical and
ultraviolet continuum we have discussed in this paper.

Whether the same technique can be successfully applied
to the X-ray continuum depends on the same consider-
ations as discussed in § 4.2, but several of them are more
likely to present problems in the context of X-rays than for
the optical/ultraviolet continuum. There have been numer-
ous suggestions, for example, that the X-rays are produced
in a relatively small number of compact active regions (e.g.,
Haardt, Maraschi, & Ghisellini 1994) that might have sub-
stantial velocities relative to the disk (Beloborodov 1998b).
If so, the assumptions of azimuthal symmetry, radial
smoothness, and also simple circular orbital motion might
all be suspect.

Nonetheless, it would certainly be worthwhile to monitor
the X-ray flux during a microlensing event, in the hope that
its emissivity distribution is sufficiently consistent with our
assumptions that it, too, could be mapped. Combining this
data set with the optical/ultraviolet data would also provide
an independent constraint on the { parameters, which
should all be the same for the same event.

4.5. Summary

We have demonstrated that monitoring microlensing
events in the Einstein Cross quasar has great potential for
both revealing the structure of its continuum emission with
unprecedented resolution and potentially constraining such
basic parameters of the quasar as the spin of its black hole
(if we assume that emission occurs only outside of the mar-
ginally stable circular orbit), the mass of the black hole
(modulo the caustic velocity), and the inclination angle of its
disk relative to our line of sight. If this potential is realized
and the analytic method we have proposed is implemented
successfully, we may be able to begin answering such funda-
mental questions as the following. What is the intrinsic local
spectrum of the disk ? How close is it to thermal ? Also, most
fundamentally, does the dissipation distribution in accre-
tion disks vary with radius in the fashion predicted (see eq.
[1]) long ago?
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