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ABSTRACT
We study the evolution of the halo-halo correlation function and small-scale (B0.2È7 h~1 Mpc) bias

in four cosmological models ("CDM, OCDM, qCDM, and SCDM) using very high resolution n-body
simulations with a dynamical range of D10,000È32,000 (force resolution of B2È4 h~1 kpc and particle
mass of B109 h~1 The high force and mass resolution allows dark matter halos to survive in theM

_
).

tidal Ðelds of high-density regions and thus prevents the ambiguities related with the ““ overmerging
problem.ÏÏ This allows us to estimate for the Ðrst time the evolution of the correlation function and bias
at small (down to D100 h~1 kpc) scales. We Ðnd that at all epochs the two-point correlation function of
galaxy-size halos is well approximated by a power law with slope B1.6È1.8. The di†erence betweenmhhthe shape of and the shape of the correlation function of matter results in the scale-dependent bias atmhhscales h~1 Mpc, which we Ðnd to be a generic prediction of the hierarchical models, independent of[7
the epoch and of the model details. The bias evolves rapidly from a high value of D2È5 at zD 3È7 to
the antibias of b D 0.5È1 at small h~1 Mpc scales at z\ 0. Another generic prediction is that the[5
comoving amplitude of the correlation function for halos above a certain mass evolves non-
monotonically : it decreases from an initially high value at zD 3È7, and very slowly increases at z[ 1.
We Ðnd that our results agree well with existing clustering data at di†erent redshifts, indicating
the general success of the hierarchical models of structure formation in which galaxies form inside the
host DM halos. Particularly, we Ðnd an excellent agreement in both slope and the amplitude between

in our simulation and the galaxy correlation function measured using the Automaticmhh(z\ 0) "CDM60Plate Measuring Facility galaxy survey. At high redshifts, the observed clustering of the Lyman-break
galaxies is also well reproduced by the models. We Ðnd good agreement at between our resultszZ 2
and predictions of the analytical models of bias evolution. This indicates that we have a solid under-
standing of the nature of the bias and of the processes that drive its evolution at these epochs. We argue,
however, that at lower redshifts the evolution of the bias is driven by dynamical processes inside the
nonlinear high-density regions such as galaxy clusters and groups. These processes do not depend on
cosmology and tend to erase the di†erences in clustering properties of halos that exist between cosmo-
logical models at high z.
Subject headings : cosmology : theory È galaxies : halos È large-scale structure of universe È

methods : n-body simulations

1. INTRODUCTION

It is widely believed that the distribution of galaxies is
di†erent from the overall distribution of dark matter (DM).
This di†erence, the bias, is crucial for comparisons between
observations and predictions of cosmological models.
Observations provide information about the distribution of
objects such as galaxies and galaxy clusters. The models,
however, most readily predict the evolution of the DM dis-
tribution, which cannot be observed directly. The models,
therefore, should be able to predict the distribution of
objects or, conversely, predict how this distribution is di†er-
ent from that of the DM (i.e., the bias). The notion of bias
was introduced by Kaiser (1984) to explain the large di†er-
ence in clustering strength between galaxies and Abell clus-
ters. Later, Kaiser (1986) and Bardeen (1986) applied this
argument to galaxies themselves. Davis et al. (1985) showed
that the cold dark matter (CDM) model disagreed with
observations, if galaxies were distributed like DM.
However, if a biased galaxy formation scenario was

assumed, the ““ galaxy ÏÏ correlations substantially exceeded
the correlations of mass at all scales and agreed with obser-
vations for certain values of bias. This work was followed
by other studies which tried to account for the phenomenon
of galaxy bias (e.g., Rees 1985 ; Schae†er & Silk 1985 ; Silk
1985 ; Dekel & Silk 1986).

The bias can be deÐned and understood di†erently. In
this paper we will use the conventional statistical deÐnition
of the bias as the ratio of the correlation functions of objects
and DM:

b2(M, r, z) 4
mhh(M, r, z)

mdm(r, z)
. (1)

Here b2 is the square of the bias function and mhh(M, r, z)
and are the two-point spatial correlation functionsmdm(r, z)
of objects (halos in this study) and DM, respectively.
Dependencies in the above equation indicate that in general
the bias may depend on the epoch z, scale r, and properties
of the objects such as their mass M. It is also expected that
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the functional form b2(M, r, z) depends on the cosmological
model. The bias in the above deÐnition is most closely
related to the observations because the observed mgg(M, r, z)
can be compared with the predicted within a frame-mdm(r, z)
work of a given cosmological model. This gives an estimate
of the amount of bias needed for a cosmological model to
agree with observations. While it is clear that this approach
cannot be used to test a model, it provides some insights
into the nature of bias and its evolution. For example,
Steidel et al. (1998) used the observed clustering strength of
high-redshift (zB 3) Lyman-break galaxies to derive the
implied value of bias in di†erent cosmological models. This
value was found to be quite large in all models (b D 3È6).
On the other hand, a number of theoretical studies (e.g.,
Klypin, Primack, & Holtzman 1996 ; Cole et al. 1997 ;
Jenkins et al. 1998 and references therein) estimated inmdmdi†erent cosmological models at z\ 0 and made compari-
sons with accurate measurements of from local galaxymggsurveys. These studies indicate that signiÐcant antibias
(b \ 1) is required for the open and Ñat models atlow-)0scales h~1 Mpc, while cluster-normalized[3È8 )0 \ 1.0
models indicate positive bias (b [ 1). Comparison of the
low- and high-z results implies that, regardless of cosmo-
logical model, the bias has decreased signiÐcantly from the
early epochs to the present.

The distribution of the DM and cannot bemdm(r, z)
observed directly. Therefore, a test of a cosmological model
is possible only if the model can predict the of observedmggobjects. Unfortunately, this is not an easy and straightfor-
ward task. First of all, we should fully understand what are
the observed objects and where/how they form. The stan-
dard lore is that observed galaxies form dissipatively inside
DM halos. The properties of galaxies will then depend on
the mass of the parent halo, its spin, details of dissipative
processes and mass accretion history, and other factors (e.g.,
Mo, Mao, & White 1998). Therefore, in order to predict the
type of galaxy and its properties, the relevant processes
must be included in the model. However, it seems likely that
in every sufficiently massive h~1 gravita-(M Z 1011 M

_
)

tionally bound halo baryons will cool, form stars, and
produce an object resembling a galaxy (e.g., Kau†mann,
White, & Guiderdoni 1993 ; Kau†mann, Nusser, & Stein-
metz 1997 ; Roukema et al. 1997 ; Yepes et al. 1997 ; Salucci
& Persic 1997). The galaxy population as a whole can be
then viewed as a population of galaxy-size DM halos.1 The
clustering of the latter can be studied without the inclusion
of complicated physics ; it has been modeled using both
direct numerical simulations and analytical methods.

Typical ingredients of the analytical models (e.g., Matar-
rese et al. 1997 ; Moscardini et al. 1998 ; Mann, Peacock, &
Heavens 1998) are the extended Press-Schechter formalism
(Bower 1991 ; Bond et al. 1991) used to follow mass evolu-
tion of halos, analytical approximations to the nonlinear
clustering evolution of the DM (e.g., Hamilton et al. 1991 ;
Peacock & Dodds 1994, 1996 ; Jain, Mo, & White 1995 ;
Smith et al. 1998), and a model for bias evolution (e.g., Mo
& White 1996 ; Matarrese et al. 1997). The evolution of bias
in such models can be calculated quickly which makes

1 Nevertheless, it should be kept in mind that all of the relevant physics,
such as star formation, supernovae feedback, and photoionization, must be
included in order to model properly the properties of galaxies. Without
such modeling the observational selection e†ects can be reproduced only
approximately.

extensive parameter space studies possible. The main dis-
advantages are the large uncertainties (especially at small,

h~1Mpc, scales) introduced by bias prescriptions andr [ 5
limited applicability of the nonlinear clustering approx-
imations.

Direct numerical simulations should, ideally, predict
halo-halo clustering without any additional assumptions
and uncertainties. However, until very recently the predic-
tions of numerical simulations were also quite uncertain.
The main reason for the uncertainty was that dissi-
pationless n-body simulations had been consistently failing
to produce galaxy-size DM halos in dense environments
typical for galaxy groups and clusters. Recently, it was
shown that this e†ect, known as ““ the overmerging
problem ÏÏ (e.g., Frenk et al. 1988 ; Summers, Davis, &
Evrard 1995), is due mainly to the insufficient force and
mass resolution of such simulations (Moore, Katz, & Lake
1996 ; Klypin et al. 1998, hereafter KGKK; Ghigna et al.
1998). The lack of sufficient resolution leads to artiÐcial
disruption of halos in clusters. This, in turn, leads to a
strong artiÐcial antibias (especially at small scales h~1[3
Mpc, but larger scales are also a†ected). There are several
ways to deal with this problem. One possible way is to
break up massive structureless halos into subhalos using
some kind of observationally motivated prescription (e.g.,
Nolthenius, Klypin, & Primack 1997 ; Klypin, Nolthenius,
& Primack 1997). These subhalos can then be included into
halo catalogs used to compute the correlation function and
other halo statistics. Another common approach is to over-
come overmerging by weighting the massive halos accord-
ing to their mass and thus compute a weighted correlation
function (e.g., Bagla 1998). Both of these approaches are
useful. Nevertheless, it is not clear whether the unavoidable
heuristic assumptions correctly take the processes driving
the small-scale bias evolution into account. The weighting
technique, for example, ignores the real physical e†ects in
groups and clusters such as tidal stripping and dynamical
friction. We will argue below that these e†ects are likely to
be driving the small-scale bias evolution at low red-(z[ 1)
shifts.

Hydrodynamic simulations that include gas cooling are
a†ected by overmerging to a signiÐcantly lesser degree (e.g.,
Summers et al. 1995 ; Katz, Hernquist, & Weinberg 1999).
The cooling creates compact dense objects inside halos
which can survive in clusters. These simulations, therefore,
can be used to study the halo clustering directly. Unfor-
tunately, the computational cost required to simulate a
large volume with sufficiently high mass resolution is pro-
hibitively high. Moreover, such simulations usually over-
simplify the gasdynamic by including only the cooling
mechanism. This leads to ““ overcooling ; ÏÏ without a heating
process to regulate it, the cooling produces very compact
and dense baryonic blobs in the halo centers. These blobs
do survive successfully in clusters, but they also su†er much
less from the tidal stripping of material as compared with a
realistic galaxy with a more extended distribution of
baryons. The mass of the objects may thus be higher than it
should be which may lead to excessive dynamical friction
and thus incorrect dynamics of halos.

The very high resolution n-body simulations are thus a
viable alternative, if the required resolution can be reached
at an a†ordable computational cost. Analytical arguments
and numerical experiments (Moore et al. 1996 ; KGKK)
indicate that the required force and mass resolution are
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B1È2 h~1 kpc and h~1 respectively. This force[109 M
_

,
resolution is sufficiently high for most halos to survive in
high-density regions. The mass resolution is determined by
the requirement that a galaxy-size halo have particlesZ100
to avoid relaxation e†ects and to assure a robust identiÐca-
tion by a halo-Ðnding algorithm. The numerical simulations
that reach such resolution (Ghigna et al. 1998 ; KGKK)
show that most halos do survive even in the richest clusters.
The dynamic range required to reach the needed resolution
in a statistically large volume, D50È100 h~1 Mpc, is quite
high : (2È5)] 104. Nevertheless, the advances in computer
hardware and in the numerical algorithms now make it
possible to carry out such simulations at an a†ordable com-
putational cost. In this paper we use such high dynamic
range simulations to calculate the two-point correlation
function of halos and the corresponding bias using all halos
in the simulated volume, i.e., both isolated DM halos and
satellites of massive halos and halos inside group- and
cluster-size systems. The simulations of di†erent cosmo-
logical models and box sizes were made using the Adaptive
ReÐnement Tree (ART) (Kravtsov, Klypin, & Khokhlov
1997) and the AP3M (Couchman 1991) n-body codes. The
absence of the overmerging2 in these simulations means
that the additional steps such as the breaking-up of clusters
or mass weighting (see above) are not necessary. Therefore,
the correlation function of halos is measured directly down
to unprecedentedly small scales (B150 h~1 kpc) without the
usual uncertainties associated with these steps. For the Ðrst
time this opens up the possibility of studying the e†ects of
dynamical processes such as tidal destruction and dynami-
cal friction on the evolution of small-scale bias. The results
on the evolution of bias and on the halo correlation func-
tion can be used as a basis for comparisons and interpreta-
tions of the existing and upcoming observations, as well as a
check and/or input for the analytic models of clustering
evolution.

The paper is organized as follows. In ° 2 we brieÑy review
the deÐnitions of bias and current analytical models of its
evolution. The cosmological models studied in this paper
are described in ° 3. The details of the numerical simulations
and discussion of the construction of halo catalogs and halo
survival in the high-density regions is given in ° 4. In ° 5 we
present our results on the evolution of halo clustering and
bias in di†erent cosmological models. We also present a
comparison of our z\ 0 results with the galaxy correlation
function measured using the Automatic Plate Measuring
Facility (APM) galaxy survey. A discussion of the main
results is presented in ° 6. We summarize our main results
and conclusions in ° 7.

2. THE NOTION OF BIAS

The notion of bias is more complicated than equation (1)
might suggest. Formally, the bias is deÐned as a function
relating Ñuctuations in the DM density, to the Ñuctua-ddm,

2 The extent to which the very central regions h~1 kpc) of(r [ 200
clusters are a†ected by the overmerging, even with resolution this high, is
still a matter of debate. Ghigna et al. (1998), for example, argue that these
regions are still completely overmerged. They Ðnd, however, that halos
survive at smaller radii (B50 h~1 kpc) in their 5 kpc resolution RUN1, as
compared with the 10 kpc RUN2. The resolution of the simulations pre-
sented in this paper is comparable to the RUN1. We do Ðnd halos within
the central B100 h~1 kpc (see ° 4.3 and Figs. 1È3). Although some halos do
survive at h~1 kpc from cluster center, our tests show that theser [ 100
regions may be a†ected by the overmerging. The larger scales h~1Z100
kpc are not a†ected

tions in the number density of objects, In general, thisd
n
.

relationship can be complicated and may depend on a large
number of factors : scale, mass and/or type of objects, time,
etc. The large number of the dependencies or discreteness of
the object distribution can result in the stochasticity of the
bias (Dekel & Lahav 1999) : a scatter in the relationship
between and Finally, the bias can be nonlocal, if thed

n
ddm.

probability of forming an object at a given point is not fully
determined by local factors. For example, in addition to the
local density, temperature, etc. (see, e.g., Blanton et al. 1999),
the probability of forming a galaxy may depend on environ-
ment. Analytical results of Catelan et al. (1998a) indicate
that the bias is expected to be nonlocal even in the linear
regime.

The lack of general understanding of these dependencies
of the bias usually results in the use of the simplest assump-
tions. The most common approach is to assume that bias is
local, depends only on the local matter density, and is
linear : An obvious consequence of the latterd

n
\ bddm.

assumption is that bias is scale independent. In this case, the
correlation function and power spectrum of halos and DM
are simply related by a constant scaling factor. Although
the linearity of bias would greatly simplify the theoretical
interpretation of the clustering data, it is likely that bias
depends on a variety of processes that may lead to nonlin-
earity. These processes include merging, tidal disruption
(e.g., Dubinski 1998), suppression of galaxy formation in
small halos due to supernovae feedback (Dekel & Silk 1986 ;
Yepes et al. 1997), etc.

The observations, in fact, indicate that at small scales
galactic bias is nonlinear. The correlation functions of dif-
ferent types of galaxies di†er in amplitude and shape sug-
gesting that at least some of the galaxies are nonlinearly
biased. Theoretical predictions, depending on the model
and method of analysis, range from (almost) constant bias
(e.g., Peacock & Dodds 1994, 1996 ; Kau†mann et al. 1997),
to positive and decreasing with scale bias (e.g., Cen &
Ostriker 1992 ; Cen, Gnedin, & Ostriker 1993 ; Blanton et al.
1999), to the scale-dependent increasing with scale antibias
(Klypin, Primack, & Holtzman 1996 ; Jenkins et al. 1998).
The di†erences can be typically traced either to di†erent
physical processes accounted for in analyses (or lack
thereof) or to a di†erent way of treating observational data.
For example, Cen & Ostriker (1992) predict that galaxies in
the CDM model should be positively biased and the bias
should decrease with the scale. However, the numerical
resolution of these simulations has been too crude to allow
for galaxy survival in high-density regions, and the results
may be a†ected by this. We should note that galaxy bias
actually must be scale dependent in some of the models.
Klypin et al. (1996) and Jenkins et al. (1998) compared the
correlation function of the DM with the correlation func-
tion of galaxies in the APM survey. The comparison shows
that antibiased distribution of galaxies must be antibiased
and scale dependent in the "CDM model.

During the last years, signiÐcant progress has been made
in the analytical modeling of the bias and its evolution (e.g.,
Coles 1993 ; Fry 1996 ; Mo & White 1996, hereafter MW;
Matarrese et al. 1997 ; Mann et al. 1998 ; Catelan, Matar-
rese, & Porciani 1998b ; Catelan et al. 1998a). Although the
current analytical models may have some drawbacks and
limitations, they provide an insight and interpretation for
numerical simulations. At this point it is also important to
check how well the prediction of the analytical models
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agrees with the results of simulations (see, e.g., MW; Mo,
Jing, & White 1996 ; Jing 1998). We will therefore brieÑy
review some results of the analytical models concerning
evolution of the bias.

In a seminal paper, Kaiser (1984) showed that if the
observed systems in the universe (such as galaxies and
galaxy clusters) form in the peaks of the density Ðeld, their
distribution is biased. This is an example of statistical bias,
the bias determined simply by the fact that objects do not
sample the distribution of matter but that of the peaks, the
latter having a statistically di†erent distribution from the
former. Thus, the bias is introduced from the start by the
way the objects form. However, the bias subsequently
changes as the distribution evolves driven by the gravita-
tion. In hierarchical models this evolution results in growth
of objects via multiple mergers. However, if the merger rate
is low, the evolution of bias can be modeled by the object-
conserving model. In this model the objects form with an
initial statistical bias, and after that are dragged without
merging by a gravitational pull from the surrounding
density Ñuctuations (Dekel & Rees 1987 ; Nusser & Davis
1994 ; Fry 1996 ; Tegmark & Peebles 1998).

MW used the extended Press-Schechter formalism to
derive an expression for the bias in Lagrangian
coordinates3 (comoving radius R of the region from which
halos form or halo mass M). At linear scales, this
expression4 for the bias at redshift z for DM halos of mass
M formed at redshift is (Matarrese et al. 1997)z

f

b(M, z o z
f
)\ 1 ] l2[ 1

d
f

. (2)

Here is the growing mode ofd
f
\ d

c
D

`
(z)/D

`
(z

f
), D

`
(z)

linear perturbations normalized to unity at z\ 0, l\
is the critical overdensity for spherical col-d

f
/p(M, z), d

clapse at z\ 0, and p(M, z) is the rms linear mass Ñuctuation
on the scale M of halos linearly extrapolated to redshift z.
This expression is similar to that obtained in earlier studies
from a peak-background split argument (e.g., Cole & Kaiser
1989). The standard interpretation of the Press-Schechter
description of the hierarchical evolution is that at any epoch
z all halos merge immediately to form more massive halos.
Thus, if observed objects are identiÐed with host halos at
any epoch, then in equation (2). Matarrese et al.z\ z

f(1997) call this the merging model. The object-conserving
and merging models are two extreme pictures of clustering
evolution, although they may be applicable to the evolution

3 More sophisticated analytical treatment of bias in Lagrangian coordi-
nates can be found in Catelan et al. (1998a) and Mann et al. (1998).

4 MW note that eq. (3) should be valid even when orddm Z 1 mdm(r)D 1,
as long as the scale r is larger than the Lagrangian radius R. They Ðnd that
at these scales the correlation function of halos and the bias in their
numerical simulations are well described by eq. (3) (see, however, Catelan
et al. 1998b and Jing 1998).

of galaxy clustering at certain epochs. At some epochs the
halos may neither survive nor merge instantly. Moreover,
other processes such as halo dynamics in galaxy clusters
and groups may become important when clustering reaches
highly nonlinear stages. The wealth of potentially impor-
tant processes may make a one-to-one identiÐcation
between galaxies5 and DM halos very difficult (see, for
example, the discussion by Moscardini et al. 1998).

Equation (2) gives an estimate of the bias for objects of a
single mass. The bias of a sample of objects (““ e†ective ÏÏ
bias6) with a range of masses should be calcu-M [Mminlated as a weighted average over the mass distribution of
objects n(M, z) :

beff(z) \ n(z)~1
P
M;Mmin

b(M, z o z
f
)n(M, z)d ln M , (3)

where n(M, z) is given by the Press-Schechter (1974) dis-
tribution and n(z) is the mean number density of objects
with masses at redshift z. Note that the biasM [ Mminweighted in this way will give a correct value only for the
bias estimated from point-to-point comparisons of halo and
matter overdensities For the spatially averagedb \ d

h
/d

m
.

bias calculated using correlation functions or power
spectra, the weighting will not give a correct value because
of the cross terms resulting from squaring the overdensities.
Moscardini et al. (1998) give a useful Ðtting formula for
beff(z),

beff(z) \ 1 [ 1/d
c
] [beff(0)[ 1 ] 1/d

c
]/D

`
(z)b , (4)

and provide best-Ðt parameters and b for a variety ofbeff(0)
di†erent cosmological models and values of TheMmin.generic feature of the evolution of the e†ective bias
described by equation (3) is its rapid decrease with decreas-
ing redshift and increase with increasing For galaxy-Mmin.size halos, and b D 2.0È1.7 forbeff(0)D 0.5È1.0 MminD
109È1012 h~1 This gives at z\ 3 andM

_
. beff D 2È4 beff D0.5È1.0 at the present epoch. We will use equation (4) in ° 6

to interpret and compare our results with predictions of the
analytical models discussed above.

3. COSMOLOGICAL MODELS

We have chosen to study the evolution of bias in four
representative variants of the CDM models (see details in
Table 1) : (1) the standard COBE-normalized CDM model
(SCDM); (2) a variant of the CDM model (qCDM))0 \ 1.0
with a di†erent shape of the power spectrum (the shape
parameter (3) a Ñat low-density model!\ )0 h \ 0.2) ;
with ("CDM); and (4) an open model)0\ 1 [ )" \ 0.3
with (OCDM). The observations of the galaxy)0\ 0.3

5 The situation with the evolution of clusters of galaxies is, of course,
much simpler.

6 We follow here the notation and terminology of Matarrese et al.
(1997).

TABLE 1

COSMOLOGICAL MODELS

t0
Model )0 )",0 h (Gyr) p8 Approximation

SCDM . . . . . . . 1.0 0.0 0.50 13.1 1.1 Efstathiou et al.
OCDM . . . . . . . 0.3 0.0 0.65 12.2 0.9 BBKS] Sugiyama
"CDM1 . . . . . . 0.3 0.7 0.70 13.4 1.17 BBKS] Sugiyama
"CDM2 . . . . . . 0.3 0.7 0.70 13.4 1.0 Klypin & Holtzman
qCDM . . . . . . . . 1.0 0.0 0.5 13.1 1.0 Efstathiou et al.
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clustering indicate that the power spectrum of the galaxy
distribution has a shape di†erent from that of the standard
CDM model : instead of !\ 0.5 of the!\ )0 h B 0.2
SCDM (e.g., Maddox, Efstathiou, & Sutherland 1996 ;
Peacock & Dodds 1994). This has motivated Jenkins et al.
(1998) to study the qCDM model, in which q indicates the
fact that lower values of ! may be obtained with a late
decay of the massive q-neutrino. The physics (additional to
the physics of the SCDM model) responsible for the change
of the shape is, in fact, irrelevant for the study of structure
formation. Although the model in that respect is somewhat
heuristic, it is interesting as an example of a model with

and an approximately correct shape of the power)0\ 1
spectrum. The observations of the galaxy cluster evolution
(Eke et al. 1998) and of the baryon fraction in clusters
(Evrard 1997) strongly indicate a value of matter density

while various observational measurements of the)0B 0.3,
Hubble constant (e.g., Kim et al. 1997 ; Falco et al. 1997 ;
Salaris & Cassisi 1998) tend to converge on the values of
h B 0.6È0.7. Therefore, we have considered two models
(open and Ñat) with and h \ 0.65È0.7. The age of)0\ 0.3
the universe in all of our models is given in Table 1 and is in
good agreement with the ages of the oldest globular clusters
(Chaboyer 1998).

We have used di†erent approximations for the power
spectrum of density Ñuctuations for di†erent considered
models. For the OCDM and models (see Table 1)"CDM1we used the Bardeen et al. (1986, hereafter BBKS) Ðt for the
power spectrum with corrections of Sugiyama (1995) :

P(k)\ AkT 2(k) ,

T (k)\ ln (1] 2.34q)
2.34q

[1] 3.89q ] (16.1q)2

] (5.46q)3] (6.71q)4]~1@4 , (5)

q \ kM)0 h2 exp[[)
b
[ J2h()

b
/)0)]N~1 , (6)

where h~2 (Walker et al. 19917) and k is in)
b
\ 0.0125

Mpc~1. The power spectra for both the SCDM and the
qCDM models were approximated by the Ðtting formula of
Efstathiou, Bond, & White (1992),

P(k)\ Ak
M1 ] [ak ] (bk)3@2] (ck)2]1.13N2@1.13 , (7)

where a \ 6.4/!, b \ 3.0/!, c\ 1.7/!, and A is the normal-
ization constant. The shape parameter ! is 0.5 and 0.2 for
the SCDM and qCDM models, respectively. These two
analytic Ðts provide fairly good approximations to the
power spectra of these models in the limit )

b
/)0> 1.

For the models we have used an approximation"CDM2to the power spectrum di†erent from that of the "CDM1model. The approximation

P(k)\

Ak
(1[1.5598k1@2]47.986k]117.77k3@2]321.92k2)2C0.9303

(8)

is given by Klypin & Holtzman (1997) and was obtained by
a direct Ðt to the power spectrum estimated using a Boltz-

7 For the we used a slightly higher value of h~2."CDM2 )
b
\ 0.015

mann code. The accuracy of this approximation is [2%
(see Klypin & Holtzman 1997 for details). A small shift in
the normalization makes the approximations for the

and models very similar in the range"CDM1 "CDM2of wavenumbers probed in our simulations [k B (0.1È10) h
Mpc~1]. This shift can be expressed using the value of p8(amplitude of Ñuctuations on 8 h~1 Mpc scale) : p8\
1.17 for the BBKS approximation versus for thep8 \ 1.0
Holtzman approximation. With these values of the dif-p8ferences in power are negligible at large scales [k B (0.1È0.3)
h Mpc~1] and are within 10% at the smaller scales.

Our SCDM model was normalized to the 2 yr COBE-
Di†erential Microwave Radiometer (DMR) data, p8\ 1.1
(a somewhat higher value, is obtained fromp8B 1.15È1.2,
the 4 yr COBE-DMR data ; see, e.g., Bunn & White 1997).
This normalization is inconsistent with the normalization,

deduced from the observed cluster abundancesp8B 0.5,
(e.g., Eke, Cole, & Frenk 1996), which reÑects the well-
known failure of this model to account for both COBE and
cluster data. Our normalization of the OCDM is higher
than that implied by the 4 yr COBE-DMR data (p8B 0.5)
but is consistent with the normalization, impliedp8B 0.9,
by the cluster abundances. The normalization of our
"CDM models, on the other hand, is in good agreement
with both cluster and the 4 yr COBE data. As explained
above, the small di†erence in normalization between the

and was introduced to minimize di†er-"CDM1 "CDM2ences between the two power spectrum approximations
used in these models. Normalization of the qCDM model is
inconsistent with both the COBE normalization (p8B 0.45)
and with the cluster abundance normalization (p8B 0.52).
This is motivated by our intent to use qCDM as a toy model
rather than a reasonable approximation to the real uni-
verse. The normalization of the qCDM is similar to normal-
izations of the CDM and "CDM models. Therefore,
comparison between results of these models allows us to
study the e†ects of changing the shape of the power spec-
trum and the value of Finally, we note that the bias in)0.models with lower normalizations can be deduced)0\ 1
approximately from our results at a redshift z[ 0, such that

corresponds to the desired normalization.p8/(1] z)

4. THE NUMERICAL SIMULATIONS

4.1. Simulation Parameters
We have used two di†erent n-body codes to carry out our

simulations : ART (Kravtsov et al. 1997) and the AP3M
code8 (Couchman 1991). Comparison of the results
obtained with di†erent numerical codes allows us to ensure
that the results are robust. The AP3M code is an extension
of the well-known P3M algorithm (Hockney & Eastwood
1981). The code performs hierarchical rectangular reÐne-
ments in the high-density regions to reduce expensive
particle-particle calculations. The gravitational force is
obtained by matching the gravitational forces calculated
using the fast Fourier transform solver on the base and
reÐnement grids and the small-scale force calculated using
direct particle-particle summation (see Couchman 1991 for
details). A total of four reÐnement levels were allowed
during the course of the AP3M simulations presented here.
The ART code also reaches high force resolution by reÐning

8 The original public code was modiÐed slightly to take into account
models.)0D 1
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all high-density regions with an automated reÐnement algo-
rithm. The reÐnements are recursive : the reÐned regions can
also be reÐned, each subsequent reÐnement having half of
the previous levelÏs cell size. This creates a hierarchy of
reÐnement meshes of di†erent resolution covering the
regions of interest. The reÐnement is done cell by cell
(individual cells can be reÐned or dereÐned), and meshes are
not constrained to have a rectangular (or any other) shape.
This allows us to reÐne the required regions in an efficient
manner. The criterion for reÐnement is local overdensity of
particles : in the simulations presented in this paper the code
reÐned an individual cell only if the density of particles
(smoothed with the cloud-in-cell scheme ; Hockney & East-
wood 1981) was higher than particles. Therefore, allnth\ 5
regions with overdensity higher than whered \ nth 23L/n6 , n6
is the average number density of particles in the cube, were
reÐned to the reÐnement level L . For the two ART simula-
tions presented here, and is and 1,"CDM60 "CDM30ART, n6 18respectively. The Poisson equation on the hierarchy of
meshes is solved Ðrst on the base grid and then on the
subsequent reÐnement levels. On each reÐnement level the
code obtains potential by solving a Dirichlet boundary
problem with boundary conditions provided by the already
existing solution at the previous level. There is no particle-
particle summation in the ART code. The detailed descrip-
tion of the code is given by Kravtsov et al. (1997). Note,
however, that the present version of the code uses multiple
time steps on di†erent reÐnement levels, as opposed to the
constant time stepping in the original version of the code.
The multiple time stepping scheme is described in some
detail by Kravtsov et al. (1998 ; also see below).

The information about the numerical parameters of the
simulations is given in Table 2. The AP3M code was used to
produce four simulations of di†erent cosmological models9
with the box size h~1 Mpc. The size of the boxL box\ 30
side is a compromise between the requirements of the high
spatial resolution (D2È4 h~1 kpc) and good statistics of
halos. Nevertheless, for our most realistic model ("CDM)
we also use the ART code to simulate a 60 h~1 Mpc box

run). We estimate the e†ects of the Ðnite box size("CDM60(see ° 5.1) on our results by comparing the results of the 140
h~1 Mpc box simulation of Jenkins et al. (1998) with the
results of our 60 and 30 h~1 Mpc boxes. All AP3M runs
were done with 1283 particles. The two ART runs used 2563
particles. The initial conditions were set using the Zeldovich
approximation on uniform 1283, 2563, and 5123 meshes for
the AP3M runs, the run, and the run,"CDM30ART "CDM60

9 Runs SCDM, and qCDM have not been completed"CDM30,because of the high computational expense. The simulations were stopped
at z\ 0.3.

respectively. The seed used to generate the Gaussian
random density Ðeld was the same in all of our AP3M runs
but di†erent for each of the two ART runs. All of the simu-
lations are started at the moment of time when the rms
density Ñuctuations at the Nyquist wavelength are stilljNyqlinear : All AP3M runs evolved duringp(jNyq, z

i
) D 0.1È0.2.

a period in which the linear growth factor increased by a
factor of 50. This explains di†erent values of for di†er-zinitent models in Table 2.

As was explained in ° 1, the purpose of our study was to
compute the correlation function and the bias accounting
for all DM halos, including those inside groups and clusters.
To assure that halos do survive in clusters the force
resolution should be D1È3 h~1 kpc (Moore et al. 1996 ;
KGKK). Furthermore, if we aim to study galaxy-size halos,
the mass resolution should be h~1 to resolve[109 M

_galaxy-size halos h~1 with at least B100(M Z 1011 M
_

)
particles. The compromise between these considerations
and the computational expense determined the force and
mass resolution of our simulations (see Table 2). The ART
code integrates the equations of motion in comoving coor-
dinates. However, the reÐnement strategy of the ART code
is designed to e†ectively preserve the initial physical
resolution of the simulation (see below). The peak
resolution is reached by creating a reÐnement hierarchy
with six levels of reÐnement. In the AP3M runs the force
resolution g (spline-softening length) was kept constant in
comoving coordinates while Ñuctuations are still in the
linear regime and is then set to be constant in physical units.
The switch occurs at the moment when the Ðrst galaxy-size
halos start to collapse (zD 5È10) for our simulations. We
chose to maintain a Ðxed comoving resolution until it
reaches D3 h~1 kpc (physical) (at D5È10). At later
moments the resolution is Ðxed to this value in physical
coordinates (the exception is the OCDM model in which
the resolution was set to 4.7 h~1 kpc by mistake). The
dynamical range of the simulations implied by theL box/gforce resolution is B16,000 (32,000 formal) for the ART
runs and 6000È10,000 for the AP3M runs. The dynamic
range of the AP3M runs is just enough to keep the initial
physical resolution (B2È5 h~1 kpc). The ART code inte-
grates the evolution in comoving coordinates. Therefore, in
order to prevent degradation of force resolution in physical
coordinates, the dynamic range between the start and the
end (z\ 0) of the simulation should increase by i.e.,(1 ] z

i
),

for our simulations to reach This is512 ] (1] z
i
) \ 15,872.

accomplished with the prompt successive reÐnements
during the simulations.

The time stepping of the AP3M and ART codes is rather
di†erent. First of all, the codes integrate the equation of
motion using di†erent time variables : the time in the AP3M

TABLE 2

PARAMETERS OF SIMULATIONS

mparticle Resolution Box
Code Model Run zinit (h~1 M

_
) Nsteps (kpc h~1) (Mpc h~1) Npart

AP3M . . . . . . SCDM SCDM 49 3.5] 109 8000 3.0 30 1283
AP3M . . . . . . OCDM OCDM 109 1.1] 109 7000 4.7 30 1283
AP3M . . . . . . "CDM1 "CDM30 64 1.1] 109 4000 3.0 30 1283
ART . . . . . . . "CDM2 "CDM60 30 1.1] 109 41300 1.8 60 2563
ART . . . . . . . "CDM2 "CDM30ART 45 1.3] 108 13800 0.9 30 2563
AP3M . . . . . . qCDM qCDM 50 3.5] 109 8000 3.0 30 1283
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code and the expansion factor in the ART code. In the
AP3M runs the time step is constant and is the same for all
particles. In the ART runs, as was noted above, the particles
residing on di†erent reÐnement levels move with di†erent
time steps. The particles on the same level, however, move
with the same step. The reÐnement of the time integration
mimics spatial reÐnement, and the step for each subsequent
reÐnement level is 2 times smaller than the step on the
previous level. The global time step hierarchy is thus set by
the step at the zeroth level (uniform base grid). The step*a0on level L is then The choice of an appropri-*a

L
\ *a0/2L.

ate time step for a simulation is dictated by the adopted
force resolution. The number of time steps in our simula-
tions is such that the rms displacement of particles during a
single time step is always less than g/4 (less than of a cell in14the ART code).10 The size of the time step, *t, for the AP3M
runs was chosen to be sufficiently small to satisfy the stabil-
ity criteria of the numerical integration (e.g., Efstathiou et
al. 1985) throughout the entire run. In the case of ART runs,
the value of was determined in a convergence*a0\ 0.0015
study using a set of smaller 643 particle simulations
described by Kravtsov et al. (1998). In both AP3M and
ART runs the energy was conserved with an accuracy
[1%.

4.2. IdentiÐcation of Halos
IdentiÐcation of DM halos in the very high density

environments (e.g., inside groups and clusters) is a challeng-
ing problem. Traditional halo-Ðnding algorithms, such as
friends-of-friends (e.g., Davis et al. 1985) or ““ overdensity-
200 ÏÏ (e.g., Lacey & Cole 1994), cannot be used. These algo-
rithms are not designed to search for substructure ; they
identify an isolated halo above virial overdensity as a single
object and cannot account for the internal substructure.
Our goal, however, is to identify both isolated halos and
halos orbiting within larger systems (““ subhalos ÏÏ). The
problems associated with halo identiÐcation within high-
density regions are discussed by KGKK. In this study we
use a halo-Ðnding algorithm called bound density maxima
(BDM) (see KGKK). A detailed description of the working
version of the BDM algorithm used here can be found in
Klypin & Holtzman (1997). Other recently developed algo-
rithms capable of identifying satellite halos are described by
Ghigna et al. (1998) and KGKK. The main idea of the
BDM algorithm is to Ðnd positions of local maxima in the

10 Note, however, that the distance traveled by the fastest moving parti-
cle in one time step in AP3M runs can be larger than g, especially at late
times and in the run. In the ART code, particles do not move"CDM30further than D0.5 cells in a single time step, where the cell size and time
step for particles located on the reÐnement level L are and*x0/2L *a0/2L,respectively.

density Ðeld smoothed at a certain scale and to apply physi-
cally motivated criteria to test whether the identiÐed site
corresponds to a gravitationally bound halo. In the follow-
ing we describe the speciÐc parameters of the BDM used to
construct the halo catalogs used in our study (the main
parameters are listed in Table 3).

The radius of a halo assigned to it by the algorithm is
either its virial radius11 or 150 h~1 kpc, whichever is
smaller. The latter is approximately the maximum virial
radius we would expect for a galaxy-size halo. The mass and
radius are very poorly deÐned for the satellite halos because
of the tidal stripping which alters a haloÏs mass and physical
extent. Therefore, in this study we will use maximum circu-
lar velocity as a proxy for halo mass. This allows us toVmaxavoid complications related to the mass and radius determi-
nation for satellite halos. For isolated halos, and theVmaxhaloÏs virial mass are directly related. For example, for a
halo with a density distribution described by the Navarro,
Frenk, & White (1996, hereafter NFW) proÐle
o(r) P x~1(1] x)~2 is scale-radius),(x 4 r/R

s
; R

s

V max2 \ GMvir
Rvir

c
f (c)

f (2)
2

, (9)

where and are virial mass and radius,Mvir Rvirf (x) 4 ln (1] x) [ x/(1 ] x), and While for thec4 Rvir/Rs
.

subhalos may not be related to mass in any obviousVmaxway, it is still the most physically and observationally moti-
vated halo quantity. The limiting radius of 150 h~1 kpc is
sufficient to determine the for galaxy-size halos. TheVmaxcluster-size halos are not explicitly excluded from the halo
catalogs. We assume therefore that the center of each cluster
can be associated with a central cluster galaxy. The latter
(because of the lack of hydrodynamics and other relevant
processes) cannot be identiÐed in our simulations in any
other way.

The density maxima are identiÐed using a top-hat Ðlter
with radius (““ search radius ÏÏ). The search is performedr

sstarting from a large number of randomly placed positions
(““ seeds ÏÏ) and proceeds by iteratively moving the center of
mass within a sphere of radius until convergence. In orderr

sto make sure that we use a sufficiently large number of
seeds, we used the position of every 10th particle as a seed.
Therefore, the number of seeds by far exceeds the number of
expected halos. The search radius also deÐnes ther

sminimum allowed distance between two halos. If the dis-
tance between centers of any of the two halos is less than

only one halo (the more massive of the two) is left in the2r
s
,

11 The virial overdensity is set in accord with the prediction of thedTHtop-hat collapse model. Note that depends on the cosmological modeldTH(e.g., Kitayama & Suto 1996).

TABLE 3

PARAMETERS OF HALO-FINDING ALGORITHM

Mmin r
s

Run d6 TH (h~1 M
_

) (kpc h~1)

SCDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 7 ] 1010 13
OCDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180-400 2 ] 1010 13
"CDM30 . . . . . . . . . . . . . . . . . . . . . . . . . 180È340 2 ] 1010 13
"CDM60 . . . . . . . . . . . . . . . . . . . . . . . . . . 180È340 1010 20
"CDM30ART . . . . . . . . . . . . . . . . . . . . . . . . . 180È340 109 10
qCDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 7 ] 1010 13
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catalog. A typical value for the search radius is (10È20) h~1
kpc. We set a lower limit for the mass inside the search
radius halos with are notM(\r

s
) : M(\r

s
)\ Mminincluded in the catalog. This is done to exclude pure

Poisson Ñuctuations from the list of halo candidates. Some
halos may have signiÐcant substructure in their cores due,
for example, to an incomplete merger. Such cases appear in
the catalogs as multiple (2È3) halos with very similar
properties (mass, velocity, radius) at small separations. Our
strategy is to count these as a single halo. The speciÐc cri-
teria used to identify such cases require that (1) the distance
between halo centers is h~1 kpc, (2) their relative[150
velocity in units of the rms velocity of particles in the halos
*v/v is less than 0.15, and (3) the di†erence in mass is less
than factor 1.5. Only the most massive halo is kept in the
catalog.

It is obvious that for a statistical study it is important to
be conÐdent that our BDM algorithm does not miss a large
fraction of halos. While a substantial e†ort is made to reject
fake halos, it is important to make sure that all real halos
are included in the catalog. The algorithm is very efficient at
Ðnding isolated halos, and the major difficulties are in the
identiÐcation of halos in crowded regions. Halo identiÐca-
tion in such regions is complicated by the large number of
halos and by the high-density background of fast-moving
particles. Therefore, performance of the algorithm in such

regions is a good indicator of its overall performance. In
fact, the parameters of the halo Ðnder used to construct our
halo catalogs were tuned by visual inspections of the most
difficult and complicated regions. An example of such
regions is shown in Figure 1. The Ðgure shows the distribu-
tion of the DM particles in a Virgo-type cluster12 in the
"CDM model run). To enhance the substruc-("CDM60ture, particles are color coded on a gray scale with a render-
ing algorithm based on the local particle density (see Fig. 1,
legend). A large number of distinct and compact DM halos
is clearly present within the virial radius of the cluster.
Figure 2 shows the positions of DM halos identiÐed by the
BDM code in the same volume. There are 121 halos in the
plot, each halo having more than 20 bound particles. More
stringent limits of more than 30 particles and a maximum
circular velocity, larger than 80 km s~1 produce 98Vmax,halos. All distinct halos visible in Figure 1 are identiÐed.

4.3. Survival of Halos in Clusters
In ° 1 we stressed that the main new feature of the

analysis presented in this paper is the identiÐcation and use
of halos located inside the virial radius of other halos
(satellites or subhalos). Particularly, one of the main goals is

12 The distribution of matter and halos in this cluster is discussed in the
next section.

FIG. 1.ÈDistribution of DM in a Virgo-like cluster in the simulations. The cluster virial mass is 2.45 ] 1014 h~1 and the corresponding"CDM60 M
_

,
three-dimensional velocity dispersion is B1022 km s~1. The particles inside a sphere of the radius of 1.5 h~1 Mpc (solid circle) are shown. The size of the
small box, shown to provide the comparison scale, is 100 h~1 kpc. To enhance the contrast, we have color coded DM particles on a gray scale according to
their local density ; the intensity of each particle is scaled as the logarithm of the density di†erence where the densities were obtained using top-hato15 [ o75,Ðlter with radii 15 and 75 h~1 kpc.
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FIG. 2.ÈRegion of the space shown in Fig. 1 with circles representing
the DM halos found by the BDM halo Ðnder. The area of each circle
representing a halo is proportional to the haloÏs maximum circular veloc-
ity. There are 121 halos in the plot, each of which has mass greater than
2 ] 1010 h~1 (more than 20 bound particles).M

_

to include halos inside cluster-size halos. This would allow
an estimation of the halo-halo correlation function down to
unprecedentedly small scales (D150 h~1 kpc). However, we
can consider this estimate robust only if we are conÐdent
that no halos (or a very small fraction of them) are artiÐ-
cially destroyed in clusters because of the insufficient
resolution. KGKK have discussed analytical estimates and
numerical experiments that could be used to address this
issue. Following the approach of KGKK, we have run a
series of small n-body simulations13 using the direct-
summation AarsethÏs code (Binney & Tremain 1987). The
basic setup of the simulations is as follows. A DM halo of
virial mass 1012 h~1 (containing a few thousand par-M

_ticles within the virial radius) is constructed. The initial
equilibrium density proÐle of the halo is described by the
NFW formula. The halo is then placed on an orbit in a
constant potential corresponding to a galaxy cluster of
mass 2 ] 1014 h~1 with the NFW density distribution.M

_The particular numbers quoted here are intended to mimic
the orbital evolution in the cluster presented in Figures 1È3.
The orbital evolution of the halo was studied for di†erent
orbits and di†erent (mass and force) resolutions. Both the
mass and the force resolution were varied by more than a
factor of 10. The orbital evolution of mass bound to the
halo converges at the force resolution14 B3È4 h~1 kpc, i.e.,
the evolution of bound mass in runs with higher resolution
is identical. In fact, during the Ðrst B5 Gyr the resolution of
B10 h~1 kpc is adequate. The mass loss in this case is
somewhat higher which leads to total destruction after 5
Gyr, whereas a resolution of 3 h~1 kpc allows the halo to
survive during the Hubble time. These experiments have

13 Similar to those of KGKK, but with all parameters appropriate for
the "CDM model.

14 Here we quote all resolutions for the spline kernel g of the AP3M; the
corresponding resolution is Bg/2 for the ART.

FIG. 3.ÈDensity proÐle of the cluster shown in Figs. 1 and 2. T op
panel : DM density in units of the mean matter density at z\ 0 (solid line)
and at z\ 1 (dot-dashed line) ; the dashed line shows the NFW Ðt to the
z\ 0 density proÐle. The z\ 1 density proÐle is given in proper units : the
radius is given in proper scale, and the mean matter density is estimated at
z\ 0. Bottom panel : Number density proÐles of halos in the cluster at
z\ 0 (solid circles) and at z\ 1 (open circles) as compared with the z\ 0
density proÐle of DM (solid curve). The error bars show 1 p Poisson errors.
Halos with more than 30 bound particles and with maximum circular
velocity larger than 100 km s~1 at z\ 0 and larger than 120 km s~1 at
z\ 1 were used to estimate the average density (see ° 4.3 for details).n0The proÐle at z\ 1 is rescaled into proper units similar to that of the DM
in the top panel.

also shown that a mass resolution of B109 h~1 isM
_sufficient, provided that force resolution is high. Two runs

with a force resolution of 3 h~1 kpc and with mass
resolutions of 108 and 109 h~1 resulted in identicalM

_mass evolution. It is worth noting that in these experiments
the halo was followed until it was totally destroyed by the
tidal Ðeld Gyr in most cases). In real simulations,(Z5
however, clusters form only at and most of the accret-z[ 1
ed halos spend Gyr in clusters. During this time halos[5
lose 80%È90% (depending on the orbit) of their initial mass.
Thus, if the mass resolution is B109 h~1 the halos withM

_
,

initial mass h~1 can be identiÐed even afterZ1011 M
_spending a substantial time in a cluster.

Details of the evolution of halos in clusters depend sensi-
tively on the parameters of the halo orbit. SpeciÐcally, the
mass-loss rate depends on the pericenter and on the eccen-
tricity of the orbit. A halo on a very eccentric orbit survives
for a considerably longer time than a halo on a circular
orbit, even if the radius of the latter is larger than the peri-
center. For example, a halo on a circular orbit with a radius
of 250 h~1 kpc was totally destroyed in less than 5 Gyr,
while a halo on a very eccentric orbit with the pericenter of
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only 125 h~1 kpc survived for more than 10 Gyr. The expla-
nation for this is simple : a halo on a circular orbit spends all
of its time in a high-density cluster core su†ering a steady
mass loss, while a halo on the eccentric orbit spends only a
small fraction of its orbital period in the core.

With the resolution quoted above, only a relatively small
fraction of halos can be tidally destroyed in clusters. Only
the halos with the apocenter h~1 kpc are subject to[300
the destruction. It can be expected that halos which are
accreted when the cluster was young and its radius was
small (D300È500 h~1 kpc) have small apocenters. The frac-
tion of such halos in a z\ 0 cluster is small. Our estimates
show that for halos with large apocenters the dynamical
friction cannot bring the apocenter considerably closer to
the cluster center. The tidal stripping reduces the halo mass
very efficiently, thus increasing the friction time.

The tidal stripping that halos su†er in clusters has an
important e†ect on their density proÐles. It appears that the
halo proÐle is a†ected at all radii and not only at radii close
to the tidal radius. Indeed, the trajectories of particles in a
halo are mostly eccentric and after a crossing time the
absence of the stripped particles will be ““ felt ÏÏ by the whole
halo. The change in the density proÐle means, of course, a
change in the maximum circular velocity of the halo. The
e†ect is not dramatic because the fraction of particles on
highly eccentric orbits is rather small and the central
regions of halos are thus a†ected the least. Typically, the
circular velocity of the halos is reduced during their evolu-
tion in the cluster by 20%È30%. This correction was taken
into account in Figure 3 by reducing the velocity cut from
120 km s~1 at z\ 1.0 to 100 km s~1 at z\ 0.0.

The tidal destruction is important only for cluster-size
halos (where tidal Ðelds are the strongest). There are three
massive clusters in our simulation with mass"CDM60 Z2
] 1014 h~1 There is one ““ Coma cluster ÏÏ with velocityM

_
.

dispersion km s~1 and mass M \ 6.4p3D\ 1654
] 1014 h~1 inside 1.43 h~1 Mpc radius. The clusterM

_contains 201 halos of mass greater than 3 ] 1010 h~1 M
_inside a 2 h~1Mpc box and nine halos inside 0.3 h~1 Mpc.

Unfortunately, the cluster has su†ered a recent major
merger, and it was difficult to study the radial distribution
of halos. One of the other two clusters also shows an indica-
tion of an ongoing merger. It has two subclusters in the
central region separated by B0.5 h ~1 Mpc. Therefore, we
will focus on the third cluster which has a relatively regular
appearance (see Fig. 1).

The cluster contains 121 bound halos with particlesZ20
inside 1.5 h~1 Mpc. There are 231,200 DM particles inside
the virial radius of 1.28 h~1 Mpc. The virial mass of the
cluster has increased from h~1 atMvir \ 7.9 ] 1013 M

_z\ 1 to h~1 at z\ 0. Figure 3Mvir \ 2.4 ] 1014 M
_shows the density proÐle of matter and the radial number

density proÐle of DM halos inside the cluster. The DM
density proÐle at z\ 0 is well approximated by the NFW
proÐle. For comparison, we also present the density proÐle
of this cluster at redshift 1. Note that at z\ 1 the radius is
given in proper units and the mean matter density is(o0)estimated at z\ 0. Similarly, the bottom panel of Figure 3
shows the number density proÐle of halos in the cluster at
z\ 0 and at z\ 1. Halos with more than 30 bound par-
ticles and with limits on the maximum circular velocity

km s~1 and km s~1 (the change is forVmaxº 100 Vmaxº 120
the reasons explained above) for z\ 0 and z\ 1, respec-
tively, were used. The mean number density of halos, n0,

was estimated using all halos in the simulation within the
above velocity limits at z\ 0). The proÐle at(N

h
\ 7628

z\ 1 is also rescaled into proper units. Figure 3 clearly
indicates that the number of halos in the central 300 h~1
kpc (proper radius) has declined substantially from z\ 1 to
the present epoch. In the central 300 h~1 kpc there are 3
times as many halos (24) at z\ 1.0 than at z\ 0. If we
interpret the di†erence as due to tidal destruction, then 16
halos were destroyed in the central part. The situation is
di†erent at larger radii : there are 57 and 50 halos at 0.3 h~1
Mpc\ r \ 1.3 h~1 Mpc for z\ 1 and z\ 0, respectively.
Note, that we compare the number of halos in the same
proper volume at these two moments : the volume corre-
sponding to the virial radius of the cluster at z\ 0 (the
virial radius at z\ 1 is smaller). The number density proÐle
is thus virtually una†ected at h~1 kpc.r Z 300

5. RESULTS

In this section we will present results on the evolution of
the two-point correlation function and bias (as deÐned by
eq. [1]) in the simulations described in the previous section.
The presentation of the results is split into two subsections.
In ° 5.2 we present the results of our largest simulation :

In ° 5.3 we present the results of the rest of our"CDM60.simulations of di†erent cosmological models. Thus, we will
Ðrst focus on the results of the most realistic of the studied
models, "CDM (see ° 3), and then will discuss the di†er-
ences between cosmological models. However, before we
proceed with the presentation of the results, we will Ðrst
compare our estimate of the DM correlation function with
estimates which have been performed by di†erent authors
and with di†erent numerical codes.

5.1. T he DM Correlation Function in the "CDM Studies :
Comparison with Other Studies

In Figure 4 we compare the two-point correlation func-
tion of the DM in the "CDM model (the ART run

with similar estimates presented by Klypin et al."CDM60)(1996) and by Jenkins et al. (1998). The two latter estimates
were done with di†erent codes (PM in Klypin et al. and
AP3M in Jenkins et al.) and di†erent resolutions (cell size of
62 h~1 kpc for the PM and 30 h~1 kpc [Plummer] for the
AP3M). All simulations followed 2563 particles, although
physical mass resolution was di†erent because of the di†er-
ent box sizes (50, 60, and 141.3 h~1 Mpc for the PM, ART,
and AP3M simulations). Although the cosmological model
was exactly the same in all three estimates,15 the normal-
ization of the power spectrum was slightly di†erent. The
rms mass Ñuctuations on a scale of 8 h~1 Mpc was 0.9,p81.0, and 1.1 for the AP3M, ART, and PM simulations,
respectively. Therefore, we have multiplied (divided) the
DM correlation function of AP3M (PM) simulation by 1.12
in order to account for the di†erences in normalization.
Figure 4 indicates that there is a very good agreement
between all estimates at scales B(0.2È2) h~1 Mpc. The ART
and AP3M estimates agree to better than 10% at scales of
0.03È7 h~1 Mpc! On larger scales the ART correlation
function has a smaller amplitude than that of the AP3M
because of the factor of 2.35 smaller box size of the former.
This result is in an agreement with previous studies (e.g.,

15 Note, however, that there are small di†erences in the approximation
used for the power spectrum between the simulations.
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FIG. 4.ÈComparison of the correlation functions of the DM in themdm"CDM model estimated by di†erent authors with di†erent numerical
resolutions and codes. The solid curve shows in our run,mdm "CDM60simulated using the ART code. The dashed curve shows estimated bymdmJenkins et al. (1998) using the AP3M code. The crosses show estimatedmdmby Klypin et al. (1996) using the PM code. The AP3M and PM correlation
functions were rescaled as described in ° 5.1 to account for the di†erence in
normalization between di†erent simulations. All simulations followed
evolution of 2563 particles. The vertical lines indicate formal force
resolution for each code (the line for the ART code at 1.8 h~1 kpc is o† the
plot).

Carlberg, & Couchman 1997 and references therein)Col•� n,
which concluded that the correlation function is underesti-
mated at scales of of the simulation box size. Never-Z0.1
theless, the agreement is striking at smaller scales, given all
the di†erences (including cosmic variance) between the esti-
mates. We conclude, therefore, that the correlation func-
tions presented in the next subsection are robust at scales of

h~1 Mpc. This scale is, of course, lower (B3È4 h~1[7
Mpc) for the 30 h~1 Mpc simulations presented in ° 5.3.

5.2. Evolution of the Correlation Function and Bias in the
"CDM Model

In Figure 5 we plot the evolution of the correlation func-
tion of both the DM and the DM halos in ourmdm mhhsimulation. All results in this and the following"CDM60sections are presented in comoving coordinates. The halo-
halo correlation function was constructed using halos with

km s~1. Note that although the earliest momentVmaxº 120
at which we show the correlation function is z\ 5, the
Ðrst halos in this simulation collapsed at redshift zB 10
and hundreds of halos are identiÐed at zB 7È8. The num-
ber of halos in the km s~1 catalog is approxi-Vmax º 120
mately 4300, 10,000, and 7500 for redshifts of 5, 2, and 0,
respectively. The good statistics result in a very accurate
estimate of the correlation function. The number of pairs
per scale bin used to estimate is greater than 50 inmhhall cases. Typically, 60È150 for r \ 0.2 h~1 Mpc, 200È1000
for 0.2 h~1 Mpc\ r \ 1 h~1 Mpc, and greater than 1000
for the larger scales. The pure Poisson errors associated
with each of the points are thus negligibly small, except for
the Ðrst 2È3 bins (where Poisson errors are still small :

FIG. 5.ÈEvolution of the two-point correlation function of the DM
(bottom panel) and halos (top panel) in the simulation. Only"CDM60halos with maximum circular velocity greater than 120 km s~1 were used
to estimate the halo correlation functions. Poisson errors for the halo
correlation functions are negligible at scales h~1 Mpc and are notZ0.2
shown for clarity ; at scales less than 0.2 h~1 Mpc the error bars are [20%
(see ° 5.2 for details). The best-Ðt parameters of the power-law Ðt to the
halo correlation functions are given in Table 4.

There are subtler errors associated with radial[20%).
binning, but these are also less than a few percent.

Figure 5 shows that the shapes of the matter and halo-
halo correlation functions are quite di†erent. The matter
correlation function changes its shape from almost a power
law to a complicated shape. The slope of at scalesmdm [0.5
h~1 Mpc stays approximately constant throughout the
evolution, while at the larger scales signiÐcantlymdmsteepens. The amplitude of the DM correlation function
increases from z\ 5 to z\ 0 by factors of B60 and B10 at
small and large scales, respectively. The halo-halo corre-
lation function behaves very di†erently. Its shape can be
well described by a power law at all epochs. The amplitude
of evolves nonmonotonically : it decreases somewhatmhhfrom z\ 5 to z\ 3 and then gradually increases. The evol-
ution, however, is much more modest than the dramatic
evolution of the the maximum di†erence in amplitudemdm :
among any two epochs is only a factor of 2. The details of
the evolution are illustrated in Figure 6. This Ðguremhhshows the evolution of the amplitude at a variety ofmhhdi†erent comoving scales (indicated on the right) for the
three "CDM runs from our set of simulations (see Table 2).
Di†erent initial conditions of these runs allow us to evalu-
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FIG. 6.ÈEvolution of the correlation function of halos in "CDM60simulation at various comoving scales. Each curve shows the amplitude of
the correlation function at a Ðxed comoving radius indicated on the right
side of the panels. The correlation functions were estimated for halos with
circular velocity greater than 150 km s~1 (top panel) and greater than 100
km s~1 (bottom panel). The solid curves and open circles indicate ampli-
tudes in the ART 60 and 30 h~1 Mpc simulations, respectively ; the tri-
angles show the amplitude in the 30 h~1 Mpc AP3M simulation (see ° 5.2
for details and discussion).

ate the cosmic variance, while di†erent particle masses and
spatial resolutions (by a factor of 8 and 2, respectively) of

and allow us to check for the"CDM60 "CDM30ART
resolution e†ects. Comparison of in the 30 h~1 Mpcmhh(r, z)
runs simulated with di†erent codes and with signiÐcantly
di†erent resolutions shows that the two runs agree very

well. The simulation had the best mass and"CDM30ART
force resolution, yet we do not Ðnd any visible systematic
di†erences at scales h~1 Mpc with the other two simu-[2
lations. There is an indication that at h~1 Mpc ther Z 2
amplitude in the 30 h~1 Mpc simulations is systematically
lower than that in the which can be explained"3CDM60,
by the e†ects of Ðnite box size. This is in agreement with the
expectation that the Ðnite-size e†ects become important at
scales h~1 Mpc (B0.1 of the box size). At smaller scales,Z3
where we expect the 30 h~1 Mpc simulations to produce
correct results, the agreement is very good.16 Besides the
illustration of a very mild evolution of Figure 6 alsomhh,shows that there is a common feature of the evolution.
Although the exact evolution depends to some extent on the
scale, the amplitudes at all scales are quite high (as high or
higher as they are at z\ 0) at very high redshift (zB 7). The
amplitude then decreases until zD 2È4 and grows steadily
at lower redshifts. It is important to note that this evolution
is more complicated than the simple evolution models often
used in the observational and theoretical analyses : m(r, z)

Figure 6 shows that parameter v\ (r/r0)~c(1 ] z)~(3~c`v).
estimated by such analyses would depend not only on the
redshift range used, but also on the scale at which the ampli-
tude is measured (as well as on other parameters such as the
objectÏs mass). This calls into question the usefulness of such
a simplistic approach (see also arguments in Moscardini et
al. 1998). Note that there is also some observational evi-
dence (Giavalisco et al. 1998) indicating that the above
parameterization is a poor description of the observed
galaxy clustering evolution. For a limited range of redshifts
zD 0È1, we Ðnd only very weak evolution of halo clustering
in comoving coordinates indicating a value of vB [1. This
value seems to be favored by observations of galaxy clus-
tering at these redshifts (e.g., Postman et al. 1998).

The power-law Ðts to of the form formhh mhh(r)\ (r/r0)~c
various epochs and for halo catalogs with di†erent cuts in
the maximum circular velocity are presented in Table 4.
Direct (rather than linear Ðts to weightedlg mhh[ lg r)
power-law Ðts were done to with the Levenberg-mhhMarquardt method described by Press et al. (1992). Each
bin of the correlation function was weighted with its
Poisson error where is the numberpm\ (mhh] 1)/(n

p
)1@2, n

pof halo pairs in the bin. Visual inspection shows that power-

16 Note that some cosmic variance is expected for these box sizes.

TABLE 4

POWER-LAW FITS TO IN THE SIMULATIONamhh "CDM60
Vmax [ 120 km s~1 Vmax [ 150 km s~1 Vmax [ 200 km s~1

z r0 c r0 c r0 c

0.0 . . . . . . 4.864 ^ 0.011 1.704 ^ 0.004 4.789 ^ 0.024 1.687 ^ 0.009 5.082 ^ 0.062 1.650 ^ 0.022
0.5 . . . . . . 4.145 ^ 0.009 1.684 ^ 0.004 4.040 ^ 0.019 1.726 ^ 0.009 4.534 ^ 0.049 1.777 ^ 0.020
1.0 . . . . . . 3.760 ^ 0.007 1.694 ^ 0.003 3.944 ^ 0.015 1.762 ^ 0.007 4.387 ^ 0.038 1.869 ^ 0.016
1.5 . . . . . . 3.419 ^ 0.006 1.642 ^ 0.003 3.823 ^ 0.013 1.715 ^ 0.006 4.288 ^ 0.035 1.831 ^ 0.016
2.0 . . . . . . 3.103 ^ 0.006 1.588 ^ 0.003 3.831 ^ 0.011 1.629 ^ 0.006 4.375 ^ 0.036 1.702 ^ 0.016
3.0 . . . . . . 2.974 ^ 0.006 1.527 ^ 0.004 3.453 ^ 0.011 1.536 ^ 0.006 4.327 ^ 0.037 1.683 ^ 0.016
4.0 . . . . . . 3.206 ^ 0.009 1.516 ^ 0.005 3.356 ^ 0.011 1.498 ^ 0.006 4.733 ^ 0.044 1.598 ^ 0.017
5.0 . . . . . . 3.602 ^ 0.013 1.534 ^ 0.007 3.661 ^ 0.016 1.516 ^ 0.008 4.829 ^ 0.053 1.578 ^ 0.020

a Column description : z is redshift ; and c are the best-Ðt parameters of the power-law Ðt to ther0 mhh(r)\ (r/r0)~c
comoving halo-halo correlation function ; comoving in units of h~1 Mpc.r0
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law Ðts are very successful at scales h~1 Mpc, while atZ0.3
smaller scales there are B20%È30% deviations in some
cases. The goodness of the Ðts is represented in rather small
formal errors of the best-Ðt parameters and c. We haver0estimated how these parameters change if the correlation
function is rebinned di†erently and found that the change is
always The examination of Table 4 shows that[3%.
typical ranges of and c are B3È5 h~1 Mpc and B1.5È1.7,r0respectively. For all halo catalogs, parameters evolve slowly
with redshift. The correlation length decreases somewhatr0between redshifts of 5 and 3 and then increases steadily until
z\ 0. The evolution of c is even slower, with the tendency
for c to increase by B10% from z\ 5 to the present epoch.
An important and interesting point is that the correlation
amplitude, and hence the value of is quite di†erent forr0,halo catalogs with di†erent cuts. The correlationVmaxlengths for the km s~1 and km s~1Vmaxº 120 Vmaxº 200
catalogs di†er by 25% at while the di†erence is onlyzZ 3,
B4% at z\ 0. This means that there is a mass segregation
of halo-clustering properties at high redshift, which,
however, is erased during the subsequent evolution.

During the last few years there has been tremendous
progress in the observational studies of high-redshift galaxy
clustering. We will discuss how our results on the halo clus-
tering evolution compare with the results of observations in
° 6. Here, however, we present a comparison of the withmhhthe most accurate measurement of the galaxy correlation
function (at zB 0) made using the APM galaxy surveymgg(Baugh 1996). Figure 7 shows the z\ 0 correlation func-
tions of halos and DM in the "CDM model and the real
space APM galaxy correlation function. The halo-halo
correlation function was estimated for halo catalogs with
cuts in the maximum circular velocity of 120, 150, and 200
km s~1. The Ðgure shows striking agreement between the
halo and galaxy correlation functions : at scales h~1Z0.3
Mpc the correlation functions of all halo catalogs match
both the shape and the amplitude of the The correlationmgg.function for the km s~1 catalog agrees withVmax[ 150
APM within errors at all probed scales. As we notedmggabove, the di†erences that exist between the catalogs at high
redshifts virtually vanish during the course of the evolution.
This is manifested in the similarity of for di†erent cata-mhhlogs on scales h~1 Mpc. Note, however, that this doesZ0.3
not mean that has no mass dependency. Rather, themhhresult means that by z\ 0 any mass dependence of the
correlation function vanishes when averaged over a range
of galactic masses. As was explained above, the Poisson
errors of the halo correlation functions shown in Figure 7
are very small and were not shown for clarity. The robust-
ness of the result can be estimated, however, by comparing
the of the km s~1 and km s~1mhh Vmax [ 120 Vmax[ 150
catalogs. The number of halos in these catalogs is signiÐ-
cantly di†erent : 4708 and 2480, respectively. This makes the
halo samples largely independent. The correlation functions
agree, however, within the Poisson errors.

While the correlation function of halos matches that of
galaxies very accurately, the correlation function of matter

matches neither in shape nor in amplitude.17 Themdm mggamplitude is matched only at scales h~1 Mpc. AtZ4È5

17 This result is in agreement with conclusions of Jenkins et al. (1998).
As was shown in the previous section, our agrees very well with thatmdmcalculated by Jenkins et al.

FIG. 7.ÈBottom panel : Comparison of the halo correlation function in
the simulation with the correlation function of the APM gal-"CDM60axies (Baugh 1996). Results for halos with maximum circular velocity
larger than 120, 150, and 200 km s~1 are presented by the solid, dot-
dashed, and dashed curves, respectively. The dotted curve shows the DM
correlation function. Note that at scales h~1 Mpc the halo corre-Z0.3
lation function does not depend on the limit in the maximum circular
velocity (see ° 5.2 for details). Top panel : Dependence of bias on scale and
maximum circular velocity. The curve labeling is the same as in the bottom
panel, except that the dotted line now represents the bias of halos with

km s~1.Vmax [ 100

smaller scales it is much higher than the amplitude of the
APM implying that DM halos are antibiased at thesemgg,scales with respect to the DM. Moreover, the di†erence in
shape between and implies that the bias is scalemhh mdmdependent. The scale dependence of the bias

for the halo correlation functions is[M[mhh(r)/mdm(r)]1@2N]
shown in the top panel of Figure 7. The bias varies signiÐ-
cantly at scales h~1 Mpc in the range D0.5È1. More-[5
over, as was shown in Figure 5, the shape of the correlation
function of DM di†ers from that of at all epochs andmhhevolves much more strongly than the correlation function of
halos. The former fact implies that the bias is scale depen-
dent at all epochs, while the latter means that the bias
evolves rapidly with cosmic time. The evolution of bias in
the run is illustrated in Figure 8. The evolution"CDM60is shown for di†erent halo catalogs and at di†erent scales.
The bias evolves very rapidly from the value of D3È5 at
zB 5 to D0.5È1 at z\ 0. The evolution depends on the
velocity (or mass) cut of the catalog at high z : the halos in
the catalogs with higher velocity cuts exhibit stronger clus-
tering. This di†erence vanishes, however, at Thez[ 0.5.
evolution of the scale dependence of the bias is also inter-
esting. At high redshifts the bias was larger at small scales.
At small redshifts the halos are almost unbiased (b B 1) on a
few-megaparsec scales and are antibiased (b B 0.5È0.6) on
small scales.
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FIG. 8.ÈT op panel : The evolution of bias at a comoving scale of 0.54
h~1 Mpc for halos with a di†erent lower limit on the maximum circular
velocity in the simulation. Bottom panel : Dependence of the bias"CDM60on (comoving) scale for halos with maximum circular velocity greater than
100 km s~1.

5.3. Evolution of the Correlation Function and Bias in
Di†erent Cosmological Models

Is the evolution of bias observed in the "CDM simula-
tions speciÐc to this model or is this evolution similar for all
of the models? We address this question by comparing
results presented in the previous section with results of the
30 h~1 Mpc simulations of other cosmological models (see
Table 2). Figures 9È12 show the correlation functions of
halos and the DM for the four AP3M 30 h~1 Mpcmhh mdmruns at four epochs. Halos with km s~1 wereVmax[ 200
used to compute for the SCDM and the qCDMmhh(r, z)
models. A lower km s~1 limit was used for theVmax [ 120
OCDM and models. The di†erence in the"CDM30 Vmaxlimits is explained by the di†erence in the matter density )0that results in a di†erent mass resolution of the simulations.
In the OCDM and the runs halos with"CDM30 Vmax[200 km s~1 are scarce, while the poorer mass resolution
does not allow us to reduce the limit to 120 km s~1 in the
SCDM or the qCDM runs. The total number of halos found
in the simulations is indicated in each panel. The number
depends on the epoch and model and varies from a
maximum of 1942 (in the SCDM run at z\ 1.9) to a
minimum of 611 (in the qCDM run at z\ 3.6). The statistics
of halos are poorer than in the simulation. There-"CDM60

fore, we plot the error bars associated with each point of
We estimate both Poisson and bootstrap error bars andmhh.plot the largest of the two. The bootstrap error bars have

been estimated as follows. For each run and each epoch we
have drawn Ðve randomly selected samples of halos from
the corresponding halo population. The number of halos in
each sample is one half of the total. We then compute the
rms Ñuctuation between the samples and divide it by 21@2 to
get the 1 p error bar.

Figures 9È12 show that in all models the evolution of the
correlation function is qualitatively similar to that observed
in the "CDM model. For example, the shape of the ismhhsimilar (power law) in all models and is always di†erent
from the corresponding This means that the scale-mdm.
dependent bias is universal in cosmological models. Details
of the evolution are, however, model dependent. The most
drastic di†erences are seen at the highest redshifts. The
Ðgures, for example, clearly show that the bias at z\ 3.4
has very di†erent values in di†erent models. While bias in
the two models is very similar, the distribution oflow-)0halos at this redshift is only weakly biased in the SCDM
model, as opposed to the strongly biased distribution in the
qCDM model. The evolution of the halo correlation func-
tion at three di†erent comoving scales (0.3, 1, and 3 h~1
Mpc) for all models is plotted in Figure 13. The solid lines in
both panels represent results for the "CDM model with the
ART code in the 60 h~1 Mpc box. In the upper panel the
evolution is shown for the halo catalogs with a Ðxed
number density of halos, which was achieved by varying the

limit in di†erent models. Note that in this case weVmaxcompare correlations of halo samples with di†erent mass
functions : the "CDM and OCDM halo samples contain
many low-mass halos, while samples in the models)0\ 1
contain only massive halos. Such comparison is interesting
for comparisons with observations when we know the
number density of objects in the sample rather than their
mass (or type). At scales h~1 Mpc, di†erences between[1
the models are not signiÐcant. At 3 h~1 Mpc and at high z
the amplitude of in the SCDM model is signiÐcantlymhhlower than in other models. The amplitude in the rest of the
models is surprisingly similar. Therefore, if the biased
galaxy formation scenario is correct and galaxies can be
associated with host halos, this result may have interesting
implications for the interpretation of clustering obser-
vations. To be able to di†erentiate between the models, we
must know what type of the objects was used to estimate
the clustering signal. The knowledge of the number density
of objects in the sample is not sufficient. The point is to
some extent illustrated by the lower panel of Figure 13,
where we compare the evolution of the amplitude inmhhSCDM, and qCDM models for the halo cata-"CDM60,logs with the same selection criterion km s~1).(Vmax[ 200
It is obvious that in this case the di†erences between the
models are signiÐcant. Although the di†erences are smaller
at low redshifts, at zB 3.5 the di†erence in the amplitude
between the "CDM and SCDM models is almost an order
of magnitude. This di†erence can probably be explained by
the delayed formation of galaxy-size halos in the "CDM
model as compared with the SCDM model. The halos in the
"CDM form at lower redshifts with high statistical bias,
while halos in the SCDM systematically form earlier and
thus have had time to go through merging evolution. The
e†ect of the latter is to decrease the bias (e.g., Moscardini et
al. 1998). Note also that merging rates are higher in )0\ 1
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FIG. 9.ÈEvolution of the correlation function of the DM (solid lines) and halos (dot-dashed line) for the SCDM model in the 30 h~1 Mpc AP3M
simulation. The panels show the correlation functions at di†erent redshifts. Only halos with maximum circular velocity larger than 200 km s~1 were used to
compute the halo correlation function. The number of halos used to estimate the correlation function is indicated in each panel. The Poisson errors (dotted
line) and bootstrap errors (solid line) are shown by vertical bars (see ° 5.3 for details).

models (e.g., Carlberg 1990). These results show that predic-
tions of cosmological models are very di†erent for samples
of objects selected with the same set of criteria for all
models.

The evolution of bias at scales 0.3 and 1 h~1 Mpc is
shown in Figure 14 for all models. Here again we compute
the halo correlation function for the Ðxed number density of
halos. Evolution of bias in all models is qualitatively similar
to that of the "CDM model discussed above : the bias is a
very strong function of redshift. However, unlike the mhhamplitude, the value of bias at these scales is very di†erent
among the models. This is not very surprising because when
the number density of halos is Ðxed, di†erent models have
very similar amplitudes of (see Fig. 13) but very di†erentmhhamplitudes of The latter is explained by the di†erencesmdm.
in the cosmological parameters, normalization, and the
shape of the power spectrum. A more interesting implica-
tion of Figure 14 is that di†erences in bias get smaller at low
redshifts, virtually disappearing at z\ 0. The same e†ect
can be observed in the evolution of the amplitude in Figure
13. As we will argue in the next section, the evolution of the

halo correlations and bias at these scales is likely to be
driven by the halo dynamics within nonlinear structures, in
which case the di†erences between di†erent cosmologies are
largely erased. The evolution shown in Figures 13 and 14
provides, therefore, indirect support for this point : the dif-
ferences in clustering amplitude and bias between the
models disappear at where most of the clusteringz[ 1,
signal comes from the halos located in nonlinear structures.

To conclude, we note that while we did not Ðnd a signiÐ-
cant di†erence in the present-day bias between cosmo-
logical models with a similar normalization see(p8B 1 ;
Table 1), there is a di†erence between bias in low- and

normalization for models. The z\ 0 bias inhigh-p8 )0\ 1
the normalized SCDM model corresponds roughlyp8\ 0.5
to the bias in the model at redshift zB 1. Thep8\ 1.0
additional di†erence, however, is caused by the di†erent
particle velocities at the rescaled redshift which a†ects
properties of halos. We have rescaled the SCDM simulation
and redone our analysis for the normalization. Thep8\ 0.5
resulting evolution of bias is quite di†erent from that in the

case (Fig. 9) and is similar to the evolution in thep8\ 1.0
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FIG. 10.ÈSame as Fig. 9, but for the qCDM model. As in Fig. 9, only halos with km s~1 were used.Vmax [ 200

qCDM model (Fig. 10). The high-redshift bias inp8\ 1.0
CDM model is high [b(z\ 2.5)B 3È4], and there islow-p8no statistically signiÐcant bias or antibias at z\ 0.

6. DISCUSSION

It is interesting to compare the evolution of the halo
correlation function and the bias observed in our simula-
tions with predictions of the analytical models and results of
previous numerical simulations. The fact that the clustering
strength of halos at high redshifts is comparable to that at
the present epoch has been noted in the results of many
simulations (e.g., Davis et al. 1985 ; Brainerd & Villumsen
1994 ; et al. 1997 and references therein). Bagla (1998)Col•� n
summarizes the generic behavior of the correlation ampli-
tude of halos above a certain mass : the amplitude is high at
very high redshifts, when halos are being formed, decreases
thereafter and reaches a minimum, and then increases
slowly and steadily until the present epoch. The results pre-
sented in ° 5 (see Figs. 6 and 12) are in agreement with this
picture. Thus, there seems to be good qualitative (although,
in some cases, not quantitative) agreement among results of
di†erent numerical simulations concerning the evolution of
the halo correlation function.

Analytical models have reached a sufficient degree of
sophistication to be able to predict the evolution of halo

clustering in mildly nonlinear regimes (see ° 2). The halos
are found to form at the peaks of the density Ðeld (e.g.,
Frenk et al. 1988), and their bias exhibits a simple scaling
relation with the height of these peaks (Kaiser 1984 ;
Bardeen et al. 1986). At any given epoch the halo popu-
lation represents a mix of halos formed at di†erent red-
shifts : newly born or already evolved through merging. The
evolution of the correlation of halos in such a hierarchical
framework is described using the extended Press-Schechter
formalism (MW). To compare predictions of the analytical
models with our results, we will use the approximation to
the evolution of the e†ective bias given by equation (4)
(Moscardini et al. 1998). This approximation describes the
evolution of bias of a sample of all halos above a certain
mass. This is roughly equivalent to our deÐnition of halo
samples with a limiting maximum circular velocity. The
prediction of this approximation is shown in Figure 8 with
the dotted line, where we used and b \ 1.90beff(0)\ 0.51
(see eq. [5]) appropriate for our "CDM model and for the
mass limit of M º 1011 h~1 (Moscardini et al. 1998).M

_The analytical model is expected to provide a good approx-
imation at scales where (Mo et al. 1996), i.e., atmhh [ 1

h~1 Mpc (see Table 4). Therefore, the analyticalr Z 4È5
prediction should be compared with the curve showing
evolution of bias at r \ 4.8 h~1 Mpc.
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FIG. 11.ÈSame as Fig. 9, but for the "CDM model. Only halos with km s~1 were used to compute the correlation function (see ° 5.3).Vmax [ 120

The comparison shows that both the numerical result
and the analytical model predict a rapid decrease of bias
with cosmic time. Moreover, at high redshifts they(zZ 3)
agree well quantitatively. At lower redshifts, however, the
two predictions deviate from each other and are di†erent by
a factor of 2 at z\ 0. It is not clear what causes the di†er-
ence in bias amplitude (see also Jing 1998). First, as we note
in ° 2, the mass weighting should not produce correct e†ec-
tive bias, if it is estimated from the correlation functions.
However, we do not know how signiÐcant the expected
di†erences should be. Second, there are signiÐcant di†er-
ences in our deÐnition of a halo from that of the Press-
Schechter halo. The deÐnition of the latter does not include
““ satellite ÏÏ halos ; a halo ceases to exist once it becomes
bound to another halo (i.e., ““ merges ÏÏ) and orbits inside that
haloÏs virial radius. Our deÐnition, on the other hand, does
take satellite halos into consideration, because we include in
our halo list every gravitationally bound clump of particles,
regardless of whether it is also bound to a larger system or
not. The similarity between our numerical result and the
prediction of the analytical model at may then be anzZ 3
indication that the two deÐnitions are equivalent at these
high redshifts. Indeed, large systems such as clusters and
groups have not yet formed at these redshifts, and the frac-
tion of satellite halos in our catalogs (i.e., all halos above a

certain mass limit) is relatively small. At smaller redshifts
the ever larger fraction of halos become satellites to more
massive halos and the two halo deÐnitions result in rather
di†erent halo samples. This may explain the large di†erence
predicted for the value of bias at z\ 0. We have found that
in our simulation the z\ 0 amplitude of the two-point
correlation function of the Press-Schechter halos (i.e., iso-
lated in terms of their virial radius) at r \ 4.8 h~1 Mpc is
approximately 2 times as small as the amplitude of the
correlation function of the BDM halos shown in Figure 7,
resulting thus in the twice as small bias of b B 0.5.

We Ðnd also that the small-scale bias of the halo distribu-
tion is scale dependent regardless of the halo deÐnition. The
large-scale bias h~1 Mpc), on the other hand, is not(r Z 5
probed in our simulations and may be independent of scale.
This indeed was suggested by the simulations of Jing (1998).
We think that the most encouraging result is the agreement
between numerical and analytical modeling on the general
form of the bias evolution demonstrated in Figure 8. This
indicates that we now have a solid general understanding of
the nature of bias and of the processes driving its evolution
at redshifts zZ 2È3.

At smaller redshifts, the merging rate is considerably
smaller and small-scale correlations are sensitive to the
dynamics of halos inside the nonlinear structures. Particu-
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FIG. 12.ÈSame as Fig. 9, but for the OCDM model. As in Fig. 11, only halos with km s~1 were used (see ° 5.3).Vmax [ 120

larly, the dynamics and the clustering evolution of satellite
halos in high-density regions are essentially independent of
the background cosmology and are driven by such pro-
cesses as dynamical friction and tidal stripping (Kravtsov &
Klypin 1999). These processes tend to suppress the growth
of the correlation amplitude, thus counteracting the clus-
tering growth due to the gravitational pull. This leads to the
antibias observed in our simulations at nonlinear scales and
at small redshifts. Indeed, the correlation amplitude at small
scales h~1 Mpc) is approximately constant at red-(r [ 5
shifts zB 0È1 (see Figs. 6 and 12). Moreover, antibias is
observed in all cosmological models studied in this paper
(see Figs. 9È12). The fact that di†erences in the correlation
amplitude and bias, existing between the cosmological
models at zB 3, virtually vanish by the present epoch (see
Figs. 12 and 13) argues for the importance of the nonlinear
halo dynamics. This result also implies that low-redshift
clustering depends only weakly on the background cosmol-
ogy. Therefore, the information about the underlying
cosmological model can probably be extracted only from
the high-z clustering data. As was discussed in ° 4.3,(zZ 3)
the numerical resolution required to assure the survival of
halos in high-density regions is high and has not been
reached in previous simulations. Our results therefore indi-

cate that high resolution is important for correct modeling
of the bias evolution at small redshifts.

It would be very interesting to compare our results with
the results of direct hydrodynamical simulations. Unfor-
tunately, most of the recent hydro simulations that include
additional physics relevant to galaxy formation either simu-
late considerably smaller boxes (Katz et al. 1999) or have a
much poorer resolution (Blanton et al. 1999 ; Cen &
Ostriker 1998). The former makes it difficult to compare
correlation amplitudes and values of the bias (although
qualitatively, Katz et al. 1999 report a very similar bias
evolution to the one reported here). A poor resolution of a
simulation inevitably leads to overmerging and therefore
incorrect modeling of halo dynamics and evolution in high-
density regions. This makes it difficult to make a meaningful
comparison of the results, because as we explained above
we believe that the dynamical processes signiÐcantly a†ect
the bias evolution. The only simulation known to us that
includes nonadiabatic gasdynamics and has a box size and
resolution comparable to ours is a recent simulation by the
Virgo Consortium (Jenkins et al. 1999). Preliminary com-
parisons indicate that our results on the galaxy correlation
amplitude and its evolution are in good agreement with
results of this simulation. The results of studies that



50 COLIŠ N ET AL. Vol. 523

FIG. 13.ÈEvolution of the halo correlation function at various scales
for all models. The correlation functions shown in the upper panel were
computed using a Ðxed number density of halos (implying di†erent limits
on the maximum circular velocity cut). The correlation functions shown in
the lower panel were computed using all halos with larger than 200Vmaxkm s~1. Results for only two 30 h~1Mpc simulations are presented in this
panel. The other two simulations had too small of a number of halos. The
solid lines in both panels represent results for the "CDM model with the
ART code in the 60 h~1 Mpc box.

combine high-resolution dissipationless simulations with
semianalytical models of galaxy formation (e.g., Kau†mann
et al. 1998) are also in good agreement with the results of
this paper.

Although our deÐnition of a halo is di†erent from that
used in the conventional Press-Schechter framework, we
believe that it is closer to what can be identiÐed in a simula-
tion as a galaxy location. It seems likely that in every suffi-
ciently massive h~1 gravitationally bound(M Z 1011 M

_
)

halo baryons will cool, form stars, and produce an object
resembling a galaxy (e.g., Kau†mann, Nusser, & Steinmetz
1997 ; Roukema et al. 1997 ; Yepes et al. 1997 ; Salucci &
Persic 1997). We believe, therefore, that each of the halos in
our catalog can be associated with a ““ galaxy.ÏÏ Obser-
vationally, many distinct galaxies are located well inside the
virial radii of massive galaxies, groups, and clusters. These
galaxies, nonexistent by deÐnition in the ““ virial
overdensity ÏÏ halo catalogs, are included in galaxy surveys
and are used to compute the correlation function. Our deÐ-
nition, therefore, is natural, if the goal is to compare the
observations with predictions of the numerical simulations.

Although, as we discussed above (° 4.3), the resolution (and,
correspondingly, the computational costs) required for
galaxy-size halos to survive in the tidal Ðelds of high-density
regions is quite high, the subsequent comparison with the
observations is straightforward and does not require
ambiguous corrections for the ““ overmerging.ÏÏ

In the dissipationless simulations reported in this paper,
we cannot unambiguously assign type, color, luminosity, or
other galactic properties to our halos without additional
modeling. Our results, therefore, should be applicable to
““ global ÏÏ galaxy surveys, such as the APM survey, in which
galaxies are selected solely on the basis of their luminosity
(related to halo mass via the Tully-Fisher or Faber-Jackson
relation). Nevertheless, without detailed knowledge of
galaxy properties we can model the observational selection
e†ects only approximately. For example, some of the DM
halos may harbor low surface brightness galaxies which
could be missing in galaxy catalogs, while the luminosity of
some smaller mass halos may be a†ected by processes of
supernovae-driven winds, photoionization, etc. Inclusion of
such processes is required for accurate comparisons with
observations. The agreement between the correlation func-
tions of halos in our "CDM simulations and the APM
galaxies may thus indicate that the e†ects of the above pro-
cesses are not strong and our halo catalogs are representa-
tive of the overall galaxy population and therefore success
of the "CDM model. On the other hand, if the additional
physics is important and has a great e†ect on the predicted
correlation function, the agreement indicates that this
model fails to explain the galaxy clustering.

In ° 5.2 we have compared the correlation function of
halos in our 60 h~1 Mpc "CDM simulation with themhhz\ 0 correlation function of galaxies (Baugh 1996) inmggthe APM catalog (Loveday et al. 1995) and have found a
very good agreement between the two. The APM galaxy
correlation function is measured very accurately, which
makes the agreement within the 1 p error bars very striking
(see Fig. 7). Recently, the advent of new faint galaxy surveys
allowed the measurement of the clustering surveys at red-
shifts of zB 0È1 (e.g., Le et al. 1996 ; Shepherd et al.Fèvre
1997 ; Carlberg et al. 1997 ; Connolly, Szalay, & Brunner
1998 ; Postman et al. 1998 ; Carlberg et al. 1998). Unfor-
tunately, there is some disagreement between these studies
concerning the amplitude of the clustering signal, which
possibly indicates that there is morphology and/or lumi-
nosity segregation in the clustering of the intermediate-
redshift galaxies. It is indeed true that the correlation
amplitude depends on the luminosity of the galaxies (e.g.,
Carlberg et al. 1998 ; Postman et al. 1998). The comoving
correlation length measured in these surveys varies, gen-r0erally lying in the range h~1 Mpc with an averager0D 2È4
value of about h~1 Mpc. The correlation length ofr0B 3
bright galaxies is, however, somewhat larger and consistent
with the correlation length of the local galaxies h~1r0B 5
Mpc (Carlberg et al. 1998 ; Postman et al. 1998). Compari-
son of the above values of with correlations in ourr0"CDM simulation (Table 4) shows that we predict a corre-
lation length in good agreement with that of bright galaxies
and somewhat larger than the of the faint galaxies.r0-value
The latter, however, is measured with rather large uncer-
tainties, and our values of are actually consistent with ther0observed ones within 1 p.

Remarkable progress of the high-redshift galaxy detec-
tion techniques, based on the search for the signatures of the
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Lyman break in the colors of faint galaxies (Steidel & Ham-
ilton 1992, 1993), resulted in a rapid growth of the amount
and quality of the clustering observations at zB 3 (Steidel
et al. 1998 ; Giavalisco et al. 1998 ; Adelberger et al. 1998).
These ““ Lyman-break galaxies ÏÏ (LBGs) were found to be
clustered at zB 3 as strongly as the present-day galaxies.
The real space correlation function of these galaxies was
well described by the conventional power-law form with the
value of the slope c and the correlation length consistentr0with the zB 0 values (Giavalisco et al. 1998) : cB 1.7È2.2
and h~1 Mpc. These values are in reasonably goodr0B 3
agreement with z\ 3 values for our km s~1Vmax[ 120
catalog (Table 4). The value of bias that is measured for the
LBGs at scales of B5È10 h~1 Mpc is b D 1.5, 3.6, 4.5, for
the (open), and (Ñat) models,)0 \ 1, )0\ 0.2 )0\ 0.3
respectively (Giavalisco et al. 1998 ; Adelberger et al. 1998).
These values can be compared with b(z\ 3) for halos in our
simulations, shown in Figures 8 and 14. All models agree
with the observations, within the uncertainties of the
galaxy-to-halo mapping. This result is in general agreement
with the results of the numerous recent numerical studies
that modeled the clustering of LBGs (e.g., Wechsler et al.
1998 ; Jing & Suto 1998 ; Bagla 1998 ; Governato et al. 1998).
However, there appear to be some puzzling details in com-
parisons with the data. The observed value of bLBG B 3È4

FIG. 14.ÈEvolution of bias for di†erent models at two scales, r \ 1.0
h~1 Mpc (upper panel) and r \ 0.3 h~1 Mpc (lower panel). The markers
show results with the AP3M code, and the solid curves represent results for
the "CDM model with the ART code in the 60 h~1 Mpc box.

can be reproduced in the "CDM for massive halos with
km s~1 (Fig. 8, top panel). This is in agreementVmax[ 200

with almost all other theoretical studies. However, the
correlation function of the LBGs measured by Giavalisco et
al. (1998) does not agree with the correlation function mea-
sured for the km s~1 of our "CDM halos :Vmax[ 200 r0B
3 h~1 Mpc for LBGs versus h~1 Mpc for the halos.r0B 4.5
This disagreement was actually noticed in the study of Adel-
berger et al. (1998), who used the count-in-cells analysis to
derive the value of bias. The values of the parameters of the
correlation function that were derived from the observed
rms Ñuctuations of galaxies in cells of B12 h~1 Mpc (pgalB1.1^ 0.2) are considerably higher than those measured
directly by Giavalisco et al. (1998). The corresponding value
of h~1 Mpc) in our "CDM simulation is B0.6,phalo(r \ 12
0.7, 0.9 for halos with km s~1, respec-Vmax[ 120, 150, 200
tively. This is consistent with the interpretation of the LBGs
as objects residing inside massive km s~1 or(Vmax[ 200

h~1 DM halos. This result supports theM Z 1012 M
_

)
interpretation of Adelberger et al. (1998) and suggests that
the correlation amplitude of the LBGs may be higher than
that obtained from the observed angular correlation func-
tion (Giavalisco et al. 1998).

Overall, we believe that the comparisons discussed above
indicate that there is good agreement between our results
and the clustering data at both low and high redshifts. This
implies that hierarchical models in which observed galaxies
form in the host DM halos naturally explain the observed
galaxy clustering at di†erent epochs, including excellent
agreement with the accurately measured z\ 0 correlation
function. On the other hand, the generic form of the bias
evolution observed in the numerical simulations at high
redshifts agrees well with the prediction of the analytical
models based on the extended Press-Schechter formalism.
This implies that we understand the nature of the bias and
the processes that drive its evolution at high z. At low red-
shifts, the bias evolution of gravitationally bound halos is
driven by the dynamical processes inside the nonlinear
structures which are largely independent of cosmology. The
study of these processes is important for a successful model-
ing of galaxy clustering at z[ 1.

7. SUMMARY

We have studied the evolution of the correlation function
and bias of galaxy-size halos in di†erent cosmological
models ("CDM, OCDM, qCDM, and SCDM). The high
resolution of our numerical simulations allowed us to avoid
the overmerging in the high-density regions and estimate
the correlation amplitude and bias directly at small (down
to D100 h~1 kpc) scales. The main results and conclusions
presented in this paper are as follows :

1. At all epochs, the two-point correlation function of
galaxy-size halos is well approximated by a power lawmhhwith the slope cB 1.6È1.8. The correlationmhh\ (r/r0)~c
length at z\ 0 is B5 h~1 Mpc, regardless of the minimalr0mass limit of the halo samples. At high redshifts, the corre-
lation function evolves nonmonotonically : decreasesr0somewhat between redshifts of 5 and 3 and then increases
steadily until z\ 0. For the most massive halos, the corre-
lation length at zB 5 is comparable to that at z\ 0.

2. The di†erence between the shape of the and themhhshape of the correlation function of matter results in a scale-
dependent bias at scales h~1 Mpc. We Ðnd this to be a[7
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generic prediction of the hierarchical models independent of
the epoch and of the model details.

3. Another generic prediction is that the comoving
amplitude of the correlation function for halos above a
certain mass evolves nonmonotonically : it decreases from
an initially high value at zD 3È7 and very slowly increases
at This behavior at large scales was demonstrated byz[ 1.
a number of authors (see ° 6). Here we have shown that this
behavior also applies to the correlation amplitude at small
scales h~1 Mpc). The nonmonotonic evolution of the([1
correlation function calls into question the usefulness of the
simplistic ““ v-models ÏÏ as a description of the clustering
evolution. We note, however, that at the evolution ofz[ 1
the halo correlation function is approximately monotonic
(albeit dependent on scale). The very slow evolution of the
halo correlation amplitude in comoving coordinates at
these redshifts implies a value of vB [1, which is in agree-
ment with the values preferred by the observations (e.g.,
Postman et al. 1998).

4. The evolution of the halo correlation function is very
mild compared with the evolution of the DM correlation
function. The latter evolves by a factor of D10È60
(depending on scale) between redshifts of B7 and 0, while
the di†erence in amplitude of the former between any two
epochs is less than a factor of 2. The large di†erence in the
evolution rates of the matter and halo correlation functions
means that the bias evolves rapidly with cosmic time : it
changes from high-b values of D2È5 at zD 3È7 to antibias
b-values of D0.5È1 on small h~1 Mpc scales at z\ 0.[5

5. We Ðnd that our results agree well with existing clus-
tering data at di†erent redshifts, indicating general success
of the hierarchical models of structure formation in which
galaxies form inside the host DM halos. Particularly, we
Ðnd excellent agreement in both slope and amplitude
between in our simulation and themhh(z\ 0) "CDM60galaxy correlation function measured using the APM
galaxy survey. At high redshifts, all models reproduce well
the observed clustering of the LBGs. Our results imply that
for high-redshift clustering to be used as a cosmological test,
it is crucial that we know what type of objects are used to
estimate the clustering signal. The knowledge of the number
density of objects is not sufficient (see ° 5).

6. We Ðnd good agreement at between our resultszZ 2
and predictions of the analytical models of bias evolution
(MW; Matarrese et al. 1997). This indicates that we now
have a solid understanding of the nature of the bias and of
the processes that drive its evolution at these z. We argue,

however, that at lower redshifts the evolution of bias is
driven by dynamical processes, i.e., dynamical friction and
tidal stripping, inside the nonlinear high-density regions
such as galaxy clusters and groups. These processes do not
depend on cosmology and tend to erase the di†erences in
clustering properties of halos that exist between cosmo-
logical models at high z. The latter result implies that low-
redshift clustering is probably not a very strong
discriminator between cosmological models.

We believe that the success of the current theoretical
models in interpreting the clustering data forms a solid
foundation for further sophistication of the models by
including the processes important for galaxy formation
(such as dynamics of baryons, cooling, star formation, and
stellar feedback). These models would allow one to predict
the observed properties of galaxies and thus mimic the
observational selection criteria, allowing for a robust com-
parison between the model and the data. We believe that
the di†erences between high-z clustering properties of
objects in di†erent cosmological models demonstrated in
this study (see ° 5), the improved theoretical models, and the
ever-increasing amount of new clustering data can be suc-
cessfully combined in the near future to put useful con-
straints on the cosmological parameters describing our
universe.
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