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ABSTRACT
General analytic arguments lead us to expect that in the modiÐed Newtonian dynamics (MOND),

self-gravitating disks are more stable than their like in Newtonian dynamics. We study this question
numerically, using a particle-mesh code based on a multigrid solver for the (nonlinear) MOND Ðeld
equation. We start with equilibrium distribution functions for MOND disk models having a smoothly
truncated, exponential surface density proÐle and a constant Toomre Q-parameter. We Ðnd that, indeed,
disks of a given ““ temperature ÏÏ are locally more stable in MOND than in Newtonian dynamics. As
regards global instability to bar formation, we Ðnd that as the mean acceleration in the disk is lowered
the stability of the disk is increased as we cross from the Newtonian to the MOND regime. The degree
of stability levels o† deep in the MOND regime, as expected from scaling laws in MOND. For the disk
model we use, this maximum degree of stability is similar to the one imparted to a Newtonian disk by a
halo 3 times as massive at 5 disk scale lengths.
Subject headings : galaxies : kinematics and dynamics È instabilities È methods : n-body simulations

1. INTRODUCTION

Underlying the modiÐed Newtonian dynamics (MOND)
is the assumption that galaxies do not posses a signiÐcant
dark halo. As pointed out by Ostriker & Peebles (1973), a
massive dark halo may be an important stabilizing agent of
galactic disks. It is thus interesting to compare the stability
of bare disks in MOND with the stability of similar Newto-
nian disks with dark halos. Such considerations may also
provide a MOND explanation (see Milgrom 1989) of the
revised Freeman law, whereby the distribution of central
surface brightnesses of galactic disks appears to be cut o†
rather sharply above a certain surface brightness (see,B0e.g., McGaugh 1996 for a recent review and references).
Translating this value of into a mean surface density (forB0exponential disks), one obtains a limiting surface density
that is nearly with the acceleration con-&04 a0G~1, a0stant of MOND. In MOND, disks with a mean surface
density have a di†erent dynamical behavior than&? &0those with In particular, the former are Newtonian& \ &0.and are thus beset by the well-known instabilities of bare
Newtonian disks. The latter are more stable locally (as
shown in Milgrom 1989 using perturbation theory) and, as
we shall show in this work, are also more stable globally.
Global added stability is also supported by preliminary
N-body calculations carried out by Christodoulou (1991)
and by Griv & Zhytnikov (1995). The Freeman law, which
asserts that the former type of disk is rare, may result from
this disparity.

Toomre showed that in Newtonian dynamics a disk is
stable to all local axisymmetric disturbances at radius R if
the dimensionless quantity

Q(R)\ p
R

i
3.36G&

[ 1 , (1)

where is the radial velocity dispersion, i is the epicyclep
Rfrequency, and & is the surface density. The criterion in

MOND is obtained by simply replacing G by G/
k`(1] L`)1@2, where k` is the value of the MOND inter-
polating function, k, just above the disk, and
L \ d ln k(x)/d ln x (Milgrom 1989). Although ToomreÏs cri-

terion rests on local analysis, it is found empirically that the
condition Q[ 1 everywhere in the disk is a necessary and
sufficient condition for global axisymmetric stability. Stellar
disks are always stable to local nonaxisymmetric dis-
turbances (Goldreich & Lynden-Bell 1965 ; Julian &
Toomre 1966). Numerical simulations have shown that
stellar disks are subject to global nonaxisymmetric insta-
bilities, especially the bar instability. This result was con-
Ðrmed analytically for a few models by linear, normal-mode
analysis. The majority of rotationally supported, self-
consistent disk models studied to date by numerical simula-
tions and analytical global analysis are violently unstable to
bar formation. However, these simulations do not reveal the
mechanism of the instability, nor do they suggest a way to
avoid it. Toomre (1981) suggested a mechanism for the bar
instability based on what he named swing ampliÐcation.

Even in the NewtonianÈplusÈdark matter case, the stabil-
ity problem is anything but resolved. So we shall not focus
our work on testing for absolute stability in MOND.
Instead, we perform a comparative study between the
added stability given to the disk by MOND and that given
by a dark halo. In particular, we shall ask to what extent
MOND can replace the haloÏs contribution to the stability
of disk galaxies.

Even for Newtonian gravity, one lacks simple analytic
equilibrium solutions of the collisionless Boltzmann equa-
tion for a thin disk. Some of the equilibrium models studied
to date are the isochrone by Kalnajs (1978), the Kuzmin-
Toomre (Sellwood 1986 ; Hunter 1992), and the Sawamura
disks (Sawamura 1983). The extent to which the bar insta-
bility and others depend on the speciÐc properties of these
models is unknown. The situation for MOND is even more
difficult, since we have no analogous analytical models. The
analytical methods used in Kalnajs (1972) and (1977) for
linear, normal-mode analysis are very cumbersome and give
no physical insight into the nature of the instability. A
simpler way to get the unstable modes is through N-body
simulations. We have developed a three-dimensional,
N-body code and potential solver for the nonlinear MOND
problem, in which the potential is determined from the
equation proposed by Bekenstein & Milgrom (1984).
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FIG. 1.ÈDiscretization of the MOND equation

2. DESCRIPTION OF THE MOND POTENTIAL SOLVER

Bekenstein & Milgrom (1984) have formulated a nonrela-
tivistic Lagrangian theory for MOND, in which the acceler-
ation Ðeld g produced by a mass distribution o is derived
from a potential / (g \ [$/) satisfying the equation

$ Æ [k( o$/ o /a0)$/]\ 4nGo (2)

instead of the usual Poisson equation $ Æ $/\ 4nGo,
where k(x)B x for x > 1, k(x)B 1 for x ? 1, and is thea0acceleration constant of MOND. The form k(x) \ x/
(1] x2)1@2 has been used in all rotation curve analyses, and
we also use it here. A solution to the Ðeld equation exists
and is unique in a domain D in which o(r) is given and on
the boundary of which /, or is speciÐedk( o$/ o /a0)Ln

/,
(Milgrom 1986). In this theory, the usual conservation laws
of momentum, angular momentum, and energy (properly
deÐned) hold, and, in addition, the center-of-mass acceler-
ation of a star or a gas cloud in the Ðeld of a galaxy obeys
the basic MOND assumption even if its internal acceler-
ations are high.

The nonlinearity of the MOND Ðeld in equation (2) pre-
vents one from using the standard potential solvers (force
calculators), at least in a straightforward way. We wrote a
multigrid solver for the Ðnite di†erence approximation of
the MOND Ðeld equation and incorporated it into an
N-body code using the particle-mesh algorithm. We give a
brief description of the N-body code in Appendix B and
also describe there some of the tests we have performed to
establish its accuracy and the setup of initial conditions for
the simulation. We lack analytical potential density pairs
for disks in MOND (apart for that for the Kuzmin disk),
not to mention self-consistent stationary models. We have
thus developed a numerical scheme for generating self-
consistent stationary disk models with speciÐed potential,
surface density, and radial velocity dispersion. This scheme
is described in Appendix A.

Because the potential solver is novel, we describe it
here brieÑy. The discretization scheme used is depicted in
Figure 1.

It uses central di†erencing between neighboring grid
points to approximate the divergence and the components
of $/ appearing in equation (2). Only for some of the com-
ponents of $/ appearing in the argument of the function k
do we use central di†erencing between grid points that are
two grid spacings apart. The part of the divergence inL

xequation (2) at point A is approximated by [S(M)[ S(L )]/h,
where is approximated byS \ k( o$/ o /a0)Lx

/ ; L
x
/(M)

[/(B) [ /(A)]/h, by [/(I) ] /(H) [ /(J)[ /(K)]/L
y
/(M)

(4h), and by [/(C) ] /(D) [ /(E) [ /(F)]/(4h). AL
z
/(M)

similar calculation is done for point L and for the remaining
parts of the divergence. This is a stable second-order dis-
cretization, which, importantly, is Ñux conserving. The
MOND equation, like PoissonÏs, can be transformed using
GaussÏs theorem in a Ñux equation :

P
‹D

k
L/
Ln

dS \ 4nG
P
D

o d3x , (3)

where D is any domain where the MOND equation is satis-
Ðed, LD is the boundary of D, and L//Ln is the normal
derivative of /. The Ñux leaving a cell through one of its
sides should be equal to the Ñux entering its neighboring
cell ; Ñux conservation means that the two will have the
same approximation in the discrete equation.

We use the multigrid techniques developed by Brandt
and collaborators (Brandt 1977, 1984, 1991 ; Bai & Brandt
1987), which are extremely efficient in solving elliptic,
partial di†erential equations. We use the so-called full-
multigrid algorithm together with the full-approximation
scheme and use Gauss-Seidel relaxation for solving the
system of nonlinear equations produced by the dis-
cretization. Instead of solving directly for the new value of
the unknown at the current grid point, we carry out a single
iteration of the Newton-Raphson method for Ðnding the
root of a nonlinear equation, where the derivative of the
left-hand side of the equation with respect to a change in the
unknown is calculated numerically. For solving the stan-
dard Poisson equation, we use Gauss-Seidel relaxation with
red-black (RB) ordering, which has two important proper-
ties : Ðrst, the smoothing rate for the usual seven-point
Laplacian is the best ; second, the ““ red ÏÏ and the ““ black ÏÏ
points are independent and can be relaxed simultaneously.
This last property is very useful in writing a code that is
highly vectorizable and parallelizable. In order to maintain
this property of independence in the case of the more com-
plicated MOND equation, we use a generalization of RB
ordering using eight colors instead of two.

The MOND potential solver was tested extensively
against cases for which exact results are known. These
include (1) the complete potential Ðeld of a Kuzmin disk
(Brada & Milgrom 1995) ; (2) the (deep) MOND, two-body
force for arbitrary masses and the N-body MOND force in
certain symmetric conÐgurations (Milgrom 1994) ; and (3) a
general relation that exists between the total mass and the
root-mean-square velocity for disks in the deep MOND
regime, Ðrst discovered by our numerical calculations and
then proven exactly (Milgrom 1994).

3. MODELS AND RESULTS

As stated above, we concentrate on a comparative study
between the stabilizing e†ects of MOND and those of dark
matter halos. We have used models that have a smoothly
truncated, exponential surface density. The disk extends out
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to radius (chosen as our unit of length), with a scaleRcut\ 1
length of 0.2 in these units. The surface density is of the form

&(R)\ &0 exp ([R/0.2)(1[ R4), R¹ Rcut . (4)

The smooth truncation of the disk is used in order to avoid
the edge instabilities discussed by Toomre (1981), which
result from a sharp drop in the surface density. We work in
units where G\ 1, and the mass is given in units ofa0\ 1,

We have constructed a series of models with aa0Rcut2 /G.
total mass of 0.005, 0.01, 0.02, 0.04, 0.08, 0.16, 0.32, 0.64, and
1.28. The disk with the lowest mass is fully in the MOND
regime whereas the disk with a mass of 1.28 is(a \ a0),Newtonian almost all the way to its outer edge. The magni-
tude of the total acceleration just above the surface of the
disk as a function of radius for the di†erent mass models is
shown in Figure 2. (This di†ers from the midplane acceler-
ation, which enters the rotation curve, because of the per-
pendicular component that appears just above the disk.)

A self-consistent model for a given mass distribution is
also characterized by its ““ temperature ÏÏ : the fraction of the
total kinetic energy that is in random motion. A convenient
parameter for measuring this is the famous t \ T / oW o
parameter, where is the rotationalT \ 2~1 / ovh 2 d3x
kinetic energy and oW o is the absolute value of the self-
gravitational energy, which by the virial relation is equal to
twice the total kinetic energy (rotational plus random) of
the stationary system. In MOND, we replace the self-
gravitational energy, in the deÐnition of t, with twice the
rotational kinetic energy of a cold system (where all the
particles are on circular orbits). The maximum value of t is
0.5 (realized for a cold system). The lower the value of t, the
greater the part of the kinetic energy in random motion.
Motivated by the analytical results for the Maclaurin and
Kalnajs disks, and by their own numerical simulations,
Ostriker & Peebles (1973) suggested that the approximate
empirical stability criterion against bar formation is
t \ 0.14. Although the physics of the bar instability is only

FIG. 2.ÈMagnitude of the acceleration just above the disk (in units of
as a function of R (in units of for the di†erent mass models.a0) Rcut)

indirectly related to T / oW o , numerical studies have shown
that this Ostriker-Peebles criterion provides a surprisingly
useful empirical guide for identifying systems that are likely
to be unstable.

As a preliminary step in our comparative study, we gen-
erated three self-consistent models for each of the total disk
masses listed above. The models have a radius-independent
value of the MOND stability parameter (see eq. [1]), with
Q\ 1.5, 2.0, and 2.5. The calculated runs of t-values for
these models are displayed in Figure 3.

We then constructed MOND equilibrium models for
comparative N-body simulations. These were taken as
smoothly truncated, exponential disks with t \ T / oW o
Ðxed at 0.31 and a value of Q that is R-independent. These
models fall on the horizontal line in Figure 3. Whereas the
potential Ðeld is computed on a three-dimensional Carte-
sian grid, disk particles are at all times conÐned to the
midplane.

Each model was run once using MOND and once using
Newtonian gravity. Because & and the potential in the
plane are the same, the Newtonian disk is supplemented
with an inert spherical halo that gives, together with the
disk, a Newtonian potential that equals the MOND poten-
tial of the disk alone in the plane. [The Newtonian disks
have the same distribution functions as their respective
MOND counterparts, but their Newtonian Q-values are
higher and r-dependent, because they do not include the
k(1] L )1@2 factor that appears in the MOND expression
for Q.] The lower the total mass of the disk is, the stronger is
the departure from Newtonian gravity, resulting in an
increase in the relative contribution of the halo. In Figure 4
are shown the relative contributions of the disk to the total
radial force as a function of radius for the NewtonianÈplusÈ
dark matter cases.

In order to make a quantitative comparison between the
growth rates of the unstable modes of the di†erent mass

FIG. 3.ÈT / oW o as a function of the diskÏs mass for MOND models
with constant Q\ 1.5, 2.0, and 2.5. The horizontal line at T / oW o\ 0.31
marks the value used in our models
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FIG. 4.ÈRelative contribution of the disk to the total radial force as a
function of radius for the NewtonianÈplusÈdark matter cases.

models, we scale the time step in the simulation in propor-
tion to a natural dynamical time of the model. In Figure 5
are plotted, for each model, the ratio of the angular fre-
quency of the M \ 0.005 mass model to that of the speciÐc
model. As can be seen from the graph, this ratio depends
somewhat on R. We have chosen to scale the time step in
proportion to the orbital time at R\ 0.5 (scaling the time
step in proportion to orbital time at R\ 0.25 does not
change the results qualitatively).

The development of the instability is traced in the time
dependence of the fraction of the diskÏs mass in the m\ 2
Fourier component of the surface density. This turns out to
have a period of exponential growth. We take the exponen-
tial growth rate as a measure of the instabilityÏs strength. In
Figure 6 we plot the growth rates as functions of mass for
both the MOND and the NewtonianÈplusÈdark matter
models. These are also given in Table 1 together with the
Q-value and the halo mass (for the Newtonian
counterparts) of the di†erent models. The growth rates are
calculated using the scaled time units ; i.e., the real growth

FIG. 5.ÈRatio of the angular frequency of the M \ 0.005 mass model
to the angular frequencies of all the mass models as a function of radius.

rate equals the growth rate that appears in the graph times
as was described previously.)

m
(R\ 0.5)/)0.005(R\ 0.5)

4. CONCLUSIONS

From the results presented in Figure 3, we see that expo-
nential disks having a given fraction of their kinetic energy
in random motion and a constant Q-proÐle are locally more
stable in MOND than in Newtonian dynamics, as reÑected
in the fact that for the same value for T / oW o the MOND
disks have a higher Q-value. This is in agreement with the
general result (Milgrom 1989) regarding the local stability
of disks in MOND. One can see that the change in the
dynamics occurs when one crosses over from the Newto-
nian regime to the MOND regime, i.e., when the acceler-
ation in the disk becomes of the order of The addeda0.degree of stability is limited (the change in Q saturates deep
in the MOND regime). This stems from the fact that at both
the Newtonian limit and the deep MOND limit the equa-
tions governing the evolution of the system obey simple (but

TABLE 1

MODEL PARAMETERS

GROWTH RATE

m Q TIME STEP SCALING MOND NewtonianÈplusÈdark matter HALO MASS AT R\ 1

0.005 . . . . . . 2.55 1 . . . . . . . . .
0.01 . . . . . . . 2.5 0.84 0.4 . . . . . .
0.02 . . . . . . . 2.4 0.7 0.43 . . . . . .
0.04 . . . . . . . 2.25 0.58 0.46 0.09 0.18
0.08 . . . . . . . 2.0 0.48 0.51 0.36 0.23
0.16 . . . . . . . 1.79 0.39 0.62 0.53 0.28
0.32 . . . . . . . 1.62 0.3 0.8 0.8 0.31
0.64 . . . . . . . 1.53 0.22 0.94 0.94 0.31
1.28 . . . . . . . 1.5 0.16 1.0 0.97 0.27

NOTE.ÈThe growth rate, in units of dynamical frequency, for the m\ 2 mode and model parameters for the di†erent
mass models.
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FIG. 6.ÈGrowth rate in units of the dynamical frequency for the m\ 2
mode as a function of the total mass of the disk : MOND (squares),
Newtonian-plus-halo (triangles).

di†erent) scaling laws. The basic physical mechanism
behind the added stability is the relatively weaker response
in the potential to a given perturbation in the surface
density when one is in the MOND regime. Roughly speak-
ing, in MOND a2P o and therefore da/a \ do/2o, whereas
in the Newtonian case da/a \ do/o, and we see that approx-
imately a factor of 2 is gained in stability.

From the results presented in Figure 6 and Table 1 we see
that the global stability of the disk behaves in a way similar
to the local stability. As one moves from the Newtonian
regime to the MOND regime, the growth rate of the m\ 2
mode (in dynamical-frequency units) decreases. At Ðrst
(down to M D 0.2) the e†ect of MOND is similar to that of
the added inertial halo. Below that the degree of stability
continues to increase, but not as fast as that of the Newto-
nian disk-plus-halo, and it saturates in the deep MOND
limit. In contrast, the Newtonian disk-in-halo becomes

increasingly stable in the limit. The saturated global stabil-
ity, given the disk by MOND, is similar to that given a
Newtonian disk by an inert halo with a mass that is 2È3
times the mass of the disk up to R\ 5 scale lengths. These
results support the idea that pure MOND disks with high
surface densities are less stable than those with a lower
surface density, both globally and locally. This provides a
possible explanation of the Freeman law as discussed in ° 1.
It must, however, be appreciated that we cannot be sure
that actual low surface brightness (LSB) galaxies are more
stable than high surface brightness (HSB) ones, because we
do not know that they all have similar T /W values, as used
in our comparison.

Our aim in this paper has been to compare the stability
properties in MOND of disks with di†erent accelerations.
In this, the Newtonian models have served as references so
that the added MOND stability could be described in terms
of an added inert halo. But what is the signiÐcance of the
comparison between the MOND and Newtonian disks as
regards true galaxies? The diskÈplusÈinert-halo models we
use are not what MOND predicts for a galaxy. If MOND is
correct, then in the low acceleration limit there should also
appear to be much disk dark matter. In the present paper
we have ignored the structure and motion in the z-direction,
perpendicular to the disk. A Newtonian model that will give
the same three-dimensional disk distribution function as a
MOND pure disk would have much disk dark matter that
is not inert but that responds to disk perturbations. Put
di†erently, MOND predicts that the dynamically deter-
mined surface density of LSB galaxies will be much higher
than the observed surface density. When this surface density
is used in calculating the Newtonian Q-value, as it should, a
much lower Q-value will result in general (Milgrom 1989).
Inasmuch as we neglect the z-structure and take the disk as
inÐnitely thin, the exact value of the Newtonian surface
density that gives the same potential Ðeld as MOND is

where k` is the value of k for the local acceler-&
N

\ &/k`,
ation just above the disk (because at every point on the disk
and at all times during its evolution, we have k`L

n
/\

2nG&, whereas The net result is that even in2nG&
N

\ L
n
/).

the deep-MOND limit MOND disks are expected to be
somewhat more stable than the Newtonian disks that have
the same distribution function (and that thus have the same
r- and z-structure) because of the (1 ] L )1@2 factor. We do
not include here simulations for such Newtonian models.

APPENDIX A

MODEL CONSTRUCTION

The problem of Ðnding a distribution function f (E, can be made well-posed for numerical solution by formulating it as aL
z
)

constrained optimization problem (see Binney & Tremaine 1987). One wants a distribution function that satisÐes the physical
requirements

fº 0,
P

f d¿\ &(r) ,
P

fv
r
2 d¿/

P
f d¿\ p

vr
2 (r) , (A1)

as constraints and, as an additional auxiliary constraint that will assure uniqueness, maximizes a certain functional of f such
as the Boltzmann entropy or some measure of smoothness. A very similar approach is to minimize a single functional of f that
is the sum of the errors in the surface density, the radial velocity dispersion, and the entropy, subject to the constrain that
fº 0. We have used the latter approach. We take the disk to be a Ðnite disk whose surface density vanishes for r º 1. The
three input functions : the potential, the surface density, and the desired radial velocity dispersion, are represented by one
dimensional arrays and respectively, at the equidistant grid point (0¹ i ¹ N)./

i
, &

i
, p

vri
, r

i
\ i/N

Using the variables
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X \ L
z
2

2
[ E] /(1) , Y \ L

z
2

2
, (A2)

and given a distribution function f, the surface density and radial velocity dispersion runs take the following forms :

&@(r)\
PP

f (X, Y )W (X, Y , r)dX dY , (A3)

p
vr
@2(r)\ &@~1(r)

PP
f (X, Y )W (X, Y , r)Z(X, Y , r)dX dY , (A4)

W (X, Y , r)\ Y ~1@2Mr2[/(1)[ /(r) [ X][ (1[ r2)Y N~1@2 ,

Z(X, Y , r)\ v
r
2(r) \ 2[Y (1[ r~2) [ X ] /(1)[ /(r)] ,

0 ¹ X ¹ /(1)[ /(r) ,

0 ¹ Y ¹
r2

1 [ r2 [/(1)[ /(r) [ X] .

Note that we work here with the choice more generally we would have to replace in the above expressions byRcut \ 1 ; L
zL

z
/Rcut.Before discretizing the equations we make a change of variables from (X, Y ) to which denote, respectively, the(rmin, rmax),pericenter and apocenter of an orbit with given energy and angular momentum. The transformation from (rmin, rmax)-

FIG. 7.ÈSurface density and the square of the radial velocity dispersion for the M \ 0.005, Q\ 2.55, MOND, truncated exponential disk. The solid line
represents the model, and the dots are the numerical values calculated from the distribution function.
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to the (X, Y )-coordinates can be obtained by solving the two equations :coordinates

Y \ rmin2
1 [ rmin2 [/(1)[ /(rmin) [ X] , (A5)

Y \ rmax2
1 [ rmax2 [/(1)[ /(rmax) [ X] . (A6)

From the expressions and we calculate numerically the Jacobian [L(X, Y )] andX(rmin, rmax) Y (rmin, rmax) /[L(rmin, rmax)]rewrite the integrals (eqs. [A3] and [A4]) using the new coordinates, where the limits of integration are now

0 ¹ rmin¹ r , (A7)

r ¹ rmax¹ 1 . (A8)

We also replace &@(r) in equation (A4) by the desired surface density, &(r), since the two become identical when a solution is
found. We discretize the distribution function on a Cartesian grid where

f
jk

\ f (rmaxj, rmink) , rmaxj \ ( j [ 1)/N , rmink \ (k [ 1)/N , (A9)

and the value of f in between grid points is deÐned using bilinear interpolation. Since interpolation is linear in and thef
jkintegrals in equations (A3) and (A4), after the replacement of &@, are also linear in we can obtain expressions of the formf

jk
,

&
i
@ \ ;

j,k
A

ijk
f
jk

, (A10)

p
vri
@2 \ ;

j,k
B
ijk

f
jk
/&

i
, (A11)

where and are calculated by numerically integrating [L(X, Y )] and [L(X, Y )]/A
ijk

B
ijk

/[L(rmin, rmax)]W (X, Y , r)
respectively, over the relevant volume for each grid point. We are left with the discrete[L(rmin, rmax)]W (X, Y , r)Z(X, Y , r),

problem of minimizing the expression

FIG. 8.ÈDistribution of particles in phase space for a Q\ 2.55, MOND, truncated exponential disk model having a total of 500,000 particles
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a1 ;
i/1

N
(&

i
[ &

i
@)2] a2 ;

i/1

N
(p

vri
2 [ p

vri
@2 )2] a3 S[ f ] (A12)

with respect to the variables given and The functionals of f that we have used are the Boltzmann entropy, which isf
jk

&
i

p
vri
2 .

deÐned as S \ [/ f log f dx or a measure of smoothness that we took as the L2 norm of the gradient of f in thed¿, (rmin,After discretization we are left with an expression of the formrmax)-coordinates.

S \ ;
j,k

C
jk

f
jk

log f
jk

(A13)

for the Boltzmann entropy, and an expression of the form

S \ ;
j,k

D
jk
[( f

jk
[ f

j`1k)2] ( f
jk

[ f
jk`1)2] (A14)

for the smoothness functional. We minimize equation (A12) using an iterative scheme, where at each step we make a
Gauss-Seidel relaxation sweep and sweep over the grid, and at each grid point we set a new value for in such a way that itf

jkwill minimize equation (A12) using a quadratic approximation obtained from the Ðrst and second derivatives of equation
(A12) with respect to After each relaxation sweep we decrease the weight by multiplying it by a number smaller thanf

jk
. a3one. In this way we let tend toward zero as the calculation progresses. In Figure 7 we plot as solid curves the inputa3constraints of the surface density and the square of the radial velocity dispersion and as points the values calculated from a

numerical solution found for the distribution function. The galaxy model is a smoothly truncated exponential disk having a
total mass of 0.005 and a constant Q\ 2.55 and obeying MOND. These models are described in ° 3. As can be clearly seen
from the graph, the relaxation converges to an accurate solution.

In Figure 8 we plot the distribution in phase space using of 500,000 particles according to a(rmin, rmax)-coordinates
distribution function found for the model.

APPENDIX B

AN N-BODY SIMULATION AND INITIAL CONDITIONS

The nonlinearity of gravity in MOND prevents one from using most standard potential solvers, at least in a straightfor-
ward manner. Since we have written a multigrid potential solver, it is a natural choice to use the particle-mesh algorithm, as
described, e.g., in Hockney & Eastwood (1988), for N-body simulations. At each time step the density is interpolated from the
particles to the grid ; then we solve for the potential on the grid and interpolate the forces computed on the grid to the
particleÏs location in order to integrate its equations of motion. We use the cloud-in-cell charge assignment and multilinear
interpolation for the force calculation at the particleÏs location ; this algorithm is relatively fast. The same program can
perform a simulation using MOND or Newtonian dynamics.

The potential solvers and the N-body code were extensively tested using Newtonian dynamics and MOND. Once the
potential solver has been tested as described at the end of ° 2 and found accurate, there is no di†erence between Newtonian
dynamics and MOND in the rest of the N-body code. The N-body code was tested by running stable King models, both
Newtonian and MOND models, and observing the stationarity of the di†erent quantities such as the size of the system,
average velocities, total angular momentum, linear momentum, energy, and so on. Kalnajs (1978) reported the eigen-
frequencies of the dominant bisymmetric eigenmodes of the models. Earn & Sellwood (1995) used KalnajsÏisochrone/m

kdistribution functions for the isochrone/12,9 models to compare the results they got from their expansion code to the analytic
results of Kalnajs. We have run a simulation using our code, Newtonian dynamics, and their initial conditions. We then
performed the same Ðt as they did for the pattern speeds and growth rates of the unstable modes. The Ðt between the
numerical results and the analytical results were good (about 10%È15% accuracy).

The importance of a careful initial setup for an equilibrium model is well documented (Sellwood 1983, 1987). There are two
separate aspects to this : suppression of particle noise and choosing coordinates from the desired distribution function. Initial
positions picked randomly produce shot-noise density Ñuctuations on all scales. For initial, near-equilibrium models the
initial behavior is dominated by the collective response to the artiÐcial noise, and this can mask the dominant modes of the
continuous system (Sellwood 1983), in which we are interested. Such initial noise can be suppressed by arranging the particles
regularly. This results in a discrete noise spectrum with large amplitudes at the wavelength of the particle spacing, which must
be suppressed during the force determination. This would give a particle distribution that behaves as a smooth Ñuid. To this
end, for our polar grid we place particles on rings spaced in radius according to the required surface density law. The number
of particles on each ring must be related to the number of azimuthal Fourier harmonics that enters to the force. Tommaxprevent coupling of modes through aliases, particles are needed on each ring. Quiet starts are also possible for2(mmax ] 1)
warm stellar disks, but it is not practicable to suppress both radial and azimuthal density variations at the same time
(Sellwood 1983 ; Sellwood & Athanassoula 1986). Noise in the azimuthal forces must be suppressed, since we are interested in
nonaxisymmetric instabilities. One then gives the particles on the ring identical velocity components so that the initial orbits
remain congruent.

Choosing integrals of motion for each particle at random from the distribution function will result in statistical Ñuctuation
about the intended function. These can be eliminated by choosing integrals for each particle in a deterministic manner in such
a way that their distribution is as close as possible to the required form. For example, one can use energy and angular
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momentum as the independent variables (Sellwood & Athanassoula 1986) ; however, any other set of isolating integrals in
which the distribution function can be expressed would work equally well.

Since we are interested in making a quantitative and systematic comparison between the stability of bare disks obeying
MOND and Newtonian disks with dark halos, we want to minimize the statistical noise and employ a quiet start technique.
As discussed above, one needs to use only a selected number of azimuthal Fourier components of & in the force determi-
nation. In Newtonian dynamics this is justiÐed for linear stability analysis, since the Poisson equation and the linearized
collisionless Boltzmann equation do not couple modes with di†erent azimuthal frequencies. The MOND Ðeld equation can
be linearized around the solution of the unperturbed axisymmetric disk (as discussed in Milgrom 1989) and together with the
linearized collisionless Boltzmann equation have the property that unstable modes with di†erent azimuthal Fourier com-
ponents are uncoupled. Instead of using the linearized MOND equation we use the full MOND equation but leave only the
desired Fourier components in the surface density that is assigned to the grid. In setting up the initial conditions we use the
following procedure : We take the numerical solution obtained for the distribution function and interpolate it to a Ðner grid.
We then calculate the number of particles that should reside in each cell given the total number of particles. This number is
usually not an integer : we take the integer part and distribute the particles uniformly in the cell. The remaining fraction is
interpreted as the probability for an additional particle to reside in this cell. We then draw cells at random according to their
relative probabilities and place at most one additional particle in a cell. At the end of this stage we have a list of the

of the particles. We now need to assign the phase-space coordinates for each particle, i.e., r, h,(rmin, rmax)-coordinates v
r
, vh.(Here we use a polar grid in the midplane as an auxiliary for computing the discretized density distribution that serves as

input for the MOND Ðeld equation.) We randomly draw the radial position of the particle taking the probability density of
Ðnding the particle at radius r as being proportional to If we decide to use the Fourier Ðltering we draw at random thev

r
~1.

angle h and place particles at angular spacings of adding a small random angular shift to each2(mmax] 1) n(mmax] 1)~1,
particle to seed the unstable modes. If we do not use the Fourier Ðltering, we place the particle at a random angle h requiring
that the surface density produced on the grid that is used by the potential solver will be as smooth as possible.
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