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ABSTRACT

The conditions for validity and the limitations of experiments intended to simulate astrophysical
hydrodynamics are discussed, with application to some ongoing experiments. For systems adequately
described by the Euler equations, similarity criteria required for properly scaled experiments are identi-
fied. The conditions for the applicability of the Euler equations are formulated, based on the analysis of
localization, heat conduction, viscosity, and radiation. Other considerations involved in such a scaling,
including its limitations at small spatial scales, are discussed. The results are applied to experiments
aimed at simulating three-dimensional hydrodynamics during supernova explosions and hydrodynamic
instabilities in young supernova remnants. In addition, hydrodynamic situations with significant radi-

ative effects are discussed.

Subject headings: hydrodynamics — instabilities — shock waves — supernova remnants —
supernovae: general — supernovae: individual (SN 1987A)

1. INTRODUCTION

The explosion of a supernova (SN) involves a great
variety of physical processes occurring on very disparate
temporal and spatial scales. Our prime interest in this work
is in a well-defined specific group of problems: hydrody-
namic effects accompanying the SN explosion and sub-
sequent expansion. Among the most interesting and
important hydrodynamic phenomena are instabilities
caused by the presence of continuous or impulsive acceler-
ation of the fluid with radially varying density, namely, the
Rayleigh-Taylor and Richtmyer-Meshkov instabilities.
Another fundamentally important and interesting issue is
the role of radiation in the dynamics of the evolving
plasmas. To accomplish laboratory experiments that are a
scaled simulation of SN hydrodynamic phenomena is a very
challenging problem. At first, it might seem that laboratory
simulations are impossible, in particular because of the
enormous difference in the scales. However, first steps
(Kane et al. 1997; Remington et al. 1997a, 1997b; Drake et
al. 1998; Liang 1996) have been made in this direction with
the use of the Nova laser facility. Here we establish, for-
mally, the conditions for validity and the limitations of such
laboratory simulation experiments.

In this paper we discuss the similarity criteria that define
the parameter domain for scaled simulation experiments.
While our analysis of the scaling from the laboratory to
SNe and supernova remnants (SNRs) is quite general, we
choose two specific examples relevant to SN 1987A for in-
depth discussion. Indeed, the large amount of observational
data obtained during the last decade from SN 1987A in the
Large Magellanic Cloud, and the excitement concerning the
impending collision of the blast wave with the ringlike cir-
cumstellar nebular object situated at a distance of
~5 x 107 cm from the star, make this SN a natural refer-
ence point for numerical estimates. The general morphol-
ogy of the SN 1987A event is described in several surveys,
e.g., Arnett et al. (1989), Hillebrandt & Hoflich (1989),
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Chevalier (1992), and McCray (1993). Important results
regarding hydrodynamic aspects of the 1987 supernova can
be found in Muller, Fryxell, & Arnett (1991), Chevalier
(1992), and Chevalier, Blondin, & Emmering (1992).

In § 2 of the paper, we analyse the problem of scaling
between two systems for the study of hydrodynamic effects.
We discuss first the hydrodynamic problem, identifying
scaling relations from the Euler equations that establish a
connection we describe as Euler similarity. We then con-
sider the conditions that must be met for such a hydrody-
namic scaling to be valid. After that, we seek the limits of
such similarity, in particular, to quantify the small spatial
scale on which it breaks down.

In § 3 we apply these results to three phases of the SN
1987A explosion: expansion of the progenitor star under
the action of the core explosion, interaction of the expand-
ing SN ejecta with the circumstellar medium, and the colli-
sion of the expanding blast wave with the circumstellar ring.
As a reference point for the first (explosion) phase, we con-
sider the moment when the shock wave has propagated
approximately halfway through the progenitor, which
occurs a few thousand seconds after the explosion. As a
reference point for the second phase, we take the time
approximately 13 years after the explosion, just before the
shock wave generated in the circumstellar medium reaches
the circumstellar ring of SN 1987A. As a reference point for
the third phase, we take the time of the collision of the blast
wave with the circumstellar ring nebula. We close § 3 with a
discussion of the requirements for producing hydrodynamic
conditions where radiative effects are important.

During all three phases outlined above, the regions of
interest are in the state of an ionized and highly conductive
medium. Therefore, effects of a magnetic field may be
important and should be taken into consideration. To be
sure that the magnetic field does not have a “dynamic”
influence on the hydrodynamics of the system under study,
the magnetic field should be below some upper level deter-
mined by the plasma pressure or the kinetic energy of
hydrodynamic motions. This condition is satisfied with a
large margin at all three stages of the SN 1987A explosion
discussed here. Accordingly, ordinary hydrodynamics,
without magnetic stresses included, can be used.
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At the same time, during the second and the third phases
discussed here (SNR expansion and collision with ring) the
magnetic field should exceed a certain level required to
restore the “effective ” collisionality in the otherwise essen-
tially collisionless plasma. As we discuss later in the paper,
the magnetic field in the SN ejecta and in the circumstellar
plasma do exceed this limit. Therefore, the approach based
on the use of ordinary hydrodynamics seems to be adequate
in the analysis of the SN dynamics at all three stages dis-
cussed here.

Our paper is devised to provide a framework that will
allow one, with a reasonable degree of confidence, to estab-
lish links between an experiment and an astrophysical
system. Therefore, we do not present or discuss in any detail
results of specific numerical simulations of either the laser
experiment or the supernova event; rather, we use charac-
teristic parameters based on SN 1987A as a reference point.

We use predominantly the cgs (Gaussian) system, of
units. The temperature is measured in the energy units
(Kpottzmann = 1)- In “practical ” numerical estimates we use
mixed units, which are specified in each case. In the follow-
ing, § 2 discusses the scaling between laboratory and astro-
physical systems. Section 3 applies these results to the
simulation of an SN, an SNR, and a ring collision, as well as
to the simulation of radiative conditions.

2. THE SCALING PROBLEM

2.1. Conditions for Hydrodynamic Similarity

We first discuss the conditions under which two systems
will behave identically, on the assumption (discussed later)
that they behave as ideal (i.e., with zero viscosity and
thermal conductivity) compressible hydrodynamic fluids
whose evolution is described by the Euler equations. We
later discuss the assumptions that heat transport and
viscous momentum transport are unimportant.

With respect to thermodynamic properties of the matter,
we limit ourselves to the case of a so-called polytropic gas
(e.g., Landau & Lifshitz 1987), in which the energy density
per unit volume, & is proportional to the pressure, p:
¢ = constant x p. Note that this assumption goes beyond
the assumption of a thermodynamically ideal gas. In partic-
ular, it breaks down for a gas with internal degrees of
freedom that are excited at higher temperatures. It is,
however, a good approximation for a fully ionized gas and
for a gas dominated by radiative pressure. For an adiabatic
process in a gas with ¢ = constant x p, one has p oc p?, with
the adiabatic index y = 1 + (1/constant).

The Euler equations for the polytropic gas read (e.g.,
Landau & Lifshitz 1987)

0
p<—v+v-Vv)=—Vp,

ot

op

Livy. =0

5 TV =0,
dp _pop P _
at_ypatJ”’ Vp—vpv Vp=0, (1)

in which p is the density, v is the fluid velocity, and y is an
adiabatic index. The first of these equations is the momen-
tum balance equation, the second is the continuity equa-
tion, and the third is an entropy conservation equation for a
polytropic gas.
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Equations (1) remain invariant under the transformation
(bearing the subscript 1):

r=ar;; p=bp; p=cp;;

t=a\/§t1; vz\/gvl, )
c b

where a, b, and ¢ are arbitrary positive numbers. There is
thus a direct correspondence between any two systems
satisfying equation (2). The matching conditions at the
surface of the shock wave are also invariant under the trans-
formation of equation (2). Therefore, the presence of hydro-
dynamic shocks of arbitrary strength is allowed. We will
refer to the similarity described by equations (2) as the
“Euler similarity,” since it follows directly from the Euler
equations. This similarity is more or less obvious from the
general viewpoint (Zeldovich & Raizer 1966; Sedov 1997),
although we have not found it discussed in the published
literature. What is important for our purposes is that it
covers all the aspects of the hydrodynamic instability of the
SN: both Richtmeyer-Meshkov and Rayleigh-Taylor, both
at their linear and nonlinear stages, with their possible
interaction with the Kelvin-Helmholtz instability, and with
full allowance for the compressibility of the medium.
Consider the Euler similarity in an initial-value problem
for a closed hydrodynamic system. Take some initial state
of the system, where the velocity, pressure, and density are

Vl=o = 0FW/h), pli=o = BG(/h),
Pli=o = pH(r/h), &)

with some dimensionless functions F, G, and H. The multi-
pliers o, p, p, as well as the quantity h, are scaling factors.
Consider now another system, where the functions F, G, and
H remain the same (i.e., the initial state is geometrically
similar to the state of the first system), but the scaling
factors are different (7,, p;, p;, and h,). According to the
last relationship of equation (2), the two systems will behave
similarly if the equality

ﬁﬁzﬁlﬁ (4)
D D1

holds. This equality ensures the similar behavior of the two
systems (provided the initial conditions are geometrically
similar). In choosing where to normalize the functions F, G,
and H, it is useful to select locations that reflect the problem
under study. Thus, if the instability of a specific interface is
of interest, then taking o, p, and p near that interface is
appropriate. This is illustrated in the specific cases discussed
in later sections. The quantity #(5/p)*/? is similar to a Mach
number, but need not correspond to any specific Mach
number in a given problem. We suggest that it might be
called the Euler number, that is, Eu = #(5/p)'/%.

If one compares the evolution of two systems, similar in
the sense of equation (4), and having spatial scales h and h,,
then equation (2) implies a relation between the timescales
in the two systems. The second system will evolve identi-
cally to the first system, on a timescale given by

b =
f—cl [ 2P 5
h N p1/py

Here we have replaced ¢ in equation (2) with a characteristic
value, 7. The timescale t can be any physically meaningful
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timescale, such as the characteristic time for & to change, a
shock crossing time, or an instability growth time.

Provided that the similarity conditions are satisfied, an
experiment done in system (r, p, p, t) or in (ry, p1, Py, t1) IS
probing identically the same physics, described by equa-
tions (1). This is independent of whether the system experi-
ences strong or weak shocks, decompresses, develops
unstable structures, enters the nonlinear regime, or becomes
turbulent. Note in particular that we have made no assump-
tions with regard to the possible role of compressibility in
the development of these systems. In addition,. within the
limits discussed in § 2.3, phenomena that occur on some
fraction of the scale & or 7 in one system map to the same
fraction of i, or 7, in another system.

Consider now the important special situation of system
driven by a strong external source of momentum and
energy. One can, for example, think of a piston that is
pushed into the matter. By “strong” we mean that the
source drives motions with velocities considerably exceed-
ing the initial sound velocity. This is a typical situation both
in supernovae and in the laser experiments on supernova
hydrodynamics.

In the case of strongly driven systems, the similarity cri-
teria become greatly simplified. What matters is only
similar initial spatial distribution of density and similar
time dependence of the drive. The specific values of the
density p, of the initial scale h, or of the drive velocity v,
(aside from the requirement that it should be large) do not
matter, because the states behind the shock are governed by
strong shock relationships and, for systems with the same y,
automatically satisfy the conditions of Euler similarity.
Figure 1 illustrates the relation described by equation (4) for
two of the systems discussed below.

In a strongly driven system there exists an obvious
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FiG. 1.—Identical hydrodynamic systems, when evaluated in the same
way, have equal values of the parameter #(5/p)*/* (Euler number, Eu). Here
we show lines of constant #(5/p)'/? for some systems discussed here (Tables
1-4), on axes of system velocity (7 or v,) and a quasi-sonic velocity, (p/p)'/%
The specific parameters for the systems are also plotted. The upper curve
corresponds to #(p/p)!/* = 3; the lower curve corresponds to #(5/p)!/* =
0.3.
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expression for the timescale,

0l ©
Vg

because there is only one parameter of the dimension of
velocity in the problem, the drive velocity v;, unlike the
general case described by equations (3), where there are two
parameters, 0 and the initial sound speed. The pressure in
the strong-drive case scales as

P~ pi; . ()

To sum up the strong-drive discussion: the two systems
experiencing a strong drive evolve similarly if the following
two conditions are satisfied: (a) initial density distributions
are similar (including any density nonuniformities) and, (b)
the temporal dependence of the drives is similar.

To get the maximum benefit from the similarity just
described, it is advisable to arrange the simulation experi-
ment to have the same adiabatic relation between p and p as
plasma in a real object. The adiabatic index should be
approximately equal to 4/3 for cases in which the radiation
pressure dominates and 5/3 in simulations of fully ionized
regions with a small radiation pressure. Fortunately, the
system under consideration is “structurally stable” with
respect to moderate variations of the equation of state (the
type of hydrodynamic equations is not changed by these
variations). In other words, the moderate variations of the
equation of state should not bring about any qualitatively
new phenomena. In this sense, the difference of the adia-
batic index from the best-fit value, as well as modest devi-
ation from the polytropic law, are admissible. What would
be inadmissible, for example, would be a situation where the
equation of state contained steep dependencies on p and p,
such as might occur at a phase transition. But in the range
of temperatures (~5-25 eV) and pressures (~1-5 Mbar)
involved in simulation experiments using sufficiently low-Z
materials, such “special ” features are absent.

2.2. Underlying Assumptions

The Euler equations describe systems that behave as
hydrodynamic fluids and in which heat transport and vis-
cosity are unimportant. We assume without further dis-
cussion that gravitational forces are negligible in
comparison with the accelerations caused by the SN explo-
sion. We also assume that any planar experiment is
intended only to model a local region of an evolving SN or
SNR, for a limited time, so that the effects of spherical
divergence are not significant. We organize our discussion
of the validity criteria for Euler’s equations into four parts.
For Euler’s equations to be valid, (1) the system needs to be
“collisional ”; (2) energy flow by particle heat conduction
needs to be negligible; (3) energy flow by radiation flux
needs to be negligible; and, finally, (4) viscous dissipation
needs to be insignificant. We examine these assumptions in
turn here.

2.2.1. Collisionality

The assumption of fluidlike behavior requires that the
particles in the system be localized. The localization must
occur on spatial scales that are small compared to h, the
characteristic spatial scale of the system. Two ways to
achieve this are through magnetic fields or through colli-
sions. One thus requires either r;/h <1 or I ,/h < 1, where
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r.; is the ion Larmor radius and [, is the collisional mean
free path. Since the energy represented by the driving veloc-
ity is never completely thermalized, v, and the correspond-
ing energy can be used as an upper limit on the thermal
velocity of the shocked matter. In this case the localization
condition becomes either

L _s Ufem s™Y)
—x~1 — k1
h 0 B(G)h(cm) <1 ®)
or
l_C - 13 T(eV)? N 12 vs
PRI 08107 B, )

in which the units are Gaussian cgs, n; is the ion density, A
is the Coulomb logarithm, T =~ mv,2/2, and we have used
the ion-ion mean free path from Braginski (1965) for hydro-
gen. Differences among species of ions and electrons are
significant only if the condition is marginal. We note that A
does vary for the range of potential environments discussed
here, but can be taken to be 6 to within a factor of a few.

The issues of localization along the magnetic field is a
significant uncertainty here, and in all subsequent dis-
cussions of magnetized parameters. Indeed, if the magnetic
field were of a regular structure and if plasma micro-
fluctuations were completely absent, then the system would
behave anisotropically and the hydrodynamic equations
would not apply. However, solar system studies, laboratory
experiments, and fundamental reasoning all would suggest
that both magnetic entanglement and microscopic fluctua-
tions will be present. One way to state the resulting require-
ment is that either magnetic entanglement or
microfluctuations must localize the system along field lines
in a distance small compared with h/r;; gydroradii. In the
young SNR case of § 3.2 below, this number is so large that
there is no doubt that the system will behave hydrodynami-
cally. The ring-collision case of § 3.3 is more complicated,
however.

2.2.2. Heat Conduction

The dimensionless parameter that characterizes the role
of diffusive heat transport by particles is the Peclet number
(Book 1987), which corresponds to the ratio of heat convec-
tion to heat conduction. For the hydrodynamic equations
(1) to be valid requires that the Peclet number be large,

h
Pe=—»1, (10)
4

that is, convective (hydrodynamic) transport needs to domi-
nate conduction. Here y is the thermal diffusivity for elec-
trons, which makes the main contribution to the heat
conduction. The thermal diffusivity depends upon whether
the electrons are magnetized, and it can be taken to be the
minimum of the unmagnetized and magnetized values. The
electrons may not be magnetized in the SN and are not in
the laboratory experiments now underway, but are defi-
nitely magnetized in the developing SNR. For
unmagnetized electrons, y, based on (Braginski 1965), is

[T(eV)]*
AZ(Z + Dnfcm™3)
A[T(V)]*?
AZ(Z + 1p(g cm™3) °

x(em? s71) =2 x 10*!

=33 x1073 (11)
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The numerical coefficient (which varies somewhat with Z)
corresponds to Z = 2.

For magnetized electrons, evaluation of y is more compli-
cated. The possible presence of plasma microfluctuations
can strongly inhibit parallel heat flux. The inhibition may
also be produced by a stochastization of the magnetic field
lines. If the characteristic length at which the magnetic field
line changes its direction by ~ /2 is I,,,,, this length will
serve as a step size in a random walk that determines elec-
tron heat transport. The corresponding estimate for y reads
as

X ~ lmagn vTe H (12)

where vy, is the thermal velocity of the electrons, defined
here as (2T/m)*/?, with m being the electron mass. If the
magnetic field entanglement is caused by instabilities of the
fire-hose type (e.g., Schmidt, 1966), then a natural scale of
Lnagn 18 the ion Larmor radius ry;. If entanglement is produc-
ed by larger scale turbulent plasma motion, then /.., can
considerably exceed r;;. To reflect the presence of this
uncertainty, we introduce a parameter

o= lmagn/rLi > 1 (13)
and write the estimate for the electron thermal diffusivity as
X~ OUre Ty - (14)

In practical units, one has

= 8.6 x 10°% QM

7 BG) (15)

x(cm? s~ 1)
Here again, the exact structure of the magnetic field and the
exact level of microfluctuations will determine the heat
transport rate along B. So long as Pe is very large, this
uncertainty will not be significant.

Note that, although the magnetic field can be high
enough to affect thermal conductivity, its pressure B%/8rx is
typically very small compared to the plasma pressure in the
SN (Chevalier & Luo, 1994; Jun & Norman, 1996). There-
fore, one can use the Euler equations without magnetic
stresses to describe the SN hydrodynamics.

2.2.3. Radiation Flux

Energy fluxes carried by radiation must be small com-
pared with the hydrodynamic energy fluxes. The corre-
sponding condition depends upon the system properties,
and there are two cases. (a) If the mean free path of the
photons, [, is much less than h, then one can evaluate the
radiation contribution to thermal diffusivity, x,, and estab-
lish a corresponding Peclet number, Pe,, which must be
large. In some cases (especially in the dense laboratory
plasma with the temperature of the order of a few electron
volts), it is difficult to evaluate y, without very time-
consuming numerical simulations. Then, an upper estimate
of the radiative heat flux, the blackbody radiation flux
(6T*), may be sufficient to demonstrate that the radiative
losses are negligible. (b) If [ > h, then the radiative cooling
time is that corresponding to optically thin emission, 7,;,.
In this case, one requires 7,,;,/t > 1, where t is a character-
istic hydrodynamic time.

In the case of a hot fully ionized plasma of the SN inte-
rior, the mean free path of the photons can be taken to be
min (lp emss Ithomson)> Where the mean free path due to inverse
bremsstrahlung, averaged over a Planckian distribution of
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photons (the Rosseland mean), in a fully ionized plasma is
(see Book 1987, p. 57, eq. [31])

- _ 37 [TEeV)]"?
Lrems(cm) = 1.7 x 10 Z3[n(em )]’
A*[T(eV)]"?

Z°[p(g em ™3]’

in which T is the temperature and A4, Z, and n; are the
atomic weight, charge, and density, respectively, of the ions.
The mean free path I1;,... With respect to Compton scat-
tering is

=46 x 10711 (16)

l_Compton(cm) = 1/[ne(cm_3)o-T(Cm2)] = 25A/Zp(g Cm_3) ’
17)

where o, = (87/3)r2 = 6.6 x 10”25 cm? is the Thomson
cross section, n, is the electron density, and p is the mass
density.

We now can state the limits for the two cases just
described. For case a, an expression for y, is

Xy = Ky/cv s (18)
where «, is the radiative thermal conductivity,

k,=RloT? (19)
(e.g., Zeldovich & Raizer, 1966), and ¢, is the thermal
capacity per unit volume,

166T® 3(Z + )
= + .
c 2

(20)

Cy

The first term here represents the thermal capacity of radi-
ation, whereas the second term represents the thermal
capacity of electrons and ions. The first term is dominating
in the case where the radiation pressure is higher than the
plasma pressure, and vice versa. The condition of a negligi-
ble radiative heat flux is the condition that the Peclet
number evaluated with the radiative thermal diffusivity yx,
be large,

Pe,=ho/y,> 1. (21)

In the situations where it is difficult to evaluate the
photon mean free path, the aforementioned upper
(blackbody) estimate for the radiative heat fluxes can be
used to provide a sufficient condition for radiative heat
transport to be negligible. The arguments here go like this:
the maximum possible energy loss from the surface of the
plasma slab (per unit area, per unit time) is that correspond-
ing to the blackbody radiation at the temperature inside the
slab, 26 T#; on the other hand, the plasma energy content
per unit area of the slab surface is (3/2)h(n, + n;)T. Dividing
the second by the first, one finds a lower limit for the radi-
ation cooling time, Tz = (3/2)(Z + )n; Th/26 T#), or

(Z + Dnfcm ™ 3)h(cm)

Tpp(s) = 1.2 x 10724 [TV

(Z + 1p{g cm~*)h(cm)

=TT AT T

(22)
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A sufficient condition that the radiative losses are negligible
is that

Tgg > T, (23)

where 7 is a characteristic hydrodynamical time.

For the optically thin plasma (case b), the cooling is due
to bremsstrahlung, and at some temperatures to line radi-
ation. After finding the cooling time by dividing the energy
density by the radiated power per unit volume, we obtain

o1 ZADTEY)
Tnin($) = 2.4 x 10 Znf{cm™3)Ay
AZ + 1TV

=40 x 1073¢
8 Zp{g om Ay

>, (24)

in which Ay is the normalized cooling rate (Sutherland &
Dopita 1993), in ergs cm® sm~!. For temperatures above
a few keV, the cooling is due to bremsstrahlung, for
which (Book 1987) the cooling rate is Ay=17
x 10725Z2; T(eV)'?, in which ZZ%; is the usual weighted
average of Z2. At lower temperatures the line radiation can
decrease 1,,,;, by up to about 2 orders of magnitude com-
pared to bremsstrahlung. Optically thin regions having
initial shocked temperatures from 30 eV to about 3 keV can
potentially be affected. This is apparently important for the
ring collision, as discussed in § 3.3. Our discussion of heat
conduction by photons as a limit on the applicability of the
Euler equations is now complete.

2.2.4. Viscosity

In seeking systems to which the Euler equations apply,
we also require that viscous effects be unimportant. This
amounts to a condition on the Reynolds number, Re, which
corresponds to the ratio of inertial force to viscous force
(Book 1987). The condition is

Re=%>1, 25)

in which v is the kinematic viscosity. All sources of viscosity
must be added. The photon viscosity is (Jeans 1926a, 1926b;
Thomas 1930)

leoT* LA [TEV)]*
~3x1070 5 0
g 0 e em P
(26)

vrad(cln2 s 1) ~

The particle viscosity again depends on the magne-
tization, and one should take the smaller of the following
two values. In the collisional limit (insignificant magnetic
field), the viscosity of the ions dominates that of the elec-
trons for Z below about 6 and is

[T(eV)]*?
A\/ZZ“ni(cm —3)

B s JA[T(@EV)]??
=33x10"3 AZplgom ) 27

v{em? s71) =2 x 10*?

In the magnetized case, the ion viscosity can be estimated
as ary; v, in which a is a coefficient greater than 1 defined
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by equation (13), and v,; is the ion thermal velocity, defined
as (2/M)'/2, in which M is the ion mass. In practical units,
this is

« 10° aT(eV)

v{em?s 1) =2 ZBG)

. (28)
This again amounts to assuming that the field entanglement
localizes the particles on the scale of ar;;, and the same
considerations regarding transport along B that were dis-
cussed previously apply here. So long as Re is very large, the
uncertainty here is also not significant.

2.3. At What Spatial Scales Does the Euler Similarity
Break Down?

We emphasize again that the hydrodynamic similarity
between laboratory laser experiments and supernovae,
expressed by equations (1)~3), holds even when the system
reaches a deeply nonlinear stage in its evolution. The limit
of applicability of this similarity is set by the validity of
Euler’s equations as an adequate description of the hydro-
dynamics. These equations break down at spatial scales
much less than the global scale h = p/|Vp|, where dissi-
pative processes become important. For example, small-
scale Rayleigh-Taylor (RT) perturbations of characteristic
scale length < h (where A= 1/k = A/2n) have growth
rates (see, e.g., a survey by Kilkenny et al. 1994) yyr ~
(9/h)Y? ~ v/h, where we use an estimate g ~ v?/h for the
effective gravitational acceleration g. The characteristic
time for viscous dissipation (Landau & Lifshitz 1987) at
spatial scales ~Z is 7., ~ A2/v where v is the kinematic
viscosity (§ 2.2.4). Viscosity becomes important for these
perturbations when ., < 1/ygy, meaning A?/v < h/v or,
equivalently, at

Ah < Re 12 (29)

Analogously, the heat conduction effects become important
at

J/h < Pe 12 (30)

If, on a background density variation of scale length A, there
exists a density discontinuity, the RT growth rate scales as
(9/%)2; in this case, the exponents on the right-hand sides
of equations (29) and (30) should be replaced by —2
(Chandrasekhar 1961). Note that Chandrasekhar does not
introduce the estimate g ~ v?/h for the effective gravita-
tional acceleration into his analysis; therefore, his estimates
do not explicitly contain the Reynolds number.

The possible development of turbulence due to the
Kelvin-Helmholtz (KH) instability leads to the generation
of small-scale vortices; the viscous effects become important
when the size of these vortices reaches the level (see Landau
& Lifshitz 1987)

H/h < (Re/Req) >, €3]
where Re,;~10° is the critical Reynolds number that
marks the onset of the KH instability in sheared flow.
Viscous dissipation and the specific value of the Reynolds
number do not affect phenomena occurring at the scale
exceeding expression (31).

Whether the small scales defined by equations (29)—31)
are of importance depends on the specifics of the problem.
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For example, the scales in equation (31) may be important
in causing “ molecular ” mixing of the components and may
affect reaction rates, such as the thermonuclear burn of a
Type I supernova. But such short-scale features may be
unimportant for the dynamic evolution of the system at
larger scales. In particular, they do not affect the simula-
tions of the global properties of the system, such as, for
example, the arrival time of the first RT spikes at the surface
of a star.

3. SPECIFIC SIMULATION EXPERIMENTS

In this section, we apply the results of § 2 to three specific
examples. This involves first specifying the parameters of an
astrophysical system and the corresponding laboratory
system, and then deriving the measures of similarity and of
validity discussed in § 2. We discuss three cases related to
SN 1987A: the exploding star, the young SNR, and the ring
collision. After that, we discuss the possibility of simulating
the objects where radiation plays a more significant role
than in SN 1987A.

3.1. The Exploding Star

We focus on the most hydrodynamically (Rayleigh-
Taylor) unstable region of the exploding star, the He-H
interface, using parameters that correspond to models of
SN 1987A at a time of about 2000 s after the core collapse.
The motivation for studying this issue is the outward thrust
of material under the influence of hydrodynamic insta-
bilities, which allows the core of the star to penetrate
toward the surface. Details of experiments performed with
the Nova laser can be found in Kane et al. (1997) and Remi-
ngton et al. 1997a, 1997b.

The specified parameters for the two cases are given in
Table 1, and are based on numerical simulations by Kane et
al. (1997), as illustrated in Figure 2. Other groups have also
modeled the SN explosion (Hillebrandt et al. 1987; Shigey-
ama, Nomoto, & Hashimoto 1988; Woosley, Pinto, &
Ensman 1988; Arnett, Fryxell, & Muller 1989; Muller et al.
1989). Figure 2 shows the density and pressure distribution
at the time ¢ = 2000 s for the SN 1997A case and t = 20 ns
for the experiment. The spatial scale & listed in Table 1 was
chosen to be the width of the density profile at the half-
maximum level. We define & = h as a reference velocity (the
scaling factor in eq. [3]), where h is the time derivative of h.
The other parameters in the table are evaluated midway
between the two jumps in density. The electron-ion equili-

TABLE 1

SPECIFIED PARAMETERS OF SN He PLASMA AT 2000 s AND
CORRESPONDING Cu PLASMA IN THE
EXPERIMENT AT 20 ns

Value in

Ttem Symbol Value in SN Laboratory
Scale height (cm).......... h 9.0 x 10*° 0.0053
Velocity (kms™1)......... 17 200 1.3
Density (g cm™3) ......... p 0.0075 42
Pressure (dyn cm ™ 2)...... p 3.5 x 103 6.0 x 101
Temperature (€V) ......... T 900 3.8
Zi oo, z 20 15
A e A 4.0 64
Ion density (cm™3)........ n; 1.1 x 10?! 4.0 x 10?2
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F16. 2—Hydrodynamic solutions for the SN and the laboratory
experiment: spatial profiles of the pressure and density for the SN at 2000 s
and the laboratory experiment at 20 ns; note the difference of the horizon-
tal and vertical scales in the two cases.

bration time is short compared to hydrodynamic time-
scales, so the single temperature, T, can characterize the
plasma.

The He and H layers in the SN are at a temperature of
nearly 1 keV, and the plasma is fully ionized. The pressure is
dominated by radiation, as illustrated below. The radiation
pressure is equal to

P..=40T*/3c, (32)

where ¢ is the Stefan-Boltzmann constant and c is the speed
of light. In “ practical ” units,

P_ 4(ergs cm~3) = 46[T(eV)]* . (33)

For a temperature of T = 900 eV, this gives P,,4 = 3 x 1013
ergs cm > =30 Mbar. For comparison, the particle pressure
of the fully ionized helium plasma is equal to

P=3nT, (34)

where ny, is the number density of He ions. In “ practical ”
units,

hulem™3) = 1.5 x 1023p(g cm %), (35a)
plergs cm~3) = 7.2 x 10 p(g cm~3)T(V). (35b)
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Forp=75x10"3gem™3 T =900 eV, from Table 1, one
has p = 4.9 x 10'2 ergs cm ~3=4.9 Mbar, a factor of 6 less
than the radiation pressure.

Table 2 shows the derived parameters, based on the dis-
cussion in § 2, for these systems. The geometric profiles for
density and pressure are similar for the SN and the laser
experiment, as illustrated in Figure 2. Similarity criteria
specified by equation (4) are met to within ~10%. Hence,
the laser experiment and the SN are hydrodynamically
equivalent, provided the four conditions discussed in § 2 are
satisfied. This is the case, as the entries in Table 2 show. The
localization condition (eq. [9]) is satisfied; that is, both
fluids can be treated hydrodynamically. The Peclet number
for electron heat transport (eq. [10]) is large in both cases,
as is the Reynolds number. Although the Reynolds number
is smaller in the laboratory experiment than in the SN, at a
value ~ 105, it remains many orders of magnitude higher
than a typical “critical” Reynolds number corresponding
to the onset of instability in a sheared flow (Re,,; ~10°).
Therefore, it is clear that viscous effects will not alter the
plasma behavior in the laboratory experiment. In the SN
case, the viscosity is dominated by the photon viscosity (see
eq. [26]) and also is negligible.

Note that the states we are comparing in a supernova and
in the laser experiment have been reached long after the
passage of a strong shock. The fact that the states produced
by this strong shock in the SN and the laboratory experi-
ment obey the Euler similarity shows that the initial state of
the experimental package and the time dependence of the
drive have been chosen correctly in the laser experiment.

The entries concerning radiation in Table 2 show that
radiation does not significantly impact the hydrodynamics.
For the SN case, radiation dominates the heat transport, so
the condition (that radiation does not significantly impact
the hydrodynamics) is that Pe, for photons must be large,
which, at a value of ~10°, it is. For the laboratory case,
bremsstrahlung and line transport set the diffusive scale for
the radiation transport. It is difficult to make quantitative
statements with regard to y, in such a situation, in particu-
lar because of the sensitivity of the results to the presence of
dopants. Therefore, we resort to the estimate of the radi-
ative fluxes from above, as described by equations (22) and
(23), and find that the blackbody cooling time (the lower
estimate for the cooling time) is, indeed, much longer than
the characteristic hydrodynamic time.

We can compare the timescales in the two cases using
equation (5). This shows that 1.4 ns in the laboratory experi-
ment corresponds to 130 s in the SN explosion. We can also
compare the Rayleigh-Taylor parameters in these two
cases. We take v to be the velocity of the point of maximum
density. Multiplying the Rayleigh-Taylor growth rate for
the perturbation with k ~ 2/h, ygr ~ (20/h)"/?, by the char-
acteristic time © = h/h, gives the number I" of (linear regime)
e-foldings that occur within this time interval. Thus we
obtain I' = (20h/h*)!/? in this case. The values of this
parameter for the two systems at ¢t = 2000 s and 20 ns are
approximately 2.5—close to each other.

For the next ~500 s (in the SN) after the parameters in
Table 2 are defined, the radius of the interface in the SN
changes by 40%, meaning that within this time interval
effects of spherical geometry are not large. Finally, any
minor differences in the equations of state cannot cause
strong changes in the overall evolution of the system.
Therefore, the hydrodynamic evolution of the two systems
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TABLE 2

DERIVED PARAMETERS OF SN He PLASMA AT 2000 s AND CORRESPONDING Cu PLASMA IN
THE EXPERIMENT AT 20 ns

Value in
Item Symbol Value in SN Laboratory
Hydrodynamics:
EQ () coeeeeeeeee e o/ plp 0.29 0.33
Localization ............c.cecueviinennnnn. I./h 4x 10714 1.1 x 1078
Particulate heat transport:
Thermal diffusivity (¢”) (cm? s Y)...... X 12 x 108 0.38
Peclet number (€7) .....ovevininininnnn. Pe 1.5 x 1012 1.8 x 103
Momentum transport:
Total viscosity (cm? s™%) ................ v 7.0 x 107 35x 1074
Reynolds number ..................c..... Re 2.6 x 101° 1.9 x 10°
Radiation: ...........coevieiiiiiiiiin.n.
Collision mfp (cm) ..........ccoeuvvennnns Ly rems 37,000 34 x 1077
Compton mfp (CM)............cevevnen... Icompton 680 26
Photon diffusivity (cm? s™%) ............ x 6.8 x 10*2
Photon Peclet number-................... Pe, 2.6 x 10°
Blackbody cooling time ................. Tpp/T 580
Coulomb logarithm ........................ A 6 1

over this limited interval of time is indeed similar, including
the evolution of the unstable perturbations.

3.2. The Young SNR

We now apply a similar analysis to the case of a young
SNR. The ejecta from the SN drive a blast wave out
through the ambient circumstellar matter (CSM). In the
young phase of the SNR, this produces a structure including
a forward shock, shocked CSM, a contact discontinuity
between ejecta and CSM, shocked ejecta, and a reverse
shock. We show in Table 3 parameters appropriate to the
shocked ejecta in SN 1987A at about 13 yr and in the
plasma of the laser experiment now in progress at about 8
ns. The values for SN 1987A are based on Suzuki, Shigey-
ama, & Nomoto (1993), while those for the lab experiment
are based on Drake et al. (1998).

The spatial scale height shown in Table 3 is the distance
from the reverse shock to the contact discontinuity in the
two cases. For the characteristic velocity & we have chosen
the velocity of the contact discontinuity. The other param-
eters were evaluated in the dense region of the shocked
ejecta. It is believed that the magnetic field in SNRs is in the
range 10~°-10"* G (Ellison & Reynolds 1991). The mag-

TABLE 3

CHARACTERISTIC PARAMETERS OF SHOCKED EJECTA FOR YOUNG SNR AT
13 yr AND CORRESPONDING LABORATORY EXPERIMENT AT 8 ns

Value in

Item Symbol  Value in SNR  Laboratory
Scale height (cm) ............. h 3.0 x 10 0.01
Drive velocity (km s~ 1)...... v, 9500 65
Density (g cm™3) ............. p 1.0 x 10722 0.6
Pressure (dyn cm™2) ......... p 1.0 x 1073 3.0 x 102
Temperature (€V)............. T 3.0 x 104 15
Z i Z 12 2
A A 1.6 6.5
Ion density (cm ™ 3) ........... n; 40 5.5 x 10?2
Magnetic field (G)............ B 1.0 x 1074 N/A

netic field for SN 1987A is based on Kirk & Wassman
(1992) and Duffy, Ball, & Kirk (1995). There is uncertainty
associated with the use of a single temperature in the SNR,
as the electrons and ions are not rapidly equilibrated by
collisions. (They are very rapidly equilibrated in the experi-
ment.) The ion temperature is determined by the hydrody-
namics, but the electron temperature might be smaller than
T. This uncertainty is unimportant here, however, as it is
magnetization rather than collisions that determines the
electron heat transport in the SNR.

Table 4 shows the derived parameters, based on the dis-
cussion in § 2, for these two systems. A similarity criterion
(eq. [4]) holds with a good accuracy. [ Note that the param-
eter §(p/p)!/? is noticeably larger than 1 because in this case
we have chosen a different (compared to § 3.1) measure of
the velocity: the velocity of a contact discontinuity.] In
addition, the two systems have similar spatial profiles
(Drake et al. 1998), and the driving velocity varies little in
either case over the period for which comparisons are valid
(vears for the SNR and nanoseconds for the laser
experiment). Thus, the basic conditions for Euler similarity
are met, and the laboratory system is a well-scaled hydrody-
namic simulation of the SNR.

The four conditions of § 2 are met for both the SNR and
the laboratory experiment. Both plasmas behave as hydro-
dynamic fluids (see egs. [8] and [9]—the SNR because it is
magnetized (r;;/h < 1), and the experiment because of colli-
sions (I./h € 1). Thermal heat conduction is small in both
systems, as indicated by the large Peclet numbers. Both
systems also have large Reynolds numbers. For both heat
conduction and viscosity, the magnetic field is essential in
determining the behavior of the SNR. Radiation cooling is
small in both cases, although the laser experiment is in the
optically thick regime whereas the SNR is in the optically
thin regime. We thus conclude that the hydrodynamic
behavior of the laboratory system is directly relevant to that
of the remnant of SN 1987A.

For this strongly driven case, the timescales are implied
by equation (6). A timescale of roughly 1 year in the SNR
corresponds to a timescale of 1.5 ns in the laboratory. The
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TABLE 4

DERIVED PARAMETERS OF SHOCKED EJECTA FOR YOUNG SNR AT 13 yr AND
CORRESPONDING LABORATORY EXPERIMENT AT 8 ns

Value in
Item Symbol Value in SNR Laboratory
Hydrodynamics:
EQe (4) oo, P 30 29
Strong drive timescale (s)................ h/v, 3 x 107 1.5x10°°
Localization ...............cocevvennnnnn. ru/h 3x10°8 N/A
Localization .............cccoeieuenennnn.. I./h N/A 1x107°
Particulate heat transport:
Thermal diffusivity (e”) (cm? s™Y)...... X 3 x 1018 5
Peclet number (€7) ...c.ovevinirnennnnn. Pe 107 1.2 x 10*
Momentum transport:
Collisional viscosity (cm? s~ 1).......... v, N/A 9x1073
Photon viscosity (cm? s™1).............. Viad N/A 1073
Magnetized viscosity (cm? s~ 1)......... v, 5 x 106 N/A
Reynolds number ..................cee.n. Re 6 x 108 7 x 10°
Radiation:
Collision Mfp (€M) +..vverereeeeeereennn. Toremms 22 x 10* 9.1 % 10°¢
Compton mfp (€M) ............cceevnen... Icompton 2.5 x 10?2 14
Blackbody cooling time ................. Tpp/T N/A 380
Optically thin cooling ................... Tinin/ T 2.8 x 10° N/A
Coulomb logarithm ........................ A 32 1

upper limit for the time interval over which the evolution of
the two systems is similar is not constrained, except by the
limitations implied in the comparison of the spherical SNR
to a planar experiment.

3.3. The Ring Collision

There is yet no experiment that reproduces all the rele-
vant features of the ring collision in SN 1987A, which turns
out to be a more complicated system. In the experiment of
§ 3.2, simulating the young SNR, the blast wave does
impact dense material, producing a collision between the
ejecta-driven structure and this higher density material in
planar geometry. We discuss below the degree to which this
is a good simulation of the actual ring-collision event. We
further discuss some general issues relevant to the simula-
tion of such ring collisions.

In the case of SN 1987A we base our discussion on the
modeling of Borkowski, Blondin, & McCray (1997), with an
assumed ring density of 32,000 amu cm ~* and CSM density
of 6-100 amu cm 3 just inside the ring. We take & = v, to
be the velocity of the shocked CSM that is incident on the
ring, ~ 10,000 km s~ 1. The shocked CSM beside the ring
takes about 3 yr to pass the ring. It takes another 3 yr to
establish a well-defined bow shock that stops the ejecta
incident on the ring and diverts it around the ring. In the
modeling of Borkowski et al. (1997), there is then a quasi-
steady period of order 10 yr before the destruction of the
ring by hydrodynamic instabilities, including the KH insta-
bilities along the sides, begins to affect the bow shock. In
this model, it takes a few decades to completely destroy the
ring.

The remaining defined parameters for this case are shown
in Table 5.We take h to be 1 ring diameter, or ~10'7 cm (we
assume here that the ring is a toroidal object and refer here
to the minor diameter; the major diameter is ~10'® cm).
This is also the approximate distance between the forward
shock in the CSM and the contact discontinuity between
the CSM and the SN ejecta, at the time when the forward

shock reaches the ring. We evaluate p and p in the shocked
ring material. The magnetic field is taken to be 100 uG, as it
was for the discussion of the young SNR in § 3.2.

The derived parameters are shown in Table 6, to set the
stage for the discussion that follows. Because the ring is
strongly driven by the incoming CSM, it is sensible to
choose ¥ = v, in this case, as we did. This results in a much
larger value of the parameter #(5/p)!/? than we found in the
prior two cases, because the ring is so much denser than
the CSM. This choice has the virtue that the strong drive
timescale, of about 3 yr, does correspond to the timescales
of the evolution of the system just described (a natural
consequence of the time it takes the blast wave to pass
the ring). For comparison, a model experiment with
h ~0.01 cm = 100 ym and v, = 100 km s~ ! would have a
natural timescale of 1 ns. One finds again that the system is
well localized, and that the Peclet number and Reynolds
number are large, although some caveats to this are dis-
cussed below.

In this case, in contrast to those above, radiation losses
are significant. Because of the effects of line radiation, which
were evaluated for a ratio of Fe abundance to H abundance
of one-third solar, as is appropriate to SN 1987A, the initial

TABLE 5
SPECIFIED PARAMETERS OF SHOCKED PLASMA IN THE RING

Item Symbol Value in Ring
Scale height (cm) ............. h 1.0 x 107
Drive velocity (km s~ 1)...... v, 10,000
Density (g cm™3) ............. p 22 x 107t
Pressure (dyn cm ™ 2) ......... p 35x1073
Temperature (eV)............. T 170
Z o VA 12
Ao A 1.6
Ion density (cm %) ........... n 81,000
Magnetic field (G)............ B 1.0 x 1074
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TABLE 6
DERIVED PARAMETERS OF THE SHOCKED PLASMA IN THE RING

Item Symbol  Value in Ring

Hydrodynamics:

EQ () et o/p/p 79

Strong drive timescale (s)................ h/v, 108

Localization ...............cocovuvnnnnnnn. pri/h 108
Particulate heat transport:

Thermal diffusivity (e”) (cm? s~ 1)...... 1 1.5 x 101

Peclet number (€7).....oveenienininnnn.. Pe 7 x 10°
Momentum transport:

Collisional viscosity (cm? s™%).......... v; 3.4 x 10*°

Photon viscosity (cm? s™1).............. Vead N/A

Magnetized viscosity (cm? s™%)......... v; 3 x 1014

Reynolds number ........................ Re 3 x 101!
Radiation:

Collision mfp (cm) ...............cevnene.. Lyrems 1 x 1033

Compton mfp (€M) .....c.oevevnennnenn.. Icompton 1.6 x 10°

Optically thin cooling ................... Tynin/ T 2.3
Coulomb logarithm ........................ A 24

radiation cooling time is only 2.3 times the characteristic 3
yr hydrodynamic timescale. Thus, in the short run, radi-
ation will not play a dominant role in the dynamics of the
interaction of the heated ring plasma with the ejecta, and
the Euler equations may apply. However, the shocked ring
plasma is cool enough to be subject to the thermal cooling
instability. This issue has been discussed by Borkowski et al.
(1997), who concluded that the shocked zone in the ring will
collapse after a few years. Of course, during the collapse,
equations (1) will not describe the evolution, and an experi-
ment intended to simulate this phase would also need to
thermally collapse.

We now consider the degree to which the present experi-
ment is relevant to the ring collision. The shock propagat-
ing in the CSM is a very strong shock. The pressure of the
shocked CSM is much higher than the initial pressure of the
ring material. Therefore, the drive is strong with respect to
both the CSM and the ring material, and the hydrodynamic
similarity between the real SNR and the simulating experi-
ment requires only that the initial spatial density distribu-
tion is geometrically similar in both cases. The relation of
the timescales, during this early phase of the evolution, will
be determined by the temporal dependence of the drive.
This is exemplified, for example, by the time it takes the
shock reflected from the ring to reach the contact discontin-
uity in the SNR. One important feature of the published
analyses of the ring collision is the effects of shock reverber-
ation between the ring and the contact discontinuity in the
SNR (Suzuki et al. 1993; Luo, McCray, & Slavin 1994;
Masai & Nomoto 1994; Borkowski et al. 1997). The exist-
ing experiment may prove able to see this.

There is another caveat, however, in the comparison of
laboratory experiments like that of § 3.2 with the actual ring
collision. There is some chance that heat conduction from
the shocked CSM into the ring will lead to additional ring
heating and expansion. The Peclet number is large, so this
should be at most a local effect, so long as the magnetic field
is in fact entangled on the scale of the ion gydroradius, as
assumed in our discussion of heat transport. However, there
is such a large reservoir of energy in the blast wave, and
there will be such steep temperature gradients across a
narrow layer of magnetic field, that the electron thermal

Vol. 518

conductivity along the magnetic field lines might be large
enough to transport heat into the ring at a significant rate.
Therefore, the cold material of the ring may be heated not
only via the shock heating produced by the forward shock
in the dense material of the ring, but also by the electron
thermal conductivity from the hot surrounding plasma. The
surrounding plasma will be hot because it has been heated
by the much faster shock in the low-density plasma outside
the ring. This depends crucially on the magnitude of the
electron thermal conductivity in the “braided” magnetic
field near the forward shock. It is possible that the initially
cold ring may be heated by electron conduction faster than
the shock wave propagates through it. We believe this issue
deserves further exploration, but this would be beyond the
scope of the present paper.

3.4. Radiative SNRs

In case of SN 1987A, radiative losses are known to be
insignificant before the ring collision because the density of
the surrounding medium is quite low. In contrast, a more
“typical” Type II SN, such as SN 1993J, in which a red
supergiant star explodes, has a much higher ambient
density. In these cases, the radiative losses are thought to be
important (Chevalier 1982; Fransson 1984; Blondin,
Fryxell, & Konigl 1990; Chevalier & Fransson 1994; Che-
valier 1997). To simulate such effects in the laboratory
would require modified experiments, with higher shock-
generated temperatures. In this section we identify plasma
parameters for which the time of radiative cooling of the
plasma is comparable to the hydrodynamic timescales.

We assume that such a laboratory plasma will be opti-
cally thin, or close to it, as is the case for the SNR. For
radiative cooling to significantly affect the hydrodynamics,
we require that the time 7,,;, of the radiative cooling be
smaller than the characteristic gas dynamic time, h/s, where

slcm s™1) = 1.3 x 10° /“ﬂ (36)

is the sound speed for y = 5/3. In other words, we require
that radiation time be less than characteristic convection
time. For the system to remain optically thin, we also
require h < l,ems (€q. [16]). The combined condition
becomes

10-30 YAZ + DP[TEV)]*"
Zp(g cm Ay

5.2 x

A [TEV)]"?
Z[p(g em 1>

The cooling function, however, is more complicated for a
high-density laboratory plasma than it is for an astro-
physical plasma, as continuum lowering and three-body
effects are important, while the distribution of ionization
states and excited states may be both noncoronal and non-
LTE. Here, for cooling, we show the result for bremsstrah-
lung and comment on the impact of line radiation on the
cooling time. (And we again do not attempt to account for
the impact of line radiation on the effective photon mean
free path.) For a given h, 4, and Z, equation (37) can be
formulated as a pair of relations between T and p, with
results shown in Figures 3 and 4 for two cases. Figure 3
shows results for 4 = 1.6, Z = 1.2, and h = 10'® ¢m repre-

< h(cm) < 4.6 x 10711 37)
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F1G. 3—On the spatial scales appropriate to young SNRs, there is a
large difference in density between the density at which radiation domi-
nates over convection (left line) and the density at which the system, would
become optically thick (right line). This figure is based on eq. (37).

sentative for the SNR. In this case there is a large range of
densities for which radiative losses dominate over convec-
tion while the system remains optically thin. The impact of
line radiation will be that the line on the left curves upward
as the density decreases below 107 amu cm ™2 and T drops
below 3000 eV.

In contrast, Figure 4 shows that it is more difficult to
satisfy equation (37) in the laboratory, showing results for
A=12, Z=6, and h=0.01 cm. For bremsstrahlung
cooling, the temperature must exceed 100 eV before radi-
ation losses can exceed convection in an optically thin
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Fic. 4—On the spatial scales of laboratory laser experiments, the
system must be quite warm before the system becomes optically thin and
radiation can dominate convection. Under these conditions, very high
temperatures would be required for the radiation pressure to exceed the
kinetic pressure. This figure is based on eqgs. (37) and (38).
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plasma, whose density must be above 0.1 g cm™3. If the
radiated power is increased, line radiation will again cause
the curve labeled “Radiation > Convection” to be curved
upward as density decreases, so that the “desired regime ”
might possibly be extended to lower densities and tem-
peratures. However, the zone satisfying equation (37) would
nevertheless be rather narrow, and very detailed modeling
would be necessary to establish the feasibility of such a
system. Line radiation might also be increased by doping
the plasma. Based on Figure 4, it appears that one could
produce a layer of plasma with a density of a few tenths of a
gram per cubic centimeter, and a temperature of a few
hundred electron volts that might collapse an order of mag-
nitude or two in size through radiative cooling. Recent
simulations with the two-dimensional radiative hydrody-
namics code LASNEX corroborate this (Estabrook 1998).

It is also of some interest to find conditions under which
the radiation pressure 46T4/3¢c (eqs. [32] and [33]) will
exceed the gas-kinetic pressure n; T(Z + 1), This condition
is

Z+1
[TEV)]® > 2.1 x 1010 % pgem™3),  (38)

and is also shown in Figure 4. The effect of the radiation
pressure on the dynamics of the plasma will be most signifi-
cant if this condition holds and the plasma is optically thick.
From Figure 4 and equation (37), to achieve this for practi-
cal densities (<10 g cm ~ %) would require increasing h, and
thus would involve a much larger experimental system that
those of the 0.01 cm scale discussed here.

4. CONCLUSION

While all phases of SN explosions and SNR development
are commonly modeled with hydrodynamic models, the jus-
tification for doing so changes. In the first phase (t ~ 1000—
40,000 s) the plasma is very strongly collisional, while later
on magnetic fields are required to localize the particles so
that the plasma behaves like a hydrodynamic fluid. We
have evaluated the conditions under which a laboratory
experiment can reasonably simulate SN and SNR pheno-
mena. The laboratory and the astrophysical systems must
be hydrodynamically similar, which involves having both a
similar dimensionless shape and approximately equal
values of the similarity parameter v(p/p)'/%. In addition,
both the laboratory and the astrophysical systems must
satisfy a number of dissipation criteria, such as negligible
heat conduction, viscosity, and radiation. We have also dis-
cussed the requirements on the equation of state. On a
sufficiently small spatial scale, which we have identified, the
similarity between the two systems will break down and
their behavior will differ.

From this analysis, we conclude that there exists a very
broad similarity that allows one to simulate SN and SNR
phenomena in the laboratory, including the effects of three-
dimensional initial perturbations and compressibility.
Simulation experiments in this parameter domain can be
directly mapped to the SN case by scale transformation.

This work was performed under the auspices of the US
Department of Energy by Lawrence Livermore National
Laboratory under contract W-7405-ENG-48 and with
support from the University of Michigan.
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ERRATUM: “SIMILARITY CRITERIA FOR THE LABORATORY SIMULATION OF SUPERNOVA
HYDRODYNAMICS” (1999, ApJ, 518, 821)

D. D. Ryutov, R. P. DRaKE!, J. KaNE, E. LIANG?, B. A. REMINGTON, AND W. M. W0oOD-VASEY?>
Lawrence Livermore National Laboratory, Livermore, CA 94551, USA

We have discovered an error in one of the numerical examples presented in Table 2 of our paper (p. 828). Specifically,
the localization parameter /. /A for the laboratory experiment, presented in the right-most column of Table 2, should
be equal to 2 x 107, not to 1.1 x 1078, (Input parameters used for evaluating /./h via Equation (9) are taken from

Table 1, T = 3.8 eV, n; = 5.5 x 10?> cm™; the parameter A = 1 is taken from the bottom line of Table 2.) This
error does not affect our further discussion and our conclusions.
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