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ABSTRACT
The conditions for validity and the limitations of experiments intended to simulate astrophysical

hydrodynamics are discussed, with application to some ongoing experiments. For systems adequately
described by the Euler equations, similarity criteria required for properly scaled experiments are identi-
Ðed. The conditions for the applicability of the Euler equations are formulated, based on the analysis of
localization, heat conduction, viscosity, and radiation. Other considerations involved in such a scaling,
including its limitations at small spatial scales, are discussed. The results are applied to experiments
aimed at simulating three-dimensional hydrodynamics during supernova explosions and hydrodynamic
instabilities in young supernova remnants. In addition, hydrodynamic situations with signiÐcant radi-
ative e†ects are discussed.
Subject headings : hydrodynamics È instabilities È shock waves È supernova remnants È

supernovae : general È supernovae : individual (SN 1987A)

1. INTRODUCTION

The explosion of a supernova (SN) involves a great
variety of physical processes occurring on very disparate
temporal and spatial scales. Our prime interest in this work
is in a well-deÐned speciÐc group of problems : hydrody-
namic e†ects accompanying the SN explosion and sub-
sequent expansion. Among the most interesting and
important hydrodynamic phenomena are instabilities
caused by the presence of continuous or impulsive acceler-
ation of the Ñuid with radially varying density, namely, the
Rayleigh-Taylor and Richtmyer-Meshkov instabilities.
Another fundamentally important and interesting issue is
the role of radiation in the dynamics of the evolving
plasmas. To accomplish laboratory experiments that are a
scaled simulation of SN hydrodynamic phenomena is a very
challenging problem. At Ðrst, it might seem that laboratory
simulations are impossible, in particular because of the
enormous di†erence in the scales. However, Ðrst steps
(Kane et al. 1997 ; Remington et al. 1997a, 1997b ; Drake et
al. 1998 ; Liang 1996) have been made in this direction with
the use of the Nova laser facility. Here we establish, for-
mally, the conditions for validity and the limitations of such
laboratory simulation experiments.

In this paper we discuss the similarity criteria that deÐne
the parameter domain for scaled simulation experiments.
While our analysis of the scaling from the laboratory to
SNe and supernova remnants (SNRs) is quite general, we
choose two speciÐc examples relevant to SN 1987A for in-
depth discussion. Indeed, the large amount of observational
data obtained during the last decade from SN 1987A in the
Large Magellanic Cloud, and the excitement concerning the
impending collision of the blast wave with the ringlike cir-
cumstellar nebular object situated at a distance of
D5 ] 1017 cm from the star, make this SN a natural refer-
ence point for numerical estimates. The general morphol-
ogy of the SN 1987A event is described in several surveys,
e.g., Arnett et al. (1989), Hillebrandt & (1989),Ho� Ñich
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Chevalier (1992), and McCray (1993). Important results
regarding hydrodynamic aspects of the 1987 supernova can
be found in Muller, Fryxell, & Arnett (1991), Chevalier
(1992), and Chevalier, Blondin, & Emmering (1992).

In ° 2 of the paper, we analyse the problem of scaling
between two systems for the study of hydrodynamic e†ects.
We discuss Ðrst the hydrodynamic problem, identifying
scaling relations from the Euler equations that establish a
connection we describe as Euler similarity. We then con-
sider the conditions that must be met for such a hydrody-
namic scaling to be valid. After that, we seek the limits of
such similarity, in particular, to quantify the small spatial
scale on which it breaks down.

In ° 3 we apply these results to three phases of the SN
1987A explosion : expansion of the progenitor star under
the action of the core explosion, interaction of the expand-
ing SN ejecta with the circumstellar medium, and the colli-
sion of the expanding blast wave with the circumstellar ring.
As a reference point for the Ðrst (explosion) phase, we con-
sider the moment when the shock wave has propagated
approximately halfway through the progenitor, which
occurs a few thousand seconds after the explosion. As a
reference point for the second phase, we take the time
approximately 13 years after the explosion, just before the
shock wave generated in the circumstellar medium reaches
the circumstellar ring of SN 1987A. As a reference point for
the third phase, we take the time of the collision of the blast
wave with the circumstellar ring nebula. We close ° 3 with a
discussion of the requirements for producing hydrodynamic
conditions where radiative e†ects are important.

During all three phases outlined above, the regions of
interest are in the state of an ionized and highly conductive
medium. Therefore, e†ects of a magnetic Ðeld may be
important and should be taken into consideration. To be
sure that the magnetic Ðeld does not have a ““ dynamic ÏÏ
inÑuence on the hydrodynamics of the system under study,
the magnetic Ðeld should be below some upper level deter-
mined by the plasma pressure or the kinetic energy of
hydrodynamic motions. This condition is satisÐed with a
large margin at all three stages of the SN 1987A explosion
discussed here. Accordingly, ordinary hydrodynamics,
without magnetic stresses included, can be used.
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At the same time, during the second and the third phases
discussed here (SNR expansion and collision with ring) the
magnetic Ðeld should exceed a certain level required to
restore the ““ e†ective ÏÏ collisionality in the otherwise essen-
tially collisionless plasma. As we discuss later in the paper,
the magnetic Ðeld in the SN ejecta and in the circumstellar
plasma do exceed this limit. Therefore, the approach based
on the use of ordinary hydrodynamics seems to be adequate
in the analysis of the SN dynamics at all three stages dis-
cussed here.

Our paper is devised to provide a framework that will
allow one, with a reasonable degree of conÐdence, to estab-
lish links between an experiment and an astrophysical
system. Therefore, we do not present or discuss in any detail
results of speciÐc numerical simulations of either the laser
experiment or the supernova event ; rather, we use charac-
teristic parameters based on SN 1987A as a reference point.

We use predominantly the cgs (Gaussian) system, of
units. The temperature is measured in the energy units

In ““ practical ÏÏ numerical estimates we use(kBoltzmann\ 1).
mixed units, which are speciÐed in each case. In the follow-
ing, ° 2 discusses the scaling between laboratory and astro-
physical systems. Section 3 applies these results to the
simulation of an SN, an SNR, and a ring collision, as well as
to the simulation of radiative conditions.

2. THE SCALING PROBLEM

2.1. Conditions for Hydrodynamic Similarity
We Ðrst discuss the conditions under which two systems

will behave identically, on the assumption (discussed later)
that they behave as ideal (i.e., with zero viscosity and
thermal conductivity) compressible hydrodynamic Ñuids
whose evolution is described by the Euler equations. We
later discuss the assumptions that heat transport and
viscous momentum transport are unimportant.

With respect to thermodynamic properties of the matter,
we limit ourselves to the case of a so-called polytropic gas
(e.g., Landau & Lifshitz 1987), in which the energy density
per unit volume, e, is proportional to the pressure, p :
e \ constant ] p. Note that this assumption goes beyond
the assumption of a thermodynamically ideal gas. In partic-
ular, it breaks down for a gas with internal degrees of
freedom that are excited at higher temperatures. It is,
however, a good approximation for a fully ionized gas and
for a gas dominated by radiative pressure. For an adiabatic
process in a gas with e \ constant ] p, one has p P oc, with
the adiabatic index c\ 1 ] (1/constant).

The Euler equations for the polytropic gas read (e.g.,
Landau & Lifshitz 1987)
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in which o is the density, is the Ñuid velocity, and c is an¿
adiabatic index. The Ðrst of these equations is the momen-
tum balance equation, the second is the continuity equa-
tion, and the third is an entropy conservation equation for a
polytropic gas.

Equations (1) remain invariant under the transformation
(bearing the subscript 1) :

r \ ar1 ; o \ bo1 ; p \ cp1 ;

t \ a
Sb

c
t1 ; ¿\

Sc
b

¿1 , (2)

where a, b, and c are arbitrary positive numbers. There is
thus a direct correspondence between any two systems
satisfying equation (2). The matching conditions at the
surface of the shock wave are also invariant under the trans-
formation of equation (2). Therefore, the presence of hydro-
dynamic shocks of arbitrary strength is allowed. We will
refer to the similarity described by equations (2) as the
““ Euler similarity,ÏÏ since it follows directly from the Euler
equations. This similarity is more or less obvious from the
general viewpoint (Zeldovich & Raizer 1966 ; Sedov 1997),
although we have not found it discussed in the published
literature. What is important for our purposes is that it
covers all the aspects of the hydrodynamic instability of the
SN: both Richtmeyer-Meshkov and Rayleigh-Taylor, both
at their linear and nonlinear stages, with their possible
interaction with the Kelvin-Helmholtz instability, and with
full allowance for the compressibility of the medium.

Consider the Euler similarity in an initial-value problem
for a closed hydrodynamic system. Take some initial state
of the system, where the velocity, pressure, and density are

¿ o
t/0 \ v8 F(r/h) , p o

t/0 \ p8 G(r/h) ,

o o
t/0 \ o8 H(r/h) , (3)

with some dimensionless functions F, G, and H. The multi-
pliers as well as the quantity h, are scaling factors.v8 , p8 , o8 ,
Consider now another system, where the functions F, G, and
H remain the same (i.e., the initial state is geometrically
similar to the state of the Ðrst system), but the scaling
factors are di†erent and According to the(v8 1, p8 1, o8 1, h1).last relationship of equation (2), the two systems will behave
similarly if the equality

v8
So8

p8
\ v8 1

So8 1
p8 1

(4)

holds. This equality ensures the similar behavior of the two
systems (provided the initial conditions are geometrically
similar). In choosing where to normalize the functions F, G,
and H, it is useful to select locations that reÑect the problem
under study. Thus, if the instability of a speciÐc interface is
of interest, then taking and near that interface isv8 , o8 , p8
appropriate. This is illustrated in the speciÐc cases discussed
in later sections. The quantity is similar to a Machv8 (o8 /p8 )1@2
number, but need not correspond to any speciÐc Mach
number in a given problem. We suggest that it might be
called the Euler number, that is, Eu\ v8 (o8 /p8 )1@2.

If one compares the evolution of two systems, similar in
the sense of equation (4), and having spatial scales h and h1,then equation (2) implies a relation between the timescales
in the two systems. The second system will evolve identi-
cally to the Ðrst system, on a timescale given by

q1\ q
h1
h
S p8 /o8

p8 1/o8 1
. (5)

Here we have replaced t in equation (2) with a characteristic
value, q. The timescale q can be any physically meaningful
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timescale, such as the characteristic time for h to change, a
shock crossing time, or an instability growth time.

Provided that the similarity conditions are satisÐed, an
experiment done in system (r, o, p, t) or in is(r1, o1, p1, t1)probing identically the same physics, described by equa-
tions (1). This is independent of whether the system experi-
ences strong or weak shocks, decompresses, develops
unstable structures, enters the nonlinear regime, or becomes
turbulent. Note in particular that we have made no assump-
tions with regard to the possible role of compressibility in
the development of these systems. In addition,. within the
limits discussed in ° 2.3, phenomena that occur on some
fraction of the scale h or q in one system map to the same
fraction of or in another system.h1 q1Consider now the important special situation of system
driven by a strong external source of momentum and
energy. One can, for example, think of a piston that is
pushed into the matter. By ““ strong ÏÏ we mean that the
source drives motions with velocities considerably exceed-
ing the initial sound velocity. This is a typical situation both
in supernovae and in the laser experiments on supernova
hydrodynamics.

In the case of strongly driven systems, the similarity cri-
teria become greatly simpliÐed. What matters is only
similar initial spatial distribution of density and similar
time dependence of the drive. The speciÐc values of the
density of the initial scale h, or of the drive velocityo8 , v

d(aside from the requirement that it should be large) do not
matter, because the states behind the shock are governed by
strong shock relationships and, for systems with the same c,
automatically satisfy the conditions of Euler similarity.
Figure 1 illustrates the relation described by equation (4) for
two of the systems discussed below.

In a strongly driven system there exists an obvious

FIG. 1.ÈIdentical hydrodynamic systems, when evaluated in the same
way, have equal values of the parameter (Euler number, Eu). Herev8 (o8 /p8 )1@2
we show lines of constant for some systems discussed here (Tablesv8 (o8 /p8 )1@2
1È4), on axes of system velocity or and a quasi-sonic velocity, (p/o)1@2.(v8 v

d
)

The speciÐc parameters for the systems are also plotted. The upper curve
corresponds to the lower curve corresponds tov8 (o8 /p8 )1@2 \ 3 ; v8 (o8 /p8 )1@2\
0.3.

expression for the timescale,

qD
h
v
d

, (6)

because there is only one parameter of the dimension of
velocity in the problem, the drive velocity unlike thev

d
,

general case described by equations (3), where there are two
parameters, and the initial sound speed. The pressure inv8
the strong-drive case scales as

p8 D o8 v8
d
2 . (7)

To sum up the strong-drive discussion : the two systems
experiencing a strong drive evolve similarly if the following
two conditions are satisÐed : (a) initial density distributions
are similar (including any density nonuniformities) and, (b)
the temporal dependence of the drives is similar.

To get the maximum beneÐt from the similarity just
described, it is advisable to arrange the simulation experi-
ment to have the same adiabatic relation between p and o as
plasma in a real object. The adiabatic index should be
approximately equal to 4/3 for cases in which the radiation
pressure dominates and 5/3 in simulations of fully ionized
regions with a small radiation pressure. Fortunately, the
system under consideration is ““ structurally stable ÏÏ with
respect to moderate variations of the equation of state (the
type of hydrodynamic equations is not changed by these
variations). In other words, the moderate variations of the
equation of state should not bring about any qualitatively
new phenomena. In this sense, the di†erence of the adia-
batic index from the best-Ðt value, as well as modest devi-
ation from the polytropic law, are admissible. What would
be inadmissible, for example, would be a situation where the
equation of state contained steep dependencies on p and o,
such as might occur at a phase transition. But in the range
of temperatures (D5È25 eV) and pressures (D1È5 Mbar)
involved in simulation experiments using sufficiently low-Z
materials, such ““ special ÏÏ features are absent.

2.2. Underlying Assumptions
The Euler equations describe systems that behave as

hydrodynamic Ñuids and in which heat transport and vis-
cosity are unimportant. We assume without further dis-
cussion that gravitational forces are negligible in
comparison with the accelerations caused by the SN explo-
sion. We also assume that any planar experiment is
intended only to model a local region of an evolving SN or
SNR, for a limited time, so that the e†ects of spherical
divergence are not signiÐcant. We organize our discussion
of the validity criteria for EulerÏs equations into four parts.
For EulerÏs equations to be valid, (1) the system needs to be
““ collisional ÏÏ ; (2) energy Ñow by particle heat conduction
needs to be negligible ; (3) energy Ñow by radiation Ñux
needs to be negligible ; and, Ðnally, (4) viscous dissipation
needs to be insigniÐcant. We examine these assumptions in
turn here.

2.2.1. Collisionality

The assumption of Ñuidlike behavior requires that the
particles in the system be localized. The localization must
occur on spatial scales that are small compared to h, the
characteristic spatial scale of the system. Two ways to
achieve this are through magnetic Ðelds or through colli-
sions. One thus requires either or whererLi/h > 1 l

c
/h > 1,
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is the ion Larmor radius and is the collisional meanrLi l
cfree path. Since the energy represented by the driving veloc-

ity is never completely thermalized, and the correspond-v
ding energy can be used as an upper limit on the thermal

velocity of the shocked matter. In this case the localization
condition becomes either

rLi
h

B 10~4 v
d
(cm s~1)

B(G)h(cm)
> 1 , (8)

or

l
c
h

+ 3 ] 1013 T (eV)2
"hn

i
B 8 ] 10~12 v

d
4

"hn
i
> 1 , (9)

in which the units are Gaussian cgs, is the ion density, "n
iis the Coulomb logarithm, and we have usedT B mv

d
2/2,

the ion-ion mean free path from Braginski (1965) for hydro-
gen. Di†erences among species of ions and electrons are
signiÐcant only if the condition is marginal. We note that "
does vary for the range of potential environments discussed
here, but can be taken to be 6 to within a factor of a few.

The issues of localization along the magnetic Ðeld is a
signiÐcant uncertainty here, and in all subsequent dis-
cussions of magnetized parameters. Indeed, if the magnetic
Ðeld were of a regular structure and if plasma micro-
Ñuctuations were completely absent, then the system would
behave anisotropically and the hydrodynamic equations
would not apply. However, solar system studies, laboratory
experiments, and fundamental reasoning all would suggest
that both magnetic entanglement and microscopic Ñuctua-
tions will be present. One way to state the resulting require-
ment is that either magnetic entanglement or
microÑuctuations must localize the system along Ðeld lines
in a distance small compared with gydroradii. In theh/rLiyoung SNR case of ° 3.2 below, this number is so large that
there is no doubt that the system will behave hydrodynami-
cally. The ring-collision case of ° 3.3 is more complicated,
however.

2.2.2. Heat Conduction

The dimensionless parameter that characterizes the role
of di†usive heat transport by particles is the Peclet number
(Book 1987), which corresponds to the ratio of heat convec-
tion to heat conduction. For the hydrodynamic equations
(1) to be valid requires that the Peclet number be large,

Pe\ hv
s

? 1 , (10)

that is, convective (hydrodynamic) transport needs to domi-
nate conduction. Here s is the thermal di†usivity for elec-
trons, which makes the main contribution to the heat
conduction. The thermal di†usivity depends upon whether
the electrons are magnetized, and it can be taken to be the
minimum of the unmagnetized and magnetized values. The
electrons may not be magnetized in the SN and are not in
the laboratory experiments now underway, but are deÐ-
nitely magnetized in the developing SNR. For
unmagnetized electrons, s, based on (Braginski 1965), is

s(cm2 s~1)\ 2 ] 1021 [T (eV)]5@2
"Z(Z] 1)n

i
(cm~3)

\ 3.3] 10~3 A[T (eV)]5@2
"Z(Z] 1)o(g cm~3) . (11)

The numerical coefficient (which varies somewhat with Z)
corresponds to Z\ 2.

For magnetized electrons, evaluation of s is more compli-
cated. The possible presence of plasma microÑuctuations
can strongly inhibit parallel heat Ñux. The inhibition may
also be produced by a stochastization of the magnetic Ðeld
lines. If the characteristic length at which the magnetic Ðeld
line changes its direction by Dn/2 is this length willlmagn,serve as a step size in a random walk that determines elec-
tron heat transport. The corresponding estimate for s reads
as

s D lmagn vTe , (12)

where is the thermal velocity of the electrons, deÐnedvTehere as (2T /m)1@2, with m being the electron mass. If the
magnetic Ðeld entanglement is caused by instabilities of the
Ðre-hose type (e.g., Schmidt, 1966), then a natural scale of

is the ion Larmor radius If entanglement is produc-lmagn rLi.ed by larger scale turbulent plasma motion, then canlmagnconsiderably exceed To reÑect the presence of thisrLi.uncertainty, we introduce a parameter

a 4 lmagn/rLi[ 1 (13)

and write the estimate for the electron thermal di†usivity as

s D avTe rLi . (14)

In practical units, one has

s(cm2 s~1) \ 8.6] 109a JA
Z

T (eV)
B(G)

. (15)

Here again, the exact structure of the magnetic Ðeld and the
exact level of microÑuctuations will determine the heat
transport rate along B. So long as Pe is very large, this
uncertainty will not be signiÐcant.

Note that, although the magnetic Ðeld can be high
enough to a†ect thermal conductivity, its pressure B2/8n is
typically very small compared to the plasma pressure in the
SN (Chevalier & Luo, 1994 ; Jun & Norman, 1996). There-
fore, one can use the Euler equations without magnetic
stresses to describe the SN hydrodynamics.

2.2.3. Radiation Flux

Energy Ñuxes carried by radiation must be small com-
pared with the hydrodynamic energy Ñuxes. The corre-
sponding condition depends upon the system properties,
and there are two cases. (a) If the mean free path of the
photons, is much less than h, then one can evaluate thel6,
radiation contribution to thermal di†usivity, and estab-sc,lish a corresponding Peclet number, which must bePec,large. In some cases (especially in the dense laboratory
plasma with the temperature of the order of a few electron
volts), it is difficult to evaluate without very time-scconsuming numerical simulations. Then, an upper estimate
of the radiative heat Ñux, the blackbody radiation Ñux
(pT 4), may be sufficient to demonstrate that the radiative
losses are negligible. (b) If then the radiative coolingl6 ? h,
time is that corresponding to optically thin emission, qthin.In this case, one requires where q is a character-qthin/q? 1,
istic hydrodynamic time.

In the case of a hot fully ionized plasma of the SN inte-
rior, the mean free path of the photons can be taken to be
min where the mean free path due to inverse(l6brems, l6Thomson),bremsstrahlung, averaged over a Planckian distribution of



No. 2, 1999 LABORATORY SIMULATION OF SUPERNOVA HYDRODYNAMICS 825

photons (the Rosseland mean), in a fully ionized plasma is
(see Book 1987, p. 57, eq. [31])

l6brems(cm)\ 1.7] 1037 [T (eV)]7@2
Z3[n

i
(cm~3)]2

\ 4.6] 10~11 A2[T (eV)]7@2
Z3[o(g cm~3)]2 , (16)

in which T is the temperature and A, Z, and are then
iatomic weight, charge, and density, respectively, of the ions.

The mean free path with respect to Compton scat-l6Thomsontering is

l6Compton(cm)\ 1/[n
e
(cm~3)pT(cm2)]\ 2.5A/Zo(g cm~3) ,

(17)

where cm2 is the Thomsonp
T

\ (8n/3)r
e
2\ 6.6 ] 10~25

cross section, is the electron density, and o is the massn
edensity.

We now can state the limits for the two cases just
described. For case a, an expression for issc

sc \ ic/cv , (18)

where is the radiative thermal conductivity,ic
ic\ 163 l6pT 3 (19)

(e.g., Zeldovich & Raizer, 1966), and is the thermalc
Vcapacity per unit volume,

c
V

\ 16pT 3
c

] 3(Z] 1)n
i

2
. (20)

The Ðrst term here represents the thermal capacity of radi-
ation, whereas the second term represents the thermal
capacity of electrons and ions. The Ðrst term is dominating
in the case where the radiation pressure is higher than the
plasma pressure, and vice versa. The condition of a negligi-
ble radiative heat Ñux is the condition that the Peclet
number evaluated with the radiative thermal di†usivity scbe large,

Pec 4 hv/sc ? 1 . (21)

In the situations where it is difficult to evaluate the
photon mean free path, the aforementioned upper
(blackbody) estimate for the radiative heat Ñuxes can be
used to provide a sufficient condition for radiative heat
transport to be negligible. The arguments here go like this :
the maximum possible energy loss from the surface of the
plasma slab (per unit area, per unit time) is that correspond-
ing to the blackbody radiation at the temperature inside the
slab, 2pT 4 ; on the other hand, the plasma energy content
per unit area of the slab surface is Dividing(3/2)h(n

e
] n

i
)T .

the second by the Ðrst, one Ðnds a lower limit for the radi-
ation cooling time, orqBB \ (3/2)(Z ] 1)n

i
T h/(2pT 4),

qBB(s)\ 1.2] 10~24 (Z] 1)n
i
(cm~3)h(cm)

[T (eV)]3

\ 0.7
(Z] 1)o

i
(g cm~3)h(cm)

A[T (eV)]3 . (22)

A sufficient condition that the radiative losses are negligible
is that

qBB? q , (23)

where q is a characteristic hydrodynamical time.
For the optically thin plasma (case b), the cooling is due

to bremsstrahlung, and at some temperatures to line radi-
ation. After Ðnding the cooling time by dividing the energy
density by the radiated power per unit volume, we obtain

qthin(s) \ 2.4] 10~12 (Z] 1)T (eV)
Zn

i
(cm~3)"

N

\ 4.0] 10~36 A(Z] 1)T (eV)
Zo

i
(g cm~3)"

N
? q , (24)

in which is the normalized cooling rate (Sutherland &"
NDopita 1993), in ergs cm3 sm~1. For temperatures above

a few keV, the cooling is due to bremsstrahlung, for
which (Book 1987) the cooling rate is "

N
\ 1.7

in which is the usual weighted] 10~25Zeff2 T (eV)1@2, Zeff2
average of Z2. At lower temperatures the line radiation can
decrease by up to about 2 orders of magnitude com-qthinpared to bremsstrahlung. Optically thin regions having
initial shocked temperatures from 30 eV to about 3 keV can
potentially be a†ected. This is apparently important for the
ring collision, as discussed in ° 3.3. Our discussion of heat
conduction by photons as a limit on the applicability of the
Euler equations is now complete.

2.2.4. V iscosity

In seeking systems to which the Euler equations apply,
we also require that viscous e†ects be unimportant. This
amounts to a condition on the Reynolds number, Re, which
corresponds to the ratio of inertial force to viscous force
(Book 1987). The condition is

Re\ hv
l

? 1 , (25)

in which l is the kinematic viscosity. All sources of viscosity
must be added. The photon viscosity is (Jeans 1926a, 1926b ;
Thomas 1930)

lrad(cm2 s~1) D l6cpT 4
oc3 B 3 ] 10~9 A

Z
[T (eV)]4

[o(g cm~3)]2 .

(26)

The particle viscosity again depends on the magne-
tization, and one should take the smaller of the following
two values. In the collisional limit (insigniÐcant magnetic
Ðeld), the viscosity of the ions dominates that of the elec-
trons for Z below about 6 and is

l
i
(cm2 s~1) \ 2 ] 1019 [T (eV)]5@2

"JAZ4n
i
(cm~3)

\ 3.3] 10~5 JA[T (eV)]5@2
"Z4o

i
(g cm~3) . (27)

In the magnetized case, the ion viscosity can be estimated
as in which a is a coefficient greater than 1 deÐnedarLi vti,
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by equation (13), and is the ion thermal velocity, deÐnedvtias (2/M)1@2, in which M is the ion mass. In practical units,
this is

l
i
(cm2 s~1)\ 2 ] 108 aT (eV)

ZB(G)
. (28)

This again amounts to assuming that the Ðeld entanglement
localizes the particles on the scale of and the samearLi,considerations regarding transport along B that were dis-
cussed previously apply here. So long as Re is very large, the
uncertainty here is also not signiÐcant.

2.3. At W hat Spatial Scales Does the Euler Similarity
Break Down?

We emphasize again that the hydrodynamic similarity
between laboratory laser experiments and supernovae,
expressed by equations (1)È(3), holds even when the system
reaches a deeply nonlinear stage in its evolution. The limit
of applicability of this similarity is set by the validity of
EulerÏs equations as an adequate description of the hydro-
dynamics. These equations break down at spatial scales
much less than the global scale h 4 o/ o+o o , where dissi-
pative processes become important. For example, small-
scale Rayleigh-Taylor (RT) perturbations of characteristic
scale length n> h (where n\ 1/k \ j/2n) have growth
rates (see, e.g., a survey by Kilkenny et al. 1994) cRT D
(g/h)1@2 D v/h, where we use an estimate g D v2/h for the
e†ective gravitational acceleration g. The characteristic
time for viscous dissipation (Landau & Lifshitz 1987) at
spatial scales Dn is where l is the kinematicqvis D n2/l
viscosity (° 2.2.4). Viscosity becomes important for these
perturbations when meaning n2/l\ h/v or,qvis \ 1/cRT,equivalently, at

n/h \ Re~1@2 . (29)

Analogously, the heat conduction e†ects become important
at

n/h \ Pe~1@2 . (30)

If, on a background density variation of scale length h, there
exists a density discontinuity, the RT growth rate scales as
(g/n)1@2 ; in this case, the exponents on the right-hand sides
of equations (29) and (30) should be replaced by [23(Chandrasekhar 1961). Note that Chandrasekhar does not
introduce the estimate g D v2/h for the e†ective gravita-
tional acceleration into his analysis ; therefore, his estimates
do not explicitly contain the Reynolds number.

The possible development of turbulence due to the
Kelvin-Helmholtz (KH) instability leads to the generation
of small-scale vortices ; the viscous e†ects become important
when the size of these vortices reaches the level (see Landau
& Lifshitz 1987)

n/h \ (Re/Recrit)~3@4 , (31)

where is the critical Reynolds number thatRecritD103
marks the onset of the KH instability in sheared Ñow.
Viscous dissipation and the speciÐc value of the Reynolds
number do not a†ect phenomena occurring at the scale
exceeding expression (31).

Whether the small scales deÐned by equations (29)È(31)
are of importance depends on the speciÐcs of the problem.

For example, the scales in equation (31) may be important
in causing ““molecular ÏÏ mixing of the components and may
a†ect reaction rates, such as the thermonuclear burn of a
Type I supernova. But such short-scale features may be
unimportant for the dynamic evolution of the system at
larger scales. In particular, they do not a†ect the simula-
tions of the global properties of the system, such as, for
example, the arrival time of the Ðrst RT spikes at the surface
of a star.

3. SPECIFIC SIMULATION EXPERIMENTS

In this section, we apply the results of ° 2 to three speciÐc
examples. This involves Ðrst specifying the parameters of an
astrophysical system and the corresponding laboratory
system, and then deriving the measures of similarity and of
validity discussed in ° 2. We discuss three cases related to
SN 1987A: the exploding star, the young SNR, and the ring
collision. After that, we discuss the possibility of simulating
the objects where radiation plays a more signiÐcant role
than in SN 1987A.

3.1. T he Exploding Star
We focus on the most hydrodynamically (Rayleigh-

Taylor) unstable region of the exploding star, the He-H
interface, using parameters that correspond to models of
SN 1987A at a time of about 2000 s after the core collapse.
The motivation for studying this issue is the outward thrust
of material under the inÑuence of hydrodynamic insta-
bilities, which allows the core of the star to penetrate
toward the surface. Details of experiments performed with
the Nova laser can be found in Kane et al. (1997) and Remi-
ngton et al. 1997a, 1997b.

The speciÐed parameters for the two cases are given in
Table 1, and are based on numerical simulations by Kane et
al. (1997), as illustrated in Figure 2. Other groups have also
modeled the SN explosion (Hillebrandt et al. 1987 ; Shigey-
ama, Nomoto, & Hashimoto 1988 ; Woosley, Pinto, &
Ensman 1988 ; Arnett, Fryxell, & Muller 1989 ; Muller et al.
1989). Figure 2 shows the density and pressure distribution
at the time t \ 2000 s for the SN 1997A case and t \ 20 ns
for the experiment. The spatial scale h listed in Table 1 was
chosen to be the width of the density proÐle at the half-
maximum level. We deÐne as a reference velocity (thev8 \ h5
scaling factor in eq. [3]), where is the time derivative of h.h5
The other parameters in the table are evaluated midway
between the two jumps in density. The electron-ion equili-

TABLE 1

SPECIFIED PARAMETERS OF SN He PLASMA AT 2000 S AND

CORRESPONDING Cu PLASMA IN THE

EXPERIMENT AT 20 ns

Value in
Item Symbol Value in SN Laboratory

Scale height (cm) . . . . . . . . . . h 9.0] 1010 0.0053
Velocity (km s~1) . . . . . . . . . v8 200 1.3
Density (g cm~3) . . . . . . . . . o8 0.0075 4.2
Pressure (dyn cm~2) . . . . . . p8 3.5] 1013 6.0] 1011
Temperature (eV) . . . . . . . . . T 900 3.8
Z

i
. . . . . . . . . . . . . . . . . . . . . . . . . . . Z 2.0 1.5

A . . . . . . . . . . . . . . . . . . . . . . . . . . . A 4.0 64
Ion density (cm~3) . . . . . . . . n

i
1.1] 1021 4.0] 1022



No. 2, 1999 LABORATORY SIMULATION OF SUPERNOVA HYDRODYNAMICS 827

FIG. 2.ÈHydrodynamic solutions for the SN and the laboratory
experiment : spatial proÐles of the pressure and density for the SN at 2000 s
and the laboratory experiment at 20 ns ; note the di†erence of the horizon-
tal and vertical scales in the two cases.

bration time is short compared to hydrodynamic time-
scales, so the single temperature, T , can characterize the
plasma.

The He and H layers in the SN are at a temperature of
nearly 1 keV, and the plasma is fully ionized. The pressure is
dominated by radiation, as illustrated below. The radiation
pressure is equal to

Prad\ 4pT 4/3c , (32)

where p is the Stefan-Boltzmann constant and c is the speed
of light. In ““ practical ÏÏ units,

Prad(ergs cm~3)\ 46[T (eV)]4 . (33)

For a temperature of T \ 900 eV, this gives Prad \ 3 ] 1013
ergs cm~3\30 Mbar. For comparison, the particle pressure
of the fully ionized helium plasma is equal to

P\ 3nHeT , (34)

where is the number density of He ions. In ““ practical ÏÏnHeunits,

nHe(cm~3)\ 1.5] 1023o(g cm~3) , (35a)

p(ergs cm~3)\ 7.2] 1011o(g cm~3)T (eV) . (35b)

For o \ 7.5] 10~3 g cm~3, T \ 900 eV, from Table 1, one
has p \ 4.9] 1012 ergs cm~3\4.9 Mbar, a factor of 6 less
than the radiation pressure.

Table 2 shows the derived parameters, based on the dis-
cussion in ° 2, for these systems. The geometric proÐles for
density and pressure are similar for the SN and the laser
experiment, as illustrated in Figure 2. Similarity criteria
speciÐed by equation (4) are met to within D10%. Hence,
the laser experiment and the SN are hydrodynamically
equivalent, provided the four conditions discussed in ° 2 are
satisÐed. This is the case, as the entries in Table 2 show. The
localization condition (eq. [9]) is satisÐed ; that is, both
Ñuids can be treated hydrodynamically. The Peclet number
for electron heat transport (eq. [10]) is large in both cases,
as is the Reynolds number. Although the Reynolds number
is smaller in the laboratory experiment than in the SN, at a
value D106, it remains many orders of magnitude higher
than a typical ““ critical ÏÏ Reynolds number corresponding
to the onset of instability in a sheared Ñow (RecritD103).
Therefore, it is clear that viscous e†ects will not alter the
plasma behavior in the laboratory experiment. In the SN
case, the viscosity is dominated by the photon viscosity (see
eq. [26]) and also is negligible.

Note that the states we are comparing in a supernova and
in the laser experiment have been reached long after the
passage of a strong shock. The fact that the states produced
by this strong shock in the SN and the laboratory experi-
ment obey the Euler similarity shows that the initial state of
the experimental package and the time dependence of the
drive have been chosen correctly in the laser experiment.

The entries concerning radiation in Table 2 show that
radiation does not signiÐcantly impact the hydrodynamics.
For the SN case, radiation dominates the heat transport, so
the condition (that radiation does not signiÐcantly impact
the hydrodynamics) is that for photons must be large,Pecwhich, at a value of D105, it is. For the laboratory case,
bremsstrahlung and line transport set the di†usive scale for
the radiation transport. It is difficult to make quantitative
statements with regard to in such a situation, in particu-sclar because of the sensitivity of the results to the presence of
dopants. Therefore, we resort to the estimate of the radi-
ative Ñuxes from above, as described by equations (22) and
(23), and Ðnd that the blackbody cooling time (the lower
estimate for the cooling time) is, indeed, much longer than
the characteristic hydrodynamic time.

We can compare the timescales in the two cases using
equation (5). This shows that 1.4 ns in the laboratory experi-
ment corresponds to 130 s in the SN explosion. We can also
compare the Rayleigh-Taylor parameters in these two
cases. We take v to be the velocity of the point of maximum
density. Multiplying the Rayleigh-Taylor growth rate for
the perturbation with k D 2/h, by the char-cRTD (2v5 /h)1@2,
acteristic time gives the number ! of (linear regime)q\ h/h5 ,
e-foldings that occur within this time interval. Thus we
obtain in this case. The values of this!\ (2v5 h/h5 2)1@2
parameter for the two systems at t \ 2000 s and 20 ns are
approximately 2.5Èclose to each other.

For the next D500 s (in the SN) after the parameters in
Table 2 are deÐned, the radius of the interface in the SN
changes by 40%, meaning that within this time interval
e†ects of spherical geometry are not large. Finally, any
minor di†erences in the equations of state cannot cause
strong changes in the overall evolution of the system.
Therefore, the hydrodynamic evolution of the two systems
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TABLE 2

DERIVED PARAMETERS OF SN He PLASMA AT 2000 s AND CORRESPONDING Cu PLASMA IN

THE EXPERIMENT AT 20 ns

Value in
Item Symbol Value in SN Laboratory

Hydrodynamics :
Eq. (4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v8 Jo8 /p8 0.29 0.33
Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . l

c
/h 4 ] 10~14 1.1] 10~8

Particulate heat transport :
Thermal di†usivity (e~) (cm2 s~1) . . . . . . s 1.2] 106 0.38
Peclet number (e~) . . . . . . . . . . . . . . . . . . . . . . . Pe 1.5] 1012 1.8] 103

Momentum transport :
Total viscosity (cm2 s~1) . . . . . . . . . . . . . . . . l 7.0] 107 3.5] 10~4
Reynolds number . . . . . . . . . . . . . . . . . . . . . . . . Re 2.6] 1010 1.9] 106

Radiation : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Collision mfp (cm) . . . . . . . . . . . . . . . . . . . . . . . l6brems 37,000 3.4] 10~7
Compton mfp (cm) . . . . . . . . . . . . . . . . . . . . . . . l6Compton 680 26
Photon di†usivity (cm2 s~1) . . . . . . . . . . . . s 6.8] 1012 . . .
Photon Peclet number . . . . . . . . . . . . . . . . . . . Pec 2.6] 105 . . .
Blackbody cooling time . . . . . . . . . . . . . . . . . qBB/q . . . 580

Coulomb logarithm . . . . . . . . . . . . . . . . . . . . . . . . " 6 1

over this limited interval of time is indeed similar, including
the evolution of the unstable perturbations.

3.2. T he Young SNR
We now apply a similar analysis to the case of a young

SNR. The ejecta from the SN drive a blast wave out
through the ambient circumstellar matter (CSM). In the
young phase of the SNR, this produces a structure including
a forward shock, shocked CSM, a contact discontinuity
between ejecta and CSM, shocked ejecta, and a reverse
shock. We show in Table 3 parameters appropriate to the
shocked ejecta in SN 1987A at about 13 yr and in the
plasma of the laser experiment now in progress at about 8
ns. The values for SN 1987A are based on Suzuki, Shigey-
ama, & Nomoto (1993), while those for the lab experiment
are based on Drake et al. (1998).

The spatial scale height shown in Table 3 is the distance
from the reverse shock to the contact discontinuity in the
two cases. For the characteristic velocity we have chosenv8
the velocity of the contact discontinuity. The other param-
eters were evaluated in the dense region of the shocked
ejecta. It is believed that the magnetic Ðeld in SNRs is in the
range 10~5È10~4 G (Ellison & Reynolds 1991). The mag-

TABLE 3

CHARACTERISTIC PARAMETERS OF SHOCKED EJECTA FOR YOUNG SNR AT

13 yr AND CORRESPONDING LABORATORY EXPERIMENT AT 8 ns

Value in
Item Symbol Value in SNR Laboratory

Scale height (cm) . . . . . . . . . . . . . h 3.0] 1016 0.01
Drive velocity (km s~1) . . . . . . v

d
9500 65

Density (g cm~3) . . . . . . . . . . . . . o8 1.0] 10~22 0.6
Pressure (dyn cm~2) . . . . . . . . . p8 1.0] 10~5 3.0] 1012
Temperature (eV) . . . . . . . . . . . . . T 3.0] 104 15
Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z 1.2 2
A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A 1.6 6.5
Ion density (cm~3) . . . . . . . . . . . n

i
40 5.5] 1022

Magnetic Ðeld (G) . . . . . . . . . . . . B 1.0] 10~4 N/A

netic Ðeld for SN 1987A is based on Kirk & Wassman
(1992) and Du†y, Ball, & Kirk (1995). There is uncertainty
associated with the use of a single temperature in the SNR,
as the electrons and ions are not rapidly equilibrated by
collisions. (They are very rapidly equilibrated in the experi-
ment.) The ion temperature is determined by the hydrody-
namics, but the electron temperature might be smaller than
T . This uncertainty is unimportant here, however, as it is
magnetization rather than collisions that determines the
electron heat transport in the SNR.

Table 4 shows the derived parameters, based on the dis-
cussion in ° 2, for these two systems. A similarity criterion
(eq. [4]) holds with a good accuracy. [Note that the param-
eter is noticeably larger than 1 because in this casev8 (o8 /p8 )1@2
we have chosen a di†erent (compared to ° 3.1) measure of
the velocity : the velocity of a contact discontinuity.] In
addition, the two systems have similar spatial proÐles
(Drake et al. 1998), and the driving velocity varies little in
either case over the period for which comparisons are valid
(years for the SNR and nanoseconds for the laser
experiment). Thus, the basic conditions for Euler similarity
are met, and the laboratory system is a well-scaled hydrody-
namic simulation of the SNR.

The four conditions of ° 2 are met for both the SNR and
the laboratory experiment. Both plasmas behave as hydro-
dynamic Ñuids (see eqs. [8] and [9])Èthe SNR because it is
magnetized and the experiment because of colli-(rLi/h > 1),
sions Thermal heat conduction is small in both(l

c
/h > 1).

systems, as indicated by the large Peclet numbers. Both
systems also have large Reynolds numbers. For both heat
conduction and viscosity, the magnetic Ðeld is essential in
determining the behavior of the SNR. Radiation cooling is
small in both cases, although the laser experiment is in the
optically thick regime whereas the SNR is in the optically
thin regime. We thus conclude that the hydrodynamic
behavior of the laboratory system is directly relevant to that
of the remnant of SN 1987A.

For this strongly driven case, the timescales are implied
by equation (6). A timescale of roughly 1 year in the SNR
corresponds to a timescale of 1.5 ns in the laboratory. The
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TABLE 4

DERIVED PARAMETERS OF SHOCKED EJECTA FOR YOUNG SNR AT 13 yr AND

CORRESPONDING LABORATORY EXPERIMENT AT 8 ns

Value in
Item Symbol Value in SNR Laboratory

Hydrodynamics :
Eq. (4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v8 Jo8 /p8 3.0 2.9
Strong drive timescale (s) . . . . . . . . . . . . . . . . h/v

d
3 ] 107 1.5] 10~9

Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rLi/h 3 ] 10~8 N/A
Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . l

c
/h N/A 1 ] 10~6

Particulate heat transport :
Thermal di†usivity (e~) (cm2 s~1) . . . . . . s 3 ] 1018 5
Peclet number (e~) . . . . . . . . . . . . . . . . . . . . . . . Pe 107 1.2] 104

Momentum transport :
Collisional viscosity (cm2 s~1) . . . . . . . . . . l

i
N/A 9 ] 10~3

Photon viscosity (cm2 s~1) . . . . . . . . . . . . . . lrad N/A 10~3
Magnetized viscosity (cm2 s~1) . . . . . . . . . v

i
5 ] 1016 N/A

Reynolds number . . . . . . . . . . . . . . . . . . . . . . . . Re 6] 108 7 ] 106
Radiation :

Collision mfp (cm) . . . . . . . . . . . . . . . . . . . . . . . l6brems 2.2] 1049 9.1] 10~6
Compton mfp (cm) . . . . . . . . . . . . . . . . . . . . . . . l6Compton 2.5] 1022 14
Blackbody cooling time . . . . . . . . . . . . . . . . . qBB/q N/A 380
Optically thin cooling . . . . . . . . . . . . . . . . . . . qthin/q 2.8] 106 N/A

Coulomb logarithm . . . . . . . . . . . . . . . . . . . . . . . . " 32 1

upper limit for the time interval over which the evolution of
the two systems is similar is not constrained, except by the
limitations implied in the comparison of the spherical SNR
to a planar experiment.

3.3. T he Ring Collision
There is yet no experiment that reproduces all the rele-

vant features of the ring collision in SN 1987A, which turns
out to be a more complicated system. In the experiment of
° 3.2, simulating the young SNR, the blast wave does
impact dense material, producing a collision between the
ejecta-driven structure and this higher density material in
planar geometry. We discuss below the degree to which this
is a good simulation of the actual ring-collision event. We
further discuss some general issues relevant to the simula-
tion of such ring collisions.

In the case of SN 1987A we base our discussion on the
modeling of Borkowski, Blondin, & McCray (1997), with an
assumed ring density of 32,000 amu cm~3 and CSM density
of 6È100 amu cm~3 just inside the ring. We take tov8 \ v

dbe the velocity of the shocked CSM that is incident on the
ring, D10,000 km s~1. The shocked CSM beside the ring
takes about 3 yr to pass the ring. It takes another 3 yr to
establish a well-deÐned bow shock that stops the ejecta
incident on the ring and diverts it around the ring. In the
modeling of Borkowski et al. (1997), there is then a quasi-
steady period of order 10 yr before the destruction of the
ring by hydrodynamic instabilities, including the KH insta-
bilities along the sides, begins to a†ect the bow shock. In
this model, it takes a few decades to completely destroy the
ring.

The remaining deÐned parameters for this case are shown
in Table 5.We take h to be 1 ring diameter, or D1017 cm (we
assume here that the ring is a toroidal object and refer here
to the minor diameter ; the major diameter is D1018 cm).
This is also the approximate distance between the forward
shock in the CSM and the contact discontinuity between
the CSM and the SN ejecta, at the time when the forward

shock reaches the ring. We evaluate and in the shockedp8 o8
ring material. The magnetic Ðeld is taken to be 100 kG, as it
was for the discussion of the young SNR in ° 3.2.

The derived parameters are shown in Table 6, to set the
stage for the discussion that follows. Because the ring is
strongly driven by the incoming CSM, it is sensible to
choose in this case, as we did. This results in a muchv8 \ v

dlarger value of the parameter than we found in thev8 (o8 /p8 )1@2
prior two cases, because the ring is so much denser than
the CSM. This choice has the virtue that the strong drive
timescale, of about 3 yr, does correspond to the timescales
of the evolution of the system just described (a natural
consequence of the time it takes the blast wave to pass
the ring). For comparison, a model experiment with
h D 0.01 cm\ 100 km and km s~1 would have av

d
\ 100

natural timescale of 1 ns. One Ðnds again that the system is
well localized, and that the Peclet number and Reynolds
number are large, although some caveats to this are dis-
cussed below.

In this case, in contrast to those above, radiation losses
are signiÐcant. Because of the e†ects of line radiation, which
were evaluated for a ratio of Fe abundance to H abundance
of one-third solar, as is appropriate to SN 1987A, the initial

TABLE 5

SPECIFIED PARAMETERS OF SHOCKED PLASMA IN THE RING

Item Symbol Value in Ring

Scale height (cm) . . . . . . . . . . . . . h 1.0] 1017
Drive velocity (km s~1) . . . . . . v

d
10,000

Density (g cm~3) . . . . . . . . . . . . . o8 2.2] 10~19
Pressure (dyn cm~2) . . . . . . . . . p8 3.5] 10~5
Temperature (eV) . . . . . . . . . . . . . T 170
Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z 1.2
A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A 1.6
Ion density (cm~3) . . . . . . . . . . . n

i
81,000

Magnetic Ðeld (G) . . . . . . . . . . . . B 1.0] 10~4
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TABLE 6

DERIVED PARAMETERS OF THE SHOCKED PLASMA IN THE RING

Item Symbol Value in Ring

Hydrodynamics :
Eq. (4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v8 Jo8 /p8 79
Strong drive timescale (s) . . . . . . . . . . . . . . . . h/v

d
108

Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . oLi/h 10~8
Particulate heat transport :

Thermal di†usivity (e~) (cm2 s~1) . . . . . . s 1.5] 1016
Peclet number (e~) . . . . . . . . . . . . . . . . . . . . . . . Pe 7] 109

Momentum transport :
Collisional viscosity (cm2 s~1) . . . . . . . . . . l

i
3.4] 1019

Photon viscosity (cm2 s~1) . . . . . . . . . . . . . . lrad N/A
Magnetized viscosity (cm2 s~1) . . . . . . . . . l

i
3 ] 1014

Reynolds number . . . . . . . . . . . . . . . . . . . . . . . . Re 3] 1011
Radiation :

Collision mfp (cm) . . . . . . . . . . . . . . . . . . . . . . . l6brems 1 ] 1035
Compton mfp (cm) . . . . . . . . . . . . . . . . . . . . . . . l6Compton 1.6] 1019
Optically thin cooling . . . . . . . . . . . . . . . . . . . qthin/q 2.3

Coulomb logarithm . . . . . . . . . . . . . . . . . . . . . . . . " 24

radiation cooling time is only 2.3 times the characteristic 3
yr hydrodynamic timescale. Thus, in the short run, radi-
ation will not play a dominant role in the dynamics of the
interaction of the heated ring plasma with the ejecta, and
the Euler equations may apply. However, the shocked ring
plasma is cool enough to be subject to the thermal cooling
instability. This issue has been discussed by Borkowski et al.
(1997), who concluded that the shocked zone in the ring will
collapse after a few years. Of course, during the collapse,
equations (1) will not describe the evolution, and an experi-
ment intended to simulate this phase would also need to
thermally collapse.

We now consider the degree to which the present experi-
ment is relevant to the ring collision. The shock propagat-
ing in the CSM is a very strong shock. The pressure of the
shocked CSM is much higher than the initial pressure of the
ring material. Therefore, the drive is strong with respect to
both the CSM and the ring material, and the hydrodynamic
similarity between the real SNR and the simulating experi-
ment requires only that the initial spatial density distribu-
tion is geometrically similar in both cases. The relation of
the timescales, during this early phase of the evolution, will
be determined by the temporal dependence of the drive.
This is exempliÐed, for example, by the time it takes the
shock reÑected from the ring to reach the contact discontin-
uity in the SNR. One important feature of the published
analyses of the ring collision is the e†ects of shock reverber-
ation between the ring and the contact discontinuity in the
SNR (Suzuki et al. 1993 ; Luo, McCray, & Slavin 1994 ;
Masai & Nomoto 1994 ; Borkowski et al. 1997). The exist-
ing experiment may prove able to see this.

There is another caveat, however, in the comparison of
laboratory experiments like that of ° 3.2 with the actual ring
collision. There is some chance that heat conduction from
the shocked CSM into the ring will lead to additional ring
heating and expansion. The Peclet number is large, so this
should be at most a local e†ect, so long as the magnetic Ðeld
is in fact entangled on the scale of the ion gydroradius, as
assumed in our discussion of heat transport. However, there
is such a large reservoir of energy in the blast wave, and
there will be such steep temperature gradients across a
narrow layer of magnetic Ðeld, that the electron thermal

conductivity along the magnetic Ðeld lines might be large
enough to transport heat into the ring at a signiÐcant rate.
Therefore, the cold material of the ring may be heated not
only via the shock heating produced by the forward shock
in the dense material of the ring, but also by the electron
thermal conductivity from the hot surrounding plasma. The
surrounding plasma will be hot because it has been heated
by the much faster shock in the low-density plasma outside
the ring. This depends crucially on the magnitude of the
electron thermal conductivity in the ““ braided ÏÏ magnetic
Ðeld near the forward shock. It is possible that the initially
cold ring may be heated by electron conduction faster than
the shock wave propagates through it. We believe this issue
deserves further exploration, but this would be beyond the
scope of the present paper.

3.4. Radiative SNRs
In case of SN 1987A, radiative losses are known to be

insigniÐcant before the ring collision because the density of
the surrounding medium is quite low. In contrast, a more
““ typical ÏÏ Type II SN, such as SN 1993J, in which a red
supergiant star explodes, has a much higher ambient
density. In these cases, the radiative losses are thought to be
important (Chevalier 1982 ; Fransson 1984 ; Blondin,
Fryxell, & 1990 ; Chevalier & Fransson 1994 ; Che-Ko� nigl
valier 1997). To simulate such e†ects in the laboratory
would require modiÐed experiments, with higher shock-
generated temperatures. In this section we identify plasma
parameters for which the time of radiative cooling of the
plasma is comparable to the hydrodynamic timescales.

We assume that such a laboratory plasma will be opti-
cally thin, or close to it, as is the case for the SNR. For
radiative cooling to signiÐcantly a†ect the hydrodynamics,
we require that the time of the radiative cooling beqthinsmaller than the characteristic gas dynamic time, h/s, where

s(cm s~1) \ 1.3] 106
S(Z] 1)T (eV)

A
(36)

is the sound speed for c\ 5/3. In other words, we require
that radiation time be less than characteristic convection
time. For the system to remain optically thin, we also
require (eq. [16]). The combined conditionh \ l6bremsbecomes

5.2] 10~30 JA(Z] 1)3@2[T (eV)]3@2
Zo(g cm~3)"

N

\ h(cm)\ 4.6] 10~11 A2[T (eV)]7@2
Z3[o(g cm~3)]2 . (37)

The cooling function, however, is more complicated for a
high-density laboratory plasma than it is for an astro-
physical plasma, as continuum lowering and three-body
e†ects are important, while the distribution of ionization
states and excited states may be both noncoronal and non-
LTE. Here, for cooling, we show the result for bremsstrah-
lung and comment on the impact of line radiation on the
cooling time. (And we again do not attempt to account for
the impact of line radiation on the e†ective photon mean
free path.) For a given h, A, and Z, equation (37) can be
formulated as a pair of relations between T and o, with
results shown in Figures 3 and 4 for two cases. Figure 3
shows results for A\ 1.6, Z\ 1.2, and h \ 1016 cm repre-
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FIG. 3.ÈOn the spatial scales appropriate to young SNRs, there is a
large di†erence in density between the density at which radiation domi-
nates over convection (left line) and the density at which the system, would
become optically thick (right line). This Ðgure is based on eq. (37).

sentative for the SNR. In this case there is a large range of
densities for which radiative losses dominate over convec-
tion while the system remains optically thin. The impact of
line radiation will be that the line on the left curves upward
as the density decreases below 107 amu cm~3 and T drops
below 3000 eV.

In contrast, Figure 4 shows that it is more difficult to
satisfy equation (37) in the laboratory, showing results for
A\ 12, Z\ 6, and h \ 0.01 cm. For bremsstrahlung
cooling, the temperature must exceed 100 eV before radi-
ation losses can exceed convection in an optically thin

FIG. 4.ÈOn the spatial scales of laboratory laser experiments, the
system must be quite warm before the system becomes optically thin and
radiation can dominate convection. Under these conditions, very high
temperatures would be required for the radiation pressure to exceed the
kinetic pressure. This Ðgure is based on eqs. (37) and (38).

plasma, whose density must be above 0.1 g cm~3. If the
radiated power is increased, line radiation will again cause
the curve labeled ““ Radiation [ Convection ÏÏ to be curved
upward as density decreases, so that the ““ desired regime ÏÏ
might possibly be extended to lower densities and tem-
peratures. However, the zone satisfying equation (37) would
nevertheless be rather narrow, and very detailed modeling
would be necessary to establish the feasibility of such a
system. Line radiation might also be increased by doping
the plasma. Based on Figure 4, it appears that one could
produce a layer of plasma with a density of a few tenths of a
gram per cubic centimeter, and a temperature of a few
hundred electron volts that might collapse an order of mag-
nitude or two in size through radiative cooling. Recent
simulations with the two-dimensional radiative hydrody-
namics code LASNEX corroborate this (Estabrook 1998).

It is also of some interest to Ðnd conditions under which
the radiation pressure 4pT 4/3c (eqs. [32] and [33]) will
exceed the gas-kinetic pressure This conditionn

i
T (Z ] 1),

is

[T (eV)]3[ 2.1] 1010 Z] 1
A

o(g cm~3) , (38)

and is also shown in Figure 4. The e†ect of the radiation
pressure on the dynamics of the plasma will be most signiÐ-
cant if this condition holds and the plasma is optically thick.
From Figure 4 and equation (37), to achieve this for practi-
cal densities (¹10 g cm~3) would require increasing h, and
thus would involve a much larger experimental system that
those of the 0.01 cm scale discussed here.

4. CONCLUSION

While all phases of SN explosions and SNR development
are commonly modeled with hydrodynamic models, the jus-
tiÐcation for doing so changes. In the Ðrst phase (t D 1000È
40,000 s) the plasma is very strongly collisional, while later
on magnetic Ðelds are required to localize the particles so
that the plasma behaves like a hydrodynamic Ñuid. We
have evaluated the conditions under which a laboratory
experiment can reasonably simulate SN and SNR pheno-
mena. The laboratory and the astrophysical systems must
be hydrodynamically similar, which involves having both a
similar dimensionless shape and approximately equal
values of the similarity parameter v(o/p)1@2. In addition,
both the laboratory and the astrophysical systems must
satisfy a number of dissipation criteria, such as negligible
heat conduction, viscosity, and radiation. We have also dis-
cussed the requirements on the equation of state. On a
sufficiently small spatial scale, which we have identiÐed, the
similarity between the two systems will break down and
their behavior will di†er.

From this analysis, we conclude that there exists a very
broad similarity that allows one to simulate SN and SNR
phenomena in the laboratory, including the e†ects of three-
dimensional initial perturbations and compressibility.
Simulation experiments in this parameter domain can be
directly mapped to the SN case by scale transformation.

This work was performed under the auspices of the US
Department of Energy by Lawrence Livermore National
Laboratory under contract W-7405-ENG-48 and with
support from the University of Michigan.
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ERRATUM: “SIMILARITY CRITERIA FOR THE LABORATORY SIMULATION OF SUPERNOVA
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We have discovered an error in one of the numerical examples presented in Table 2 of our paper (p. 828). Specifically,
the localization parameter lc/h for the laboratory experiment, presented in the right-most column of Table 2, should
be equal to 2 × 10−6, not to 1.1 × 10−8. (Input parameters used for evaluating lc/h via Equation (9) are taken from
Table 1, T = 3.8 eV, ni = 5.5 × 1022 cm−3; the parameter Λ = 1 is taken from the bottom line of Table 2.) This
error does not affect our further discussion and our conclusions.
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