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ABSTRACT
The possibility of measuring the cosmological geometry using the redshift space correlation function of

the Lya forest in multiple lines of sight as a function of angular and velocity separation is discussed. The
geometric parameter to be measured is where H(z) is the Hubble constant andf (z)4 c~1H(z)D

A
(z), D

A
(z)

the angular diameter distance at redshift z. The correlation function is computed in linear theory,
assuming that the Lya forest is a result of gravitational instability in a photoionized intergalactic
medium. We describe a method to measure the correlation from observations with the Gaussianization
procedure of Croft et al. to map the observed Lya forest transmitted Ñux to an approximation of the
linear density Ðeld. The e†ect of peculiar velocities on the shape of the recovered power spectrum is
pointed out. We estimate the error in recovering the f (z) factor from observations due to the variance in
the Lya absorbers. We show that at least D25 pairs of quasars (separations \3@) are needed to dis-
tinguish a Ñat universe from a universe with A second parameter that is)0\ 1 )0\ 0.2, )" \ 0.8.
obtained from the correlation function of the Lya forest is b ^ )(z)0.6/b (a†ecting the magnitude of the
peculiar velocities), where b is a linear theory bias of the Lya forest. In the theory of the Lya forest
assumed here, the parameter b can be predicted from numerical simulations ; once b is known, the
number of quasar pairs needed to constrain f is reduced to about six. On small scales, where the corre-
lation function is higher, f (z) should be measurable with fewer quasars, but nonlinear e†ects must then
be taken into account. The anisotropy of the nonlinear redshift space correlation function as a function
of scale should also provide a precise quantitative test of the gravitational instability theory of the Lya
forest.
Subject headings : cosmology : theory È intergalactic medium È large-scale structure of universe È

quasars : absorption lines

1. INTRODUCTION

One of the methods of measuring the parameters of the
global cosmological metric of the universe is to observe the
angular size and redshift extent of a set of objects, which can
be assumed to be spherically symmetric and to follow the
Hubble expansion on average (Alcock & 1979).Paczyn� ski
More generally, this geometric factor can be measured from
a correlation function of any set of objects depending on
angular separation and redshift di†erence, by requiring that
the correlation be isotropic. It has long been known that
this measurement at high redshift is sensitive primarily to
the cosmological constant (Alcock & 1979). ThePaczyn� ski
power of this method rests on the fact that no assumption of
standard candles or rods is required, and it is therefore
independent of evolutionary e†ects of the observed objects.
However, generally the large-scale correlation of objects in
the universe is induced by gravitational collapse, and the
peculiar velocities make the correlation function in redshift
space anisotropic (Kaiser 1987). The e†ect of peculiar
velocities must be taken into account before the method can
be applied.

Recently, a method has been developed to recover the
power spectrum of mass Ñuctuations from quasar absorp-
tion spectra by measuring the one-dimensional power spec-
trum and converting it to the desired three-dimensional
power spectrum (Croft et al. 1998, hereafter CWKH). This
method su†ers from peculiar velocity distortions similar to
those that distort the isotropy of the correlation in redshift
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space. Here we consider the accuracy in the measurement of
the redshift space correlation function from the Lya forest
in nearby pairs of quasars. We show that it is possible to
disentangle the e†ects of geometry and peculiar velocities
and recover the power spectrum of mass Ñuctuations from
the correlations in the Lya forest. We also demonstrate that
the peculiar velocities are important for correctly deriving
the shape of the power spectrum.

The calculations of this paper assume that the Lya forest
originates in gravitational collapse of a photoionized inter-
galactic medium (IGM) and that it is not signiÐcantly per-
turbed by other e†ects, such as powerful galactic winds
producing shock heating in the IGM. In this theory, the
observed Ñuctuations in optical depth closely track contin-
uous Ñuctuations in the underlying mass density, instead of
coming from a population of discrete absorbers. The widths
of absorption lines are determined mostly by Hubble
expansion as opposed to temperature broadening. Predic-
tions for this theory can be obtained from hydrodynamic
numerical simulations for the various models of structure
formation, and they are found to be in fair agreement with
observations (e.g., Rauch et al. 1997 ; Theuns et al. 1998 and
references therein). The theory is also supported by obser-
vations of quasar pairs, where structures are found to be
correlated on comoving scales of hundreds of kiloparsecs
and smooth on scales that are much smaller (e.g., Bechtold
et al. 1994 ; Dinshaw et al. 1994 ; Fang et al. 1996 ; Crotts &
Fang 1998 ; DÏOdorico et al. 1998).

In ° 2 we summarize the equations describing the cosmo-
logical geometry, discuss the linear theory correlation func-
tion in redshift space, and comment about the e†ect of
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peculiar velocities on the shape of the power spectrum. In
° 3 we use a random line model to estimate the error in the
measurement of f (z) from a given number of observed
quasar spectra. The discussion is given in ° 4. Figures 6È9
contain the main results of this paper.

2. LINEAR THEORY OF THE Lya FOREST CORRELATION

FUNCTION

2.1. Cosmological Geometry
The following is a short summary of the cosmological

equations we will use (these have been discussed earlier in
several papers, e.g., Matsubara & Suto 1996 ; Ballinger,
Peacock, & Heavens 1997). Observations directly measure
the angular and redshift position of each object. We write
the angular and redshift separation between two objects as
(*z, *h). The redshift is caused both by Hubble Ñow veloci-
ties and peculiar velocities along the line of sight(v

h
) (v

p
).

The total velocity separation along the line of sight is
It is also convenient to*v

A
\ c*z/(1 ] z)\ *v

h
] *v

p
.

deÐne a perpendicular velocity separation, *v
M

\ cf (z)*h,
where f (z) is a dimensionless function of redshift that
includes all the dependence on the global cosmological
metric. With the assumption of isotropy, the real space two-
point correlation function of density Ñuctuations

must be a function of only. Ifm
r
(*v

h
, *v

M
) (*v

h
2] *v

M
2 )1@2 m

rcould be measured, it would be a relatively straightforward
matter to measure f (z) by simply demanding isotropy. In
reality, distances cannot be measured accurately, and only
the redshift space correlation function m, which is a†ected
by peculiar velocities, can be determined. The peculiar
velocities introduce an anisotropy in m of the same order as
the di†erence in f (z) between various cosmological models.

The quantity is simplyf (z)4 *v
M
/(c*h)\ c~1H(z)D

A
(z)

the conversion factor between observed angular separation
at redshift z and the corresponding Hubble velocity separa-
tion perpendicular to the line of sight. In the range of red-
shifts of interest for Lya forest observations, f (z) depends
primarily on the cosmological constant (or other negative
pressure components), being smaller compared with the
EinsteinÈde Sitter model. The reason is that the Hubble
constant H(z) at high redshift is smaller in models where the
expansion rate is being accelerated at present. This decrease
in the Hubble constant is greater than the increase in the
angular diameter distance, causing a net decrease in the
value of f (z). In the case of open models, the decrease of H(z)
and increase of almost cancel each other, so f (z) isD

A
(z)

rather insensitive to space curvature.
The function f (z) is predicted for any cosmological

model. If the present density of matter (in units of the criti-
cal density) is and considering also a negative pressure)0,component with density and equation of state p \ wo)"(the case w\ [1 is the cosmological constant), we have, for
an open universe,

f (z)\ E(z) sinh MJ)
R

/0z[dz/E(z)]N
(1] z)J)

R

, (1)

and for a Ñat universe,

f (z)\E(z) /0z[dz/E(z)]
(1] z)

. (2)

Here for a Ñat universe), and)
R

\ 1 [ )0[ )" ()
R

\ 0

E(z)\ J)0(1]z)3])
R
(1]z)2])"(1]z)3(1`w) . (3)

Figure 1 shows the value of f (z) for several illustrative
models. Clearly f (z) depends most strongly on at all)"redshifts ; for zD 3, the dependence on space curvature is
especially small. The fractional di†erence between a cosmo-
logical constant universe and an EinsteinÈde Sitter universe
is maximum around zD 1 but does not decrease signiÐ-
cantly from the maximum at higher redshift. In models with
0 [ w[ [1, f (z) keeps decreasing relative to the EinsteinÈ
de Sitter model up to a higher redshift ; thus, at z\ 4,
models with have a lower value of f (z) for)0\ 0.4 w\ [23than for the pure cosmological constant case w\ [1.
Aside from measuring cosmological parameters, simply
measuring f (z) at high redshift would test the correctness of
currently studied FRW cosmological models in a qualit-
atively novel regime.

2.2. T he Correlation Function in Redshift Space
In linear theory, the redshift space correlation function of

the density Ðeld is given by (Kaiser 1987 ; Lilje & Efstathiou
1989 ; Hamilton 1992 ; Fisher 1995)

m(*v
A
, *v

M
) \ (1] 23 b ] 15 b2)m0(s)

[ (43 b ] 47 b2)m2(s)P2(k)

] ( 835 b2)m4(s)P4(k) , (4)

where are the usuals \ (*v
A
2 ]*v

M
2)1@2, k \ *v

A
/s, P

l
(k)

Legendre polynomials, and

m
l
(s) \ b2

2n2
P
0

=
dk k2P(k) j

l

Cks(1] z)
H(z)

D
. (5)

The functions are the usual spherical Bessel functions,j
l
(x)

and P(k) is the power spectrum of the mass Ñuctuations. The
parameter b is related to the linear theory bias b by
b \ b~1H(z)~1(dD/dt)/D, where D is the linear growth
factor, H(z) is the Hubble constant, and t is the age of the
universe [see Peebles 1993 ; H(z)~1(dD/dt)/D^ )(z)0.6 is a
good approximation in most models].

Equation (4) is valid only in linear theory, and the corre-
lation function m could only be determined directly from
observations if the linear density Ðeld, d, were known. Only
the fraction of the Ñux that is transmitted, F, can be deter-
mined along a line of sight from the Lya forest spectrum in a
quasar (we assume here that the quasar continuum has been
Ðtted to a model, allowing the transmitted Ñux fraction F to
be measured at every pixel). We need a way to recover the
linear density Ðeld d from the observed F. In general, this
cannot be done exactly, since F is only known along a line
of sight, and the chaotic nature of nonlinear evolution limits
the accuracy to which d can be recovered. Here we adopt
the Gaussianization procedure of CWKH (see also Wein-
berg 1992). Gaussianization assumes that the initial mass
density Ñuctuations were Gaussian random and that evolu-
tion approximately preserves the rank order of densities
even as it distorts the distribution from a Gaussian curve. In
the case of the Lya forest, values of the observed Ñux decre-
ment are mapped monotonically onto a new variable d
required to have the probability distribution function

P(d) \ 1

J2nm(0)
exp

C
[ 1

2
d2
m(0)
D

. (6)

Of course, the Ñuctuation amplitude [m(0)]1@2 is not recov-
ered by the assumption that the rank order is preserved.
Computing the correlation function of the Gaussianized
spectrum yields only the ratio m8 (*v, *h) 4 m(*v, *h)/m(0).
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FIG. 1.ÈScale factor relating angular separation to velocity separation
for various cosmological models. (a) The function f (z)4 *v

M
/(c*h)\

computed for (solid line),c~1H(z)D
A
(z) )0\ 1.0, )" \ 0.0 )0\ 0.4, )" \

0.6, w\ [1 (long-dashed line), (short-dashed line), and)0\ 0.3, )" \ 0.0
w\ [2/3 (dotted line). (b) Ratio of f (z) in various)0\ 0.4, )" \ 0.6,

models to its value for The dashed lines are Ñat models)0\ 1, )" \ 0.
with (top), (middle), and (bottom). The dotted)" \ 0.6 )" \ 0.7 )" \ 0.8
lines are models with (top) and (bottom). The)" \ 0 )0\ 0.4 )0\ 0.2
value of f (z) is highly sensitive to primarily because models with a)"cosmological constant have smaller values of the Hubble constant at high
redshift.

Once the new variable d is obtained, the correlation func-
tion may be computed from observations through the usual
estimator given by its deÐnition : m(*¿)\Sd(¿)d(¿] *¿)T,
where symbolizes the vector separation The*¿ (*v

A
, *v

M
).

average is taken over all pairs of pixels separated by in*¿
the spectra available. However, this is not necessarily the
best estimator of m, and in general it should be better to
examine the full two-point joint probability distribution
function. One of the main reasons for this is that the
assumption that the density rank order is preserved should
obviously break down at high optical depths, because the
gas at high densities follows a highly stochastic evolution,
and the observed spectrum is a†ected by multistreaming
and thermal broadening. In addition, when q? 1 the value
of d derived from Gaussianization is subject to large errors
arising from observational noise because of saturation. On
the other hand, at low densities the evolution is not stochas-
tic but regular even in the nonlinear regime, the optical
depth is determined by a single stream, and thermal
broadening can be neglected, so there should be a good
correspondence between the optical depth at a given veloc-
ity and the gas density at the corresponding point in space.

The two-point distribution function for a Gaussian Ðeld
is

P2(d1, d2, *¿) \ 1

2nJm(0)2[ m(*¿)2

] exp
C

[ 1
2

m(0)(d12] d22) [ 2d1 d2 m(*¿)
m(0)2[ m(*¿)2

D
.

(7)

This can be rewritten as

P2(d1, d2, *¿) \ P(d1)
1

J2nm(0)[1[ m8 (*¿)2]

] exp
G

[ 1
2

[d2[ m8 (*¿)d1]2
m(0)[1[ m8 (*¿)2]

H
. (8)

Thus for every value of we can estimate from thed1 m8 (*¿)
distribution of conditional to the value of Ford2 d1.example, one could estimate from the median of (orm8 (*¿) d2any other adequate percentile) and see how the result
depends on Because the Gaussianized transmitted Ñux,d1.d, is actually not a Gaussian Ðeld owing to the nonlinear
evolution, di†erent statistical properties can be measured in
addition to the usual correlation function deÐned as

For example, one can measure them(*¿) \Sd(¿)d(¿ ]*¿)T.
median value of under the condition that is negative,d2 d1as a function of this can probably be obtained with*¿ ;
greater precision than owing to the problems men-m(*¿)
tioned above.

2.3. T he E†ect of Peculiar Velocities on the Power Spectrum
In their reconstruction of the linear power spectrum from

Lya forest lines, CWKH neglect the e†ect of peculiar veloci-
ties on the shape of P(k). This e†ect arises in the conversion
from the measured one-dimensional power spectrum toP1Dthe desired three-dimensional power spectrum WhileP3D.
the shape of is not a†ected by peculiar velocities inP3Dlinear theory (Kaiser 1987), is a†ected as shown byP1DKaiser & Peacock (1991) :

P1D(k
A
) \ 1

2n
P
kA

=
dk kP3D(k)

A
1 ] b

k
A
2

k2
B2

. (9)

To demonstrate how this will a†ect the reconstruction of
CWKH, we substitute a speciÐc into equation (9),P3D(k)
with various values of b. We use the cold dark matter power
spectrum parameterization of Bardeen et al. (1986), with the
coefficients of Ma (1996 ; see ° 3.1 below), and the param-
eters )\ 1, h \ 0.5, and n \ 1.0. We then assume that the
resulting is the one-dimensional power spectrum for theP1DLya forest and attempt to reconstruct the three-dimensional
power spectrum ignoring peculiar velocities (i.e., setting
b \ 0). This yields a new function di†erent from theP3 3D(k),
correct because of the e†ect of peculiar velocities,P3D(k)
which is given by

P3 3D(k) \ P3D(k)(1]b)2[
P
k

=
dk@
C4b

k@
P3D(k@)

A
1]b

k2
k@2
BD

.

(10)

The second term causes the change in the shape of P3 3D(k)
relative to Figure 2 shows the results of this pro-P3D(k).
cedure for various values of b. The error in the recon-
structed power spectrum grows with scale and eventually
causes the results to become negative. The power spectrum
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FIG. 2.ÈDemonstration of the error in the shape of a three-dimensional
power spectrum if it is reconstructed from a one-dimensional power spec-
trum without considering the distortion caused by peculiar velocities. (a)
The power spectrum as it would appear if reconstructed from whileP1D(k)
ignoring peculiar velocity e†ects. T op to bottom : b \ 0.0, 0.2, 0.4, 0.6, 0.8,
and 1.0. The b \ 0 line yields the correct power spectrum. The normal-
ization for all curves is Ðxed at large k, and a Gaussian cuto† has been
applied. (b) The ratio of the reconstructed to the true power spectra. Ignor-
ing peculiar velocities causes an underestimation of the large-scale power.

used in this Ðgure was smoothed by a Gaussian function
with radius h~1 Mpc.2 CWKH found that this wasr

s
\ 0.24

necessary to match the P(k) they reconstructed from simula-
tions.

Thus the shape of the mass power spectrum P3D(k)
cannot be recovered until the parameter b is known. How
can this parameter be determined? One could, in principle,
attempt to determine b from observations in multiple lines
of sight, as described in the next section. The anisotropy of
the correlation function depends on the two parameters b
and f (z). But as we shall see, a very large amount of data will
be required to measure both of them independently. If b can
be predicted from theory, it should be much less difficult to
determine the power spectrum and f (z).

Linear theory would predict b \ 2 for a constant tem-
perature in the IGM, because the optical depth (which is the
quantity that is modiÐed by peculiar velocities in the
mapping from real to redshift space) is proportional to the
neutral hydrogen density or the square of the gas density. In
a photoionized medium, the gas temperature is determined
by a balance of photoionization heating and adiabatic
cooling. The heating rate is proportional to the recombi-
nation rate, ao, and the adiabatic cooling is proportional to
the temperature T . Since a P T ~0.7, the relation T P o0.6 is

2 The value of quoted in CWKH (in the caption of their Fig. 2) wasr
swrong by a factor of 2n (R. A. C. Croft 1998, private communication).

set up if the gas temperature is not a†ected by shocks or
reionization (see Hui & Gnedin 1997 ; Croft et al. 1997).
This leads to a neutral hydrogen density proportional to
ao2P o1.6 and therefore a Lya forest bias b \ 1.6. Since
)(z) ^ 1 at zD 3 for viable models, b ^ 0.6. However, in
reality the bias depends on the relation of optical depth to
the initial density on small scales, where nonlinearities are
important, and therefore the correct bias to use in equations
(6), (9), and (10), where linear theory is applied to large
scales using the Gaussianization approximation, could be
substantially di†erent. Numerical simulations can be used
to calculate a better value for the Lya forest bias (which will
in general depend on redshift), but of course this will only be
accurate if the simulations are modeling the structure of the
Lya forest correctly.

The e†ects of peculiar velocities on the recovery of the
mass power spectrum have independently been pointed out
in a recent paper by Hui (1998), which appeared as this
paper was being completed.

3. ERRORS IN THE MEASUREMENT OF THE Lya FOREST

CORRELATION

In this section, an estimate is obtained of the statistical
error in measuring the parameters of the correlation func-
tion due to the random nature of the absorption lines that
appear in the spectra. A simple model of absorption lines
will be used to generate random spectra that reproduce the
characteristics of the individual Lya forest absorption lines
without the large-scale correlation. We focus on the error
induced by random Ñuctuations in the density Ðeld itself
rather than the errors due to observational noise. The
variance of the density Ðeld dominates the total error
because the intrinsic variability of the Lya forest is much
larger than the observational noise in the high-quality
spectra of quasars that can now be routinely obtained.
Therefore, the measurement of f (z) will be limited by the
number of observed close pairs, and it does not require the
highest quality spectra for the case of wide separations,
when the di†erences between the two parallel spectra are
large.

3.1. Parameterization of the Correlation Function
As discussed in ° 2, two parameters describe the anisot-

ropy of the correlation function : f (z), reÑecting the e†ect of
the cosmological geometry, and b(z), incorporating the
peculiar velocity e†ects. We also parameterize the shape of
the power spectrum to a Ðtting formula for cold dark matter
models,

P(k
s
) \ k

s
n[ ln (1] a1q)/a1q]2

[1] a2q ] (a3q)2] (a4q)3] (a5q)4]1@2 , (11)

where We have reexpressed the power spectrumq 4 k
s
/!(z).

in terms of The free parameters of thisk
s
\ k(1 ] z)/H(z).

model for the shape of the power spectrum are n and !(z)
[given by The formula is given by!(z) \ (1 ] z))0 h2/H(z)].
Bardeen et al. (1986), but we modify the parameters to the
Ðt for )

b
\ 0.05 : a1\ 2.205, a2 \ 4.05, a3\ 18.3, a4\

8.725, and (Ma 1996). In addition, we include aa5\ 8.0
smoothing parameter by multiplying the above formula by
the factor with kmexp ([k

s
2 v

s
2/2), v

s
\ r

s
H(z)/(1 ] z)\ 48

s~1 at z\ 3. This is motivated by the result of CWKH, who
Ðnd that the Lya forest has a power spectrum (after
Gaussianization) that can be well approximated by a



28 MCDONALD & MIRALDA-ESCUDEŠ Vol. 518

smoothed version of the power spectrum of the mass. We Ðx
(rather than to the same value for all models, since thev

s
r
s
)

observations always yield separations in terms of velocity.
In Figure 3 we display the computed along them8 (*v, *h)

line of sight (*h\ 0 ; solid line) and at separations
*h\ 127@@ and *h\ 300@@ (dashed lines) at mean redshift
SzT \ 2.25. Because of the Gaussianization, we measure

The model parameters arem8 (*v, *h)4 m(*v, *h)/m(0).
h \ 0.65, n \ 1.0, and b \ 0.6. These)0\ 1.0, )" \ 0.0,

parameters correspond to f (z)\ 1.61 and !(z)\ 0.0036
(km s~1)~1. Also shown in the Ðgure are the predictions for
a model with f (z)\ 1.39 (the value for )0\ 0.4, )" \ 0.6),
but with !, n, b, and unchanged. The only e†ect of thev

svalue f (z) predicted by di†erent models is to set the scale for
the transverse coordinate. The predicted correlation func-
tion for low f (e.g., for a " model) will be larger at the same
angular separation than the prediction for the EinsteinÈde
Sitter case, simply because the velocity separation for a
given *h is smaller in the low-f model. Note that we are not
discussing the expected change in the correlation function
due to the di†erent initial power spectra of the models. The
change in the shape of the power spectrum in di†erent
models is a small e†ect, which can change the correlation
function itself but does not signiÐcantly a†ect the accuracy
in measuring the ratio of the correlation along and across
the line of sight.

3.2. Analysis of Random Spectra
In this subsection we use a random line model to estimate

the noise in the measurement of We create Lyam8 (*v, *h).
forest spectra using a code that produces lines by randomly

FIG. 3.ÈLinear theory predictions for the correlation function of the
Gaussianized Ñux measured from quasar pairs. The solid and long-dashed
lines are predictions for the correlation function for a Ñat model with

h \ 0.65, and b \ 0.6 [giving f (z)\ 1.61]. The solid line is the)0\ 1.0,
correlation along the line of sight [normalized to 0)\ 1]. The upperm8 (0,
dashed lines are for *h\ 127@@, and the lower dashed lines are for
*h\ 300@@. The short-dashed lines were produced by changing f (z) to 1.39,
appropriate for a Ñat model, without changing the power spec-)" \ 0.6
trum parameters or b (the line-of-sight correlation is the same in each case).
The correlation at a given *h is larger in low-f models (e.g., models with ")
because the implied transverse velocity separation in these models is
smaller.

distributing Voigt proÐles with a speciÐed distribution of
column densities N and widths b. Figure 4 shows a piece of
one of these spectra. We take a set of parameters that
closely match the distribution in the observations (e.g., Kim
et al. 1997). We will consider the mean redshift SzT \ 2.25.
We set the number of lines per unit redshift with column
density greater than 1014 cm~2 to be and setN

;14 \ 50
f (N) P N~1.35 with a break to N~1.7 at log N \ 14.3. We
set the mean b-parameter of the Voigt proÐles to be
SbT \ 30 km s~1, with a Gaussian dispersion of kmp

b
\ 12

s~1 and a lower cuto† of km s~1.bcut \ 24
A spectrum is generated by calculating the transmitted

Ñux at discrete pixels from the list of randomly generated
lines. We then make a transformation of the transmitted
Ñux to a new variable d, requiring that the probability dis-
tribution of d is Gaussian (this is the Gaussianization
procedure). Because the absorption lines are random, there
should be no correlation at separations beyond the width of
the individual components, so any correlation we measure
at larger separations is due to noise. Figure 5 shows the
resulting 0) for a pair of lines. The self-correlation ofm8 (*v,
the individual components due to their own width extends
out to *v^ 130 km s~1. The rms Ñuctuation around the
mean is The errors in m are obviously alsom8 pm8 ^ 0.03.
correlated over D100 km s~1 because of the width of the
lines.

3.3. Estimation of Errors
We now estimate the errors in measuring parameters in

the correlation function from a given set of quasar spectra.
We consider Ðrst as an example the triplet of quasars of
Crotts & Fang (1998), which have a useful redshift range
z^ 2.0È2.5 and separations *h\ 127@@, 147A, and 177A. The
error bars we have computed for are not necessarilym8
Gaussian and certainly not independent, so we use a Monte
Carlo technique. We introduce noise to the calculated
correlation function of a model by adding the noise values

FIG. 4.ÈFlux vs. velocity for a randomly generated spectrum. The
spectra are generated by randomly distributing a set of Voigt proÐles with
number density, column density distribution, and b-parameter distribution
matching observational determinations. The spectra will be Gaussianized
before their correlation function is measured.
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FIG. 5.ÈExample of the estimated correlation function from randomly
generated, Gaussianized spectra, with a total redshift extent *z\ 0.5, at
redshift SzT \ 2.25.

of the correlation measured from spectra of randomly gen-
erated lines (i.e., we sum the curves in Figs. 3 and 5). We
then Ðt the Ðve parameters of the model, minimizing the s2
of the correlation function in linear bins of D45 km s~1,
using the error bars found from the dispersion in the corre-
lation obtained from the spectra of random lines. We repeat
this procedure independently 25 times and Ðt each of the 25
simulated correlation functions separately. This should give
the range of the Ðtted values we would expect to obtain
from data with some Ðxed true parameter values. We do not
use the correlation function at separations less than 300 km
s~1, approximately the scale of nonlinearities. Changing
this restriction to 200 km s~1 results in a small improve-
ment (particularly tighter correlation between f and b) but
does not substantially change our conclusions. Figure 6
shows the results for the f (z)\ 1.61, b \ 0.6 model, Ðtted to
the triplet of quasars described above. We will use this
model for all our examples.

The results shown in Figure 6 indicate that the use of this
triplet of quasars alone is insufficient to distinguish current-
ly popular cosmological models. Figure 1 shows that the
di†erences in f between models with and without a signiÐ-
cant cosmological constant are typically D20%, while the
scatter in measured values of f in Figure 6 is more than a
factor of 2. A larger number of quasar pairs is needed to
reduce the scatter. Figure 7 shows the improvement that
can be expected by combining multiple pairs of quasars at
di†erent angular separations (but still at the same redshift).
Six pairs with separations *h\ 45@@, 75A, 105A, 135A, 165A,
and 195A and with useful redshift range z\ 2.0È2.5 are
combined. The scatter in the results is still too large to allow
a meaningful measurement of f. In Figure 8 we use the same
six angular separations as in Figure 7 but reduce the noise
in the correlation across the line of sight by a factor of 2 and
reduce the noise in the line-of-sight correlation by a factor
of 6. This noise reduction should be equivalent to consider-
ing 24 pairs of quasars, with an additional 384 single
quasars included to improve the measurement of the line-

FIG. 6.ÈExpected scatter in measured parameters. Best-Ðt values for
the parameters b(z) and f (z) are shown for 25 realizations of the spectra of a
triplet of quasars with angular separations 127A, 147A, and 177A, with a
useful redshift range z\ 2.0È2.5. The true parameter values were b(z) \ 0.6
and f (z)\ 1.61. f (z)\ 1.61 corresponds to and at red-)0\ 1.0 )" \ 0.0
shift SzT \ 2.25. Two points with high b do not appear on the plot. The
constraint b º 0 was applied to the Ðts. Obviously the scatter is too large
for an accurate distinction between cosmological models, which di†er in f
by typically D20% (see Fig. 1).

of-sight correlation. Horizontal lines in the Ðgure show the
value of f for di†erent values of With this many quasars,)".
it is just becoming possible to distinguish an EinsteinÈde
Sitter model from a Ñat model with )" \ 0.8.

An independent determination of b, from theory or
numerical simulations, can improve the accuracy of the

FIG. 7.ÈScatter in measured parameters as in Fig. 6, with more
quasars. Best-Ðt values of f and b are shown for 25 random realizations of
six pairs of quasars separated by *h\ 45@@, 75A, 105A, 135A, 165A, and 195A.
The true parameter values were b(z)\ 0.6 and f (z) \ 1.6 ()0\ 1.0,
SzT \ 2.25). The constraint b º 0 was applied to the Ðts. While the scatter
in f is noticeably decreased, it is still much too large to distinguish cosmo-
logical models.
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FIG. 8.ÈResults for Ðts to the same 25 realizations as in Fig. 7, reducing
the noise in the correlation function across the line of sight by a factor of 2
and the noise in the line-of-sight correlation by a factor of 6. This corre-
sponds to the use of Lya forest spectra from 24 pairs of quasars and 384
single quasars. The horizontal dotted lines indicate the theoretical value of
f (z) for three cosmological models. With these large numbers of quasars,
models with low density and a cosmological constant begin to be distin-
guishable from an EinsteinÈde Sitter model.

measurement of f. In Figure 9 we plot the 90% conÐdence
level error bars in the measurement of f for b \ 0.2, 0.6, and
1.0. In these cases, we Ðx the value of b at the assumed value
in the realizations instead of allowing it to vary as in pre-
vious Ðgures. The sets of quasars used are the same six pairs
of Figure 7, so Figure 9 can be compared directly with
Figure 7 to see the e†ect of predicting the peculiar velocity

FIG. 9.ÈEstimate of the scatter in measuring f, assuming that the
parameter b is known theoretically and the same six pairs of quasars as in
Fig. 7 are available. The error bars exclude one point out of 25 realizations
at each extreme, i.e., they represent approximately the 90% conÐdence
range. The true value of f is 1.6 in the random realizations. We show
b \ 0.2, 0.6, and 1.0. In this case, a meaningful measure of f is already
possible with six pairs of quasars.

distortion. The reduction in the error of f once b is known is
very substantial, allowing a cosmologically signiÐcant mea-
surement with only six pairs. For 24 quasar pairs, and when
b is known, the error bars are further reduced by a factor of
2, the 1 p error in f D ^10%.

4. DISCUSSION

We have presented a method for analyzing the Lya forest
spectra along parallel lines of sight in order to extract the
geometric parameter f (z) and the quantity determining the
strength of peculiar velocity distortions b(z) ^ )0.6/b. We
have worked here in the context of the linear regime, where
the correlation function is small and the peculiar velocities
generally cause large-scale structures (with positive or nega-
tive density Ñuctuations) to be Ñattened along the line of
sight. Using the Gaussianization technique of Croft et al.
(1998), one can measure the full redshift space correlation
function and obtain b and f (z). Using a model in which we
distribute a realistic set of discrete lines randomly in space,
we have estimated the statistical errors expected for a mea-
surement of the correlation function. To provide a useful
constraint for distinguishing competing cosmological
models, the value of f must be measured with an accuracy
D20%. At least six pairs of quasars are needed to achieve
that accuracy when b is known theoretically, and many
more pairs are needed if b needs to be determined as well.

There are currently D10 observed quasar pairs that
could be suitable for this test (e.g., Fang et al. 1996 ;
DÏOdorico et al. 1998). If all of the present data were com-
bined and the Lya forest theory understood well enough to
predict b, a cosmologically interesting measurement would
be marginally possible already (see Fig. 9). A factor of a few
increase in the number of pairs is needed for an accurate
cosmological measurement of f and a simultaneous mea-
surement of b. The Sloan Digital Sky Survey (SDSS) will
increase the quasar database by a factor of roughly 10.3 A
systematic error-limited measurement of the cosmological
geometry using the method proposed here may thus be
possible in the near future, along with a detailed test of the
theoretical predictions for peculiar velocity distortions in
the Lya forest.

Even though our results demonstrate that a large data-
base will be needed to constrain the cosmological geometry
from the Lya forest correlation function in the large scales
where Ñuctuations are in the linear regime, we expect that
the parameter f should be easier to measure at smaller
transverse separations in the nonlinear regime. The ampli-
tude of the correlation function is then much larger, so
many fewer pairs of quasars should be needed to measure
the anisotropy of the correlation function to a Ðxed relative
accuracy, which is required to constrain f to interesting
levels. For small separations, the e†ect of peculiar velocities
should be opposite to that in the linear regime : the corre-
lation function should be elongated along the line of sight.
This is caused by the well-known ““ Ðngers of God ÏÏ e†ect in
galaxy redshift surveys (where high-density clusters appear
as highly elongated Ðlaments pointing toward us). In the
Lya forest, the ““ Ðngers of God ÏÏ e†ect is simply the contri-
bution of the internal velocity dispersion (either hydrody-
namic or thermal) of the absorbers to their width.

3 The SDSS survey is described at http ://www.astro.princeton.edu/
BBOOK/SCIENCE/QUASARS/quasars.html.
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The disadvantage of working in the nonlinear regime is
that the anisotropy of the correlation function can only be
predicted with numerical simulations. Therefore, we can
only measure f if we can be certain that numerical simula-
tions are accurate enough. Another important reason to
measure the two-point function in the nonlinear regime is
that it should provide a very powerful test of the results of
numerical simulations and the large-scale structure theories
in which they are based. The full redshift space two-point
function gives a more quantitative test of the theory of the
Lya forest than the measurement of transverse sizes of the
absorbers from coincidences of lines (Crotts & Fang 1998
and references therein).

On the large scales, an alternative to Ðnding a large
number of pairs of bright quasars to measure the anisot-
ropy of the linear correlation function to high accuracy
could be to work with spectra of much fainter but much
more numerous sources. So far, observational studies of the
Lya forest have used bright quasars as sources because of
the desired high resolution and signal-to-noise ratio that
are necessary to measure the properties of individual

absorption lines. But as we have discussed previously, the
limit in the accuracy of measuring the Lya forest correlation
function on large scales is determined by the cosmic
variance of the Lya forest itself rather than the signal-to-
noise ratio or resolution of the observations. Therefore, the
correlation function could in principle be obtained from
spectra of much poorer quality than the usual observations
of bright quasars, as long as a very large number of sources
are observed. Recently, large numbers of galaxies are being
identiÐed at high redshift with the method of the Lyman-
limit break technique (Steidel et al. 1996). Spectra are now
being taken routinely of galaxies in the redshift range 2.5È4,
which have a number density of D1 galaxy per square arc-
minute (Steidel et al. 1998). If the stellar continuum of the
galaxies can be modeled, the Lya forest spectra in these
galaxies could provide a better way to measure the Lya
forest correlation on large scales along and across the line of
sight. The Lyman-limit break galaxies could provide the
best chance to measure the Lya forest transverse correlation
to measure the parameter f (z) to high enough accuracy to
constrain the cosmological geometry.
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