
THE ASTROPHYSICAL JOURNAL, 517 :54È63, 1999 May 20
1999. The American Astronomical Society. All rights reserved. Printed in U.S.A.(

N-POINT CORRELATIONS IN CDM AND )CDM SIMULATIONS

ISTVA� N SZAPUDI,1 THOMAS QUINN, JOACHIM STADEL,2 AND GEORGE LAKE2
Received 1998 October 12 ; accepted 1998 December 29

ABSTRACT
Higher order statistics are investigated in ) cold dark matter (CDM) universes by analyzing 500 h~1

Mpc high-resolution tree N-body simulations with both )\ 1 and )\ 1. The amplitudes of the
N-point correlation functions are calculated from moments of counts-in-cells determined by a pair of
new algorithms especially developed for large simulations. This approach enables massive oversampling
with ^109È1014 cells for accurate determination of factorial moments from up to 47 million particles in
the scale range of 8 h~1 kpcÈ125 h~1 Mpc. Thorough investigation shows that there are three scale
ranges in the simulations : º8 h~1 Mpc, a weakly nonlinear regime where perturbation theory applies
with utmost precision ; 1È8 h~1 Mpc, the nonlinear plateau ; and Ðnally ¹1 h~1 Mpc, a regime where
dynamical discreteness e†ects dominate the higher order statistics. In the physically relevant range of
1È125 h~1 Mpc the results (1) conÐrm the validity of perturbation theory in the weakly nonlinear
regime ; (2) establish the existence of a plateau in the highly nonlinear regime similar to the one observed
in scale-free simulations ; (3) show extended perturbation theory to be an excellent approximation for the
nonlinear regime ; (4) Ðnd the time-dependence of the to be negligible in both regimes ; (5) in com-S

N
Ïs

parison with similar measurements in the Edinburgh-Durham Southern Galaxy Catalog survey, strongly
support )\ 1 with no biasing ; and (6) show that the formulae of Szapudi and Colombi provide a good
approximation for errors on higher order statistics measured in N-body simulations.
Subject headings : cosmology : theory È galaxies : clusters : general È large-scale structure of universe È

methods : data analysis È methods : laboratory

1. INTRODUCTION

According to popular theories of structure formation, the
distribution of mass in the universe grows by gravity from
initially Gaussian Ñuctuations. The resulting distribution is
described in a statistical way, most importantly via two-
point and higher order correlation functions, which can be
studied theoretically using analytical methods or numerical
experiments. Although the comparison of the results with
observations is somewhat complicated by the fact that gal-
axies do not necessarily trace mass (biasing), the manifold
information contained in the higher order correlations in
principle enables the separation of gravitational ampliÐca-
tion from other processes (e.g., Fry 1994 ; Matarrese, Verde,
& Heavens 1997 ; Scoccimarro et al. 1998 ; Frieman &

1999 ; Scoccimarro, Szapudi, & Frieman 1999 ;Gaztan8 aga
Szapudi 1998).

Following the pioneering work of Peebles and collabo-
rators (e.g., Fry & Peebles 1978 ; Peebles 1980 and refer-
ences therein), perturbation theory (PT) became the prime
analytical tool to study higher order correlation functions.
The Euler equations for a gravitating Ñuid are expanded
around small Ñuctuations to predict the amplitudes of the
correlation functions at weakly nonlinear scales. In con-
trast, N-body simulations calculate the gravitational ampli-
Ðcation directly ; thus, up to numerical accuracy, they follow
the full nonlinear evolution. Simulations not only yield
beautiful agreement with PT at large scales, but they also
penetrate the highly nonlinear evolution of smaller scales.
These scales are especially important, since, except for the
largest galaxy catalogs, most observations are performed at
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small or intermediate scales. The method of moments of
counts in cells is especially useful for comparison, since the
moments were calculated in the framework of PT (e.g.,
Peebles 1980 ; Juszkiewicz, Bouchet, & Colombi 1993 ; Ber-
nardeau 1992 ; Bernardeau 1994 ; Bernardeau 1995) and
measured in N-body simulations (e.g., Bouchet, Schae†er, &
Davis 1991 ; Bouchet, & Hernquist 1992 ; Baugh,

& Efstathiou ; & Baugh 1995 ;Gaztan8 aga, Gaztan8 aga,
Colombi, Bouchet, & Hernquist 1995) and galaxy catalogs
as well (e.g., Peebles 1980 ; 1992 ; Szapudi,Gaztan8 aga
Szalay, & 1992 ; Meiksin, Szapudi, & Szalay 1992 ;Boscha� n
Bouchet et al. 1993 ; 1994 ; Szapudi et al. 1995 ;Gaztan8 aga
Szapudi, Meiksin, & Nichol 1996 ; Kim, & Strauss 1998 ;
Szapudi & Szalay 1997a).

While the simplest version of standard cold dark matter
initial conditions appears to be excluded by observations of
the variance as measured by the cosmic microwave back-
ground, cluster abundances, pair-wise velocities, and galaxy
clustering, it is qualitatively the most successful theory,
against which every other theory is measured. In this work
large, high-resolution cold dark matter (CDM) simulations
are used in an attempt to understand clustering with
unprecedented errors in a large dynamic range. Motivated
by observations, a low-density variant of CDM ()CDM) is
investigated as well, since it is one of the most viable alter-
natives at present.

Moments of counts in cells are used to quantify higher
order clustering in the simulations. Similar previous mea-
surements are improved upon in several ways : a large 500
h~1 Mpc box size is used to diminish Ðnite volume e†ects,
i.e., the error on the measurement from Ñuctuations of the
universe on scales larger than the box size ; 47] 106 par-
ticles are used for a large dynamic range ; a pair of new
methods are employed calculate counts in cells, which are
especially designed for large simulations and to minimize
the measurement errors ; for quantitative assessment of the
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accuracy a strict theoretical error analysis is performed
according the formalism of Szapudi & Colombi (1996, here-
after SC) and Szapudi, Colombi, & Bernardeau (1999, here-
after SCB). Because of the above properties, the
measurements are relevant to study both the highly and
mildly nonlinear regimes as well as the transition between
them. Special care is taken to determine the scales of reli-
ability, and appropriate tests are done to estimate the artiÐ-
cial two-body relaxation e†ects, which appear to be the
limiting factor at small scales.

The organization of the paper is as follows : The next
section outlines the method of counts in cells as used here,
° 3 describes the simulations and establishes the scales of
reliability, ° 4 presents the measurements of the cumulants
in the various simulations, and ° 5 discusses Ðndings in
terms of PT and extended perturbation theory (EPT) pro-
viding an efficient framework to compress the results and
facilitating the comparison with observational data from
the Edinburgh-Durham Southern Galaxy Catalog
(EDSGC) survey. The Appendix contains the deÐnition of
the pair of algorithms used to calculate counts in cells.

2. METHOD

A substantially improved version of the counts in cells
method is used in this work.3 It consists of calculating the
amplitudes of higher order correlation functions in a
sequence of three consecutive steps : estimation of the prob-
ability distribution ; calculation of the factorial moments ;
and extraction of the normalized, averaged amplitudes of
the N-point correlation functions, the The relevantS

N
Ïs.

deÐnitions and theory are brieÑy summarized below, while
Szapudi et al. 1996 and references therein can be consulted
for more details.

Let be the probability that a randomly thrown cell inP
Nthe simulation contains N particles, with implicit depen-

dence on the cell size l. The estimator for this is the fre-
quency distribution

P3
N

\ 1
C

;
i/1

C
d(N

i
\ N) , (1)

where C is the number of cells thrown and is the numberN
iof objects in cell i. It is desirable to use as many cells as

possible, since for large C the measurement errors associ-
ated with the Ðnite number of cells behave as C~1 (SC).
Here the main improvement over the more traditional
approach is the pair of algorithms described in the Appen-
dix, which enable us to use C^ 109È1014 even in these large
simulations.

The factorial moments (see, e.g., Szapudi & Szalay 1993)
may be obtained from the probability distribution using

F
k
\ ; P

N
(N)

k
, (2)

where . . . (N [ k ] 1) is the kth falling(N)
k
\N(N [ 1)

factorial of N. The directly estimate the moments of theF
k
Ïs

hypothetical continuum random Ðeld, which is Poisson
sampled by the simulation particles. This is the most accu-
rate and efficient way of subtracting shot noise, which
becomes important on small scales. Note that for estima-

3 Note that in an N-body simulation edge e†ects are eliminated by the
periodic boundary conditions ; therefore the edge-corrected estimator of
Szapudi & Szalay 1998 is not necessary.

tion purposes the estimator of the probability distribution is
substituted in the above equation ; i.e., P3

N
] P

N
.

The average of the N-point angular correlation functions
on a scale l is deÐned by

m6
N
(l) \ V ~N

P
dV1 . . . dV

N
m
N
(r1, . . . , r

N
) , (3)

where is the N-point correlation function in the simula-m
Ntions and V is the volume of a cell. We deÐne in the usualS

Nway,

S
N

\ m6
N

m6 2N~1 . (4)

The factorial moments have an especially simple relation to
the through the recursion relation (Szapudi & SzalayS

N
Ïs

1993), which is quoted for completeness :
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where N
c
\ SNTm6 2.

The most critical and CPU-intensive component of the
above procedure is the calculation of counts in cells with
appropriate oversampling. While there exists an algorithm
for inÐnitely oversampling by Szapudi 1997, it would be
impractical for 47 million particles in three dimensions.
Therefore a new approach was developed especially for
large simulations ; the resulting pair of algorithms for
smaller and larger scales have substantial overlap at inter-
mediate scales suitable for testing. They are detailed in the
Appendix. With a modest 6È8 hr of CPU investment, these
algorithms can achieve C^ 109È1014 sampling cells simul-
taneously at a hierarchy of scales between 1/65536 and 1/4
of the simulation box size.

3. MEASUREMENTS

3.1. Simulations
The characteristics of the simulations used are sum-

marized in Table 1. The box size, particle number, and
force-softening of the large simulations were chosen to
model the formation of galaxy clusters in a volume of the
universe comparable to that to be surveyed by the Sloan
Digital Sky Survey (SDSS; Gunn & Knapp 1993) All simu-
lations were computed using PKDGRAV (Stadel & Quinn
1999), a scalable parallel treecode with periodic boundary
conditions. Accurate forces were maintained by using a cell
opening angle of h \ 0.8 for z\ 2 and h \ 0.6 for z[ 2 and
by expanding the potentials of cells to hexadecapole order.
Time steps were constrained to where v is*t \ 0.3(v/vmax),the softening length and is the approximate maximumvmaxspeed. A cubic spline softening kernel was used. The simula-
tions were started at z\ 49 for the models ; thus thep8\ 1
transients from initial conditions should be negligible
(Scoccimarro 1998). The same simulations were also used
by Governato et al. 1999 to explore the properties of galaxy
clusters. Note that and are the same simulation atI

a
, I

b
, I

cdi†erent output times ; likewise, and are as well.II
a
, II

b
, II

cSimulations . . . are an ensemble of simulations withi
c1 i

c5di†erent realizations of the same initial power spectrum.

3.2. Scales of Reliability
Since both algorithms in the Appendix employ powers of

2, initially the scale range of 2~16 . . . 2~2 times box size was
used for calculating counts in cells, corresponding to 7.63
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TABLE 1

ANALYSIS OF SIMULATIONS

H0 L box v l50
Label ) (km s~1 Mpc~1) p8 (h~1 Mpc) N (h~1 kpc) (h~1 Mpc)

I
a

. . . . . . . . . . . . . . 1.0 50 0.5 500.0 4.7] 107 50.0 4
I
b

. . . . . . . . . . . . . . 1.0 50 0.7 500.0 4.7] 107 50.0 2
I
c

. . . . . . . . . . . . . . 1.0 50 1.0 500.0 4.7] 107 50.0 1
II

a
. . . . . . . . . . . . . 0.5 75 0.74 500.0 4.7] 107 50.0 3

II
b

. . . . . . . . . . . . . 0.4 75 0.88 500.0 4.7] 107 50.0 1.3
II

c
. . . . . . . . . . . . . 0.3 75 1.0 500.0 4.7] 107 50.0 ¹1

i
c0 . . . . . . . . . . . . . . 1.0 50 1.0 500.0 3.0] 106 160.0 13
i
c1 . . . i

c5 . . . . . . 1.0 50 1.0 200.0 3.0] 106 50.0 1

NOTE.ÈValues are as follows : ) is the density parameter, is the Hubble constant, is the RMS densityH0 p8Ñuctuation in 8 h~1 Mpc spheres, is the size of the periodic box, N is the number of particles, and v is the forceL boxsoftening length. Note that are Ðve di†erent realizations of the same initial conditions.i
c1 . . . i

c5

h~1 kpcÈ125 h~1 Mpc. The lower scale is smaller than the
softening length used for force calculation. With our algo-
rithm (A2) for small scales, we could obtain almost arbi-
trarily small scales for free. The upper scale still contains
256 nonoverlapping volumes, sufficient for a distribution
not far from Gaussian. Figure 1 shows the counts in cells
distribution for simulation The curves from right to leftI

c
.

correspond to scales of 1/4, 1/8, . . . , 1/65536L (the box
size). Algorithm (A1) was used for scales down to 1/512L ,
and algorithm (A2) for smaller scales. Algorithm (A1) uses a
Ðxed number of cells C^ 1.1] 109 for all scales, while
algorithm (A2) increases C eightfold at each step toward
smaller scales after starting with the above value. This is
reÑected in Figure 1 by the lowest possible value canP

Ntake. The tail of the distribution still shows some wavering,
which could be smoothed out with even higher over-
sampling. The next section, however, will show that the
resulting measurement errors are much smaller than the
theoretical variance of the simulations ; therefore the sam-
pling is sufficient. The high degree of oversampling was

FIG. 1.ÈCounts in cells distribution for simulation (see text) fromI
cscales of 7.63 h~1 kpc doubling up to 125 h~1 Mpc from left to right. The

scale corresponds to the size of the cubical window. Algorithm (A1) was
used for scales º1 h~1 Mpc, and algorithm (A2) was used for the smaller
scales. Note that the accuracy is as much as 10~14 and at least 10~9.

made possible only by the algorithms of the Appendix spe-
ciÐcally developed for this purpose.

The upper panel of Figure 2 shows the variance, or the
average two-point correlation function over a cell, as calcu-
lated from the Ðrst two factorial moments of simulation I

c
.

The solid curve is algorithm (A1), and the joining dashed
line shows algorithm (A2). The triangles and squares display
the expected variance in cubic windows obtained by inte-
grating the linear and nonlinear power spectrum, respec-
tively [Peacock & Dodds 1996 ; the nonlinear P(k) was
provided by C. Baugh 1998, private communication]. The
Ðtting formula for the nonlinear power spectrum provides a
good approximation, the largest discrepancy being roughly
30% on the smallest scales. The lower resolution simula-
tion, discussed later (Fig. 2, dotted line), is in even better
agreement with the Ðtting formula. While providing a more
accurate Ðtting formula for high-resolution simulations
could be a topic of further investigation, this work concen-

FIG. 2.ÈUpper panel : Joining solid and dashed lines displaying the
measured variance in cubical cells as a function of scale as calculatedm6
with algorithms (A1) and (A2) (solid and dashed lines, respectively). The
triangles and squares are the predictions from the linear and nonlinear
power spectra, respectively. The dotted line is the same for simulation i0.L ower panel : as a function of scale. The line types are the same asN

c
\ m6N1

for the upper panel.
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trates on higher order statistics ; the second-order moment
is only shown as a test.

The higher order factorial moments were calculated as
well from the counts in cells according ° 2. The resulting

up to ninth order are displayed on Figure 3. Again, theS
N
Ïs

solid and dashed lines are the results from the two algo-
rithms of the Appendix for small and large scales. Note the
excellent agreement in the overlap, despite the fact that the
sampling is somewhat di†erent because of the random shifts
employed in algorithm (A2).

Qualitatively, one can distinguish three regimes in Figure
3. The dot-dashed lines display theoretical predictions from
PT (Juszkiewicz et al. 1993 ; Bernardeau 1994) up to sixth
order. The agreement is excellent from scales upward of 8
h~1 Mpc, in the weakly nonlinear regime. Between 1È8 h~1
Mpc in the highly nonlinear regime, the are higher thanS

N
Ïs

the PT prediction because of enhanced nonlinear e†ects.
They constitute a shallow plateau in agreement with pre-
vious results from scale invariant simulations (Colombi et
al. 1995). Finally, downward from 1 h~1 Mpc there seems to
be a third regime with a steeper rise. As illustrated next, this
is caused by artiÐcial particle discreteness e†ects.

The lower panel of Figure 2 plots the numberN
c
\ m6N1 ,

of particles in a typical cluster, as a function of scale ; N
cindicates how well the simulation represents the Ñuid limit.

For small values the dynamics in typical clusters is artiÐ-
cially dominated by particle discreteness e†ects, a dynami-
cal shot noise (Colombi et al. 1995). Such e†ects do not
represent real physics, since particles in the simulation
should follow the dynamics of the underlying smooth Ðeld.
Indeed, at scales smaller than 1 h~1 Mpc, becomes fairlyN

csmall, which likely explains the sharp rise in the S
N
Ïs.

To test this idea, several auxiliary CDM simulations were
run with 3 million particles, and the were measured.S

N
Ïs

Simulation had the same initial conditions and box sizei
c0

FIG. 3.ÈCumulants displayed in increasing order upward up toS
Nninth order as measured in simulation with algorithms (A1) and (A2)I

c(solid and dashed lines, respectively). The dot-dashed lines show the predic-
tions of PT up to sixth order. The dotted lines are similar measurements in
simulation The triangles with error bars display the average and disper-i0.sion of measurements in simulations . . . Only the upper error bar isi1 i5.plotted to reduce clutter.

as the main simulation ; therefore the shot noise is expected
to turn up the on larger scales, if the above explanationS

N
Ïs

is correct. According to the dotted line on the lower panel of
Figure 2, which displays for the break is expected toN

c
i
c0,happen at around 10È15 h~1 Mpc, if the suspected scaling

with is correct. Indeed, this seems to be the case for theN
cdotted lines on Figure 3, supporting the role of particle

discreteness in the artiÐcial increase of the higher order
cumulants.

For another test a set of Ðve simulations were run, . . .i
c1They had smaller box size, 2003 h~1 Mpc3, to keep thei

c5.average number of particles the same as the original simula-
tion. The initial conditions were independently generated
for each realization. The ensemble average of these simula-
tions is expected to yield the same results upward from 1
h~1 Mpc as the original simulation, perhaps with less accu-
racy because of the enhanced cosmic error caused by the
smaller volume (SC). These measurements are displayed as
triangles on Figure 3. The error bars were calculated by
estimating the dispersion of the Ðve simulations i

c1 Èi
c5 ;

only the upper error bar is displayed for clarity. The results
are in excellent agreement with the expectations, further
supporting the idea that the third regime at small scales is a
sign of dynamical discreteness e†ects.

Colombi et al. 1995 found that if is deÐned byl
c

N
c
(l
c
)\

1, a sufficient condition for the Ñuid limit is Thelº 1.5l
c
.

location of the break in the curves suggest a slightly more
conservative limit in such a way that ThisN

c
(l50)\ 50.

somewhat ambiguous prescription depends on the details of
the simulation and the desired precision of the agreement
between the Ñuid limit and the measurements at each order.
Our choice corresponds to 1 h~1 Mpc as the scale of reli-
ability. Note that the accuracy depends on the order, dete-
riorating toward the higher moments. It seems more logical
to relax the required precision toward higher order than to
deÐne a set of scales of reliability becoming larger with
higher order. This somewhat arbitrary but natural choice of
1 h~1 Mpc is adopted for the measurements performed in
the rest of the simulations, but is given for reference inl50Table 1 for each output. Note also that for the two-point
correlation function only, a smaller and a correspond-N

c
,

ingly smaller scale, is sufficient (see, e.g., Jain 1997).

4. RESULTS

According to the previous reasoning, it is meaningful to
extract higher order correlations down to ^1 h~1 Mpc
only ; thus only algorithm (A1) was sufficient for the rest of
the measurements. Although the force resolution would
suggest a lower threshold, as detailed above, particle dis-
creteness e†ects raise the scale of reliability. Six outputs of
two high-resolution CDM simulations summarized in
Table 1 were used to measure(I

a
, I

b
, I

c
, II

a
, II

b
, II

c
,)

counts in cells on scales in the range 1È125 h~1 Mpc.
The measurements of the the main result of thisS

N
Ïs,

paper, are displayed in Figures 4 with solid lines. The )\ 1
and )\ 1 simulations are displayed on the left-hand and
right-hand sides, respectively. For reference, the measured

and are given in Tables 2 and 3 as well. The weaklyS3 S4nonlinear regime on large scales is distinguished from the
nonlinear plateau at small scales in all cases. The behavior
of the higher order moments is qualitatively similar to scale-
invariant simulations (Colombi et al. 1995). PT predicts
that the are independent of the output times. ThisS

N
Ïs

appears to be a good approximation even in the highly
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FIG. 4.ÈMeasurements of 3¹ N ¹ 10, in all simulations are plotted with solid lines, in increasing order upward. The triangles represent the fromS
N
, S

N
Ïs

EPT, when the best Ðt is used.neff

nonlinear regime, especially down to scales of Forl50.
instance, for the )\ 1 simulations on 4 h~1 Mpc for(l50changes only about 5%, which is the same order asI
a
), S3the errors. Even is constant within a factor of 2È3 ; i.e.,S10the higher order moments are constant within the errors

(see next subsection). The decreasing trend on small scales

TABLE 2

TABULATION OF MEASUREMENTS FOR DIFFERENT SIMULATIONSS3
l
(h~1 Mpc) I

a
I
b

I
c

II
a

II
b

II
c

0.976 . . . . . . . 7.98 6.45 5.73 10.22 8.43 7.94
1.953 . . . . . . . 6.41 5.57 5.00 8.49 7.60 7.05
3.9 . . . . . . . . . . 4.61 4.55 4.38 6.09 6.24 6.08
7.81 . . . . . . . . 3.47 3.54 3.56 4.30 4.54 4.78
15.625 . . . . . . 2.87 2.89 2.93 3.38 3.51 3.68
31.25 . . . . . . . 2.43 2.47 2.52 2.87 2.94 2.99
62.5 . . . . . . . . 1.87 1.92 1.96 2.20 2.25 2.29
125 . . . . . . . . . 3.34 2.40 2.07 2.07 2.03 2.00

NOTE.ÈThe properties of simulations can be found in Table 1 ; l
is the size of the cubical window in which counts in cells where
measured.

can be explained by contamination e†ects from particle dis-
creteness. As the scale of reliability moves to the left for the
more relaxed, later simulations, the decrease slightly.S

N
Ïs

These initial observations will be reÐned by comparing with
the predictions of PT and EPT in the next section, after the
error budget is detailed in the next subsection.

4.1. Errors
According to SC, the errors on the previous results can be

classiÐed into measurement errors and cosmic errors.

TABLE 3

TABULATION OF MEASUREMENTS FOR DIFFERENT SIMULATIONSS4
l

(h~1 Mpc) I
a

I
b

I
c

II
a

II
b

II
c

0.976 . . . . . . . 121.1 74.8 58.1 222.7 133.6 121.5
1.953 . . . . . . . 80.0 56.7 44.7 154.4 115.2 96.5
3.9 . . . . . . . . . . 41.4 38.7 34.7 80.7 80.8 74.1
7.81 . . . . . . . . 21.5 22.5 21.8 36.9 40.4 46.7
15.625 . . . . . . 13.4 13.6 14.2 20.1 22.5 25.7
31.25 . . . . . . . 9.1 9.6 10.2 13.8 14.4 14.8

NOTE.ÈSame as Table 2 for S4.
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The measurement errors arise from a Ðnite number of
cells, C, being used to estimate the distribution of counts in
cells. The appropriate expression for the error generating
function is (see SC for details) :

E(x, y)\ (1/C)[P(xy)[ P(x)P(y)] . (6)

The expansion of this equation yields the measurement
error in the Nth moment, which depends on the 2Nth
moment. If C] O, the contribution approaches 0 as
expected. We used this equation self-consistently to obtain
errors up to Ðfth order (since tenth-order moments were
measured). The measurement error is largest at the smallest
scales. Figure 5 shows the relative measurement error as a
function of order for the 1 h~1 Mpc scale for Since thereI

c
.

is a convex curvature on the graph, the continuing dotted
line is a conservative overestimation of the errors for the
orders N [ 5. This suggests that even at tenth order the
measurement errors contribute less than 10%; thus a
further increase in the sampling is not required. This Ðnding
is true for the other simulations as well.

Cosmic errors are an inherent property of the simulations
and cannot be improved upon except by using a larger
volume or an ensemble of realizations. This type of error
can be classiÐed as Ðnite volume, discreteness, and edge
e†ects (SC). They arise, respectively, from the (hypothetical)
Ñuctuations on scales larger than the simulation, the Ðnite
number of particles used to model the density Ðeld, and the
uneven weighting of points. Because of the periodic bound-
ary conditions, edge e†ects are not signiÐcant ; neither are
discreteness e†ects, except for the smallest scales because of
the large number or particles used. Therefore Ðnite volume
e†ects are expected to be the dominant contribution if sys-
tematic errors from the inaccuracy of the calculations are
not considered.

Two methods were used for estimating the cosmic errors :
measuring the dispersion numerically from the ensemble of
simulations . . . (see the error bars in Fig. 3) and usingi

c1 i
c5

FIG. 5.ÈRelative measurement errors are plotted as a function of order.
For N ¹ 5 the errors were calculated with the formulae of SC. The dotted
line is a conservative extrapolation of the calculations, which is likely to
overestimate the actual errors.

the theory of (SC; SCB) to estimate the errors from the
measured higher order moments self-consistently up to
fourth order. The details of the calculations can be found
there ; here we only summarize the basic idea.

SC calculated the generating function of the variance of
factorial moments due to edge, discreteness, and Ðnite
volume e†ects. Since the connected moments can be
expressed in terms of the factorial moments (which are the
discrete version of the disconnected moments), their results
can be used to express the errors on the connected moments
(see SCB for more details). The resulting formulae express
the errors on the Nth-order connected moments in terms of
the 2Nth connected moments for N ¹ 4. The expressions
are too complicated to quote here (they are over 500 lines
long) ; therefore only the self-consistent numerical estimates
are used. For the case of the connected moments it is not
possible to simply separate the di†erent contributions for
the errors. Therefore discreteness and edge e†ects are
included in the calculations, even though this way the errors
could be overestimated at large scales according to the pre-
vious considerations.

Figure 6 compares the numerical estimates of the theo-
retical error calculation (see also Colombi, Szapudi, & the
Virgo Collaboration 1999) The solid line displays the
unbiased estimate of the variance for and and theS3, S4,dotted lines show the theoretical calculation of the errors in
the individual simulations . . . The dashes are thei

c1 i
c5.result of a theoretical calculation as well but using the

ensemble average of the Ðve simulations for the moments.
While the theoretical estimates from the individual simula-
tions are in excellent agreement with the empirical disper-
sion, the average of the Ðve simulations curiously
overestimates the errors, especially on larger scales. A pos-
sible explanation is that since the error distribution is
skewed (SC), a few overshoots can dominate the average.

FIG. 6.ÈAbsolute errors for and are plotted for simulations . . .S3 S4 i1The lower set of curves represent the upper set represent Thei5. S3 ; S4.solid lines show the errors estimated by calculating the variance in the Ðves
simulations. The dotted lines show the theoretical error for each of the Ðve
simulations calculated from the measured cumulants self-consistently. The
dashed lines are the errors estimated from moments determined by the
ensemble average of the Ðve simulations.
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FIG. 7.ÈTheoretical errors for and are shown in simulationsS3 S4The lower set of curves refer to the upper setI
a
, I

b
, I

c
, II

a
, II

b
, II

c
. S3 ;

refer to Within each set there are two solid lines with approximatelyS4.matching dotted lines. The upper quadruplet refers to simulations theII
*

;
lower one refers to The solid lines show the dispersion measured inI

*
.

simulations . . . scaled with of (lower set), and (upper set),i1 i5 2(m6 )1@2 I
c

II
crespectively. The three dotted lines in each quadruplet display the di†erent

output times a, b, c.

This is ampliÐed by the nonlinear expressions used to esti-
mate the errors. The agreement nevertheless is surprisingly
good, despite the anticipated ““ error on the error ÏÏ problem
(SC) : the error on the fourth-order moment depends on
eighth-order quantities, and the error on the error depends
on up to sixteenth-order moments. To determine empiri-
cally the errors with negligible variance, 16 orders should be
controlled with high precision, which is hardly possible
using only Ðve simulations of this size. For instance, in SC
1000 subsamples were needed to control the error on the
error. Nevertheless, we can draw from the Ðgure the conclu-
sion that the theoretical calculations for the individual simu-
lations are in excellent agreement with the empirical
dispersion. We generalize this Ðnding to the other simula-
tions, where an ensemble of realizations is not presently
available ; i.e., we assume that the theoretical calculation is a
good estimate of the errors up to fourth order. The error
calculation yields less than 1% error for and about 5%S3for at most scales, except perhaps at the largest scales,S4where the errors appear to turn up to few tens of percent.

In fact, for simulation which has the exact sameI
c
,

properties as simulations . . . except that it is larger, iti
c1 i

c5,is interesting to try the following naive scaling : if, as argued
above, Ðnite volume e†ects dominate, the errors on the dis-
connected moments scale with the variance over the full
box, (mL )1@2. Even though for the connected moments the
formulae are more complicated, we Ðnd empirically that
scaling with 2(mL )1@2 is an excellent approximation for the
errors (see Fig. 7). Moreover, it appears that the earlier
outputs have the same absolute error, i.e., the same scaling.
Encouraged by these Ðndings, a similar scaling was applied
to the )\ 1 simulations. Again, scaling the 2(mL )1@2 of the
last output is an excellent approximation. These obser-
vations are valid at the factor of 2 level : a considerable

accuracy if the arguments about the ““ error on the error ÏÏ
are taken into account. We conjecture that similar approx-
imations can be used at higher order.

5. DISCUSSION

The approximations developed for the errors in the pre-
vious section facilitate the comparison of the results with
observations. The framework for comparison is naturally
provided by PT and its generalization for smaller scales,
EPT. PT gives simple expressions for the higher order
correlation amplitudes at any order N. For instance forS

Nthe third-order quantity (see, e.g., Jusz-S3\ 34/7 [ (n ] 3)
kiewicz et al. 1993), where n is the local index of the power
spectrum. This formula, and the corresponding ones for
higher order, can formally be used at small scales where PT
is not expected to hold. It was observed in scale invariant
N-body simulations (Colombi et al. 1995 ; Colombi et al.
1996) and observations (Szapudi et al. 1996), that this
formal procedure gives an excellent Ðt for the higher order
cumulants, even though the resulting is no longer thenefflocal slope of the power spectrum; rather, it is a formal
parameter that proves to be extremely useful for character-
izing data. In scale-invariant simulations it was found that a
steepening occurs in terms of i.e., the distribution inneff ;terms of its cumulants at nonlinear scales is equivalent to
another weakly nonlinear distribution but with a steeper
power spectrum.

The solid lines in Figure 8 show the least-square Ðt for
in all the large simulations. Up to sixth-order quantitiesneffwere used, and the error bars were obtained formally by

FIG. 8.ÈMeasurements of the higher order moments summarized in
terms of of EPT. The upper three solid lines with error bars display theneffÐtted for simulations increasing in this order on scales of 2neff I

a
, I

b
, I

c
,

h~1 Mpc. The lower three solid lines correspond to decreasingII
a
, II

b
, II

c
,

in this order on scales of 15 h~1 Mpc. The upper dashed line is the
theoretical local slope of the power spectrum for the )\ 1 simulations ;
the lower three dashed lines are the same for decreasing in thisII

a
, II

b
, II

c
,

order. The dotted lines with error bars show the measurements of inneffthe EDSGC survey. The error bars on this Ðgure were determined by
calculating from alone and comparing it with a simultaneous Ðtneff S3using The latter is displayed, and the di†erence of the two is anS3, . . . , S6.indication of the accuracy.
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calculating from alone. This takes into account theneff S3inaccuracy of the higher order moments relative to the
third-order moments, as well as the possible variance in
EPT, an approximate phenomenological relation. This pre-
scription, however, cannot account for any absolute errors
on the measurements of the Figure 8, the most sensi-S

N
Ïs.

tive summary of the results of the paper, shows on anefflinear scale.
The upper three solid lines correspond to inI

a
, I

b
, I

cincreasing order on scales of 2 h~1 Mpc, and the lower three
correspond to in decreasing order on scales ofII

a
, II

b
, II

c15 h~1 Mpc. The )\ 1 and )\ 1 simulation groups are
tightly together, while the two groups di†er from each
other. In the weakly nonlinear regime the agreement is
excellent between PT theory and the measured sinceS

N
Ïs,

the is extremely close to the theoretical slope of theneffpower spectrum: the upper dashed line shows the theoreti-
cal prediction for )\ 1, and the lower three dashed lines
show the prediction for )\ 1 for in decreasingII

a
, II

b
, II

corder. Note that the actual ) dependence of the whichS
N
Ïs,

is extremely small (Bouchet et al. 1992), was not taken into
account for the theoretical prediction ; simply the local
slope of the power spectrum is plotted. Since the power
spectrum is slightly di†erent for the )\ 1 simulations, they
behave di†erently in this regime. Because of nonlinearities
at smaller scales, PT is not a good approximation ; however,
EPT still is. This can be seen from Figure 4, where triangles
show the formally corresponding to the Ðtted TheS

N
Ïs neff.agreement is excellent above on all Ðgures, exceptl50perhaps for where it is only a good approximationII

cabove for the higher orders. Thus at each scale is2l50 neffgood representation of the data, providing a natural frame-
work for comparison. In the highly nonlinear regime, a
steepening compared to the PT value is present, which is
apparent relative to the dashed line on the Ðgure. This is
very similar to the e†ect observed in scale invariant simula-
tions by Colombi et al. 1995. Note also that as the simula-
tions become more relaxed, EPT becomes more accurate.
This suggests that the breakdown at small scales is caused
only by inaccuracies introduced by dynamical discreteness
e†ects at small scales. In Figure 8 the same e†ect shows up
as a fanlike spreading of the curves, corresponding to a
slight decrease of the as a function of time, as discussedS

N
Ïs

before. When particle discreteness is accounted for, the S
N
Ïs

appear to be approximately time-independent to a degree
similar to the weakly nonlinear regime even at highly non-
linear scales. On the other hand, the di†erence between the
two types of simulations is real, as it is observed at the
reliable scales. Note that by construction the error bars of
the Ðgure cannot reÑect systematics from particle discrete-
ness.

The framework provided by is ideal for comparisonneffwith observations. The same type of calculation was per-
formed by Szapudi et al. 1996 using the EDSGC survey.
Their results agree well with the corresponding fromS

N
Ïs

the Automatic Plate Measuring Facility Survey (Gaztan8 aga
1994 ; Szapudi & 1998). The from theGaztan8 aga neffEDSGC is plotted with dotted lines. Although the split
between the di†erent output times could be artiÐcial, as
noted above, the di†erence between the )\ 1 and )\ 1
simulations is real. The comparison with the EDSGC data
clearly favors the )\ 1 curves. Note a subtlety of the com-
parison shown here : the scales given with the deprojected

in Szapudi et al. 1996 are simply Dh, where D\ 370S
N
Ïs

h~1 Mpc is the depth of the catalog and h is the angle of the
sides of the square window used for counts in cell. Since the
simulation uses cubical cells, the comparison with Dh is not
appropriate. On the Ðgure a simple approximation is used :
the volume of the e†ective cone (or pyramid) is equated to
the volume of the cells in the simulations. More precisely,
D3h2/3 \ l3 was assumed, where l is the side of the cubes in
the simulations. If is expressed in degrees, the scalehdegtransformation is h~1 Mpc as opposed to thel \ 35.9hdeg2@3
usual h~1 Mpc. Comparing the volumes shouldl \ 6.5hdegbe a reasonable approximation on small scales, where viria-
lization erases any conÐguration dependence, but it is
expected to break down on larger, weakly nonlinear scales,
where the elongated pyramids might have di†erent S

N
Ïs

than the equivalent cubes (Scoccimarro et al. 1999).
While it is clear from the Ðgure that the data favor the

)\ 1 models, let us use a toy model of biasing to quantify
this statement. This should be reasonably accurate in the
weakly nonlinear regime, even though the conÐguration
dependence of the higher order moments start to enter the
picture. Here we use the Ansatz fromS3\ 34/7 [ (neff ] 3)
EPT and the leading order bias formula S3g \ S3/b] 3b2/b2
(Fry & 1993), where the galaxy Ðeld is expandedGaztan8 aga
in a Taylor series as . . . and the super-dg \ bd ] b2 d2/2]
script g signiÐes galaxies. If one formally applies EPT for
the (possibly) biased galaxy Ðeld, as was done in the case of
EDSGC (Szapudi et al. 1996), it is possible to express inb2terms of the measured e†ective indices of the galaxies asn

g
b2\ [(b/21)(13 [ 13b [ 7neff ] 7bn

g
) . (7)

In this equation b is Ðxed by the of the simulation, andp8and are the measured e†ective index in the simula-neff n
gtion and in the galaxy catalog, respectively. Note that the

two-point functions of the di†erent time outputs di†er
essentially only in the amplitude within the studied scale
range ; thus bias is approximately independent of scale and
can be described by The results of such a model arep8.shown in Figure 9. The Ðgure plots against scale fromb24È20 h~1 Mpc. Note that the two outlying points above 20
h~1 Mpc in Figure 8 are caused by edge e†ects in the
EDSGC survey (Szapudi et al. 1996). The curves in increas-
ing order represent simulations TheII

c
, II

b
, I

c
, II

a
, I

b
, I

a
.

interpretation of the Ðgure is not straightforward, since the
leading order calculations are only expected to work on
large scales, where the errors of the EDSGC measurements

FIG. 9.ÈFirst nonlinear coefficient in the Taylor expansion of the bias,
is displayed for the di†erent simulations as a function of log scale. Theb2,curves, in increasing order, are for II

c
, II

b
, I

c
, II

a
, I

b
, I

a
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and the conÐguration dependence are becoming increas-
ingly inÑuential. Nevertheless, it is intriguing that the
)\ 0.3, b \ 1 model requires no nonlinear biasing in(II

c
)

terms of within the errors, in contrast with all the otherb2models. Thus it is possible to explain the higher order dis-
tribution of counts in cells in the EDSGC without invoking
linear or nonlinear biasing. The minimal assumption that
the EDSGC galaxies trace mass satisÐes the above model,
but none of the others examined. OccamÏs razor rejects
them as they all need signiÐcant nonlinear biasing.

Note, however, that Figure 9 is not the ultimate answer.
More investigations of the nonlinear bias are needed, where
the above simple theory breaks down, because of the non-
linearities and stochasticity. Also, the conÐguration depen-
dence can be modeled more accurately by the use of
artiÐcial catalogs with realistic selection functions, which
employ pyramid shape cells as used in the EDSGC. In addi-
tion, more data (especially with redshifts) with larger
dynamic range toward large scales will turn this argument
into a more quantitative result. The possible extensions are
left for future work, while the data requirements will be met
by the new generation of galaxy surveys. In the near future,
the SDSS, and the Two Degree Field Survey will determine
the higher order moments with similar accuracy to the
present simulations. Comparison of the future data with the
results reported here will strongly constrain biasing models.

This paper presented the measurements of cumulants of
counts in cells in CDM and )CDM simulations. These
high-resolution simulations together with a pair of new
measurement algorithms enabled us to explore a larger
dynamic range with smaller errors than previously was pos-
sible. A careful attempt was made to determine the range of

reliable scales, and a fully nonlinear theoretical error calcu-
lation was performed as well. It was found that, via PT and
EPT, the results can be efficiently represented by the e†ec-
tive index, In the weakly nonlinear regime excellentneff.agreement was found with PT, while at smaller scales a
nonlinear plateau found in scale-invariant simulations was
conÐrmed. At small scales, the agreement with EPT was
found to be remarkably good. The CDM results are qualit-
atively similar to the scale invariant simulations in all
respect considered. The time-dependency of the cumulants
appears to be negligible at all scales, if particle discreteness
is correctly taken into account. A comparison with obser-
vations revealed that the )\ 1 model is consistent with the
higher order correlations of the EDSGC galaxies without
the need of biasing. The rest of the models examined need
substantial nonlinear biasing to be reconciled with the data.
Finally, the error formulae of SC and SCB provide a good
approximation for the errors on higher order statistics mea-
sured in N-body simulations.
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APPENDIX

Here we discuss the algorithms used to calculate counts in cells. While from theoretical point of view it would be ideal to
use the inÐnitely oversampling algorithm of Szapudi 1997 to estimate the distribution of counts in cells (SC), this would be
unrealistically slow even with present day computers for 47 million particles in three dimensions. The algorithms discussed
here provide an efficient way to sample with ^109] 1014 cells in less than 8 CPU hr on a typical workstation with
approximately 1 GB of memory. The two methods are complimentary to each other, one for large and the other for small
scales, with ample overlap between the two. They are outlined next.

A1. LARGE SCALES

The algorithm for large scales will be explained in one dimension for simplicity. The generalization for arbitrary dimensions
is obvious. The three dimensional version was used in the calculations of this paper.

The computations are performed on the largest possible grid with N segments that can be Ðtted into the memory of the
computer : this determines the smallest possible scale L /N, where L is the box size and N is the base sampling. A hierarchy of
scales is used, with the scale at a given level being twice the scale at one level lower. The results one step lower in the
hierarchy are used to keep the number of sampling cells constant even at the largest scales. Counts in cells can be straightfor-
wardly calculated on the resolution scale of the grid, i.e., the smallest scale considered. For the calculation at twice the
previous scale the sum of two cells are always stored in one of the cells, for instance, in the one with smaller index. Because of
the periodic boundary conditions, auxiliary storage is required to calculate the sum of the values in the rightmost cell (if the
summations was done left to right), since its right neighbor is the leftmost cell, which was overwritten in the Ðrst step. After
these preparatory steps counts in cells can again be calculated from the N numbers representing partially overlapping cells.
For the next level, twice the previous scale, one needs the sum of four original resolution cells, a calculation simply done by
summing every other cell of the previous results into one cell. At this level, two auxiliary storage spaces are needed because of
the periodicity. In general, at each level in the hierarchy two cells of the previous results are summed as a preparatory step,
and counts in cells are calculated simply by computing the frequency distribution of the N sums stored in the main grid.
Auxiliary storage is needed for those rightmost cells, which have the periodic neighbors on the left end.

In D dimensions 2D cells are summed in the preparatory step, and the auxiliary storage space enlarges the original
hypercube. In our case the main grid was 5123, resulting in a 1 h~1 Mpc spacing of 1.3] 108 cells. Further precision could be
achieved by oversampling the original grid, that is, shifting it by a fraction of a resolution cell. Our CPU resources allowed for
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one independent shifting in each direction, which resulted in an 8 times oversampling of the original grid ; that is,
C\ 1.1] 109 cells at each scale from ^1 to ^128 h~1 Mpc, i.e., a quarter of the length of the box.

A2. SMALL SCALES

The above procedure is limited at small scales by the largest grid that will Ðt into the memory of the computer. Therefore an
alternative technique was adapted for small scales using the original oct-tree data-structure of tree N-body codes. This is an
efficient representation of a sparse array, since at small scales most of the cells are empty in a grid spanning the simulation.
The tree is built up recursively, by always dividing the particles into two groups based on which half of the volume they
belong to. The same function is called on both halves with the corresponding particles until there is no particle in the volume
or the scale becomes smaller than a predetermined value. At each level the scale and the number of particles are known, and
when an empty volume is reached, all contained volumes are also empty. These two observations are enough to insert the
bookkeeping needed to calculate counts in cells at all scales while the tree is built. The number of sampling cells at each level
are 2l, where l is the level ; the original box is represented by l \ 0. Toward smaller scales the number of cells increases. When
N3\ 2l, where N is the size of the largest grid of the previous algorithm, the two techniques should (and do) give the exact
same answers. At larger scales the previous algorithm is superior, since N [ 2l, whereas this algorithm becomes useful at
smaller scales. Just as above, this procedure can be further improved by shifting the particles slightly before calculating the
tree. However, since this hierarchy of grids has di†erent numbers of cells, random shifts are more advantageous. Shifting by a
fraction of the smallest scale would not exhaust the possibilities for any larger scale, whereas shifting by a fraction of the
largest grid might not shift the underlying grids at all. With the introduction of random shifts (oversampling grids), the
dynamic range of the two algorithms develops a substantial overlap, which is useful for testing. According to Figure 3, the
algorithms produced essentially the same higher order moments in the overlap range of Ðve powers of two.
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