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ABSTRACT
We describe an automated method for detecting clusters of galaxies in imaging and redshift galaxy

surveys. The adaptive matched Ðlter (AMF) method utilizes galaxy positions, magnitudes, andÈwhen
availableÈphotometric or spectroscopic redshifts to Ðnd clusters and determine their redshift and rich-
ness. The AMF can be applied to most types of galaxy surveys, from two-dimensional (2D) imaging
surveys, to multiband imaging surveys with photometric redshifts of any accuracy (2.5 dimensional

to three-dimensional (3D) redshift surveys. The AMF can also be utilized in the selection of[212D]),
clusters in cosmological N-body simulations. The AMF identiÐes clusters by Ðnding the peaks in a
cluster likelihood map generated by convolving a galaxy survey with a Ðlter based on a model of the
cluster and Ðeld galaxy distributions. In tests on simulated 2D and data with a magnitude limit of212D
r@B 23.5, clusters are detected with an accuracy of *zB 0.02 in redshift and D10% in richness to z[
0.5. Detecting clusters at higher redshifts is possible with deeper surveys. In this paper we present the
theory behind the AMF and describe test results on synthetic galaxy catalogs.
Subject headings : galaxies : clusters : general È methods : data analysis

1. INTRODUCTION

Clusters of galaxiesÈthe most massive virialized systems
knownÈprovide powerful tools in the study of cosmology,
from tracing the large-scale structure of the universe
(Bahcall 1988 ; Huchra et al. 1990 ; Postman, Huchra, &
Geller 1992 ; Dalton et al. 1994 ; Peacock & Dodds 1994,
and references therein) to determining the amount of dark
matter on Mpc scales (Zwicky 1957 ; Tyson, Valdes, &
Wenk 1990 ; Kaiser & Squires 1993 ; Peebles 1993 ; Bahcall,
Lubin, & Dorman 1995 ; Carlberg et al. 1996) to studying
the evolution of cluster abundance and its cosmological
implications (Evrard 1989 ; Peebles, Daly, & Juszkiewicz
1989 ; Henry et al. 1992 ; Eke, Cole, & Frenk 1996 ; Bahcall,
Fan, & Cen 1997 ; Carlberg et al. 1997 ; Oukbir & Blan-
chard 1997). The above studies place some of the strongest
constraints yet on cosmological parameters, including the
mass-density parameter of the universe, the amplitude of
mass Ñuctuations at a scale of 8 h~1 Mpc, and the baryon
fraction.

The availability of complete and accurate cluster catalogs
needed for such studies is limited. One of the most used
catalogs, the Abell catalog of rich clusters (Abell 1958, and
its southern counterpart, Abell, Corwin, & Olowin 1989),
has been extremely useful over the past four decades. This
catalog, which contains D4000 rich clusters to overz[ 0.2
the entire high-latitude sky, with estimated redshifts and
richnesses for all clusters, was constructed by visual selec-
tion from the Palomar Sky Survey plates, using well-deÐned
selection criteria. The Zwicky cluster catalog (Zwicky et al.
1961È1968) was similarly constructed by visual inspection.

The need for new, objective, and accurate large-area
cluster catalogs to various depths is growing, following the
important use of clusters in cosmology. Large-area sky
surveys using CCD imaging in one or several colors, as well
as redshift surveys, are currently planned or underway,
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including, among others, the Sloan Digital Sky Survey
(SDSS). Such surveys will provide the data needed for con-
structing accurate cluster catalogs that will be selected in an
objective and automated manner. In order to identify clus-
ters in the new galaxy surveys, a robust and automated
cluster selection algorithm is needed. We propose such a
method here.

Cluster identiÐcation algorithms have typically been tar-
geted at speciÐc surveys, and new algorithms have been
created as each survey is completed. Abell (1958) was the
Ðrst to develop a well-deÐned method for cluster selection,
even though the identiÐcation was carried out by visual
inspection (see, e.g., McGill & Couchman 1990 for an
analysis of this method). Other algorithms have been
created for the Automatic Plate Measurement Facility
(APM) survey (Dalton et al. 1994 ; Dalton, Maddox, &
Sutherland 1997 ; see Schuecker & Bohringer 1998 for a
variant of this method), the Edinburgh-Durham survey
(ED; Lumsden et al. 1992), and the Palomar Distant
Cluster Survey (PDCS; Postman et al. 1996 ; see also Kawa-
saki et al. 1998 for a variant of this method ; and Kleyna et
al. 1996 for an application this method to Ðnding dwarf
spheroidals). All the above methods were designed for and
applied to two-dimensional imaging surveys.

In this paper we present a well-deÐned, quantitative
method, based on a matched Ðlter technique that expands
on some of the previous methods and provides a general
algorithm that can be used to identify clusters in any type of
survey. It can be applied to two-dimensional (2D) imaging
surveys, 2.5 dimensional surveys (multiband imaging(212D)
with photometric redshift estimates of any accuracy), and
three-dimensional (3D) redshift surveys, as well as com-
binations of the above (i.e., some galaxies with photometric
redshifts and some with spectral redshifts). In addition, this
adaptive matched Ðlter (AMF) method can be applied to
identify clusters in cosmological simulations.

The AMF identiÐes clusters by Ðnding the peaks in a
cluster likelihood map generated by convolving a galaxy
survey (2D, or 3D) with a Ðlter that models the cluster212D,
and Ðeld galaxy distribution. The peaks in the likelihood
map correspond to locations where the match between the
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survey and the Ðlter is maximized. In addition, the location
and value of each peak also gives the best Ðt redshift and
richness for each cluster. The Ðlter is composed of several
subÐlters that select di†erent components of the survey : a
surface density proÐle acting on the position data, a lumi-
nosity proÐle acting on the apparent magnitudes, and, in
the and 3D cases, a redshift cut acting on the estimated212Dredshifts.

The AMF is adaptive in three ways. First, the AMF
adapts to the errors in the observed redshifts (from no red-
shift information [2D], to approximate or measured[212D]
redshifts [3D]). Second, the AMF uses the location of the
galaxies as a ““ naturally ÏÏ adaptive grid to ensure sufficient
spatial resolution at even the highest redshifts. Third, the
AMF uses a two-step approach that Ðrst applies a coarse
Ðlter to Ðnd the clusters and then a Ðne Ðlter to provide
more precise estimates of the redshift and richness of each
cluster.

We describe the theory of the AMF in ° 2 and its imple-
mentation in ° 3. We generate a synthetic galaxy catalog to
test the AMF in ° 4 and present the results in ° 5. We
summarize our conclusions in ° 6.

2. DERIVATION OF THE ADAPTIVE MATCHED FILTER

The idea behind the AMF is the matching of the data
with a Ðlter based on a model of the distribution of galaxies.
The model describes the distribution in surface density,
apparent magnitude, and redshift of cluster and Ðeld gal-
axies. Convolving the data with the Ðlter produces a cluster
probability map whose peaks correspond to the location of
the clusters. Here we describe the theory behind the AMF.
We present the underlying model in ° 2.1, the concept of the
cluster overdensity in ° 2.2, two-likelihood functions derived
under di†erent assumptions about the galaxy distribution
in ° 2.3, and the extension of the likelihood functions to
include estimated redshifts in ° 2.4.

2.1. Cluster and Field Model
The foundation of the AMF is the model of the total

number density of galaxies per solid angle (d)\ 2nh dh)
per apparent luminosity (dl) around a cluster at redshift z

cwith richness j :
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where h is the angular distance from the center of the cluster
and and are the number densities due to the Ðeld andn
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cthe cluster. The Ðeld number density is taken directly from
the global ““ number-magnitude ÏÏ per square degree relation.
The cluster number density is the product of a projected
density proÐle (see Appendix A) and a luminosity proÐle,
both shifted to the redshift of the cluster and transformed
from physical radius and absolute luminosity to angular
radius and apparent luminosity (i.e., Ñux) :
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where the projected radius r and absolute luminosity L at
the cluster redshift are given by
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Here is the angular size distance corresponding to andd
c

z
c
,

D is the luminosity distance (with K-correction) of a galaxy
of spectral type k (e.g., elliptical, spiral or irregular ; see
Appendix B). The factor of in the radius relation1 ] z

cconverts from comoving to physical units (the cluster proÐle
can be deÐned with either comoving or physical units). For
the cluster luminosity proÐle, a Schechter function is
adopted :

/
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where a ^ 1.1 (Schechter 1976 ; Binggeli, Sandage, &
Tammann 1988 ; Loveday et al. 1992).

The model is completed by choosing a normalization for
the radial proÐle and the luminosity proÐle The&

c
/

c
.

choice of normalization is arbitrary but has the e†ect of
determining the units of the richness ". We choose to nor-
malize so that the total luminosity of the cluster is equal to
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The richness parameter " thus describes the total cluster
luminosity (in units of L*) within For h~1rmax. rmax \ 1
Mpc, the richness "(¹1 h~1 Mpc) relates to AbellÏs richness

(within 1.5 h~1 Mpc) as For example, AbellNA NA B 23j.
richness class º1 clusters correspond to "º 75(NA º 50)
(Bahcall & Cen 1993). Multiplying by L in equation (5)
allows to be integrated down to zero luminosity, thus/

cinsuring that the total luminosity is equal to "L* regardless
of the apparent luminosity limit of the survey Thelmin.above constraint can be implemented by simply multiplying

and by any appropriate constants (e.g., normalizing&
c

/
cthe Ðrst integral to one and setting the second integral equal

to L*).

2.2. Cluster Overdensity
Clusters, by deÐnition, are density enhancements above

the Ðeld. To quantify this we introduce the cluster over-
density "*, which is the sum of the individual overdensities
of the galaxies * and are deÐned subsequently."d

i
. d

iFor a given cluster location on the sky, let and be theh
i

l
iangular separation from the cluster center and the apparent

luminosity of the ith galaxy, respectively. For a speciÐc
cluster redshift we need consider only galaxies inside thez

cmaximum selected cluster radius (Appendix A) :
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The apparent overdensity of the cluster as measured from
the data is

"*data \ j ;
i

d
i
, (8)

where the sum is carried out over all galaxies within hmax.The cluster overdensity can also be calculated from the
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Equating with it is possible to solve for " :*data *model,
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The term in the denominator is simply the model cluster
overdensity when "\ 1. As we shall see in the subsequent
sections, the positions of clusters, both in angle and in red-
shift, correspond to the locations of maxima in the cluster
overdensity.

2.3. L ikelihood Functions
Having deÐned the model we now discuss how to Ðnd

clusters in a galaxy catalog and determine the best-Ðt red-
shift and richness and " for each cluster. The basicz

cscheme is to deÐne a function L, which is the likelihood
that a cluster exists, and to Ðnd the parameters that maxi-
mize L at a given position over the range of possible values
of and ". This procedure is carried out over the entirez

csurvey area and generates a likelihood map. The clusters are
found by locating the peaks in the likelihood map. The map
grid can be chosen by various means, such as a uniform grid
or by using the galaxy positions themselves.

A variety of likelihood functions can be derived, depend-
ing on the assumptions that are made about the distribu-
tion of the galaxies. The AMF uses two likelihood functions
whose derivations are given in Appendix C. A cluster is
identiÐed, and its redshift and richness, and ", are foundz

cby maximizing L. Typically this is accomplished by Ðrst
taking the derivative of L with respect to " and setting the
result equal to zero :

LL
Lj

\ 0 . (11)

One can compute " from the above equation either directly
or numerically. The resulting value of " can be inserted
back into the expression for L to obtain a value for L at
the speciÐed redshift. Repeating this procedure for di†erent
values of it is possible to Ðnd the maximum likelihoodz

cand the associated best value of the cluster redshift, as well
as the best cluster richness at this redshift.

The Ðrst likelihood, which we call the coarse likelihood,
assumes that if we bin the galaxy catalog, then there will be
enough galaxies in each bin that the distribution can be
approximated as a Gaussian distribution. This assumption,
while not accurate, provides a coarse likelihood function

that is linear, is easy to compute, and corresponds toLcoarsethe apparent overdensity
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(see Appendix C).
The second likelihood, which we call the Ðne likelihood,

assumes that the galaxy count in a bin can be modeled with
a Poisson distributionÈan assumption that is nearly
always correct. The resulting likelihood function isLfine

nonlinear and requires more computations to evaluate but
should provide a more accurate estimate of the cluster red-
shift and richness. The formula for isLfine
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and is the number of galaxies one would expect to see inN
ca cluster with "\ 1 (see Appendix C).

2.4. Including Estimated Redshifts
So far we have considered cluster selection in purely 2D

imaging surveys with no estimated redshift information.
The inclusion of estimated galaxy redshifts, as in or 3D212Dsurveys, should improve the accuracy of the resulting
cluster redshifts. In addition, estimated redshifts can
separate background galaxies (noise) from cluster galaxies
(signal) more easily, allowing the detection of considerably
poorer clusters than if estimated redshifts were not used.

Galaxy redshift information can be obtained, for
example, from multicolor photometric surveys (via photo-
metric redshifts estimates) or from direct spectroscopic
determination of galaxy redshifts. We now discuss how to
extend the AMF described above to include such redshifts.
The galaxy redshifts that we use within a given survey can
range from very precise measured redshifts, to only approx-
imate photometric redshifts (with varied accuracy), to no
redshift informationÈall in the same analysis (i.e., adapting
to di†erent redshift information for each galaxy in the
survey). The available redshifts provide essentially a third
Ðlter, in addition to the spatial and luminosity Ðlters used in
the 2D case. In practice, we use the estimated redshift infor-
mation of each galaxy to narrow the window of the AMF
search following the same basic method described above.

One of the beneÐts of laying down the theoretical frame-
work for the AMF is the easy means by which estimated
redshifts can now be included. Let and be the esti-z

i
p
z
i

mated redshift and redshift error of the ith galaxy, and let
the factor w determine how wide a region we select around
each for the likelihood analysis. Inclusion of the addi-z

ctional redshift information is accomplished by simply limit-
ing the sums in and to those galaxies that alsoLcoarse Lfinesatisfy Note that this procedure allows theo z

i
[ z

c
o\wp

z
i .

usage of redshift information with variable accuracy in the
same surveyÈi.e., some galaxies with measured redshifts,
some with estimated redshifts, and some with no redshifts at
all.

The richness is dominated by the cluster galaxies ;"coarseas long as w is sufficiently large (e.g., wB 3), then the
resulting richnesses will be unbiased. However, if the red-
shift errors are large (i.e., a large fraction of the depth of the
galaxy catalog), it may be desirable to use a smaller value of
wB 1. In this case a small correction needs to be applied to
the richness to account for the small fraction of cluster gal-
axies that are eliminated by the redshift cut. If the redshift
errors are Gaussian, the desired correction can be obtained
by multiplying the predicted cluster overdensity by the stan-
dard error function

S2
n
P
0

w
e~t2@2 dt . (16)
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A similar issue arises with when the Ðeld galaxies are"fineeliminated by using estimated redshifts. To obtain the
correct value of requires modeling the contribution of"finethe eliminated Ðeld galaxies to equation (15), which can be
done either analytically or numerically via Monte Carlo
methods.

3. IMPLEMENTATION

The likelihood functions derived in the previous section
represent the core of the AMF cluster detection scheme.
Both likelihood functions begin with picking a grid of loca-
tions over the survey area for which L and " are computed
over a range of redshifts. Figures 1 and 2 show the functions
L(z) and "(z) for a position on the sky located at the center
of a j \ 100 cluster the richness or luminosity of(D23Coma) at z\ 0.35 (the details of the test data are given in
the next section). Figure 1 shows the results when no red-
shift estimate exists (i.e., and Figure 2 shows whatp

z
] O),

happens when using estimated redshifts with 0.03 \p
z
\

0.06.
Figures 1 and 2 illustrate three of the basic properties of

these likelihood functions, which were discussed in the pre-
vious section : (1) the dramatic e†ect of including estimated
redshifts on sharpening the peak in L, which makes Ðnding
clusters much easier ; (2) the qualitative di†erence in the
form of and in Figure 2 that arises from the"fine(z) "coarse(z)fact that is a simple function of while is a"coarse Lcoarse "finecomplicated function of and (3) the shortward bias inLfine ;the cluster redshift as computed from in 2D (Fig. 1),Lcoarsewhich is a general bias in the 2D coarse likelihood function
(for a discussion of how to correct for this bias see Postman
et al. 1996). In the 3D case, the coarse likelihood of rich
clusters has comparable accuracy to the Ðne likelihood. For
poorer clusters ("\ 50), the coarse likelihood yields higher
richness estimates than the true values ; this is a result of the

FIG. 1.ÈPlots of the ““ 2D ÏÏ (i.e., likelihood and richness as ap
z
] O)

function of redshift as computed from the coarse and Ðne matched Ðlters.
The input cluster has and a richness "\ 100 (correspondingz

c
\ 0.35

approximately to Abell richness class 1).

FIG. 2.ÈPlots of the likelihood and richness as a““ 212D ÏÏ (p
z
D 0.05)

function of redshift as computed from the coarse and Ðne matched Ðlters.
The input cluster has and a richness "\ 100. Although isz

c
\ 0.35 "finenot peaked like this di†erence does not diminish the accuracy since"coarse,the location of is determined entirely by which is sharply peaked.z

c
Lfine,

Gaussian assumption used for deriving the coarse likeli-
hood that worsens for poorer clusters.

Implementation of the AMF cluster selection consists of
Ðve steps : (1) reading the galaxy catalog, (2) deÐning and
verifying the model, (3) computing over the entireLcoarsegalaxy survey over a range of redshifts, (4) Ðnding clusters
by identifying peaks in the map, and (5) evaluatingLcoarseand obtaining a more precise determination of eachLfineclusterÏs redshift and richness.

3.1. Reading the Galaxy Catalog
The Ðrst step of the AMF is reading the galaxy catalog

over a speciÐed region of the sky. The galaxy catalog con-
sists of four to six quantities for each galaxy, i : the position
on the sky and the apparent luminosity (i.e.,R.A.

i
decl.

i
,

Ñux) in a speciÐc band the Hubble type used for deter-l
i
,

mining the K-correction (e.g., E, Sa, or Sc), and the esti-k
imated redshift and estimated error In the case of az

i
p
z
i .

single-band survey, for which no photometric redshifts are
possible, and will not exist. In addition to these localz

i
p
z
i

quantities, the following global quantities are computed
from the catalog : the apparent luminosity limit and thelminmean estimated error Finally, it is necessary to set thep6

z
.

minimum and maximum cluster redshifts for the cluster
search andzmin zmax.

3.2. Model DeÐnition and VeriÐcation
The primary model components that need to be speciÐed

are the cluster radial proÐle the cluster luminosity&
c
(r),

proÐle a normalization convention for the cluster/
c
(L ),

that sets the units of richness ", and the Ðeld number
density versus apparent luminosity distribution Inn

f
(l).

addition, a speciÐc cosmological model needs to be chosen
along with K-corrections for each Hubble type, from which
the angular distance d(z) and luminosity distance D(z, k) can
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be computed. The observed galaxy catalog needs to be
tested for its consistency with the model parameters [such
as While this is unnecessary for the simulated galaxyn

f
(l)].

catalog used below (where the model used to Ðnd clusters is
the same as the one used to generate the catalog), we show
some of the consistency checks for illustration purposes (see
Appendix D).

Mapping3.3. Lcoarse
Mapping out the coarse likelihood function begins with

picking a grid covering the survey area. The most straight-
forward choice is a uniform grid over the area covered,
which is conceptually simple and makes Ðnding peaks in the
likelihood easy. However, a uniform grid needs to be
exceedingly Ðne in order to ensure adequate resolution at
the highest redshifts and leads to unacceptable computer
memory requirements. Another choice for the grid locations
is to use the positions of the galaxies themselves. The galaxy
positions are a ““ naturally ÏÏ adaptive grid that guarantees
sufficient resolution at any redshift while also eliminating
unnecessary points in sparse regions. For this reason we
choose to use the galaxy positions as the grid locations.

At each grid location (i.e., each galaxy position) isLcoarseevaluated over a range of redshifts from to Thezmin zmax.number of redshift points is set so there is adequate cover-
age for the given value of Finding the maximum of thep6

z
.

likelihood sets the values of the likelihood, redshift, and
richness at this point : and When thisLcoarsei , zcoarsei , jcoarsei .
process has been completed for all the galaxies, the result is
an irregularly gridded map TheLcoarsei (R.A.

i
, decl.

i
, zcoarsei ).

peaks in this map correspond to the locations of the clus-
ters.

Cluster Selection3.4. Lcoarse
Finding peaks in 3D regularly gridded data is straightfor-

ward. Finding the peaks in the irregularly gridded function
is more difficult. There areLcoarsei (R.A.

i
, decl.

i
, zcoarsei )

several possible approaches. We present a simple method
that is sufficient for selecting rich clusters. More sophisti-
cated methods will be necessary in order to Ðnd poor clus-
ters that are close to rich clusters.

As a Ðrst step we eliminate all low-likelihood points
where is the nominal detection limit,Lcoarsei \Lcut, Lcutwhich is independent of richness or redshift. can beLcutestimated from the distribution of the values (Fig. 3).Lcoarsei

The peak in the distribution corresponds to the background
while the long tail corresponds to the clusters. Assuming the
background is a Gaussian distribution whose mean can be
estimated from the location of the peak and whose standard
deviation is 0.43 times the full width at half-maximum
(FWHM), then a given value of will lie standardLcut Npdeviations from the peak

Np D
Lcut[Lpeak
0.43 FWHM

. (17)

The values of shown in Figure 3 were chosen so thatLcutwhich was sufficiently high that no false detectionsNp D 5,
occurred. To Ðrst order, where is the averageLcut P p6

z
/z6 , z6

depth of the survey and is a function of lmin.Step two consists of Ðnding the largest value of Lcoarsei ,
which is by deÐnition the Ðrst and most overdense cluster.
The third step is to eliminate all points that are within a
certain radius and redshift of the cluster. Repeating steps

FIG. 3.ÈDistribution of values. The range has been chosen soLcoarsethe distributions appear similar. The left dashed line denotes the value of
the peak of the distribution. The right dashed line shows the value of Lcutthat was used. The horizontal solid line shows the FWHM around the
peak. The signiÐcance levels of from top to bottom are approximatelyLcut8 p, 5 p, and 5 p.

two and three until there are no points left results in a
complete cluster identiÐcation (above with a position,Lcut),redshift and richness (proportional to the total luminosity)
estimate for each cluster.

Evaluation3.5. Lfine
The angular position, redshift and richness of the clusters

determined by the selection are adequate but can beLcoarsecomplemented by determining the redshift and richness
from Recall that requires 10È100 times as manyLfine. Lfineoperations to evaluate as and applying it to everyLcoarse,single galaxy position can be prohibitive. Evaluating Lfineon just the clusters found with is trivial and worthLcoarsedoing as it should provide more accurate estimates of the
cluster redshift and richness because of the better under-
lying assumptions that went into its derivation. Thus, the
Ðnal step in our AMF implementation is to compute zfinei
and using on each of the cluster positionsjfinei Lfineobtained withLcoarse.

3.6. Implementation Summary
We summarize the above implementation in the follow-

ing step-by-step list.

1. Read galaxy catalog.
a) Read in and for each galaxy.R.A.

i
, decl.

i
, l

i
, z

i
, p

z
i , k

ib) Pick (survey limit), and (cluster searchlmin zmin, zmaxlimits), and compute average distance error p6
z
.
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2. DeÐne model.
a) Choose and D(z, k).&

c
, /

c
, n

f
, d(z

c
)

b) Normalize and&
c

/
c
.

c) Verify galaxy distributions in l and z with those pre-
dicted by model.
3. Map Lcoarse.a) For each galaxy location choose a(R.A.

i
, decl.

i
),

range of redshifts within and with a step sizezmin zmaxno larger that 1/2 p6
z
.

b) Compute (eq. [12]) and (eq. [13]) forLcoarse "coarseeach redshift. Set and equal toLcoarsei , "coarsei , zcoarsei
the values at the maximum of Lcoarse.4. Find peaks in the map.Lcoarsea) Compute from the distribution (e.g., 5 pLcut Lcoarsei
cut).

b) Find all local maxima inLcoarsei (R.A.
i
, decl.

i
, zcoarsei ),

where these are the clusters.Lcoarsei [Lcut ;5. ReÐne cluster redshift and richness estimates with
Lfine.a) At the right ascension and declination of each

cluster found with evaluate over the sameLcoarse, Lfinerange of redshifts within andzmin zmax.b) Compute (eq. [14]) and (eq. [15]) for eachLfine jfineredshift. Set and equal to the values atLfinei , "finei , zfinei
the maximum of These provide the best estimatesLfine.for the cluster richness and redshift.

In the next section we describe a simulated galaxy catalog
used to test the above AMF implementation.

4. SIMULATED TEST DATA

Our test data consists of 72 simulated clusters with di†er-
ent richnesses and redshifts placed in a simulated Ðeld of
randomly distributed galaxies (for a nonrandom distribu-
tion of Ðeld galaxies see ° 5). The clusters range from groups
to rich clusters with total luminosities from 10 to 300 L*
(corresponding to Abell richness counts of approximately
7È200, or richness classes >0 to D4) and are distributed in
redshift from 0.1 to 0.5. The luminosity proÐle is a Schechter
function with a \ 1.1. The radial proÐle is a Plummer law
given in Appendix A with h~1 Mpc andrmax \ 1 rcore \

The number and absolute luminosity of the Ðeld0.1rmax.galaxies were generated from a Schechter function, using
the Ðeld normalization /* \ 1.08] 10~2 h3 Mpc~3
(Loveday et al. 1992).

Three di†erent Hubble types were used, E, Sa, and Sc,
with K-corrections taken from Poggianti 1997. Each galaxy
in a cluster was randomly assigned a Hubble type so that
60% were E, 30% were Sa, and 10% were Sc ; each galaxy in
the Ðeld is randomly assigned a Hubble type so that 40%
were E, 30% were Sa, and 30% were Sc. Knowing the red-
shift of each galaxy, its absolute luminosity, and its Hubble
type, we can compute the apparent luminosity. All galaxies
with apparent luminosity below r@B 23.5 (the anticipated
limit of the SDSS) were eliminated. This limit resulted in a
Ðeld number density of D5000 galaxies per square degree.

To facilitate the subsequent analysis and interpretation of
the results, the clusters were placed on an 8 ] 9 grid. The
cluster centers were separated by which results in the0¡.4,
test data having dimensions of The distribution3¡.2 ] 3¡.6.
of the cluster galaxies in right ascension and declination

FIG. 4.ÈAngular positions of all the simulated cluster galaxies with no
background galaxies.

is shown in Figure 4, where each column has the same
richness while each row of clusters is at the same redshift
(see Fig. 5). From left to right the richnesses are "\ 10, 20,
30, 40, 50, 100, 200, and 300. From bottom to top the red-
shifts are 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, and 0.5.z

c
\ 0.1,

In all, the clusters contained some 30,000 galaxies, over
one-half of which lie in the richness 200È300 clusters. The
randomly generated Ðeld contained approximately 50,000
galaxies. The distribution of all the galaxies in right ascen-
sion and declination is shown in Figure 6.

FIG. 5.ÈRichness and redshift of each of the simulated clusters. In this
view the cluster parameters match the same 8 ] 9 grid used in Fig. 4.
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FIG. 6.ÈAngular positions of all the simulated cluster and Ðeld gal-
axies.

So far, the redshifts for the galaxies are exact. If we
assume that redshift errors are Gaussian, then we can easily
generate o†sets to the true positions if we know the stan-
dard deviation of the distribution Not all the galaxiesp

z
.

will have the same estimated redshift error and, in thep
z
i ,

case of photometric redshifts, these values can be expected
to vary by about a factor of 2 (Connolly et al. 1995 ; Yee
1999). We model this e†ect by Ðrst randomly generating the
estimated redshift errors from a uniform distribution over a

FIG. 7.ÈContour plot of computed from simulated data withLcoarsephotometric redshift errors Contour levels begin atp
z
D 0.05. Lcoarse \ 40

and increase by a factor of 3 with each subsequent level.

speciÐed range (e.g., The o†sets from the0.03\p
z
i \ 0.06).

true redshifts are then randomly generated from Gaussian
distributions with standard deviations corresponding to p

z
i

values. The estimated redshifts are computed by adding the
o†sets to the true redshift. Thus, a data set with p6

z
D 0.05

refers to 0.03\p
z
i \ 0.06.

5. RESULTS AND DISCUSSION

To test our AMF implementation we ran it on the above
simulated galaxy catalog for three di†erent error regimes :

and A contour plot computedp6
z
D 0.05, p6

z
D 0.15, p6

z
] O.

from the maximum likelihood points is shown inLcoarsei
Figure 7, which indicates that the coarse Ðlter does a good
job of Ðnding the angular positions of the clusters with no
false detections. The resulting cluster centers have an accu-
racy that is within one core radius of the true cluster center.
The redshifts and richnesses obtained by applying toLfinethe clusters found with are shown in Figures 8, 9,Lcoarseand 10. The boxes denote the true redshift and richness
values of the input clusters. The short lines connect the
inputs with the outputs (i.e., the values obtained withLfine).Smaller lines indicate more accurate redshift and richness
determinations. The long curve indicates the expected
detection limit for the value of used. As expected, theLcutnumber of clusters detected and their accuracy decrease as

increases. However, nearly all the clusters withp6
z

"Z 100
(corresponding roughly to Abell richness class areZ1)
detected out to redshifts of 0.5, which is the e†ective limit of
the survey. In a deeper survey it will be possible to detect
clusters at higher redshifts.

The errors in the redshift and richness estimates of all
detected clusters are presented in Figures 11 and 12. A
summary of these results is shown in Table 1. In general, the
AMF Ðnds clusters with an accuracy of *zD 0.02 in red-
shift and D10% in richness. Including distance information

FIG. 8.ÈRichness and redshift of each of the input clusters (boxes) with
the short lines indicating the corresponding values determined from the
AMF Ðne Ðlter. The long curved line indicates the approximate detection
limit and is computed by inserting into eq. (12) and solving for jLcut \ 40
as a function z

c
.
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FIG. 9.ÈRichness and redshift of each of the input clusters (boxes) with
the short lines indicating the corresponding values determined from the
AMF Ðne Ðlter. The long curved line indicates the approximate detection
limit and is computed by inserting into eq. (12) and solving forLcut \ 100
" as a function z

c
.

FIG. 10.ÈRichness and redshift of each of the input clusters (boxes)
with the short lines indicating the corresponding values determined from
the Ðne Ðlter. The long curved line indicates the approximate detection
limit and is computed by inserting into eq. (12) and solving forLcut \ 300
" as a function z

c
.

TABLE 1

SUMMARY OF AMF TESTS ON SIMULATED DATA

Input Likelihood Output Output
Error Cut-o† z Error " Error
(p6

z
) (Lcut) [p(*z)] [p(*"/")]

0.05 . . . . . . 40 0.014 0.13
0.15 . . . . . . 100 0.025 0.12
O . . . . . . . . 300 0.023 0.14

FIG. 11.ÈRedshift error as a function of redshift for all the detected
clusters. Dashed lines indicate the 1 p error range computed from these
data, which from top to bottom are 0.014, 0.025, and 0.023.

lowers the background and results in a substantial improve-
ment in the detection of poorer clusters. Thus, many more
clusters are detected when as compared top

z
D 0.05

These additional clusters are all poorer and thusp
z
] O.

have higher errors, which explains why the average errors
do not signiÐcantly change with p6

z
.

Six additional tests were conducted on the casep6
z
D 0.05

to check the robustness of the results. The Ðrst test explored
the e†ect of spatial structure in the background distribution
of galaxies by using positions taken from an N-body simu-
lation (instead of using randomly distributed Ðeld galaxies).
The second test investigated the e†ect of using di†erent
K-corrections. The next four tests explored the e†ect of
changing di†erent parameters of the cluster model : a in the
Schechter luminosity function, n in the Plummer cluster
density proÐle, the core radius and the maximum(rcore),radius of the cluster proÐle The results of all these(rmax).tests are summarized in Table 2.

The N-body simulation contained 1283 dark matter par-
ticles in a 200 h~1 Mpc box (Xu 1995) with sufficient spatial
resolution to resolve cluster cores. The Ðnal z\ 0 output of
the simulation was ““ stacked ÏÏ in a nonrepeating fashion (J.
R. Gott 1997, private communication) to create a simulated
Ðeld out to z\ 0.6. Each particle was then assigned a lumi-
nosity in the same manner as described earlier for the
uniform background. The 72 test clusters were placed in the
N-body background. The coarse Ðlter was run on these
data using the same parameters as in the uniform case. All
the clusters detected with the uniform background were
also detected with the N-body background. Next, the Ðne
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FIG. 12.ÈFractional richness error as a function of redshift for all the
detected clusters. Dashed lines indicate the 1 p range error computed from
these data, which from top to bottom are 0.13, 0.12, and 0.14.

Ðlter was run on these clusters. There was no change in the
estimated redshifts of the clusters. The richness estimates
showed a slight increase (D20%) in their variance, which is
because of the Ñuctuations in the background density.

In a real survey, it is unlikely that all the galaxies will
have correctly assigned Hubble types. An error in the
Hubble type primarily a†ects the K-correction. To test the
e†ects of incorrect Hubble types we ran the Ðne Ðlter with

an assumption that all the galaxies were ellipticals (E) and
then again assuming that all the galaxies were spirals (Sc).
These changes produced no signiÐcant change in the esti-
mated redshift or richness of the clusters out to zD 0.5.

In the real universe, clusters can not be described by a
single set of model parameters. Two tests of each of four
model parameters were carried out to look at the errors
produced by using an AMF cluster model with parameters
di†erent from the clusters in the data. In each case the Ðne
Ðlter was run on data with and the di†erences inp6

z
D 0.05

the estimated redshift and richness were examined. The
results are summarized in Table 2. None of the changes in
any of the parameters signiÐcantly a†ected the estimated
redshifts of the clusters. The largest e†ect on the richness "
occurred with changing the parameter a in the Schechter
luminosity function of the cluster. This induced a bias in "
at small redshift ; the bias decreases with redshift because
the galaxies at high redshift are not part of the faint-end
Schechter luminosity function. Changing the slope of the
cluster density proÐle had only a small e†ect on ". Chang-
ing the core radius had no signiÐcant e†ect on ". As
expected, " increases with increasing rmax.The CPU and memory requirements of the AMF are
dominated by the evaluation. The AMF requiredLcoarsearound 100 megabytes of memory and took from a few
minutes to a little under 2 hr using one(p6

z
D 0.05) (p6

z
] O)

CPU (198 Mhz MIPS R10000) of an SGI Origin200. For
example, the SDSS will be composed of approximately 1000
Ðelds similar in size to our test catalog. Since Ðnding clus-
ters in one Ðeld is independent of all the others, it is simple
to run the AMF on a massively parallel computer ; it will be
possible to run the AMF on the entire SDSS catalog in one
day.

6. SUMMARY AND CONCLUSIONS

We have presented the adaptive matched Ðlter method
for the automatic selection of clusters of galaxies in a wide
variety of galaxy catalogs. The AMF can Ðnd clusters in
most types of galaxy surveys : from two-dimensional (2D)
imaging surveys, to multiband imaging surveys with photo-
metric redshifts of any accuracy to three-dimensional(212D),
(3D) redshift surveys. The method can also be utilized in the

TABLE 2

ROBUSTNESS TESTS ON SIMULATED DATA

Model Parameter E†ect on
(nominal value) New Value Estimated z E†ect on Estimated "

Background distribution (uniform) . . . . . . . . . . . . . . . . . N-body No change Slight (D20%) increase in variance
K correction (E, Sa and Sc) . . . . . . . . . . . . . . . . . . . . . . . . . All E No change No change

All Sc No change No change
Cluster luminosity function slope (a \ [1.1) . . . . . . [0.8 No change 1.5" bias at zD 0.1, decreasing to no bias at zD 0.35

[1.3 No change 0.5" bias at zD 0.1, increasing to 1.2" at zD 0.5
Cluster proÐle slope (n \ 2.0) . . . . . . . . . . . . . . . . . . . . . . . 1.5 No change 1.1" bias independent of z

2.5 No change 0.95" bias independent of z
Cluster core radius (rcore\ 0.1 h~1 Mpc) . . . . . . . . . . 0.05 h~1 Mpc No change No change

0.20 h~1 Mpc No change No change
Cluster max radius (rmax \ 1.0 h~1 Mpc) . . . . . . . . . . 0.75 h~1 Mpc No change 0.75" bias independent of z

1.25 h~1 Mpc No change 1.25" bias independent of z

NOTES.ÈRobustness tests on simulated data with A ““ no change ÏÏ entry means that any di†erence in the estimated redshift or richnessp
z
D 0.05.

was within the nominal errors quoted in Table 1 (i.e., *zD 0.02 and *"/"D 0.1). Biases are given relative to the nominal value (e.g., a bias of 1.1"
implies that the new estimated richness is 1.1 times the nominal estimated richness). All biases are independent of redshift and richness unless stated
otherwise.
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selection of clusters in cosmological N-body simulations.
The AMF is based on matching the galaxy catalog with a
cluster Ðlter that models the overall galaxy distribution. The
model describes the surface density, apparent magnitude,
and redshift of cluster and Ðeld galaxies. Convolving the
data with the Ðlter produces a cluster probability map
whose peaks correspond to the location of the clusters. The
probability peaks also yield the best-Ðt redshift and richness
of each cluster.

The heart of the AMF is the apparent overdensity d
i
,

which is evaluated at each galaxy position and has a higher
value for galaxies in clusters than galaxies in the Ðeld. The
apparent overdensity distills the entire description of the
galaxy catalog into a single function. Two likelihood func-
tions are derived, and using di†erent under-Lcoarse Lfine,lying model assumptions. The theoretical framework of the
AMF allows estimated redshifts to be included via a simple
redshift Ðlter, which e†ectively limits the sums in Lcoarseand to those galaxies within a window around TheLfine z

c
.

maxima in the likelihood functions are used to identify
cluster positions as well as their redshifts and richnesses.

The AMF is adaptive in three ways. First, it adapts to the
errors in the estimated redshifts. Second, it uses the loca-
tions of the galaxies as a ““ naturally ÏÏ adaptive grid to
ensure sufficient resolution at even the highest redshifts.

Third, it uses a two-step approach that applies a coarse
Ðlter to Ðnd the clusters initially and a Ðne Ðlter to estimate
more precisely the redshift and richness of each cluster.

We tested the AMF on a set of simulated clusters with
di†erent richnesses and redshiftsÈranging from groups to
rich clusters at redshifts 0.1È0.5 ; the clusters were placed in
a simulated Ðeld of randomly distributed galaxies as well as
in a nonrandom distribution produced by N-body cosmo-
logical simulations. We Ðnd that the AMF detects clusters
with an accuracy of *zD 0.02 in redshift and D10% in
richness to (for a simulated galaxy survey toz[ 0.5
r@B 23.5). In addition, robustness tests provide a strong
indication that the AMF will perform well on observational
data sets. Detecting clusters at even higher redshifts will be
possible in deeper surveys.

We wish to thank Guohong Xu for providing the N-body
simulations used in this paper. In addition David Weinberg,
Andy Connolly, Marc Postman, Lori Lubin, and Chris
Finger provided helpful suggestions. We would also like to
thank Dr. Michael Kurtz for his helpful comments. This
work was supported in part by the DoE Computational
Science Fellowship Program, the Princeton Observatory
Advisory Council, and NSF grants AST 93-15368 and GER
93-54937.

APPENDIX A

CLUSTER PROFILE

The projected cluster proÐle is derived from spherical modiÐed Plummer law proÐle :
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where n B 2 and the constant is used to normalize the proÐle. The projected proÐle is computed by integrating along theo
c
0

line of sight :
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which for the modiÐed Plummer proÐle gives
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where is a constant set by the normalization.&
c
0

APPENDIX B

LUMINOSITY DISTANCE

The transformation between absolute and apparent luminosities in band j0
L j0 \ 4nD2(z ; k)lj0 , (B1)
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where k is the galaxy type (e.g., elliptical, spiral, irregular, etc.) and D is the luminosity distance at a redshift z and is related to
the angular size distance d by

D2(z ; k) \ (1] z)2d2(z)
Kj0(z ; k)Ej0(z ; k)

, (B2)

where and are the ““ K ÏÏ and evolutionary corrections. For no-evolution models The angular-size distance forKj0 Ej0 Ej0 \ 1.
cosmologies is given by)] )" \ 1

d(z)\ c
H0

P
0

z dz@
[1[ )] )(1] z@)3]1@2 . (B3)

APPENDIX C

DERIVATION OF THE LIKELIHOOD FUNCTIONS

Various likelihood functions can be derived. The di†erences are due to the additional assumptions that are made about the
distribution of the observations. This appendix gives the mathematical derivation of the two likelihood functions used in the
AMF: and Both derivations are conceptually based on virtually binning the data, but make di†erent assump-Lcoarse Lfine.tions about the distribution of galaxies in the virtual bins.

Imagine dividing up the angular and apparent luminosity domain around a cluster into bins. We assign to each bin a
unique index j. The expected number of galaxies in bin j is denoted The number of galaxies actually found in bin j isnmodelj .

In general, the probability of Ðnding galaxies in cell j is given by a Poisson distributionndataj . ndataj

P
j
\ (nmodelj )ndataje~nmodelj

ndataj !
. (C1)

The likelihood of the data given the model is computed from the sum of the logs of the individual probabilities

L\ ;
j

ln P
j
. (C2)

C1. COARSE GRAINED L

If the virtual bins are made big enough that there are many galaxies in each bin, then the probability distribution can be
approximated by a Gaussian distribution,

P
j
\ 1

J2nnmodelj
exp

C
[ (ndataj [ nmodelj )2

2nmodelj

D
. (C3)

Furthermore, if the Ðeld contribution is approximately uniform and large enough to dominate the noise, then

P
j
\ 1

J2nn
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j
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C

[ (ndataj [ nmodelj )2
2n
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D
, (C4)

where Summing the logs of these probabilities results in the following expression for the coarse likelihoodnmodelj \ n
f
j ] "n

c
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Lcoarse \;
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The Ðrst term does not a†ect the value of " that minimizes and can be dropped. In addition, if the bins can also beLcoarsemade sufficiently small, then the sum over all the bins can be replaced by an integral :

Lcoarse \ [
P [ndata(h, l) [ nmodel(h, l)]2

n
f
(h, l)

d) dl , (C6)

where is a sum of Dirac delta functions corresponding to the locations of the galaxies. Expanding the squared termndata(h, l)
and replacing with yieldsnmodel n

f
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The above expression can be simpliÐed by setting dropping all expressions that are independent of ", and notingd \ n
c
/n

f
,

that is small compared to the other terms, which leaves" / n
c

Lcoarse \ 2" ;
i

d
i
[ "2

P
d(h, l)n

c
(h, l)d) dl . (C8)

Taking the derivative of with respect to " and setting the result equal to zero, we can solve for directly :Lcoarse "coarse

"coarse \ ;
i
d
i

/ d(h, l)n
c
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where the denominator terms of and is/
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Finally, inserting the above value of back into the expression for results in"coarse Lcoarse
Lcoarse \ " ;

i
d
i
, (C11)

which is Thus, maximizing the measured cluster overdensity will give the correct richness and location of the cluster.*data.

C2. FINE GRAINED L

If the virtual bins are chosen to be sufficiently small that no bin contains more that one galaxy, then the calculation of L
can be signiÐcantly simpliÐed because there are only two probabilities that need to be computed. The probability of the empty
bins

Pempty\ e~nmodelj , (C12)

and the probability of the Ðlled bins

Pfilled\ nmodelj e~nmodelj . (C13)

The sum of the log of the probabilities is then

Lfine\ ;
empty

ln Pempty ] ;
filled

ln Pfilled

\[ ;
empty

nmodelj [ ;
filled

nmodelj ] ;
filled

ln nmodelj . (C14)

By deÐnition summing over all the empty bins and all the Ðlled bins is the same as summing over all the bins. Thus, the Ðrst
two terms in equation (C14) are just the total number of galaxies predicted by the model

;
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nmodelj \
P
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where is the apparent luminosity limit of the survey. and are the total number of Ðeld and cluster galaxies onelmin N
f

jN
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Because we retain complete freedom to locate the bins wherever we like, we can center all the Ðlled bins on the galaxies, in
which case the third term in equation (C14) becomes

;
filled

ln nmodelj ] ;
i

ln (n
f
i ] jn

c
i ) , (C17)

and the sum is now carried out over all the galaxies instead of all the Ðlled bins. Combining these results we can now write the
likelihood in terms that are readily computable from the model and the galaxy catalog :
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i ) . (C18)

The simplest way to Ðnd the richness is to take the derivative of the above equation with respect to " and setting it equal to
zero yields

N
c
\;

i

d
i

1 ] "fine di
, (C19)

where we have substituted for Unfortunately, it is not possible to solve for explicitly, but a numerical solutiond
i

n
c
i /n

f
i . "finecan be found by standard methods. The resulting value of is then inserted into the following equation for to obtain"fine Lfinethe maximized value of the likelihood :

Lfine\ ["fine N
c
] ;

i
ln (1 ] "fine di) . (C20)

(Note : in the above expression terms that are independent of and do not contribute any additional information to have"fine Lfinebeen dropped.)
Finally, it is worth mentioning again that, while can be obtained directly from can be found only by"coarse Lcoarse, "finenumerically Ðnding the zero point of equation (C19). Furthermore, equation (C19) does not lend itself to standard derivative-

based solvers (e.g., Newton-Raphson) that produce accurate solutions in only a few iterations. Fortunately, the solution can
usually be bracketed in the range thus obtaining a solution with an accuracy *"D 1 takes0 \ "fine\ 1000, log2 (1000/1) \
10 iterations using a bisection method.

APPENDIX D

DATA/MODEL CONSISTENCY CHECKS

The Ðrst consistency check can be made with or its cumulative probability which can be Ðttedn
f
(l), N

f
(l) \ /

l
= n

f
(l@)dl@,

directly to the galaxy catalog. In the case where a simulated catalog is used the luminosity distribution is taken from the
underlying Ðeld luminosity function and it is possible to compute for each Hubble type directly :/
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N
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The second consistency check can be made with the distribution in redshift (if estimated redshifts exist), where the number
of galaxies at each redshift should satisfy the following convolution with the mean estimated error
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