
THE ASTROPHYSICAL JOURNAL, 516 :519È526, 1999 May 10
1999. The American Astronomical Society. All rights reserved. Printed in U.S.A.(

RECOVERY OF THE SHAPE OF THE MASS POWER SPECTRUM FROM THE Lya FOREST

LAM HUI

NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510 ; lhui=fnal.gov
Received 1998 July 7 ; accepted 1998 December 14

ABSTRACT
We propose a method for recovering the shape of the mass power spectrum on large scales from the

transmission Ñuctuations of the Lya forest that directly takes into account redshift-space distortions. The
procedure, in discretized form, involves the inversion of a triangular matrix that projects the mass power
spectrum in three-dimensional real space to the transmission power spectrum in one-dimensional redshift
space. We illustrate the method by performing a linear calculation relating the two. A method that does
not take into account redshift-space anisotropy tends to underestimate the steepness of the mass power
spectrum in the case of linear distortions. The issue of the e†ective bias factor for the linear distortion
kernel is discussed.
Subject headings : cosmology : theory È intergalactic medium È large-scale structure of universe È

quasars : absorption lines

1. INTRODUCTION

In an elegant paper, Croft et al. (1998) introduced a
method for recovering the shape of the three-dimensional
primordial mass power spectrum on large scales from the
one-dimensional transmission power spectrum of the Lya
forest. They observed that the two are related by an integral
of the form

P(k
A
)P
P
kA

=
P3

k dk
2n

, (1)

where is the wavevector along the line of sight, k is thek
Amagnitude of the three-dimensional wavevector, and P and

are the one-dimensional redshift-space transmissionP3
power spectrum and the three-dimensional redshift-space
mass power spectrum, respectively. It was suggested that
redshift distortions merely change the normalization of P3
from its real-space counterpart, and so a simple di†erentia-
tion of P would suffice in recovering the shape of the three-
dimensional real-space mass power spectrum.1

Redshift distortions (see Hamilton 1998 and references
therein), however, imply that is in general a function ofP3 k

Aas well as k, in which case di†erentiation of P alone would
not recover the true shape of the three-dimensional real-
space mass power spectrum.

We show in ° 3 how to perform the inversion from the
one-dimensional redshift-space transmission power spec-
trum to the three-dimensional real-space mass power spec-
trum correctly, for general, not necessarily linear, redshift
distortions. This involves the inversion of a triangular
matrix, which acts as a distortion kernel. We illustrate the
method in ° 4 with a perturbative example (i.e., linear
distortions) and demonstrate that the method of simple dif-
ferentiation generally outputs a real-space mass power spec-
trum that is Ñatter than the true one. We end with some
concluding remarks in ° 5.

1 Croft et al. (1998) in fact di†erentiated the Gaussianized transmission
power spectrum rather than the transmission power spectrum itself. Their
investigation seems to indicate that the two give very similar results, except
that the former yields smaller error bars. We will consider the non-
Gaussianized version of their method in this paper for simplicity.

Before we proceed, however, let us clarify our notation on
the various power spectra treated in this paper.

2. A NOTE ON NOTATION

To avoid a proliferation of superscripts and subscripts,
we adopt the following convention for the various power
spectra, P, discussed in this paper. We use a tilde to dis-
tinguish between one-dimensional and three-dimensional
power spectra : P is one-dimensional and is three-P3
dimensional (i.e., P has a dimension that is the cube root of
that of To distinguish between the three-dimensionalP3 ).
redshift-space (anisotropic) versus the three-dimensional
real-space (isotropic) power spectra, we rely on either the
context or explicit arguments of the power spectra : the
former is denoted by while the latter, being iso-P3 (k

A
, k)

tropic, is denoted simply by In this paper, all one-P3 (k).
dimensional power spectra, on the other hand, are
implicitly in redshift space. Finally, to tell apart the power
spectrum of density from that of transmission/Ñux, we use
superscripts : Po versus Pf, where o denotes the density and
f the transmission.

3. GENERAL NONPERTURBATIVE FORMULA

The three-dimensional, generally anisotropic, power
spectrum of some random Ðeld is related to its one-
dimensional projection through the following integral
(Kaiser & Peacock 1991) :

P(k
A
) \
P
kA

=
P3 (k

A
, k)

k dk
2n

, (2)

where is the wavevector along the line of sight and k isk
Athe magnitude of the three-dimensional wavevector, i.e.,

where is the magnitude of the wavevectork2\ k
A
2 ] k

M
2 , k

Mperpendicular to the line of sight. We assume that isP3
independent of the direction of by azimuthal symmetry,k

M
,

as is in the case of redshift distortions. Note that we have
used for the three-dimensional power spectrum, to dis-P3
tinguish it from P, its one-dimensional counterpart.
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The power spectra are related to the three-dimensional,
generally anisotropic, two-point correlation function m by
the following :

P(k
A
)\ 2

P
0

=m(u
A
,0) cos (k

A
u
A
) du

A

P3 (k
A
, k)\ 4n

P
0

=P
0

= m(u
A
, u

M
) , (3)

where is the zeroth order Bessel function. The two-J0(r)point correlation m depends on the magnitude of but notu
Mits direction, again by azimuthal symmetry.

The coordinate above stands for the velocity along theu
Aline of sight (in km s~1), i.e., where j is theu

A
4 c(j[ j6 )/j6 ,

observed wavelength, is the mean wavelength of interest,j6
and c is the speed of light.

The coordinate stands for the transverse distance inu
Mvelocity units, i.e., where is the actualu

M
4 H1 x

M
/(1 ] z6 ), x

Mcomoving transverse distance, is the mean redshift ofz6
interest and is the Hubble parameter at that redshift. TheH1
mean redshift and the mean wavelength are related by j6 \
ja(1 ] z6 ), ja\ 1216 A� .

The Fourier counterparts of and are andu
A

u
M

k
A

k
M
.

Occasionally, we will abuse the notation by using the
pair to denote the coordinates in wavelength units,(u

A
, k

A
)

i.e., and its Fourier transform.(j[ j6 )
The e†ect of redshift-space distortions on the power

spectrum, at both small and large scales, can be described
by

P3 (k
A
, k)\ W (k

A
/k, k)P3 (k) , (4)

where is the isotropic power spectrum in the absence ofP3 (k)
peculiar motion, and W is a suitable distortion kernel. Note
that we rely on explicitly displaying the arguments to dis-
tinguish between the isotropic and the anisotropic power
spectra.

Finally, putting equation (4) into equation (2), it can be
seen that the one-dimensional redshift-space power spec-
trum is related to the isotropic three-dimensional real-space
power spectrum by a linear integral equation :

P(k
A
)\
P
kA

=
W (k

A
/k, k)P3 (k)

k dk
2n

. (5)

Thus far, we have not speciÐed the actual random Ðeld
whose power spectrum we are interested in. The random
Ðeld could be the mass overdensity or thed \ do/o6
transmission/Ñux overdensity where f\ e~q,d

f
\ df/f 6, f 6\

S f T, and q is the optical depth. We will use Po ordf\ f[ f 6,
to denote the mass power spectrum and Pf or toP3 o P3 f

denote the transmission power spectrum.
The one-dimensional redshift-space transmission power

spectrum can also be related to the three-dimensional real-
space mass power spectrum by an e†ective kernel, which we
will call W fo :

Pf(k
A
)\
P
kA

=
W fo(k

A
/k, k)P3 o(k)

k dk
2n

. (6)

In discretized form, this is equivalent to

Pf \ A Æ P3 o (7)

where the power spectra are represented as vectors and A
is an upper (or lower) triangular matrix that is invertible
if none of the diagonal entries of A vanish. The special
case considered by Croft et al. (1998) corresponds to
W fo \ const., where inverting the above matrix equation is
equivalent to the di†erentiation ofPf(k

A
).

The problem of equation (7) is of course that forPf(k
A
),

any given depends on an inÐnite vector : for all k,k
A
, P3 o(k)

from to, in principle, inÐnity. To make it useful fork
Acomputation, we have to truncate the inÐnite vectors

somehow. Suppose one is given a Ðnite vector of forPf(k
A
),

say. Equation (7), in component form, can bek
A
A ¹ k

A
¹ k

A
B

rewritten as

Pf(k
A
) [ *\ ;

k/kA
kAB A(k

A
, k) P3 o(k) , (8)

where and*\ /
kA
B= W fo(k

A
/k, k)P3 o(k)kdk/2n, A(k

A
, k)\

can be regarded as a triangularW fo(k
A
/k, k)kdk/2n. A(k

A
, k)

matrix in the sense that can be set to zero forA(k
A
, k)

by the virtue of the lower limit of summation ink \ k
Aequation (8).

By inverting equation (8), we can in principle determine
with * left as a free parameter. We can do better,P3 o(k),

however, by the following observation : since is gener-P3 o(k)
ally a rapidly decreasing function of k for sufficiently high k
(Dk~3 or faster if o is equated with the baryon density, see
footnote 3 in ° 4.2), assuming does notthatW fo(k

A
/k, k)

increase signiÐcantly with k, one can see that * can be made
small by choosing a sufficiently high truncation There-k

A
B .

fore, inverting equation (8) by ignoring * altogether would
still give accurate estimates of for k sufficiently smallerP3 o(k)
than We will illustrate this with an explicit example of Ak

A
B .

or W fo in the next section.

4. A PERTURBATIVE EXAMPLE

In this section, we will perform a linear calculation of Pf,
and we will assume that the actual shape of Pf on large
scales, even in the presence of nonlinearities on small scales,
agrees with that of the linear prediction, while its amplitude
might not. This is in the spirit of Croft et al. (1998), who
argued that, ignoring redshift distortions, Pf should be pro-
portional to the linear Po on large scales, even though the
mass Ñuctuations have gone nonlinear on small scales. The
reader is referred to Scherrer & Weinberg (1998) for argu-
ments on why that is reasonable in the context of local
biasing (the mapping from d to the optical depth or trans-
mission can be seen as some kind of local biasing ; see ° 5 for
subtleties, however).

The output of our calculation would be a distortion
kernel W fo (eq. [6]), which may or may not be the true
kernel on large scales if the mass density Ðeld has already
gone nonlinear on small scales. We will have some more to
say about this in ° 5. Nonetheless, it is unlikely that the true
W fo is equal to a simple constant, i.e., the general method of
inverting a triangular matrix outlined in equation (7) should
be used, rather than mere di†erentiation. The perturbative
example set forth in this section should be seen as an illus-
tration of the method.

4.1. L inear Fluctuations
To derive the linear theory limit of Pf, let us start with the

following general expression for the optical depth (see, e.g.,
& Rees 1993 ; Hui, Gnedin, & ZhangMiralda-Escude�
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1997) :

q(u
A
)\ ;

P nH I
1 ] z6

K ds
A

dx
A

K~1
pa ds

A
,

pa \ pa0
c

b
T

Jn
exp

C
[ (s

A
[ u

A
)2

b
T
2

D
, (9)

where is the proper number density of neutral hydrogen,nH Iis the mean redshift of interest, is the comoving spatialz6 x
Acoordinate and the integration is done over the velocity s

Aalong the line of sight. Velocity is related to distance by
where is the peculiars

A
\ x

A
H1 /(1] z6 ) ] vpec(xA

), vpecvelocity along the line of sight, and is the positionx
A

\ 0
where the redshift due to the Hubble expansion alone coin-
cides exactly with . The Jacobian multiplyingz6 o ds

A
/dx

A
o~1

the proper density gives us the neutral hydrogen densitynHIin velocity-space, and the summation is over multiple
streams of at a givenx

A
s
A
.

The thermal proÐle is given in the second equality, with
being the Lya cross section constant (Rybicki &pa0Lightman 1979). The width of the proÐle is b

T
\

where T is the temperature of the gas, is(2k
B
T /m

p
)1@2, k

Bthe Boltzmann constant, and is the mass of a proton.m
pThree pieces of physics remain to be speciÐed if one is to

relate the optical depth and the mass distribution : (1) ion-
ization equilibrium implies that nH I

P (1 ] d
b
)2T ~0.7,

where is the baryon overdensity ; (2) the temperature-d
bdensity relation where is the meanT \ T0(1 ] d

b
)c~1, T0temperature at and c is determined by reionizationd

b
\ 0

history Hui & Gnedin 1997) ; and (3) the(1.3[ c[ 1.6 ;
baryon distribution is smoothed on small scales with
respect to the mass distribution see below).(d

b
% d ;

Without giving further details (see Hui & Rutledge 1999),
in the weak perturbation limit where(dq > 1 dq \ (q[ q6 )/q6 ),
it can be shown that

dq(uA
)\
P G

[2 [ 0.7(c[ 1)]d
b
[ Lvpec

Ls
A

] (c[ 1)
b
T0
2
4

L2d
b

Ls
A
2
H

] W (s
A

[ u
A
)ds

A
,

W (s
A

[ u
A
)4

1

b
T0

Jn
exp

C
[ (s

A
[ u

A
)2

b
T0
2

D
, (10)

where is the thermal broadening widthb
T0

\ (2k
B
T 0/mp

)1@2
at temperature and W is simply a Gaussian smoothingT0,window. Note that in practice the observed quasar spec-
trum generally violates the condition, but this is adq> 1
smoothing-scale/resolutionÈdependent statement. At
typical observed resolutions, pixels where are notdq D 1
uncommon; on the other hand, if one smooths the data, the
larger the smoothing scale, the more accurate the dq > 1
approximation becomes. This is not unlike the case of gal-
axies : even though locally the Ñuctuations could be large,
when smoothed on sufficiently large scales, the Ñuctuations
become small and linear theory applies. However, it should
be borne in mind that the smoothing of e~q by some Gauss-
ian window does not imply the smoothing of the density
Ðeld by the same smoothing window when is not small.dqUsing the fact that to linear orderd

f
P dq (d

f
\ ( f [ f 6 )/f 6,

with e), we can deduce the one-dimensional power spectrum

of the transmission :

Pf(k
A
) \ A exp

A
[ k

A
2

k
A
s2
B

]
P
kA

= G
[2[ 0.7(c[ 1)]] f)

k
A
2

k2 [ c[ 1
4

k
A
2 b

T0
2
H2

] P3 o(k)e~k2@kF2 k dk
2n

, (11)

where ln a with D being the linear growthf) \ d ln D/d
factor and a the Hubble scale factor (see Peebles 1980). The
three-dimensional isotropic real-space mass power spec-
trum is denoted by and is the scale of smoothingP3 o(k), k

Fdue to baryon pressure, i.e., exp gives theP3 o(k) [[k2/k
F
2]

power spectrum of the baryons. As argued by Gnedin &
Hui (1998)2, should be given byk

F
~1 J2H1 (1 ] z6 )~1f

J
~1x

J
,

where is commonly known as the Jeans scale. The latterx
Jis equal to where k is the mean mass perck

B
T0/4na2Go6 k,

particle and is the mean mass density. The numericalo6
factor relating and should be O(1), its precise valuef

J
k
F
~1 x

Jdepending somewhat on the reionization history (Gnedin &
Hui 1998), but it should have an insigniÐcant e†ect on our
work here, because we are interested primarily in the large-
scale Ñuctuations.

The other smoothing scale should be equal tok
A
s J2/b

T0because of thermal broadening, but we can allow it to be
more general to include the e†ect of Ðnite resolution as well :

k
A
s \ J2

beff
, beff2 \ b

T0
2 ] FWHM2

4 ln 2
. (12)

Hence, the line-broadening scale is not determined by T0alone.
The proportionality constant A for equation (11) should

be equal to within the context of linear theory. However,q6 2
in the spirit of Croft et al. (1998), we assume that the linear
prediction gives the right shape but not necessarily the right
amplitude for the power spectrum on large scales (see ° 5 for
discussion). Hence, A will be left as a free constant.

Note that the integrand in equation (11) is precisely of the
form shown in equation (2). In fact, on large scales (small k

Aas well as k, i.e., small compared to andk
A
s , 1/b

T0
k
F
),

modulo multiplicative factors, it reduces to the famous
Kaiser (1987) result if one identiÐes [2[ 0.7(c[ 1)] with
the usual galaxy-bias factor. Interestingly, the smoothing
factor is exactly of the form commonly usedexp [[k

A
2/k

A
s2]

to model nonlinear redshift distortions on small scales (e.g.,
Peacock & Dodds 1994 ; Heavens & Taylor 1995, but see
also Fisher et al. 1994 ; Cole, Fixher, & Weinberg 1994). We
will take advantage of this fact and estimate the e†ect of
small-scale distortions on the inversion procedure at large
scales by allowing to vary.k

A
s

4.2. Inversion on L arge Scales
Motivated by equation (11), we consider the following

inversion problem: how to estimate on large scales, fromP3 o,
Pf, for

Pf(k
A
) \
P
kA

=
W fo(k

A
/k, k)P3 o(k)

k dk
2n

, (13)

2 The here is equal to the in Gnedin & Hui (1998) divided by 21@2.k
F

k
F
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where

W fo(k
A
/k, k)\ A@ exp

A
[ k

A
2

k
A
s2
B

exp
A

[ k2
k
F
2
B

]
G
1 ] f)

2 [ 0.7(c[ 1)
k
A
2

k2 [ c[ 1
4[2 [ 0.7(c[ 1)]

k
A
2 b

T0
2
H2

,

(14)

where A@ is a constant.3
The above W fo is the actual distortion kernel we will use

to compute Pf for some given input However, for theP3 o.
inversion problem we will not assume we know(Pf] P3 o),
all the parameters in W fo, or even the precise form of W fo,
except that, on large scales, it is equal to

W
l
fo(k

A
/k, k)\ A@

A
1 ] b

f
k
A
2

k2
B2

, b
f
\ f)

2 [ 0.7(c[ 1)
.

(15)

The here is the analog of the usual b discussed in theb
fcontext of galaxy redshift distortions, and 2 [ 0.7(c[ 1) is

the equivalent here of the galaxy bias factor. Note that the
scales of our interest are much larger than the thermal
broadening width ; hence the dropping of the term involving
b
T0
2 .
In other words, for the inversion problem, we assume that

we know the distortion kernel in the linear regime (eq. [15],
with the single parameter but otherwise do not have anyb

f
)

other information regarding the full distortion kernel W fo
(eq. [14]) on small scales. This is intended to mimic the
real-life situation we Ðnd ourselves in : that we understand
linear distortions rather well but do not have a good grasp
of nonlinear distortions on small scales. We will use the
extra parameters in the full kernel (which we ““ pretend ÏÏ we
do not know in the inversion procedure) to simulate the
e†ect of nonlinear distortions on our inversion procedure
(in particular, the parameter which coincides with ak

A
s ,

factor commonly used to model nonlinear distortions in
galaxy surveys ; see, e.g., Peacock & Dodds 1994).

Let us split the integral in equation (13) into two parts, a
part that we think we understand based on perturbation
theory and a part that takes care of the small-scale distor-
tions that we do not necessarily have a good handle on :

Pf(k
A
)\
P
kA

k|
W

l
fo(k

A
/k, k)P3 o(k)

k dk
2n

]
P
k|

=
W fo(0, k)P3 o(k)

k dk
2n

, (16)

where we have assumed that (1) for andW fo DW
l
fo k \ k

|(2) is sufficiently small so that The secondk
A

k
A
/k

|
D 0.

term on the right then plays the role of * in equation (8). As
explained in the last section, the above set-up is then suit-
able for an inversion analysis. One can imagine obtaining

given Pf for some range of by inverting the matrixP3 o k
Adk/2n (which is restricted to its upper, or lowerW

l
fo k

depending on oneÏs convention, triangular entries by the

3 Note that an alternative would be to group the baryon-smoothing
factor exp together with instead of with the rest of the[[k2/k

F
2] P3 o(k)

terms in the distortion kernel W fo. Our inversion procedure can then be
viewed as an attempt to recover the baryon power spectrum P3 o(k) exp [

rather than the mass power spectrum itself However, the[k2/k
F
2] P3 o(k).

two coincide on large scales.

limits of integration), treating * as a free parameter or
ignoring it altogether.

Instead of doing so, we will rewrite equation (16) into a
form that is closer to the original analysis by Croft et al.
(1998), thereby making manifest the di†erences from our
procedure suggested here.

By taking the derivative of equation (16) with respect to
it can be shown thatk

A
,

A@P3 o(k \ k
i
) \ [ 2n

(1] b
f
)2k

i

CK dPf

dk
A

K
kA/ki

[ 4b
f
k
i

AP
ki

k||
A@P3 o(k)k~1 dk

2n
] C1

B

[ 4b
f
2 k

i
3
AP

ki

k||
A@P3 o(k)k~3 dk

2n
] C2

BD
, (17)

where we have used the form of in equation (15). TheW
l
fo

value of for which we will perform the inversion wouldk
irange from some maximum to whatever small (largek

||
k
iscale) one might wish. The constraint is that has to bek

||sufficiently smaller than such that condition number 2 ask
|set out for equation (16) is satisÐed.

The constants and should beC1 C2

C1\
P
k||

k|
A@P3 o(k)k~1 dk

2n
, C2\

P
k||

k|
A@P3 o(k)k~3 dk

2n
.

(18)

Assuming some values for and the starting wave-C1, C2number equation (17) can be used to obtaink
||

, A@P3 o(k \
for successively smaller (at, say, evenly spacedk

i
) k

iintervals). The method adopted by Croft et al. (1998) is
equivalent to keeping only the Ðrst term within the square
brackets on the right-hand side of equation (17), i.e., a
simple di†erentiation.

Because we are interested only in small and becausek
i
,

generally falls rapidly with increasing k, especially atP3 o(k)
high k, we can choose to be some sufficiently largek

||value and simply set We will see that ourC1\ C2 \ 0.
method is robust enough to consistently yield good agree-
ment with the input power spectrum on large scales (small

even though one is making an error on small scales byk
i
),

approximating and as zero. Also, strictly speaking,C1 C2should be chosen to be smaller than which is thek
||

k
|

,
k-value above which the distortion kernel is no longer
described by the linear kernel in equation (15) (see also
conditions for eq. [16]). We will not be careful about it, and
will see that one still obtains the correct on large scales,P3 o
again because falls rapidly with k.P3 o

For clarity let us call the method of simple di†erentiation
following Croft et al. (1998) method I, and the alternative
that we propose here method II.

Figure 1 shows a comparison of the inversion using
method I versus II. Since it is generally difficult to judge
di†erences between power spectral shapes in a log-log plot
of the power spectrum, we instead show the fractional error
in the inverted power spectrum as a function of k. The input
mass power spectrum is that of a standard cold dark matter
(SCDM) universe, with and h \ 0.5. We have)

m
\ 1

chosen the parameters c\ 1.5, km s~1 andk
A
s \ 0.11 k

F
\

km s~1 in the input W fo (eq. [14]). The latter two0.12
values correspond to the choice K (eqs. [11] &T0\ 104
[12]). (We will later alter to mimic the e†ect of nonlineark

A
s
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FIG. 1.ÈComparison of the Croft et al. (1998) inversion (method I ;
dotted line) vs. the inversion set forth in eq. (17) (method II ; dashed line). On
the y-axis is where is the input real-spacedP3 o/P3 o, dP3 o \P3 outputo [ P3 o, P3 o
mass power spectrum, and is the output. The input power spectrumP3 outputo
is that of the SCDM model, and the input parameters are c\ 1.5, k

A
s \

0.11 km s~1, and km s~1 (eq. [14]). The inversion parameters arek
F
\ 0.12

km s~1 and (eq. [17]). The inversion isk
||

\ 0.14 C1\C2\ 0 b
fassumed to be the same as that in the input (i.e., 1/1.65, see eq. [15]). The

outputs are normalized to match the input at k \ 0.005 km s~1.

redshift distortions.) The length scales shown correspond to
those considered by Croft et al. (1998).

Since we are interested only in shapes here, the power
spectra are normalized to agree at k \ 0.005 km s~1. It can
be seen that method I gives an inverted mass power spec-
trum that, on large scales, is systematically less steep, or less
steeply falling, than the input (i.e., the slope of the inverted
power spectrum is less negative than the actual one ; see Fig.
3 for a log-log plot of the power spectra).

To understand this result, let us go back to equation (17)
and rewrite it as follows, approximating and as zeroC1 C2and as e†ectively inÐnite :k

||

[ 2n
(1] b

f
)2k

i

K dPf

dk
A

K
kA/ki

\ A@P3 o(k
i
)] E(k

i
) (19)

E(k
i
)4 [ 4b

f
(1] b

f
)2
P
ki

=
A@P3 o(k)k~1dk

[ 4b
f
2 k

i
2

(1] b
f
)2
P
ki

=
A@P3 o(k)k~3dk , (20)

On the left-hand side of equation (19) is essentially the esti-
mator of Croft et al. (1998 ; method I) for the shape of the
mass power spectrum. The Ðrst term on the right is the true
mass power spectrum, and E is the error of method I.
Approximating a realistic power spectrum asP3 o(k)
k~n[1[ v(k)], where v(k) is positive and is an increasing
function of k, it is not hard to show that byd(E/P3 o)/dk

i
º 0

expanding to Ðrst order in v, which means E is decreasing
with slower than, or at most as fast as, is. Equationk

i
P3 o

(19) then tells us method I would systematically give a
Ñatter estimate of the mass power spectrum than the true
one. The limiting case of occurs when thed(E/P3 o)/dk

i
\ 0

input power spectrum obeys a strict power law, in whichP3 o
case E has the same shape as the input, and method I recov-
ers the shape of the true power spectrum.

It can also be seen that both method I and II fail on small
scales (large k). This should come as no surprise because no
attempts have been made to model the small-scale e†ects in
the inversion procedure laid out in equation (17) (see also
eq. [16]). We ““ pretend ÏÏ that we do not know the actual full
distortion kernel (eq. [14]), but instead assume only know-
ledge of the large-scale distortion kernel (eq. [15]) when
carrying out the inversion. Moreover, for method II, we
have not been very careful in selecting the value of the
constants and we simply set them to zero.C1 C2 :

To estimate the e†ect of nonlinear distortions on our
inversion procedure, we decrease to 0.028 km s~1 andk

A
s

show the outputs of methods I and II in Figure 2. Here
we are taking advantage of the fact that the factor of

in equation (14) is commonly used toexp [[(k
A
/k

A
s )2]

model nonlinear distortions in the case of galaxy surveys
(see, e.g., Peacock & Dodds 1994). By raising the scale of
nonlinear distortion by a factor of about 4, we hope to gain
an idea of how the as yet poorly understood nonlinear dis-
tortions on small scales might a†ect the inversion of the
power spectrum on large scales. However, it remains to be
checked with simulations how realistic this choice of scale,
or this particular parametrization of nonlinear distortions,
is. The agreement on large scales for method II is not as
good as before, but it is still within about 7% and better
than that of method I. It is possible to improve the agree-
ment by playing with the input parameters orC1, C2 k

||
.

We will not pursue that here.
We also show in Figure 3 what the inverted and input

power spectra look like in a log-log plot. The subtle di†er-
ences in the shapes of the power spectra are still possible,
but harder, to discern in such a plot.

Lastly, we have assumed in all tests above that the input
(eq. [15]) is known when performing the inversion. Inb

fpractice, there is an uncertainty due to the lack of know-
ledge of the precise values of c and In Figure 4, we showf).
a case where the inversion c is chosen to be slightly di†erent

FIG. 2.ÈSame as Fig. 1, except that km s~1.k
A
s \ 0.028
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FIG. 3.ÈSolid line is the input linear power spectrum. The dashed line
is the output obtained using method II (eq. [17]), and the dotted line is the
output obtained using method I, i.e., simple di†erentiation. The parameters
are the same as in Fig. 2.

from the known input c. (The actual value for c in the real
universe is likely to have a narrow range see1.3[ c[ 1.6 ;
Hui & Gnedin 1997). The impact on the recovery of the
power spectrum shape appears minimal for the small
change in c.4 Similarly, at a redshift of around 3 shouldf)fall in a narrow range (close to 1) for reasonable values of

and the cosmological constant today.)
m

5. CONCLUSION

The main aim of this paper is to draw attention to the fact
that redshift distortions in general make the three-
dimensional redshift-space mass power spectrum aniso-
tropic, and so the inversion from the projected
one-dimensional redshift-space transmission power spec-
trum to the three-dimensional real-space mass power spec-
trum involves more than a simple di†erentiation (eq. [2]).
Given a kernel (W fo in eq. [6]) that relates the relevant
power spectra, it is possible to perform the inversion by
essentially inverting a triangular matrix proportional to
W fo (eqs. [7] & [8]).

We have demonstrated this idea with a kernel W fo that is
motivated by linear perturbation theory. In general, we Ðnd
that a simple di†erentiation method tends to make the
inverted three-dimensional real-space power spectrum
Ñatter than it really is on large scales. A procedure that
remedies this is outlined in equation (17). We have referred
to the former (straightforward di†erentiation) as method I,
and the latter as method II.

As we remarked in ° 4.2, if the three-dimensional real-
space mass power spectrum obeys a strict power law,P3 o(k)
the simple di†erentiation procedure of method I will
recover the same power law. That we observe a deviation of

4 However, as we will discuss in ° 5, the e†ective ““ bias ÏÏ factor that
appears in might well be di†erent from the linear predictionb

f2 [ [c[ 1]. In that case, the ““ bias ÏÏ factor has to be measured from simu-
lations, but the conclusion that the range of c is too small to signiÐcantly
a†ect the inversion procedure will probably continue to hold.

FIG. 4.ÈSame as Fig. 1, except that the inversion c[ 1 is chosen to be
0.3 instead of the input value 0.5.

the method I inverted power spectrum from the input in
Figures 1È4 is a reÑection of the fact that a realistic power
spectrum (such as CDM) is only well-approximated by a
power law for narrow ranges of k. The di†erences between
methods I and II are not easy to discern in a log-log plot
such as the one shown in Figure 3, especially when one is
dealing with observed or simulated data with noise. The
systematic error of method I is nonetheless present, and
more easily seen in plots such as the one in Figure 2. A
cursory inspection of some of the log-log plots of the
inverted power spectrum in Croft et al. (1998) seems to
indicate that method I does give a slightly Ñatter power
spectrum compared to the input on large scales, but it cer-
tainly should be more carefully quantiÐed with simulations.

An interesting consequence of redshift-space distortions
is that the one-dimensional transmission power spectrum
Pf is no longer guaranteed to be monotonically decreasing
(Kaiser & Peacock 1991), unlike in the case where the dis-
tortion kernel is trivial (i.e., set W fo to constant in equation
[13]). Method I, where Pf is simply di†erentiated to obtain
the mass power spectrum could then give a negativeP3 o,
mass power spectrum and fail dramatically (see eq. [19],
and discussions that follow).

For a power-law mass spectrum with it isP3 o(k) P k~n,
simple to show using the linear distortion kernel (eq. [15]),
together with equation (13), that ifdPf/dk

A
[ 0

[[(b
f
2] 6b

f
] 1)1@2 [ (1[ b

f
)]

/(1 ] b
f
) \ n \ [(b

f
2] 6b

f
] 1)1@2 [ (1[ b

f
)]/(1] b

f
) .

(21)

For the parameters and c\ 1.6, which were)
m

\ 1
adopted by Croft et al. 1998, this implies a range of
[ 1.62\ n \ 1.17, within which method I should give a
negative inverted mass power spectrum. Of course, a strict
power-law power spectrum with n in such a range is not
very interesting because it gives a diverging one-
dimensional transmission power spectrum (n [ 2 is
required for convergence). It is for this reason that a direct
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comparison cannot be made between the above simple esti-
mates and a test case shown by Croft et al. (1998) in which
the initial power spectrum has n \ 1. In fact, for a scale-free
initial power spectrum of k~n, the stable clustering mass
power spectrum at high k should be k~6@(5~n) (Peebles
1980). For n \ 1, this means the high k mass power spec-
trum asymptotes to k~1.5, which is still not enough to regu-
larize the integral for the transmission power spectrum (eq.
[13] together with eq. [15]). It is likely that in their test case,
an e†ective ultraviolet cut-o† is imposed by the Ðnite
resolution of the simulation, or else the true nonlinear
redshift-distortion kernel provides an e†ective regulariza-
tion. Note, however, that there is no small-scale Jeans
smoothing to help here because Croft et al. (1998) used
N-bodyÈonly simulations.

Nonetheless, we should emphasize that while on large
scales the direction of the systematic error of method I is on
Ðrm ground (i.e., systematic Ñattening), the size of the error,
on the other hand, is subject to further investigation. We
have used linear theory in ° 4 to estimate the magnitude of
this e†ect. The linear calculation gives us the e†ective ““ bias
factor ÏÏ (let us call it which equals 2[ 0.7(c[ 1) in equa-bb,tion [15]) associated with the distortion parameter (i.e.,b

fbut this might not be the correct in the pres-b
f
\ f)/bb), bbence of nonlinear Ñuctuations on small scales.
For instance, according to arguments by Scherrer &

Weinberg (1998), the galaxy-bias (di†erent from above,b
g

bbsee below), deÐned as the ratio of the galaxy-to-mass two-
point function on large scales (where galaxy is related to
mass by a local transformation) generally involves all the
higher derivatives of the local transformation around d \ 0,
i.e., not just the Ðrst derivative, as in the case of a linear
perturbative calculation.

One might naively think that, in the case of the Lya
forest, should be set equal to the analog of the galaxy biasbbdeÐned above, namely the ratio of the transmission to mass
power spectrum on large scales. Let us denote this latter
quantity also by This number is smaller than 1 in ourb

g
.

case (because the exponential (e~q) suppresses large
Ñuctuations), which means the redshift distortions are more
pronounced than we have assumed in ° 4, and the system-
atic error of method I should be even larger !

However, there are at least two reasons to suspect that
this is not the correct conclusion. First, as emphasized
recently by Dekel & Lahav (1998), the bias factor that
shows up in the linear distortion kernel is not necessar-(bb)ily the same as deÐned above, because of the nonlinearityb

gof the biasing transformation (see below for a discussion of
the transformation relevant in our case ; we do not su†er
from stochastic biasing, however). In fact, according to
Dekel & Lahav, even the form of the linear distortion kernel
could be slightly modiÐed (see also Pen 1998).

A second, perhaps more important, reason is that the
mapping from the mass density Ðeld o to the transmission f

actually involves two local ““ biasing ÏÏ transformations with
the redshift-space distortion in between. First, the mass
density in real space is related to the neutral hydrogen
density in real space through the local transformation

second, this is then ““ distorted ÏÏ into thenH I
P o2~0.7(c~1) ;5

optical depth in redshift space through qP [o2~0.7(c~1)]
z
,

where [ denotes a quantity in redshift space ; Ðnally,]
zanother local transformation maps the optical depth in red-

shift space to the transmission in redshift space : f\ e~q. It is
plausible that the Ðrst two steps determine the correct value
of while the last merely shifts the overall normalizationbb,of the Ðnal redshift space power spectrum of the transmis-
sion on large scales (see Hui 1999).

Lastly, there is of course the possibility that even the form
of the large-scale distortion kernel in equation (15) might be
incorrect, or, as is more likely the case, that the linear dis-
tortion kernel applies only at (a small range of) the largest
scales (see, e.g., Cole et al. 1994). This is related to the ques-
tion of how nonlinear clustering on small scales, or trans-
linear clustering on intermediate scales, a†ects the
large-scale behavior of redshift distortions. Couple this with
the e†ects of nonlinear local transformations : we indeed
have a complicated problem here. Some of these issues are
beginning to be addressed (see Fisher & Nusser 1996,
Taylor & Hamilton 1996, Scoccimarro 1999,, and Hui,
Kofman, & Shandarin 1999 for the former and Scherrer &
Weinberg 1998, Dekel & Lahav 1998, and Hui 1999 for the
latter). The good news, at least in the case of the Lya forest,
is that the form of the relevant local ““ biasing ÏÏ transform-
ation is known exactly.

Both issues, the problem of translinear or nonlinear
redshift-space distortions and the problem of biasing in real
as well as in redshift space, are obviously of great interest in
the wider context of large-scale structure and galaxy
surveys. Analytical calculations, with reality checks using
simulations, would be necessary to address these questions.
We hope to pursue aspects of these issues in a future pub-
lication.

As this paper was nearing completion, the author became
aware of a preprint by Nusser & Haehnelt (1998), who also
considered the e†ects of redshift-space distortions on the
forest, not in the case of inversion from the transmission
power spectrum to the mass power spectrum, but in the case
of the recovery of the mass density Ðeld itself. McDonald &

(1998) also raised issues similar to thoseMiralda-Escude�
discussed here in a recent preprint. The author thanks
Rupert Croft and Albert Stebbins for useful discussions, and
is grateful for the referee for helpful suggestions. This work
was supported by the DOE and the NASA grant NAG
5-7092 at Fermilab.

5 We ignore the spatial dependence of the thermal proÐle to simplify the
discussion here ; see eq. (9).
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