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ABSTRACT
Performing one-dimensional hydrodynamical calculations coupled with nonequilibrium processes for

hydrogen molecule formation, we pursue the thermal and dynamical evolution of Ðlamentary primordial
gas clouds and attempt to make an estimate on the mass of Population III stars. The cloud evolution is
computed from the central proton density cm~3 up to D1013 cm~3. It is found that,n

c
D 102È104

almost independent of initial conditions, a Ðlamentary cloud continues to collapse nearly isothermally
owing to cooling until the cloud becomes optically thick against the lines cm~3).H2 H2 (n

c
D 1010È1011

During the collapse the cloud structure separates into two parts, i.e., a denser spindle and a di†use
envelope. The spindle contracts quasi-statically, and thus the line mass of the spindle keeps a character-
istic value determined solely by the temperature (D800 K), which is D1 ] 103 pc~1 during theM

_contraction from cm~3 to 1013 cm~3. Applying a linear theory, we Ðnd that the spindle isn
c
D 105

unstable against fragmentation during the collapse. The wavelength of the fastest growing perturbation
lessens as the collapse proceeds. Consequently, successive fragmentation could occur. When the(j

m
)

central density exceeds cm~3, the successive fragmentation may cease, since the cloudn
c
D 1010È1011

becomes opaque against the lines and the collapse decelerates appreciably. Resultantly, the minimumH2value of is estimated to be D2 ] 10~3 pc. The mass of the Ðrst star is then expected to be typicallyj
m

D3 which may grow up to D16 by accreting the di†use envelope. Thus, the Ðrst-generationM
_

, M
_stars are anticipated to be massive but not supermassive.

Subject headings : hydrodynamics È ISM: clouds È stars : formation È stars : interiors

1. INTRODUCTION

Based on the standard big bang nucleosynthesis, the Ðrst
generation of stars should form from materials deÐcient in
heavy elements. In present-day galaxies, heavy elements or
dust grains provide the most efficient cooling mechanism,
while the cooling process in primordial gas is likely to be
governed by hydrogen molecules. Many authors hitherto
have considered the formation processes of primordial stars
from metal-deÐcient gas (e.g., Matsuda, Sato, & Takeda
1969 ; Yoneyama 1972 ; Hutchins 1976 ; Silk 1977a, 1977b ;
Yoshii & Sabano 1979 ; Carlberg 1981 ; Struck-Marcell
1982a, 1982b ; Lepp & Shull 1983, 1984 ; Silk 1983 ; Palla,
Salpeter, & Stahler 1983 ; Yoshii & Saio 1986 ; Shapiro &
Kang 1987 ; de & Opher 1989 ; Uehara et al. 1996 ;Arau� jo
Haiman, Thoul, & Loeb 1996 ; Omukai et al. 1998). Such
Ðrst-generation stars, say Population III, could play an
important role in the early evolution of galaxies (e.g.,
Tegmark, Silk, & Blanchard 1994 ; Ostriker & Gnedin 1996)
or the formation of massive black holes (Umemura, Loeb,
& Turner 1993).

Also, they may be responsible for the chemical pollution
of the intergalactic medium that recently has been inferred
from metallic absorption in the Lya forest seen in quasar
light (Cowie et al. 1995 ; Songaila & Cowie 1996). It is thus
important to study the thermal and dynamical evolution of
the primordial gas clouds from which the Ðrst-generation
stars would form.

If the hydrogen gas were to remain purely atomic, the
primordial gas would be cooled down to 104 K owing to the
Lyman a lines. It is, however, difficult for the gas tem-
perature to become lower, because hydrogen atoms are a

poor radiator in the lower temperature gas. Therefore, the
Jeans mass of such a cloud, which is often referred to the
characteristic mass in star formation theory, becomes much
greater than a typical stellar mass.

In practice, hydrogen molecules provide key cooling
mechanisms. In contrast to the molecule formation on dust
grains in metal-rich interstellar gas, the formation of pri-
mordial hydrogen molecules can proceed through the gas
phase reaction (Saslaw & Zipoy 1967 ; Peebles & Dicke
1968),

e] H ] H~] hl , (1)

H~] H ] H2] e , (2)

and

H`] H ] H2`] hl , (3)

H2`] H ] H2] H` . (4)

At high density of the molecules can alson Z 108cm~3,
form through three-body reactions (Palla, Salpeter, &
Stahler 1983),

3H ] H2] H (5)

and

2H ] H2] 2H2 . (6)

Even if a relatively small fraction (D10~3) of the molecules
form, they make a signiÐcant contribution to cooling
through the rotational and vibrational transitions, so that
the temperature of primordial gas can be reduced to a lower
temperature than 104 K (e.g., Matsuda et al. 1969 ; Yoney-
ama 1972 ; Hutchins 1976 ; Palla, et al. 1983). Resultantly,
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the Jeans mass could decrease to stellar mass. However,
although many elaborate analyses have been made, the
masses of Population III stars have not been well con-
verged. Carlberg (1981) and Palla et al. (1983) have shown
that the Jeans mass can go down to a level of [0.1 M

_
.

Yoshii & Saio (1986) derive the initial mass function (IMF)
based upon the opacity-limited fragmentation theory (Silk
1977a, 1977b) and Ðnd the peak of the IMF around 4È10

Uehara et al. (1996) have shown that the minimumM
_

.
masses of the Ðrst-generation stars are basically determined
by the Chandrasekhar mass, say D1 (see also ReesM

_1976). In this paper, we reanalyze the formation of Popu-
lation III stars by computing the collapse of Ðlamentary
clouds coupled with formation.H2In bottom-up scenarios like the cold dark matter (CDM)
model, it is expected that overdense regions with masses of
105È107 would Ðrst collapse at the redshift range ofM

_ and that the Ðrst generation of stars would10 [ z[ 100
form there. The importance of the cooling in the col-H2lapse of such primordial clouds has been stressed by several
authors (e.g., de & Opher 1989 ; Haiman, Rees, &Arau� jo
Loeb 1996 ; Susa et al. 1996 ; Tegmark et al. 1997). It has
been found in these studies that the mass fraction of canH2reach from 10~4 up to 10~3 and the temperature of the
cloud can be reduced to 102È103 K. However, most of the
studies are restricted to highly simpliÐed models such as
homogeneous, pressureless, and/or spherical collapses. In
practice, the cloud contraction proceeds inhomogeneously.
Since the cloud is more or less nonspherical, deviation from
spherical symmetry grows over time, because of its self-
gravity, until a shocked pancake forms (e.g., Umemura
1993). Recently, several authors have studied the collapse of
pregalactic clouds with multidimensional hydrodynamical
simulations (e.g., Anninos & Norman 1996 ; Ostriker &
Gnedin 1996). Unfortunately, they still do not have enough
spatial and mass resolution to explore star formation.

The pancake could be gravitationally unstable against
fragmentation (e.g., Umemura 1993 ; Anninos & Norman
1996). It tends to fragment into thin Ðlamentary clouds
rather than spherical ones (Miyama, Narita, & Hayashi
1987a, 1987b ; Uehara et al. 1996). The Ðlamentary cloud
can also fragment into smaller and denser cores (e.g.,
Larson 1985), in which consequently stars can form. In this
paper we thus investigate the thermal and dynamical evolu-
tion of Ðlamentary primordial gas clouds. Using a one-
dimensional axisymmetric hydrodynamical scheme, we
pursue the evolution in the range of more than eighth order
of magnitude in density contrast to properly estimate the
mass scale of the Ðrst-generation stars.

In ° 2, we describe our model clouds and the computa-
tional methods. Numerical results are presented in ° 3. In ° 4
we consider the fragmentation of a collapsing Ðlamentary
cloud and estimate the mass scale of the fragments and
thereby the mass of the Ðrst-generation stars. Section 5 is
devoted to the conclusions.

2. MODEL

2.1. Basic Equations
To pursue the thermal and dynamical evolution of a Ðla-

mentary primordial cloud, we employ a one-dimensional
hydrodynamical scheme. We assume that the system is
axisymmetric and that the medium consists of ideal gas. The
adiabatic index, c, is taken to be 5/3 for monatomic gas and

7/5 for diatomic gas. We deal with the following nine
species : e, H, H`, H~, He, He`, and He``. TheH2, H2`,
abundance of helium atoms is taken to be 10% of that of
hydrogen by number.

The basic equations are then given in the cylindrical
coordinates (r, r, z) by
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where o, n, P, t, E, G, and k are the mass density,v
r
,

number density, radial velocity, gas pressure, gravitational
potential, energy per unit volume, gravitational constant,
and Boltzmann constant, respectively. The symbol "netdenotes the cooling function that represents the net energy
loss rate per unit volume. The values with subscript i denote
those of the ith species.

The number density of the ith species, is obtained byn
i
,

solving the following time-dependent rate equations,

dx
i

dt
\ n

H
;
j/1

9
;
k/1

9
k
jk

x
j
x
k
] n

H
2 ;

l/1

9
;

m/1

9
;
n/1

9
k
lmn

x
l
x
m

x
n

,

(14)

where denotes the total number density of hydrogennHnuclei and is the relative number density of thex
i
4 n

i
/nHith species. The reaction rate coefficients, and arek

jk
k
lmn

,
given in Table 1.

In the models calculated in this paper, the gas tem-
perature does not get much above 104 K. Thus the cooling
is dominated by contributions from H at T D 104 K and H2at T \ 104 K. We therefore adopt the cooling rate in the
form of where and"net \"H ] "H2

] "chem, "H, "H2
,

denote contributions from H, and chemical reac-"chem H2,tions, respectively. includes the cooling of H atoms due"Hto recombination, collisional ionization, and collisional
excitation (Cen 1992 ; see also Black 1981). includes the"H2cooling of due to rotational and/or vibrational excita-H2tions (Lepp & Shull 1983 ; Haiman et al. 1996), collisional
dissociation (Lepp & Shull 1983), and heating due to H2formation (Shapiro & Kang 1987). includes the"chemcooling due to chemical reactions in Table 1 (Shapiro &
Kang 1987). For each contribution, we use the analytic
formula expressed in each reference. [It is claimed that com-
pared to the rate by Hollenbach & McKee 1989, the cooling
rate by Lepp & Shull 1983 is overestimated in relatively low
densities cm~3). But the rates are in a good agree-(nH \ 1
ment with each other in the higher densities relevant to the
present issue (Galli & Palla 1998)].
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TABLE 1

REACTION RATE COEFFICIENTS

Reactions Rate CoefÐcients Reference

(1) . . . . . . . H ] e] H` ] 2e k1\ 5.85] 10~11T 0.5 exp ([157809.1/T )(1] T 50.7)~1 1
(2) . . . . . . . He] e] He` ] 2e k2\ 2.38] 10~11T ~0.5 exp ([285335.4/T )(1] T 50.5)~1 1
(3) . . . . . . . He`] e] He``] 2e k3\ 5.68] 10~12T 0.5 exp ([631515.0/T )(1] T 50.5)~1 1
(4) . . . . . . . H`] e] H ] hl k4\ 8.40] 10~11T ~1@2T 3~0.2(1] T 60.7)~1 1
(5) . . . . . . . He`] e] He] hl k5\ 1.9] 10~3T ~1.5 exp ([470000/T )(1] exp ([94000/T ) 1

] 1.50] 10~10T ~0.6353
(6) . . . . . . . He``] e] He` ] hl k6\ 3.36] 10~10T ~0.5T 3~0.2(1] T 60.7)~1 1
(7) . . . . . . . H ] H ] H ] H` ] e k7\ 1.7] 10~4k1 2
(8) . . . . . . . H ] e] H~ ] hl k8\ 1.0] 10~18T , T ¹ 1.5] 104 K 3

k8\ dex [[14.10] 0.1175 log T [ 9.813] 10~3(log T )2], T [ 1.5] 104 K 3
(9) . . . . . . . H ] H~] H2] e k9\ 1.3] 10~9, T ¹ 104 K 3

k9\ dex [[8.78] 0.113 log T [ 3.475] 10~2(log T )2], T [ 104 K 3
(10) . . . . . . H ] H`] H2`] hl k10\ 1.85] 10~23T 1.8, T ¹ 6.7] 103 K 3

k10\ 5.81] 10~16(T /56200)*~0.6657 log (T@56200)+, T [ 6.7] 103 K 3
(11) . . . . . . H2`] H ] H2] H` k11\ 6.4] 10~10 4
(12) . . . . . . H2] H ] 3H k12 (see eq. [5] in reference) 5
(13) . . . . . . H2] H`] H2`] H k13\ 2.4] 10~9 exp ([21200/T ) 3
(14) . . . . . . H2] e] H ] H~ k14\ 2.7] 10~8T ~1.5 exp ([43000/T ) 6
(15) . . . . . . H2] e] 2H ] e k15\ 4.38] 10~10T 0.35 exp ([102000/T ) 3
(16) . . . . . . H2] H2] 2H ] H2 k16 (see eq. [5] in reference) 5
(17) . . . . . . H~] e] H ] 2e k17\ 4.0] 10~12 exp ([43000/T ) 3
(18) . . . . . . H~] H ] 2H ] e k18\ 5.3] 10~20T 2.17 exp ([8750/T ) 3
(19) . . . . . . H~] H` ] 2H k19\ 7.0] 10~7T ~0.5 7
(20) . . . . . . H~] H` ]H2` ] e k20\ 10~8T ~0.4, T ¹ 104 K 3

k20\ 4 ] 10~4T ~1.4 exp ([15100/T ), T [ 104 K 3
(21) . . . . . . H2`] e] 2H k21\ 1.68] 10~8(T /300)~0.29 8
(22) . . . . . . H2`] H~ ] H ] H2 k22\ 5.0] 10~6T ~0.5 7
(23) . . . . . . 3H ] H2] H k23\ 5.5] 10~29T ~1 9
(24) . . . . . . 2H ] H2] 2H2 k24\ k23/8 9

REFERENCES.È(1) Cen 1992 ; (2) Palla et al. 1983 ; (3) Shapiro & Kang 1987 ; (4) Karpas, Anicich, & Huntress 1979 ; (5) Lepp & Shull
1983 ; (6) Hirasawa 1969 ; (7) Dalgarno & Lepp 1987 ; (8) Nakashima, Takayi, & Nakamura 1987 ; (9) Palla et al. 1983.

a The units of rate coefficients are taken to be cm3 s~1 for two-body reactions and cm6 s~1 for three-body reactions

When the density exceeds D1010 cm~3, the lineH2 H2emission becomes optically thick (Palla et al. 1983). To take
account of this e†ect, we modify the line cooling with theH2photon escape probability (Castor 1970 ; Goldreich &
Kwan 1974) : and"H2 line \b"H2 line,thin b \ (1 [ e~qR)/q

R
,

where is the cooling function in optically thin"H2 line,thinregime, b is the photon escape probability, and is theq
RRossland mean opacity for the line emission. To evalu-H2ate we determined the level populations with the methodq

R
,

of Palla et al. (1983). This type of b is applicable rigorously
when the gas Ñows supersonically and its velocity mono-
tonically changes in proportion to the radius (Castor 1970 ;
Goldreich & Kwan 1974). However, the evolution has
turned out to depend weakly on the form of b. Using other
types of b, e.g., we have recalculated the evolutionb \ e~qR,
and reached basically the same results.

2.2. A Model for a Filamentary Primordial Cloud
In a gravitational instability scenario for the formation of

the Ðrst structures, a cosmological density perturbation
larger than the Jeans scale at the recombination epoch
forms a Ñat pancake-like disk. This process has been exten-
sively studied by many authors (e.g., ZelÏdovich 1970 ;
Sunyaev & ZelÏdovich 1972 ; Cen & Ostriker 1992a, 1992b ;
Umemura 1993). Although the pancake formation was orig-
inally studied by ZelÏdovich (1970) in the context of the
adiabatic Ñuctuations in baryon or hot dark matter-
dominated universes, recent numerical simulations have
shown that such pancake structures also emerge in the

CDM cosmology (e.g., Cen et al. 1994). Thus, the pancakes
are thought to be a ubiquitous feature in gravitational
instability scenarios.

In a bottom-up theory like the CDM model, the Ðrst
collapsed objects at zD 10È100 are expected to have the
masses of D105h7 In these clouds the gas is heated byM

_
.

shock to above T [ 103È104 K. Therefore, just after the
shock formation, the cooling timescale is likely to be shorter
than the free-fall one ; the temperature of the pancake
reduces to the value at which the cooling timescale is com-
parable to the free-fall one (e.g., Haiman et al. 1996 ; see also
Yoneyama 1972). The temperature of the pancake is then
estimated to be T ^ 200È1000 K for yH2

\ 10~4D 10~3.
Thereafter, the pancake is likely to fragment into Ðlamen-
tary clouds that have nearly the same temperature as that of
the parent pancake (Miyama et al. 1987a, 1987b ; Uehara et
al. 1996). In the following we describe a model of a Ðlamen-
tary cloud formed by fragmentation of the pancake.

As a model of a Ðlamentary gas cloud, we assume an
inÐnitely long cylindrical gas cloud for simplicity. At the
initial state, we assume the gas to be quiescent and isother-
mal. We also assume for simplicity that H~, He` , andH2`,
He`` do not exist at the start and that the relative abun-
dances of other species are spatially uniform. The density
distribution in the radial direction is set to be

o \ o0
A
1 ] r2

fRfil2
B~2

, (15)
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and

Rfil \
S 2kT0

nGo0 k
, (16)

where and are respectively the central density and theo0 T0initial gas temperature, and f represents the degree of devi-
ation from the equilibrium state. A model is speciÐed by the
following Ðve parameters : f, the electron numbero0, T0,fraction and the number fraction When f \ 1,x

e
, H2 xH2

.
the cloud is just in hydrostatic equilibrium; the density dis-
tribution accords with that of an isothermal Ðlamentary gas
cloud in equilibrium 1963). In this paper, we(Stodo� ¡kiewicz
restrict the parameter f to fº 1 since we are interested in the
evolution of the collapsing clouds.

For the above model, the mass per unit length (line mass)
is given by

l0\
P
0

=
2nor dr \ nRfil2 o

c
f

\ 2kT0
kG

f\ 2.2] 103
A f
2
B
M

_
pc~1

A T0
1000 K

B
. (17)

Note that the line mass of the equilibrium Ðlamentary cloud
depends only on the temperature. When the Ðlamentary
cloud forms through gravitational fragmentation of the
pancake, its line mass is estimated to be lD 2o

d
j
m

H
d
D

4kT /(kG), which is twice that of the equilibrium cloud ; i.e.,
the typical value of f is evaluated to be f\ 2 (Miyama et al.
1987a). Here and are the mass density of theo

d
, j

m
, H

dparent pancake, the wavelength of the most unstable linear
perturbation, and the half-thickness of the pancake, respec-
tively. We thus adopt f\ 2 for a typical model.

2.3. Model Parameters and Numerical Method
As shown in ° 2.2, the initial state is speciÐed by the

parameters f, andn0(4o0/k), T0, x
e
, xH2

.
We examine 60 models by choosing the parameters n0,

and f to be 103, . . . , 106 cm~3,T0, n0\ 102, T0\ 102,
5 ] 102, 103, 104 K, and f\ 2, 4, and 10, respectively. For
the parameters and we adopt andx

e
xH2

, x
e
\ 5 ] 10~5

for the models with K. The value ofxH2
\ 10~4 T0\ 104

is adopted from the calculation of Peeblesx
e
\ 5 ] 10~5

(1968) for the residual post-recombination ionization. (We
have found that the results do not depend upon as far asx

ebecause the free electrons could quickly recom-x
e
Z 10~7,

bine to a level of in the course of the collapse ; seex
e
\ 10~7

also Haiman, Rees, & Loeb 1996, 1997.). The other abun-
dances are determined by the conservation of mass and
charge. For the models with K, we determine theT0 \ 104
abundances from the statistical equilibrium with e, H, H`,
He, He`, and He``.

The hydrodynamic equations (7)È(13) are solved numeri-
cally using a second-order upwind scheme based on Nobuta
& HanawaÏs (1999) method. This scheme is an extension of
RoeÏs (1981) method to the gas having nonconstant c. (See
Nobuta & Hanawa 1999 for more details and for the test of
the code.) The rate equations (14) are solved numerically
with the Livemore Solver for Ordinary Di†erential equa-
tions with automatic method switching for sti† and nonsti†
problems (LSODAR) coded by L. Petzold and A. Hind-
marsh.

As for the boundary condition, we take the Ðxed bound-
ary at where is the maximum radial coordi-r \Rmax, Rmaxnate in the computational domain. In all the models we

FIG. 1.ÈEvolution of the temperature solid curves) and the(T
c
, H2abundance dashed curves) at the center for the model with(yH2,c,cm~3, 103 K, 2). The Ðrst prompt decrease of the tem-(n0, T 0, f )\ (104

perature is due to the cooling. Afterward, until the central densityH2reaches D1011 cm~3, the temperature keeps a nearly constant value of
D800 K over the Ðfth order of magnitude in density. The abundanceH2steeply rises around cm~3 and reaches at the stage atn

c
D 109 yH2

D 1
which cm~3. At cm~3, the cloud becomes opticallyn

c
D 1011 n

c
D 1011

thick against the lines, and consequently the temperature rises toH2
D1500 K. Thereafter the cloud contraction decelerates near the center and
the cloud weakly oscillates around its quasi-static equilibrium state.

have taken to be about 10 times greater than the e†ec-Rmaxtive radius of the Ðlamentary cloud, The e†ect off 1@2Rfil.the Ðxed boundary is very small. This is because the density
is much lower near the outer boundary than at the center,
i.e., for all runs. (In fact, we have calculated theo [ 10~4o

ccase with larger and have conÐrmed that the numericalRmaxresults are not changed.)
The numerical grids are nonuniformly distributed so as

to enhance the spatial resolution near the center. The grid
spacing increases by 5% for each grid zone with increasing
distance from the center. As shown in ° 3, the characteristic
scale shortens in the central high-density region as the col-
lapse proceeds. The spatial resolution thus becomes poor
near the center. To compute the further contraction with
the sufficient spatial resolution, we pursue the subsequent
evolution with reÐning grids. Whenever the number of grid
points becomes less than D20 within the radius of the half-
maximum density we increase the number of(o \ 0.5o

c
),

grid points and then reposition them on the reÐned grids in
the whole computation region The physical(0¹ r ¹Rmax).variables at the new grid points are determined by linear
interpolation. This technique allows us to pursue the
dynamical evolution over more than the tenth order of
magnitude in the central density.

3. NUMERICAL RESULTS

3.1. Clouds with Intermediate and High Initial Temperatures
K)(T0Z 500

We have examined the evolution of various models with
relatively high initial temperature K) and found(T0Z 500
the course of evolution to be almost insensitive to the model
parameters.

As a typical example, we Ðrst show the evolution of the
model with f ) \ (104 cm~3, 103 K, 2). Figure 1(n0, T0,shows the evolution of the temperature and the mass(T

c
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FIG. 2.ÈTime variations of the distributions for (a) the density, (b) the temperature, (c) the abundance, and (d) the contraction time are shown for theH2same model as Fig. 1, i.e., cm~3, 103 K, 2). They are plotted at the stages at which (1) t \ 0 yr cm~3, (2) t \ 1.285] 106 yr(n0, T0, f )\ (104 (n
c
\ 104)

cm~3), (3) t \ 1.434] 106 yr cm~3), (4) t \ 1.496] 106 yr cm~3), and (5) t \ 1.502] 106 yr cm~3).(n
c
\ 106 (n

c
\ 108 (n

c
\ 1010 (n

c
\ 1012

fraction of at the center as a function of theH2 (yH2
4 2xH2

)
central density n

c
.

During the early evolution, forms mainly through theH2H~ process (eqs. [1] and [2]). Because of the e†ective
cooling by the rotational transitions, the temperature Ðrst
descends promptly to T D 300 K. When the central density
increases to cm~3, the cloud collapses nearly iso-n

c
D 106

thermally, keeping the temperature at T D 800 K until the
central density reaches cm~3. The tem-n

c
D 1010È1011

perature evolution can be then approximated by T
c
P n

c
0.15

as far as cm~3. When the density exceeds D108n
c
\ 108

cm~3, the hydrogen molecules form acceleratively through
the three-body reactions (eqs. [5] and [6]). After the central
density increases to cm~3, the hydrogen gas isn

c
D 1011

almost completely processed into molecules. Then the cloud
becomes optically thick against the lines, and the tem-H2perature rises up to D1500 K. At this stage, the cooling
time is 50È100 times longer than the free-fall time. There-
after the collapse decelerates near the center, and the cloud
weakly oscillates around its quasi-static equilibrium state.

In Figures 2aÈ2d, the time variations of the distributions
of the density, the temperature, the mass fraction, andH2the contraction time are plotted at several dynamical stages.
The contraction time is a dimensionless one, which is
deÐned as where is the free-fall timetcont(r) \ r/[v

r
(r)tff], tffat the center, Since the gravitational forcetff 4 (4nGo
c
)~1@2.

is perceptibly greater than the pressure force at the initial
state, the cloud collapses nearly in a free-fall time. When the
central density reaches cm~3 (t \ 1.434] 106yr),n

c
D 108

the shock arises around r D 3 ] 10~2 pc, which is charac-
terized by a jump in density and temperature. The shock
surface separates the cloud into two parts that correspond
to mutually di†erent dynamical states, that is, a denser
spindle and a di†use envelope. During the contraction, the
temperature in the spindle keeps nearly constant around
800 K until the cloud becomes optically thick against the

lines. In the isothermal contraction phase, the outerH2parts in the spindle exhibit a power-law density distribu-
tion, o P r~2. This indicates that the spindle contracts in a
self-similar manner. Actually, we have found a similarity
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FIG. 3.ÈEvolution of the line mass of the spindle in units of pc~1M
_for the model with cm~3, 103 K, 2). The line mass of the(n0, T0, f )\ (104

spindle keeps a constant value, which is D103 pc~1, until the cloudM
_becomes optically thick against the lines. This value accords with thatH2of an equilibrium isothermal Ðlamentary cloud with the temperature of

T D 800 K. It indicates that in the spindle the gravitational force nearly
balances with the pressure force.

solution, which is presented in the Appendix, and it has
turned out that the newly found similarity solution well
reproduces the numerical results. (See the Appendix for the
further detail) At the shock front, the temperature rises up
to T D 1500 K. The contraction time in the spindle is much
shorter than that in the envelope. Thus the spindle collapses
almost independently of the envelope. When the cloud
becomes optically thick against the lines at the center,H2the pressure force overwhelms the gravity, so that the
second shock forms around r D 2 ] 10~4 pc.

After this stage the contraction time of the spindle
becomes much longer than and the collapse promptlytff,decelerates.

Figure 3 shows the evolution of the line mass of the
spindle as a function of the central density. We deÐne the
line mass as the density integrated over r up to the radius at
which the density goes down to one tenth of the central

density,

lsp \
P
0

r(o/0.1oc)
2nro dr . (18)

It is worth noting that during the contraction, the line mass
of the spindle keeps a nearly constant value, which is D1
] 103 pc~1. This value is close to the line mass of anM

_isothermal Ðlamentary cloud in equilibrium for the tem-
perature of 800 K, i.e., l0\ 2kT /kG\ 0.9] 103 M

_pc~1(T /800 K). It implies that the gravitational force nearly
balances the pressure force in the spindle.

We have found that the evolution is almost independent
of the initial parameters, and f, for the models withn0, T0,K.T0Z 500

3.2. Clouds with L ow Initial Temperature K)(T0D 100
In this subsection, we examine the evolution of models

with relatively low initial temperature ; K. We ÐndT0\ 100
that the evolution in the case of low initial temperature
depends mainly on the value of f. In Figures 4a and 4b, two
models with f ) \ (104 cm~3, 102 K, 2) and (104(n0, T0,
cm~3, 102 K, 10) are compared. For both models the early
evolution is similar ; the clouds collapse adiabatically,
T P o2@3, because the cooling is not e†ective forH2 T [
300 K. However the later evolution is quite di†erent. For
the model with a small f, the collapse almost ceases until the
central density reaches 105 cm~3. In this case, the contrac-
tion time, which is nearly equal to the cooling time, is a
hundred times as long as the free-fall time. Hence, the cloud
comes close to hydrostatic equilibrium with no efficiency of
cooling. On the other hand, for the model with a large f, the
evolution is similar to that of the model with K.T0Z 500
When the cloud temperature exceeds 500 K, the collapse
proceeds nearly isothermally owing to the line cooling.H2In all the models with K, it has turned out that theT0 \ 100
evolution proceeds in a similar way dependent upon the
value of f.

4. FRAGMENTATION OF PRIMORDIAL GAS CLOUDS

As shown in the previous section, if K orT0Z 500 fZ 10,
the Ðlaments collapse quasi-statically, whereas the Ðlaments
would not continue to contract if K and InT0[ 100 f[ 2.

FIG. 4.ÈSame as Fig. 1, but for the models with (a) cm~3, 102 K, 2) and (b) (104 cm~3, 102 K, 10). For both models the early evolution is(n0, T0, f )\ (104
similar ; the clouds collapse adiabatically, T P o2@3, because the line cooling is not e†ective for such low temperature. For the model with a small f theH2collapse almost ceases until the central density reaches 105 cm~3. On the other hand, for the model with a large f, the evolution is similar to that of the model
with K. When the cloud temperature exceeds 500 K, the collapse proceeds nearly isothermally owing to the line cooling.T0Z 500 H2
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the latter case, the Ðlament would be weakly unstable
because the length of the realistic Ðlament is shorter than
the wavelength of the most unstable mode. Consequently,
the Ðlament is likely to contract along the axis without
fragmentation. Also, as mentioned in ° 2.2, the temperature
of the initial Ðlaments is estimated to be T D 200È1000 K in
a CDM model. Hence, such low temperature clouds are
hardly expected in a CDM scenario. Thus, here we focus on
the former case, i.e., a collapsing Ðlament, and consider the
hierarchical fragmentation.

The density of a collapsing Ðlament is enhanced by more
than eighth order of magnitude, with the constant tem-
perature of T D 800 K, until the cloud becomes opaque.
Thus, the Ðlament could fragment into denser lumps. To
diagnose the fragmentation process, we apply a linear
theory to the numerical results and thereby estimate the
length and mass scales of fragments.

According to the linear theory of an isothermal hydro-
static Ðlament, the perturbation grows most rapidly when
its wavelength is about 4 times longer than the e†ective
cloud diameter. The wavelength and growth rate of the
most unstable perturbation depend on the density and tem-
perature of the cloud. Therefore, they change accordingly as
the collapse proceeds. In our model of ° 3.1, the contraction
timescale is longer by a factor of more than 5 than the(tcont)free-fall time at the center after the central density(tff)reaches D106 cm~3. According to Inutsuka & Miyama
(1992), when the dispersion relation for the col-tcontZ 10tff,lapsing Ðlament is approximated by that of the hydrostatic
Ðlament whose scale height is the same as the temporal one
of the collapsing cloud, and thus the growth of the density
perturbation is approximated by

do(t)/o(t)\ A exp
C
ik

z
z[

P
0

t
iu(k

z
, t@)dt@

D
, (19)

during its linear growth phase, where and u denote thek
zwavenumber and the frequency of the perturbation, respec-

tively. We thus apply the above equation to our model
of ° 3.1. For the growth rate ([iu), we use a Ðtting
formula obtained by Nakamura, Hanawa, & Nakano
(1993). denotes the initial amplitude of the per-A[\A(k

z
)]

turbation. We take A in the form of the power law A\
A0(kz

/k
z,0)p.When the amplitude of the unstable density perturbation

becomes greater than unity the evolution of the(do/o Z 1),
perturbation becomes nonlinear and the cloud will breaks
into pieces.

It is expected that the evolution of the perturbation
depends on the index p and the amplitude A0.Assuming p \ 1 or p \ [1, we have calculated the time
evolution of the density contrast in the Ðlamentary cloud.
The results are shown in Figure 5. The solid curves show
the density contrast at (1) t \ 0 yr cm~3), (2)(n

c
^ 104

1.384] 105 yr (107 cm~3), (3) 1.477] 105 yr (109 cm~3), (4)
1.500] 105 yr (1011 cm~3), and (5) 1.503] 105 yr (3] 1012
cm~3), respectively. Here we have taken (A0, k

z,0) \ (1.0
] 10~3, 1.26] 102) pc~1. When cm~3, then [ 1010È1011
wavelength of the fastest growing perturbation is about 100
times as long as the e†ective cloud diameter, because of the
cumulated growth rate.

Hence, the cloud is likely to tear into long Ðlaments
before the central density reaches cm~3, if then

c
D 1011

Ñuctuations have enough initial amplitudes to enter nonlin-
ear stages. The long Ðlaments shrink further to form thinner

FIG. 5.ÈEvolution of density perturbations for the model with
cm~3, 103 K, 2). The abscissa and ordinate denote the(n0, T0, f )\ (104

wavelength and amplitude of the density perturbation, respectively. The
initial spectrum of the density perturbations is assumed to be in the form of

The index p is (a) p \ 1 or (b) p \ [1. We takeA\A0(kz
/k

z,0)p. 1.26] 102 pc~1). The solid curves represent the(A0, k
z,0)\ (1.0 ] 10~3,

amplitude of the density perturbations at (1) t \ 0 yr ^ 104 cm~3), (2)(n
c1.384] 106 yr (107 cm~3), (3) 1.477] 106 yr (109 cm~3), (4) 1.500] 106 yr

(1011 cm~3), and (5) 1.503] 106 yr (3 ] 1012 cm~3), respectively. For
comparison, we show the square of the growth rate at stage (5) with dashed
curves.

Ðlaments. As the shrink proceeds, the wavelength of the
fastest growing perturbation shortens. Thus, the Ðlaments
may again tear into shorter and denser Ðlaments. Conse-
quently, hierarchical Ðlamentary structures would form, if
the initial amplitudes are larger than 0.001 as expected in a
CDM cosmology.

When the central density exceeds cm~3, then
c
D 1011

cloud becomes opaque against the lines and the collapseH2quickly decelerates. Hence the hierarchical fragmentation
would be terminated. Then the wavelength of the fastest
growing perturbation becomes pc, which isj

*
D 2 ] 10~3

comparable to that expected from the linear theory of an
isothermal Ðlament in equilibrium, as shown by the growth
rate in the ending stage in Figure 5. Then the cloud is most
unstable against the perturbation, whose wavelength is
about 4 times as large as the e†ective cloud diameter. This
wavelength is nearly independent of the power index p, as
shown in Figure 5. As a result, the Ðlament is likely to
Ðnally fragment into dense cores, the typical mass of which
is pc)] (1.5] 103 pc~1)D 3j

*
lsp D (2] 10~3 M

_
M

_
.

This is the lowest mass of fragments, which provides the
minimum core mass for the Ðrst-generation stars. The mass
possibly increases by accreting the ambient gas. If all the
ambient gas within one wavelength of the fastest growing
perturbation accretes onto the core, then the core mass
increases to Thus, the massj

*
l0D 16( f/2)(T0/1000 K)M

_
.

of the Ðrst stars is expected to be in the range of 3 M
_

[
M [ 16( f/2)(T0/1000 K)M

_
.

It should be noted that neither the lower mass nor the
upper mass is sensitive to the amplitude of the power-law
spectrum, because the lower mass is basically determined by
the microprocess of the cooling and the upper massH2depends only upon the initial temperature.
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5. CONCLUSIONS

In a wide range of the parameter space, we have explored
numerically the thermal and dynamical evolution of Ðla-
mentary primordial gas clouds, including nonequilibrium
processes for the formation. We have found that for theH2models with K or the collapse proceedsT0Z 500 fZ 10,
nearly isothermally owing to line cooling, keeping theH2temperature at T D 800 K. During the contraction, the
cloud structure is divided into two parts, i.e., a spindle and
an envelope. The line mass of the spindle keeps a nearly
constant value of D1 ] 103 pc~1 during the contrac-M

_tion from 106 cm~3 to 1011 cm~3. The outer part in the
spindle exhibits a power-law density distribution as
o P r~2. This behavior is well reproduced by a newly found
self-similar solution. When the central density reaches n

c
Z

1011 cm~3, the cloud becomes opaque against the lineH2cooling and reaches a quasi-static equilibrium state while
keeping the line mass. On the other hand, for the models
with K and the cloud contraction is muchT0D 100 f[ 2,
slower because the cooling is not e†ective. The contrac-H2tion immediately ceases. In a CDM scenario, the former
case (collapsing Ðlaments) would be more probable.

Applying a linear theory for the gravitational instability
of collapsing Ðlaments, we Ðnd that the spindle is unstable
against fragmentation during the quasi-static contraction.
The wavelength of the fastest growing perturbation (j

m
)

lessens as the collapse proceeds. Thus successive fragmenta-
tion could occur. When the central density exceeds cm~3,n

cthe successive fragmentation may be suppressed since the
cloud becomes opaque against the lines and the collapseH2promptly decelerates. Resultantly, the minimum value of j

mis estimated to be D2 ] 10~3 pc. The typical mass of the
Ðrst stars is then expected to be D3 which may growM

_
,

up to 16 by accreting the di†use envelope. The presentM
_results may be relevant to the early evolution of primordial

galaxies and the metal enrichment of the intergalactic space.
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Culture (09874055, 09740171, 10147205).

APPENDIX A

SIMILARITY SOLUTIONS OF A POLYTRIPIC FILAMENTARY CLOUD

As mentioned in ° 3, the spindle seems to collapse self-similarly during the nearly isothermal contraction phase from
cm~3 to 1011 cm~3 ; e.g., the density distribution of the spindle is characterized by the power-law distribution ofn

c
D 106

o P r~2. But this behavior is di†erent from that of the similarity solution (o P r~4) of an isothermal Ðlamentary cloud that is
known so far (Miyama et al. 1987a ; see also eqs. [A18] and [A19]). In this appendix we seek another type of similarity
solution in more generic equations of state.

We consider an inÐnitely long cylindrical cloud in which the density is uniform along the axis. We assume the gas to be
polytropic ; P\ Koc, where K is constant. The equation of motion and the continuity equation are then described as

Lv
r

Lt
] v

r
Lv

r
Lr

] 2Gl
r

] 1
o

LP
Lr

\ 0 , (A1)

Ll
Lt

] 2nrov
r
\ 0 , (A2)

and

Ll
Lr

[ 2nro \ 0 , (A3)

where l denotes the line mass (mass per unit length) contained within a radius r.
We now look for a similarity solution of the form

x \ r
at

, (A4)

o(r, t) \ o8 (x)
2nGt2 , (A5)

v
r
(r, t) \ av8

r
(x) , (A6)

l(r, t) \ a2
2G

l8(x) , (A7)

and

a \ t1~cJK(2nG)1~c , (A8)
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where the physical variables with a tilde denote those in the similarity coordinate, x. Substituting equations (A4)È(A8) into
equations (A1)È(A3), we obtain

do8
dx

\ Y (x, o8 , v8
r
)

X(x, o8 , v8
r
)
, (A9)

dv8
r

dx
\ Z(x, o8 , v8

r
)

X(x, o8 , v8
r
)
, (A10)

X(x, o8 , v8
r
) \ [v8

r
[ (2[ c)x]2[ co8 c~1 , (A11)

Y (x, o8 , v8
r
)\ [[v8

r
[ (2[ c)x]2

C o8 2
c[ 1

] (2x [ v8
r
)
o8
x
D

[ (c[ 1)o8 v8
r
, (A12)

and

Z(x, o8 , v8
r
)\ [[v8

r
[ (2[ c)x]2 o8

c[ 1
] (c[ 1)v8

r
[v8

r
[ (2[ c)x]] co8 c~1

x
(v8

r
[ 2x) . (A13)

Note that equations (A9)È(A13) have a singularity at c\ 1. (A polytropic sphere has a singularity at c\ 4/3. This is
fundamentally the same as the dynamical stability condition of the sphere.)

One of the solutions of equations (A9)È(A13) is expressed as

v8
r
\ 0 (A14)

and

o8 \
C (2[ c)2
2c(1[ c)

D (1@c~2)
x~(2@2~c) . (A15)

In this solution the gas is at rest and the density diverges at the origin. This solution corresponds to a singular equilibrium
solution for a polytropic Ðlamentary cloud.

A regular solution at x \ 0 has an asymptotic behavior,

d ln o8
d ln x

\ [ 2
2 [ c

(A16)

and

d ln v8
r

d ln x
\ [2(c[ 1)

2 [ c
. (A17)

Thus, when the value of c is nearly equal to unity, the density and velocity distributions follow o ] r~2 and in thev
r
] const.

outer region of o x o? 1. This behavior is quite similar to that of a sphere (Larson 1969 ; Penston 1969). Note that this

FIG. 6.ÈSimilarity solutions of Ðlamentary clouds with c\ 0.9 and 0.99. The thick and thin solid curves show the density and velocity distributions in the
similarity coordinates, respectively. For comparison, we denote the density and velocity distributions of the isothermal similarity solution with the thick and
thin dashed curves, respectively. For the similarity solutions with c\ 0.9 and 0.99, the density distribution is nearly proportional to r~2 and the velocity
converges to a constant value in the outer part.
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similarity solution exists only for c\ 1. This is essentially the same as the dynamical stability condition of the polytropic
cylinder. This similarity solution has di†erent characteristics from a singular case of c\ 1. In the similarity solution of c\ 1,
the density and velocity distributions are given as (see Miyama et al. 1987a)

o8 \ 4
(1] x2)2 , (A18)

and

v8
r
\ x , (A19)

which are proportional to x~4 and x, respectively, in the region of o x o? 1.
In Figure 6 the similarity solutions of c\ 0.9 and 0.99 are compared with that of c\ 1. The thick and thin solid curves

represent the density and velocity distributions of the similarity solutions with respectively. The dashed curves are thecD 1,
similarity solution of c\ 1 (Miyama et al. 1987a). The newly found similarity solution seems to well reproduce the numerical
results during the nearly isothermal contraction phase ; the density distribution in the outer part in the spindle is nearly
proportional to r~2 and the velocity distribution is proportional to r near the center (see Fig. 2 ; recently Kawachi & Hanawa
1998 also studied the gravitational collapse of a polytropic cylinder and conÐrmed that the evolution of the cylinder
converges to the similarity solution). It should be stressed again that whether c is precisely unity or not transforms conclu-
sively the self-similar manner. The present similarity solution for is likely to be applicable for the realistic situations.cD 1
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