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ABSTRACT
We present a fully covariant and gauge-invariant calculation of the evolution of anisotropies in the

cosmic microwave background radiation. We use the physically appealing covariant approach to cosmo-
logical perturbations, which ensures that all variables are gauge-invariant and have a clear physical
interpretation. We derive the complete set of frame-independent linearized equations describing the
(Boltzmann) evolution of anisotropy and inhomogeneity in an almost Friedmann-Robertson-Walker cold
dark matter (CDM) universe. These equations include the contributions of scalar, vector, and tensor
modes in a uniÐed manner. Frame-independent equations for scalar and tensor perturbations, which are
valid for any value of the background curvature, are obtained straightforwardly from the complete set of
equations. We discuss the scalar equations in detail, including the integral solution and relation with
the line-of-sight approach, analytic solutions in the early radiation-dominated era, and the numerical
solution in the standard CDM model. Our results conÐrm those obtained by other groups, who have
worked carefully with noncovariant methods in speciÐc gauges, but ours are derived here in a completely
transparent fashion.
Subject headings : cosmic microwave background È cosmology : theory È gravitation È

large-scale structure of universe

1. INTRODUCTION

The cosmic microwave background radiation (CMB)
occupies a central role in modern cosmology. It provides us
with a unique record of conditions along our past light cone
back to the epoch of decoupling (last scattering), when the
optical depth to Thomson scattering rises suddenly because
of hydrogen recombination. Accurate observations of the
CMB anisotropy should allow us to distinguish between
models of structure formation and, in the case of nonseeded
models, to infer the spectrum of initial perturbations in the
early universe. Essential to this program is the accurate and
reliable calculation of the anisotropy predicted in viable
cosmological models.

Such calculations have a long history, beginning with
Sachs & Wolfe (1967), who investigated the anisotropy on
large scales by calculating the redshift back to last(Z1¡)
scattering along null geodesics in a perturbed universe. On
smaller angular scales one must address the detailed local
processes occurring in the electron/baryon plasma prior to
recombination and the e†ects of noninstantaneous last scat-
tering. These processes, which give rise to a wealth of struc-
ture in the CMB power spectrum on intermediate scales
and damping on small scales (see, for example, Silk 1967,
1968), are best addressed by following the photon distribu-
tion function directly from an early epoch in the history of
the universe to the current point of observation. This
requires a numerical integration of the Boltzmann equation,
and it has been carried out by many groups, of which
Peebles & Yu (1970), Bond & Efstathiou (1984, 1987), Hu
& Sugiyama (1995), Ma & Bertschinger (1995), Seljak &
Zaldarriaga (1996) is a representative sample.

The calculation of CMB anisotropies is simple in prin-
ciple but is plagued with subtle gauge issues in reality
(Stoeger, Ellis, & Schmidt 1991 ; Stoeger et al. 1995 ; Chal-
linor & Lasenby 1998). These problems arise because of the
gauge freedom in specifying a map ' between the real uni-
verse (denoted by S) and the unperturbed background

model (denoted by Ellis & Bruni 1989), which is usuallyS1 ;
taken to be a Friedmann-Robertson-Walker (FRW) uni-
verse. The map ' identiÐes points in the real universe with
points in the background model, thus deÐning the pertur-
bation in any quantity of interest. For example, for the
density o as measured by some physically deÐned observer,
the perturbation at x ½ S is deÐned to be do(x)4 o(x)[

where is the equivalent density in the backgroundo6 (x6 ), o6
model and x maps to under '. The map ' is usuallyx6
(partially) speciÐed by imposing coordinate conditions in S
and Any residual freedom in the map ' after the imposi-S1 .
tion of the coordinate conditions (gauge-Ðxing) gives rise to
the following gauge problems : (1) the map cannot be recon-
structed from observations in S alone, so that quantities
such as the density perturbation, which depend on the spe-
ciÐc map ', are necessarily not observable ; and (2) if the
residual gauge freedom allows points in to be mapped toS1
physically inequivalent points in in the limit thatS1 S \ S1 ,
then unphysical gauge mode solutions to the linearized per-
turbation equations will exist.

There are several ways to deal with the gauge problems
described above. In the earliest approach (Lifshitz 1946),
one retains the residual gauge freedom (in the synchronous
gauge) but keeps track of it so that gauge mode solutions
can be eliminated. Furthermore, the Ðnal results of such a
calculation must be expressed in terms of the physically
relevant, gauge-invariant quantities. Although there is
nothing fundamentally wrong with this approach if carried
out correctly, it su†ers from a long history littered with
confusion and errors. The need to express results in terms of
gauge-invariant variables suggests that it might be beneÐ-
cial to employ such variables all along as the dynamical
degrees of freedom in the calculation. A further advantage
of such an approach is that gauge modes are automatically
eliminated from the perturbation equations when expressed
in terms of gauge-invariant variables. This is the approach
adopted by Bardeen (1980), who showed how to construct
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gauge-invariant variables for scalar, vector, and tensor
modes in linearized perturbation theory by taking suitable
linear combinations of the gauge-dependent perturbations
in the metric and matter variables. This approach has been
used in several calculations of the CMB anisotropy (see, for
example, Abbott & Schaefer 1986 ; Panek 1986). However,
the Bardeen variables are not entirely satisfactory. The
approach is inherently linear, so that the variables are only
deÐned for small departures from FRW symmetry. Further-
more, the approach assumes a nonlocal decomposition of
the perturbations into scalar, vector, and tensor modes at
the outset, each of which is then treated independently. As a
result, the Bardeen variables are only gauge-invariant for
the restricted class of gauge transformations that respect the
scalar, vector, and tensor splitting. Finally, although the
Bardeen variables are gauge-invariant, they are not physi-
cally transparent in that, in a general gauge, they do not
characterize the perturbations in a manner that is amenable
to simple physical interpretation.

An alternative scheme for the gauge-invariant treatment
of cosmological perturbations was given by Ellis & Bruni
(1989 ; see also Ellis, Hwang, & Bruni 1989), who built upon
earlier work by Hawking (1966). In this approach, which is
derived from the covariant approach to cosmology/
hydrodynamics of Ehlers and Ellis (Ehlers 1993 ; Ellis 1971),
the perturbations are described by gauge-invariant vari-
ables that are covariantly deÐned in the real universe. This
ensures that the variables have simple physical interpreta-
tions in terms of the inhomogeneity and anisotropy of the
universe. Since the deÐnition of the covariant variables does
not assume any linearization, exact equations can be found
for their evolution, which can then be linearized around the
chosen background model. Furthermore, the covariant
approach does not employ the nonlocal decomposition into
scalar, vector, or tensor modes at a fundamental level. If
required, the decomposition can be performed at a late
stage in the calculation to aid solving the equations. Even if
one denies that working with gauge-invariant variables is a
signiÐcant advantage, the key advantage of the covariant
approach, however, is that one is able to work exclusively
with physically relevant quantities, satisfying equations that
make manifest their physical consequences.

The covariant and gauge-invariant approach has already
been applied to the line-of-sight calculation of CMB aniso-
tropies under the instantaneous recombination approx-
imation (Dunsby 1997 ; Challinor & Lasenby 1998), and it
has been used to obtain model-independent limits on the
inhomogeneity and anisotropy from measurements of the
CMB anisotropy on large scales (Maartens, Ellis, & Stoeger
1995). In this paper, we extend the methodology developed
in these earlier papers to give a full kinetic theory calcu-
lation of CMB anisotropies valid on all angular scales. Our
motivation for reconsidering this problem is twofold. First,
it is our belief that the covariant and gauge-invariant
description of cosmological perturbations provides a
powerful set of tools for the formulation of the basic pertur-
bation equations and their subsequent interpretation that
are superior to the techniques usually employed in such
calculations for the reasons discussed above. In particular,
by applying covariant methods for the problem of the gen-
eration of CMB anisotropies, we can expect the same
advantages of physical clarity and uniÐcation that have
already been demonstrated in other areas, (Ellis et al. 1989 ;
Bruni, Ellis, & Dunsby 1992b ; Dunsby, Bruni, & Ellis 1992 ;

Dunsby, Bassett, & Ellis 1996 ; Tsagas & Barrow 1997). The
approach described here brings the underlying physics to
the fore and can only help to consolidate our rapidly
growing understanding of the physics of CMB anisotropies.
Furthermore, although we only consider the linearized cal-
culation here, the extension of these methods to the full
nonlinear case is quite straightforward (Maartens, Gebbie,
& Ellis 1998). Our second motivation is to perform an inde-
pendent veriÐcation of the results of other groups (for
example, Ma & Bertschinger 1995) with a methodology that
is free from any of the gauge ambiguities that have caused
problems and confusion in the past. Given the potential
impact on cosmology of the next generation of CMB data,
we believe that the above comments provide ample justiÐ-
cation for reconsidering this problem.

For deÐniteness we consider the cold dark matter (CDM)
model, although the methods we describe are straightfor-
ward to extend to other models. We have endeavored to
make this paper reasonably self-contained, so we begin with
a brief overview of the covariant approach to cosmology
and deÐne the key variables we use to characterize the per-
turbations in ° 2. In ° 3 we go on to present a complete set of
frame-independent equations describing the evolution of
the matter components and radiation in an almost FRW
universe (with arbitrary spatial curvature). These equations,
which employ only covariantly deÐned, gauge-invariant
variables, are independent of any harmonic analysis ; they
describe scalar, vector, and tensor perturbations in a uniÐed
manner. Many of the equations have simple Newtonian
analogues, and their physical consequences are far more
transparent than the equations that underlie the metric-
based approaches. Equations pertinent to scalar (see ° 5)
and tensor modes (see ° 7) can be obtained from the full set
of equations with very little e†ort and are useful at this late
stage in the calculation as an aid to solving the linearized
equations. A signiÐcant feature of this approach is that a
covariant angular decomposition of the distribution func-
tions is made early on in the calculation before any splitting
into scalar, vector, and tensor modes. This allows scalar,
vector, and tensor modes to be treated in a more uniÐed
manner. In particular, the azimuthal dependence of the
moments of the distribution functions does not have to be
put in by hand (after inspection of the azimuthal depen-
dence of the other terms in the Boltzmann equation), as
happens in most metric-based calculations. This is particu-
larly signiÐcant for tensor modes where the required azi-
muthal dependence is nontrivial and is di†erent for the two
polarizations of gravitational waves. We consider the equa-
tions for scalar modes in considerable detail. We present the
integral solution of the Boltzmann multipole equations in a
K \ 0 almost FRW universe, and we discuss the relation
between line-of-sight methods (which employ lightlike inte-
grations along the light cone) and the Boltzmann multipole
approach (where a timelike integration is performed). We
derive analytic solutions for scalar modes in the early
radiation-dominated universe, which are used as initial con-
ditions for the numerical solution of the scalar equations,
the results of which we describe in ° 6. In ° 7 we give a brief
discussion of the tensor equations in the covariant
approach. The covariant angular decomposition naturally
gives rise to a set of variables that describe the temperature
anisotropy in a more direct manner than in the convention-
al metric-based approaches. This is particularly apparent
for tensor perturbations, where the CMB power spectrum
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at a given multipole l is determined by the l[ 2, l, and
(l] 2)th moments of the conventional decomposition of the
photon distribution function, which obscures the physical
interpretation of these moments. Finally, we end with our
conclusions in ° 8. Ultimately, our results conÐrm those of
other groups (for example, Ma & Bertschinger 1995) who
have performed similar calculations by working carefully in
speciÐc gauges, but ours are obtained with a uniÐed meth-
odology that is more physically transparent and less prone
to lead to confusion over subtle gauge e†ects.

We employ standard general relativity and use a
(][[[) metric signature. Our conventions for the
Riemann and Ricci tensors are Ðxed by [+

a
,+

b
]uc\

and Parentheses around indices[R
abc

cud R
ab

4R
abc

c.
denote symmetrization on the indices enclosed, and square
brackets denote antisymmetrization. We use units with
c\ G\ 1 throughout and a unit of distance of Mpc for
numerical work.

2. THE COVARIANT APPROACH TO COSMOLOGY

In this section, we summarize the covariant approach to
cosmology (Ehlers 1993 ; Ellis 1971 ; Hawking 1966) and the
gauge-invariant perturbation theory of Ellis & Bruni (1989)
that is derived from it. We begin by choosing a velocity Ðeld
ua, which satisÐes the following criterion : the velocity must
be physically deÐned in such a way that it reduces to the
four-velocity of the fundamental observers in the FRW limit.
This restriction on ua is essential to ensure gauge-invariance
of the Ellis & Bruni (1989) perturbation theory. Note that,
in a general perturbed spacetime, there is no unique choice
for ua. Acceptable choices for ua include the four-velocity of
a given matter component and the timelike eigenvector of
the stress-energy tensor. In the covariant approach to per-
turbations in cosmology, covariant variables are introduced
that describe the inhomogeneity and anisotropy of the uni-
verse. These variables employ the velocity Ðeld ua in their
deÐnition, and so, in a given spacetime, their values depend
on how we choose ua (the exact transformation laws are
given in Maartens et al. 1998). For a given choice of ua, the
covariant variables, deÐned below, describe the results of
observations made by observers comoving with the velocity
ua, and their frame-dependence reÑects the fact that the
observations depend on the velocity of the observer. It
might be thought that the freedom in the choice of velocity
would introduce similar ambiguities as the choice of map '
does in conventional approaches. However, this is not the
case because of the restriction on ua that we emphasized
above. It is certainly true that, with a suitable choice of ua,
we can eliminate some aspect of the inhomogeneity and
isotropy observed. For example, we can always choose ua so
that the CMB dipole vanishes. However, in a given space-
time, the covariant variables cannot be forced to take arbi-
trary values through some particular choice of ua. In
particular, if, for some timelike velocity Ðeld (not necessarily
restricted to satisfy the criterion emphasized above), all of
the gauge-invariant variables deÐned below vanish identi-
cally, then the universe is necessarily FRW. This gives a
covariant condition that characterizes the FRW limit, but
note that, if ua is unrestricted, we could have the situation
where the universe is FRW; however, we are not viewing it
from the perspective of the fundamental observers, and so
some of the variables would not vanish. (This is similar to
the presence of gauge mode solutions in the metric-based
approach.) However, if we ensure that ua is deÐned physi-

cally, so that in the FRW limit it necessarily reduces to the
velocity of the fundamental observers, this situation cannot
arise, and the variables used to characterize the anisotropy
and inhomogeneity are genuinely gauge-invariant.

We refer to the choice of velocity as a frame choice. In
this paper, we defer making a frame choice until we have
derived all the relevant equations, so that we have available
a set of equations valid for any choice of ua. However, to
actually solve the equations, we must make a deÐnite choice
for ua (the system of equations is underdetermined until
such a choice is made). Here, it will be convenient to choose
ua to coincide with the velocity of the CDM component,
since ua is then geodesic.

The velocity ua deÐnes a projection tensor which pro-h
ab

,
jects into the space perpendicular to ua (the instantaneous
rest space of observers moving with velocity ua) :

h
ab

4 g
ab

[ u
a
u
b

, (1)

where is the spacetime metric. Since is a projectiong
ab

h
abtensor, it satisÐes

h
ab

\ h(ab), h
a
c h

cb
\ h

ab
, h

a
a \ 3, uah

ab
\ 0 . (2)

We employ the projection tensor to deÐne a spatial
covariant derivative (3)+a, which acting on a tensor

returns a tensor that is orthogonal to ua onT b . . . c
d . . . eevery index :

(3)+aT b . . . c
d . . . e4 h

p
a h

r
b . . . h

s
c h

d
t . . . h

e
u +pT r . . . s

t . . . u , (3)

where +a denotes the usual covariant derivative. If the
velocity Ðeld ua has vanishing vorticity (see later) (3)+a
reduces to the covariant derivative in the hypersurfaces
orthogonal to ua.

The covariant derivative of the velocity decomposes as

+
a
u
b
\ -

ab
] p

ab
] 1

3
hh

ab
] u

a
w

b
, (4)

where is the acceleration (which satisÐesw
a
4 ub+

b
u
athe scalar is the volume expan-uaw

a
\ 0), h 4 +au

a
\ 3H

sion rate (H is the local Hubble parameter), -
ab

4+*a ub+is the vorticity tensor (which satisÐes] w*a ub+ -
ab

\ -*ab+and and is the shearua-
ab

\ 0), p
ab

4 (3)+(a ub)[ hh
ab
/3

tensor (which satisÐes andp
ab

\ p(ab), p
a
a \ 0, uap

ab
\ 0).

The nontrivial integrability condition

(3)+*a (3)+
b+/\ [-

ab
/5 (5)

for any scalar Ðeld /Èwhere an overdot denotes the action
of the operator from the Ricci identity. Noteua+

a
Èfollows

in particular that in an evolving universe spatial(/5 D 0),
gradients are necessarily nonvanishing in the presence of
vorticity. This behavior, which is a consequence of there
being no global hypersurfaces that are everywhere orthog-
onal to ua if the vorticity does not vanish, is central to the
discussion of vector perturbations. For vanishing vorticity,
the 3 Ricci scalar (or intrinsic-curvature scalar) (3)R in the
hypersurfaces orthogonal to ua evaluates to

(3)R\ 2io [ 2
3

h2] p
ab

pab , (6)

where o is the total energy density in the ua frame.
In an exact FRW universe, the vorticity, shear, and accel-

eration vanish identically. In an almost FRW universe,
these variables, when suitably normalized to make them
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dimensionless, are regarded as Ðrst order in a smallness
parameter v (Maartens et al. 1995). We use the convenient
notation, O(n), to denote that a variable is O(vn). We assume
that products of Ðrst-order variables can be neglected from
any expression in the linearized calculation considered here.

Other Ðrst-order variables may be obtained by taking the
spatial gradient of scalar quantities. Such quantities are
gauge-invariant by construction, since they vanish identi-
cally in an exact FRW universe. We shall make use of the
comoving fractional spatial gradient of the density o(i) of a
species i,

X
a
(i)4 S

o(i) (3)+
a
o(i) , (7)

and the comoving spatial gradient of the expansion

Z
a
4 S(3)+

a
h . (8)

The scalar S is a local scale factor satisfying

S0 4 ua+
a
S \ HS, (3)+aS \ O(1) , (9)

which removes the e†ects of the expansion from the spatial
gradients deÐned above. The vector is a manifestlyX

a
(i)

covariant and gauge-invariant characterization of the
density inhomogeneity.

The matter stress-energy tensor decomposes withT
abrespect to ua as

T
ab

4 ou
a
u
b
] 2u(a qb)[ ph

ab
] n

ab
, (10)

where is the density of matter (measuredo 4T
ab

uaub
by a comoving observer), is the energy (orq

a
4 h

a
bT

bc
uc

heat) Ñux and is orthogonal to ua, is thep 4 [h
ab
Tab/3

isotropic pressure, and the symmetric traceless tensor n
ab

4
is the anisotropic stress, which is also orth-h

a
c h

b
dT

cd
] ph

abogonal to ua. In an exact FRW universe, isotropy restricts
to perfect-Ñuid form, so that in an almost FRW universeT

abthe heat Ñux and isotropic stress may be treated as Ðrst-
order variables. The Ðnal Ðrst-order gauge-invariant vari-
ables we require derive from the Weyl tensor whichW

abcd
,

vanishes in an exact FRW universe because of isotropy. The
electric and magnetic parts of the Weyl tensor, denoted by

and respectively, are symmetric traceless tensors,E
ab

B
ab

,
orthogonal to ua, which we deÐne by

E
ab

4 ucudW
acbd

, (11)

B
ab

4 [1
2

ucudg
ac
efW

efbd
, (12)

where is the covariant permutation tensor withg
abcdg0123\ [([g)1@2.

2.1. L inearized Perturbation Equations for the Total
Matter Variables

Exact equations describing the propagation of the total
matter variables (such as the total density o), the kinematic
variables, and the electric and magnetic parts of the Weyl
tensor and the constraints between them follow from the
Ricci identity and the Bianchi identity. The Riemann tensor
is expressed in terms of and the Ricci tensor,E

ab
, B

ab
R

ab
,

and the Einstein equation is used to substitute for the Ricci
tensor in terms of the matter stress-energy tensor. On lin-
earizing the equations that result from this procedure
(Bruni, Dunsby, & Ellis 1992a), one obtains Ðve constraint
equations,

B
ab

]((3)+c-
d(a](3)+cp

d(a)gb)cedue\0 , (13)

(3)+bB
ab

[12i[(o]p)g
ab

cdub-
cd

]g
abcd

ub(3)+cqd]\0 , (14)

(3)+bE
ab

[1
6

i(2(3)+
a
o]2hq

a
]3(3)+bn

ab
)\0 , (15)

(3)+b-
ab

](3)+bp
ab

[2
3

(3)+
a
h[iq

a
\0 , (16)

(3)+c(g
abcd

ud-ab)\0 , (17)

and seven propagation equations,

E0
ab

] hE
ab

](3)+cB
d(a gb)cedue] 1

6
i
C
3(o ] p)p

ab

] 3
A
(3)+(a qb)[

1
3

h
ab

(3)+cq
c

B
[ 3n5

ab
[ hn

ab

D
\ 0 , (18)

B0
ab

] hB
ab

[ ((3)+cE
d(a ] 12i(3)+cn

d(a)gb)cedue\ 0 , (19)

p5
ab

] 2
3

hp
ab

[
A
(3)+(awb)[

1
3

h
ab

(3)+cw
c

B

]E
ab

] 12in
ab

\ 0 , (20)

-5
ab

[(3)+*awb+]
2
3

h-
ab

\ 0 , (21)

q5
a
] 4

3
hq

a
] (o ] p)w

a
](3)+bn

ab
[ (3)+

a
p \ 0 , (22)

h5 ] 1
3

h2[ (3)+aw
a
] 12i(o ] 3p)\ 0 , (23)

o5 ] h(o ] p) ] (3)+aq
a
\ 0 , (24)

where The constraint equations doT0
ab . . . c 4 ud+

d
T

ab . . . c.not involve time derivatives, and so they serve to constrain
initial data for the problem. The propagation equations are
consistent with the constraint equations in the sense that
the constraints are preserved in time by the propagation
equations if they are satisÐed initially. The consistency of
the exact equations follows from their derivation from the
exact Ðeld equations and is preserved by the linearization
procedure. Including a cosmological constant " in the
above equations is straightforward ; one adds a contribu-
tion "/i to the total density o and subtracts the same term
from the total pressure p.

Many of the equations given above have simple Newto-
nian analogs (Ellis 1971) and thus are simple to interpret
physically. The analogs arise because many of the covari-
antly deÐned variables have counterparts in (self-gravi-
tating) Newtonian hydrodynamics. An important exception
is that there is no Newtonian analog of the magnetic part of
the Weyl tensor (the electric part is analogous to the tidal
part of the Newtonian gravitational potential) and no equa-
tion analogous to the propagation equation (Ellis &E0

abDunsby 1997a). These exceptions arise because of the
instantaneous interaction in Newtonian gravity, which
excludes the possibility of gravitational wave solutions to
the Newtonian equations. However, there is a close analogy
between the and propagation equations and theE0

ab
B0

abconstraint equations (14) and (15) and MaxwellÏs equations
split with respect to an arbitrary timelike velocity Ðeld (see,
for example, Maartens & Bassett 1998).
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There is some redundancy in the full set of linear equa-
tions. (See Maartens 1997 for a discussion of the redun-
dancy in the exact nonlinear equations for an irrotational
dust universe.) For example, equation (13), which deter-
mines in terms of the vorticity and the shear, along withB

abequation (16) and the integrability condition given as equa-
tion (5) imply equation (14). Similarly, equation (19) follows
from equation (13), and the propagation equations for the
shear (eq. [20]) and the vorticity (eq. [21]). It follows that

may be eliminated from the equations in favor of theB
abvorticity and the shear by making use of equation (13). This

elimination is useful when discussing the propagation of
vector and tensor modes (see ° 7).

The usual Friedmann equations describing homogeneous
and isotropic cosmological models are readily obtained
from the full set of covariant equations, since in an exact
FRW universe the only nontrivial propagation equations
are the Raychaudhuri equation (eq. [23]) and the energy
conservation equation (eq. [24]), which reduce to the Fried-
mann equation

H0 ] H2 \ [1
6

i(o ] 3p) , (25)

and the usual equation for the density evolution

o5 \ [3H(o ] p) . (26)

The second Friedmann equation is obtained as a Ðrst inte-
gral of these two equations :

H2] K
S2\ 1

3
io , (27)

where 6K/S2 is the intrinsic curvature scalar of the surfaces
of constant cosmic time.

The fractional comoving spatial gradient of the density,
and the comoving spatial gradient of the expansionX

a
,

rate, are the key variables in the covariant discussion ofZ
a
,

the growth of inhomogeneity in the universe (Ellis & Bruni
1989 ; Ellis et al. 1989). It is useful to have available the
propagation equations for these variables. For we takeX

a
,

the spatial gradient of the density evolution equation (eq.
[24]) and commute the space and time derivatives to obtain

oX0
a
] (o ] p)(Z

a
[ Shw

a
)] S(3)+

a
(3)+bq

b
] Sh(3)+

a
p [ hpX

a
\ 0 . (28)

For we take the spatial gradient of the RaychaudhuriZ
a
,

equation (eq. [23]), which gives

Z0
a
] 2

3
hZ

a
[ S
C1
3

h2 ] 1
2

i(o ] 3p)
D
w

a

] 1
2

iS((3)+
a
o ] 3(3)+

a
p)

[ S(3)+
a
(3)+bw

b
\ 0 , (29)

For an ideal Ñuid when we choose ua to be the(q
a
\n

ab
\ 0

Ñuid velocity) with a barotropic equation of state p \ p(o),
the propagation equations for and combine with theX

a
Z

amomentum conservation equation (eq. [22]) and the inte-
grability condition (given as eq. [5]) to give an inhomoge-
neous second-order equation for (Ellis, Bruni, & HwangX

a1990). For a simple equation of state p \ (c[ 1)o, where c is
a constant, the second-order equation is

X�
a
]
A5
3

[ c
B
hX0

a
] 1

2
(c[ 2)(3c[ 2)

A1
3

h2] 3K
S2
B
X

a

] (c[ 1)
A
(3)+2X

a
] 2K

S2 X
a

B

] 2c(c[ 1)Sh(3)+b-
ab

\ 0 . (30)

From this equation, it is straightforward to recover the
usual results for the growth of inhomogeneities in an almost
FRW universe (Ellis & Bruni 1989). The inhomogeneous
term describes the coupling between the vorticity and the
spatial gradient of the density, which arises from the lack of
global hypersurfaces orthogonal to ua in the presence of
nonvanishing vorticity. In reality, the universe cannot be
described by a barotropic perfect Ñuid. A more careful
analysis of the individual matter components is required,
which we present in the next section.

3. EQUATIONS FOR INDIVIDUAL MATTER COMPONENTS

In this paper we concentrate on CDM models, so the
matter components that we must consider are the photons
and neutrinos, which are the only relativistic species, and
the tightly coupled baryon/electron system and the CDM,
which are both nonrelativistic over the epoch of interest.
We consider the description of each of these components
separately in this section.

3.1. Photons
In relativistic kinetic theory (see, for example, Misner,

Thorne, & Wheeler 1973), the photons are described by a
scalar-valued distribution function f (c)(x, p). An observer
sees f (c)(x, p) d3x d3p photons at the spacetime point x in a
proper volume d3x, with covariant momentum pa in a
proper volume d3p of momentum space. The photon
momentum pa decomposes with respect to the velocity ua as

pa \ E(ua ] ea) , (31)

where is the energy of the photon, as measured byE\ pau
aan observer moving with velocity ua and is a unit space-e

alike vector that is orthogonal to ua :

eae
a
\ [1, eau

a
\ 0 , (32)

which describes the propagation direction of the photon in
the instantaneous rest space of the observer. With this
decomposition of the momentum, we may write the photon
distribution function in the form f (c)(E, e) when convenient,
where the dependence on spacetime position x has been left
implicit. The stress-energy tensor for the photons mayT

ab
(c)

then be written as

T
ab
(c)\

P
dE d)Ef (c)(E, e)p

a
p
b
, (33)

where the measure d) denotes an integral over solid angles.
The photon energy density o(c), the heat Ñux and theq

a
(c),

anisotropic stress are given by integrals of the threen
ab
(c)

lowest moments of the photon distribution function :

o(c)\
P

dE d)E3f (c)(E, e) , (34)

q
a
(c)\

P
dE d)E3f (c)(E, e)e

a
, (35)

n
ab
(c)\

P
dE d)E3f (c)(E, e)e

a
e
b
] 1

3
o(c)h

ab
. (36)
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In the absence of scattering, the photon distribution is
conserved in phase space. Denoting the photon position by
xa(j) and the momentum by pa(j), the path in phase space is
described by the equations

dxa

dj
\ pa , (37)

pa+
a
pb \ 0 , (38)

where j is an affine parameter along the null geodesic xa(j).
Denoting the Liouville operator by L, we have

Lf (c)(x, p)\ d
dj

f (c)[xa(j), pa(j)]\ 0 , (39)

in the absence of collisions. Over the epoch of interest here,
the photons are not collisionless but instead are interacting
with a thermal distribution of electrons and baryons. The
dominant contribution to the scattering comes from
Compton scattering o† free electrons, which have number
density in the baryon/electron rest frame. Since then

eaverage energy of a CMB photon is small compared to the
electron mass well after electron-positron annihilation, we
may approximate the Compton scattering by Thomson
scattering. Furthermore, since the kinetic temperature of
the electrons (which equals the radiation temperature prior
to recombination) is small compared to the electron mass,
the electrons are nonrelativistic, and we may ignore the
e†ects of thermal motion of the electrons (in the average rest
frame of the baryon/electron system) on the scattering. Our
Ðnal assumption is to ignore polarization of the radiation.
Thomson scattering of an unpolarized but anisotropic dis-
tribution of radiation leads to the generation of polariza-
tion, which then a†ects the temperature anisotropy because
of the polarization dependence of the Thomson cross
section In this manner, polarization of the CMB ispT.generated through recombination and its neglect leads to
errors of a few percent (Hu et al. 1995) in the predicted
temperature anisotropy. We hope to develop a covariant
version of the radiative-transfer equations, including polar-
ization, in the near future, which should simplify their
physical interpretation.

In the presence of scattering, the photon distribution
function evolves according to the collisional Boltzmann
equation,

Lf (c)(x, p)\C , (40)

where the collision operator for Thomson scattering is

C\ n
e
pT pau

a
(b)[ f (̀c)(x, p)[ f (c)(x, p)] , (41)

where is the covariant velocity of the baryon/electronu
a
(b)

system and describes scattering into the phasef (̀c)(x, p)
space element under consideration :

f (̀c)(x, p)\ 3
16n

P
f (c)(x, p@)[1](gabe

a
(b)e

b
@(b))2] d)

e{(b)
, (42)

where is the photon direction relative toe
a
(b) u

a
(b),

p
a
\ E(b)(u

a
(b)] e

a
(b)), E(b)\ pau

a
(b) , (43)

and is the initial direction (relative to of the photone
a
@(b) u

a
(b))

whose initial momentum is and Ðnal momentum isp
a
@ p

a
.

We write the baryon velocity in the form

u
a
(b) \ c(b)(u

a
] v

a
(b)) , (44)

where is the relative velocity of the baryons, whichv
a
(b)

satisÐes and Note thatuav
a
(b)\ 0, c(b) 4 (1 ] gabv

a
(b)v

b
(b))~1@2.

to Ðrst order we have since the relativeu
a
(b) \ u

a
] v

a
(b),

velocities of the individual matter components are Ðrst-
order in an almost FRW universe. Multiplying the Boltz-
mann equation by E2 and integrating over energies, we Ðnd

P
dEE2Lf (c)(E, e) \ n

e
pT[c(b)(1] eav

a
(b))]~3

]
P

dE(b)E(b)3f (̀c)(x, p) [ n
e
pT c(b)(1] eav

a
(b))

]
P

dEE3f (c)(E, e) , (45)

where we have used

E(b)\ c(b)E(1] eav
a
(b)) (46)

to replace the integral over E by an integral over E(b) in the
Ðrst term on the right. This term can be rewritten as an
integral over using the fact that there is noE@(b)4 p@au

a
(b)

energy transfer in Thomson scattering in the rest frame of
the scattering electron, so that

P
dE(b) E(b)3f (̀c)(x, p) \ 3

16n

]
P

dE@(b) d)
e{(b)

E@(b)3[1 ] (gabe
a
(b) e

b
@(b))2] f (c)(x, p) . (47)

Using the deÐnition of the radiation stress-energy tensor
(eq. 33) in the right-hand side, we have

P
dE(b) E(b)3f (̀c)(x, p) \ 3

16n
gabgcdT

bd
(c)(u

a
(b) u

c
(b)] e

a
(b) e

c
(b)) ,

(48)

where can be expressed ase
a
(b)

e
a
(b)\ [c(b)(1] ecv

c
(b))]~1(u

a
] e

a
) [ c(b)(u

a
] v

a
(b)) . (49)

It follows that the energy-integrated Boltzmann equation
reduces to

P
dEE2Lf (c)(E, e) \ 3

16n
n
e
pT[c(b)(1] efv

f
(b))]~3

] gabgcdT
bd
(c)(u

a
(b) u

c
(b) ] e

a
(b) e

c
(b))

[ n
e
pT c(b)(1] eav

a
(b))
P

dEE3f (c)(E, e) . (50)

This equation is exact under the assumption of Thomson
scattering and the neglect of polarization. Here we shall
only require the linearized version of equation (50) ; for a
covariant discussion of the second-order e†ects in this equa-
tion, see Maartens et al. (1998). On linearizing equation (50)
around an almost FRW universe, we Ðnd

P
dEE2Lf (c)(E, e)

\ 3
16n

n
e
pT
C4
3

(1[ 4eav
a
(b))o(c) ] n

ab
(c) eaeb

D

[ n
e
pT
P

dEE3f (c)(E, e) . (51)
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This covariant form of the Boltzmann equation was used in
Challinor & Lasenby (1998) to discuss CMB anisotropies
from scalar perturbations on angular scales above the
damping scale. Note that the equation is fully covariant
with all variables observable in the real universe, is valid for
arbitrary type of perturbation (scalar, vector, and tensor),
employs no harmonic decomposition, and is valid for any
background FRW model.

The numerical solution of the Boltzmann equation (eq.
51) is greatly facilitated by decomposing the equation into
covariantly deÐned angular moments. The majority of
recent calculations (for example, Seljak & Zaldarriaga 1996)
perform an angular decomposition of the Boltzmann equa-
tion after specifying the perturbation type and performing
the appropriate harmonic expansions. The procedure is
straightforward for scalar perturbations in a K \ 0 uni-
verse, where the Fourier mode of the perturbation in the
distribution function may be assumed to be axisymmetric
about the wavevector k (this assumption is consistent with
the evolution implied by the Boltzmann equation), allowing
an angular expansion in Legendre polynomials alone.
However, for tensor perturbations the situation is not so
straightforward (see, for example, Kosowsky 1996), since
the Boltzmann equation does not then support axisym-
metric modes. Instead, the necessary azimuthal dependence
of the Fourier components of the perturbation in the dis-
tribution function, which is di†erent for the two polariza-
tions of the tensor modes, must be put in by hand prior to a
Legendre expansion in the polar angle. This procedure may
be eliminated by performing a covariant angular expansion
of f (c)(x, p) prior to specifying the perturbation type or
background FRW model. The covariant (tensor) moment
equations that result may then be solved for any type of
perturbation (and any background curvature K) by expand-
ing in covariant tensors derived from the appropriate har-
monic functions (see ° 5 for the case of scalar perturbations
and ° 7 for tensor perturbations). This procedure automati-
cally takes care of the required angular dependencies of the
harmonic components of the distribution function, allowing
a streamlined and uniÐed treatment of all perturbation
types in background FRW models with arbitrary spatial
curvature.

The covariant angular expansion of the photon distribu-
tion function takes the form

f (c)(E, e)\ ;
l/0

=
F
a1...al(l) ea1ea2 . . . eal (52)

(Ellis, Matravers, & Treciokas 1983 ; Thorne 1981), where
the tensors have an implicit dependence on space-F

a1...al(l)
time position x and energy E and are totally symmetric,
traceless, and orthogonal to ua :

F
a1...al(l) \F(a1...al)(l) , ga1a2F

a1a2...al(l) \ 0, ua1F
a1...al(l) \ 0 .

(53)

Employing the expansion given in equation (52), the action
of the Liouville operator on f (c)(E, e) reduces to

Lf (c)(E, e)\ ;
l/0

=
(L

E
F
a1...al(l) ea1Lj E .

] pb+
b
F

a1...al(l) ea1 ] lF
a1...al(l) pb+

b
ea1)ea2 . . . eal

(54)

Using the geodesic equation, we Ðnd that

h
ab

pc+
c
eb\[E(p

bc
ebece

a
]p

ab
eb]wbe

a
e
b
]w

a
[-

ab
eb) ,

(55)

which is Ðrst order. In an exact FRW universe, isotropy
restricts for l [ 0, so that in an almost FRWF

a1...al(l) \ 0
universe for l not equal to zero. It follows thatF

a1...al(l) \O(1)
the last term in equation (54) makes only a second-order
contribution and may be dropped in the linear calculation
considered here.

Inserting the expansion given in equation (52) into the
Boltzmann equation (eq. [51]) and performing a covariant
angular expansion of the resulting equation gives a set of
moment equations that are equivalent to the original Boltz-
mann equation. The linearized calculation is straight-
forward, although a little care is needed for the Ðrst three
moments, since F(0) is a zero-order quantity. (The exact
expansion of the left-hand side of the Boltzmann equation,
eq. [54], is given in Ellis et al. 1983 and Thorne 1981.) For
l \ 0, 1, and 2, we Ðnd

o5 (c) ] 4
3

ho(c)] (3)+aq
a
(c)\ 0 , (56)

q5
a
(c)] 4

3
hq

a
(c) ] (3)+bn

ab
(c)] 4

3
o(c)w

a
[ 1

3
(3)+

a
o(c)

\ n
e
pT
A4
3

o(c)v
a
(b)[ q

a
(c)
B

, (57)

n5
ab
(c)] 4

3
hn

ab
(c) ] (3)+cJ

abc
(3) [ 2

5

]
A
(3)+(a qb)(c)[

1
3

h
ab

(3)+cq
c
(c)
B

[ 8
15

o(c)p
ab

\ [ 9
10

n
e
pT n

ab
(c) , (58)

and, for l º 3,

J0
a1...al(l) ] 4

3
hJ

a1...al(l) ] (3)+bJ
ba1...al(l`1) [ l

(2l ] 1)

]
C
(3)+(a1 J

a2...al)(l~1) [ (l [ 1)
(2l [ 1)

(3)+bJ
b(a1...al~2
(l~1) h

al~1 al)
D

\ [n
e
pT J

a1...al(l) . (59)

The tensors which are traceless, totally symmetric,J
a1...al(l) ,

and orthogonal to ua, are derived from the by inte-F
a1...al(l)

grating over energy :

J
a1...al(l) 4

4n([2)l(l !)2
(2l ] 1)(2l) !

P
0

=
dEE3F

a1...al(l) . (60)

The constant factor is chosen to simplify algebraic factors in
the moment equations. Using equations (34)È(36), the
lowest three moments relate simply to the energy density,
heat Ñux, and anisotropic stress :

o(c)\ J(0), q
a
(c) \ J

a
(1), n

ab
(c)\ J

ab
(2) . (61)

It is straightforward to show that the tensor

(3)+(a1 J
a2...al)(l~1) [ (l [ 1)

(2l [ 1)
(3)+bJ

b(a1...al~2
(l~1) h

al~1 al) , (62)
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which appears in equation (59), is traceless, symmetric, and
orthogonal to ua, as required.

It will be observed that for lº 3, the moment equations
link the l[ 1, l, and l] 1 angular moments of the
(integrated) distribution function, while the l\ 2 equation
also involves the density o(c), which is the l\ 0 moment.
The exact moment equations that arise from expanding the
Liouville equation in covariant harmonics also couple the
l] 2 and l[ 2 moments to (Ellis et al. 1983), butJ

a1...al(l)
these terms are second-order for lº 3 and so do not appear
in the linearized equations presented here. In the exact
expansion of the Liouville equation, the coefficient of the
l] 2 angular moment in the exact propagation equation
for is the shear which leads to the result that theJ

a1...al(l) p
ab

,
angular expansion of the distribution function for noninter-
acting radiation can only truncate for all l(J

a1...al(l) \ 0
greater than some L ) if the shear vanishes (Ellis 1996). This
exact result, which is lost in linearized theory that permits
truncated distribution functions with nonvanishing shear, is
an example of a linearization instability (see Ellis & Dunsby
1997b for more examples). However, this is not problematic
for the linearized calculation of CMB anisotropies, since it
is never claimed that the higher order moments of the
photon distribution vanish exactly. Instead, the series is
truncated (with suitable care to avoid reÑection of power
back down the series) for numerical convenience. The trun-
cation is performed with L large enough so that there is no
signiÐcant e†ect on the for the range of l of interest.J

a1...al(l)
Finally, by taking the spatial gradient of equation (56)

and commuting the space and time derivatives, we Ðnd the
propagation equation for the comoving fractional spatial
gradient of the photon density, X

a
(c),

X0
a
(c) ] 4

3
Z

a
] S

o(c) (3)+
a
(3)+bq

b
(c)[ 4

3
Shw

a
\ 0 , (63)

where is the comoving spatial gradient of the volumeZ
aexpansion.

3.2. Neutrinos
We consider only massless neutrinos, and these are non-

interacting over the epoch of interest. It follows that their
distribution function f (l)(x, p) satisÐes the Liouville equa-
tion Lf (l)(x, p)\ 0. Expanding the neutrino distribution
function in covariant angular harmonics, we arrive at the
moment equations for the tensors which are deÐnedG

a1...al(l) ,
in the same manner as the but with the photon dis-J

a1...al(l)
tribution function replaced by the neutrino distribution.
These moment equations are the same as the photon equa-
tions but with the scattering terms omitted :

o5 (l) ] 4
3

ho(l)] (3)+aq
a
(l) \ 0 , (64)

q5
a
(l)] 4

3
hq

a
(l) ] (3)+bn

ab
(l) ] 4

3
o(l)wa [ 1

3
(3)+

a
o(l)\ 0 , (65)

n5
ab
(l)] 4

3
hn

ab
(l) ] (3)+cG

abc
(3) [ 2

5

]
A
(3)+(a qb)(l) [

1
3

h
ab

(3)+cq
c
(l)
B

[ 8
15

o(l)p
ab

\ 0 , (66)

and for lº 3,

G0
a1...al(l) ] 4

3
hG

a1...al(l) ] (3)+bG
ba1...al(l`1) [ l

(2l ] 1)

]
C
(3)+(a1 G

a2...al)(l~1) [ (l [ 1)
(2l [ 1)

(3)+bG
b(a1...al~2
(l~1) h

al~1 al)
D

\ 0 . (67)

The propagation equation for the comoving fractional
spatial gradient of the neutrino density, follows fromX

a
(l),

equation (64) :

X0
a
(l) ] 4

3
Z

a
] S

o(l) (3)+
a
(3)+bq

b
(l)[ 4

3
Shw

a
\ 0 . (68)

3.3. Baryons
Over the epoch of interest here, the electrons and baryons

are nonrelativistic and may be approximated by a tightly
coupled ideal Ñuid (the coupling arising from Coulomb
scattering). The energy density of the Ñuid is o(b), which
includes contributions from both the baryonic species and
the electrons, the Ñuid pressure is p(b), and the velocity of the
Ñuid is to Ðrst order, where the O(1) relativeu

a
(b) \ u

a
] v

a
(b)

velocity satisÐesv
a
(b) uav

a
(b) \O(2).

The linearized baryon stress-energy tensor evaluates to

T
ab
(b)\ o(b)u

a
u
b
[ p(b)h

ab
] 2(o(b)] p(b))u(a vb)(b) , (69)

which shows that there is a heat Ñux due to(o(b)] p(b))v
a
(b)

the baryon motion relative to the ua frame. The equations of
motion for o(b) and follow from the conservation ofv

a
(b)

baryon plus photon stress-energy (the baryons and photons
interact through nongravitational e†ects only with
themselves) :

+aT
ab
(b) ]+aT

ab
(c) \ 0 . (70)

Using the l \ 0 and l \ 1 moment equations for the photon
distribution, we Ðnd the propagation equation for the
baryon energy density,

o5 (b)] (o(b)] p(b))h ] (o(b) ] p(b))(3)+av
a
(b) \ 0 , (71)

and a propagation equation for v
a
(b),

(o(b) ] p(b))(v5
a
(b) ]w

a
) ] 1

3
(o(b) ] p(b))hv

a
(b)

] p5 (b)v
a
(b) [ (3)+

a
p(b) ] n

e
pT
A4
3

o(c)v
a
(b) [ q

a
(c)
B

\ 0 , (72)

which must be supplemented by an equation of state linking
p(b) and o(b). The Ðnal term in equation (72) describes the
exchange of momentum between the radiation and the
baryon/electron Ñuid as a result of Thomson scattering.
There is no such term in equation (71), since both the radi-
ation drag force and the baryon velocity relative to the ua
frame are Ðrst-order, which give only a second-order rate of
energy transfer in the ua frame. Energy transfer due to
thermal motion of the electrons in the baryon rest frame has
a negligible e†ect on o(b), since the electrons are nonrela-
tivistic ; where T (b) is the baryon kinetick

B
T (b)> m

e
,

temperature (assumed equal to the electron kinetic
temperature) and is the electron mass.m

eTaking the spatial gradient of equation (71) gives the
propagation equation for the fractional comovingX

a
(b),
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spatial gradient of the baryon energy density :

o(b)X0
a
(b)] (o(b) ] p(b))(Z

a
] S(3)+

a
(3)+bv

b
(b)[ Shw

a
)

] Sh(3)+
a
p(b)[ hp(b)X

a
(b)\ 0 . (73)

We have retained all terms involving the baryon pressure
p(b) in the equations of this section. In practice, over epochs
where the baryons are nonrelativistic (p(b)> o(b)), the only
pressure term that need be retained is the term (3)+ap(b),
which appears in equation (72). This term appears as a
small correction to the total sound speed in the tightly
coupled baryon/photon plasma and is potentially signiÐ-
cant during the acoustic oscillations in the plasma.

3.4. Cold Dark Matter
We will only consider CDM here, which may be

described as a pressureless ideal Ñuid. Hot dark matter
(HDM), which requires a phase space description, is con-
sidered in Ma & Bertschinger (1995), where the calculations
for scalar perturbations are performed in the synchronous
and conformal Newtonian gauges. The CDM has energy
density o(c) in its rest frame, which has velocity u

a
(c)\

with the Ðrst-order relative velocity satisfyingu
a
] v

a
(c), v

a
(c)

The linearized CDM stress-energy tensoruav
a
(c) \O(2).

evaluates to

T
ab
(c) \ o(c)u

a
u
b
] 2o(c)u(a vb)(c) , (74)

which is conserved, since the CDM interacts with other
species only through gravity. The conservation of givesT

ab
(c)

the propagation equations for o(c) and v
a
(c) :

o5 (c)] ho(c)] o(c)(3)+av
a
(c) \ 0 , (75)

v5
a
(c)] 1

3
hv

a
(c) ]w

a
\ 0 . (76)

Since the CDM moves on geodesics, the velocity pro-u
a
(c)

vides a convenient frame choice. With this choice, the accel-
eration vanishes. We use the CDM frame to deÐne thew

afundamental velocity ua in ° 5, where we discuss scalar per-
turbations in the CDM model. For the moment, however,
we continue to leave the choice of frame unspeciÐed for
generality. The Ðnal equation that we require is the propa-
gation equation for the fractional comoving spatial gradient
of the density, This follows from equation (75) onX

a
(c).

taking the spatial gradient :

X0
a
(c)]Z

a
] S(3)+

a
(3)+bv

b
(c)[ Shw

a
\ 0 . (77)

The equations for the matter components that we have
described in this section combine with the covariant equa-
tions of ° 2 to give a complete description of the evolution of
inhomogeneity and anisotropy in a fully covariant and
gauge-invariant manner. The equations given in ° 2 make
use of the total energy density and pressure, heat Ñux, and
anisotropic stress. These quantities are related to the indi-
vidual matter components in the CDM model by

o \ o(c) ] o(l) ] o(b) ] o(c) , (78)

p \ 1
3

o(c)] 1
3

o(l)] p(b) , (79)

q
a
\ q

a
(c) ] q

a
(l) ] (o(b)] p(b))v

a
(b) ] o(c)v

a
(c) , (80)

n
ab

\ n
ab
(c) ] n

ab
(l) . (81)

The equations given here are both covariant and gauge-

invariant. Employing gauge-invariant variables ensures
that the problem of gauge-mode solutions does not arise
and that all quantities are independent of the choice of map
between the real universe and a background FRW model.
We have only considered the linearized equations here, but
the linearization procedure is not fundamental to the
covariant and gauge-invariant approach. It is straightfor-
ward to extend the treatment to include nonlinear e†ects
(Maartens et al. 1998), which should provide a systematic
footing for the discussion of second-order e†ects on the
CMB. Indeed, the simplicity with which exact, nonlinear
equations can be written down and manipulated is a signiÐ-
cant virtue of the covariant approach. Unlike in BardeenÏs
gauge-invariant approach (Bardeen 1980), the deÐnition of
the variables employed here does not require that the per-
turbations be in the linear regime, and, furthermore, the
variables do not depend on the nonlocal decomposition of
the perturbations into scalar, vector, and tensor type and
the associated harmonic analysis. The covariant approach
describes scalar, vector, and tensor modes in a uniÐed
manner, although decomposing the linear perturbations is
useful to aid solution of the linearized equations later on in
the calculation. A further advantage of the covariant and
gauge-invariant approach over that introduced by Bardeen
is that only covariantly deÐned variables are employed,
which are simple to interpret physically. In contrast, the
Bardeen variables are constructed by taking linear com-
binations of (gauge-dependent) metric and matter pertur-
bations in such a way that the resulting variable is
gauge-invariant (for small gauge transformations that pre-
serve the scalar, vector or tensor structure of the metric
perturbation). These variables have simple physical inter-
pretations only for certain speciÐc gauge choices. Finally,
note that we have not yet had to specify whether the back-
ground FRW model is open, Ñat, or closed. However, we
have made the implicit assumption that the universe is
almost FRW when specifying the zero and Ðrst-order vari-
ables in the linearization procedure.

4. THE CMB TEMPERATURE ANISOTROPY

The energy-integrated moments of the photon dis-J
a1...al(l)

tribution function provide a fully covariant description of
the CMB temperature anisotropy. In the ua frame, we
denote the average bolometric temperature on the sky at
the point x by so thatT0(x),

T 04P
1
4n
P

dE d)E3f (c)(x, p) \ 1
4n

J(0) , (82)

which is simply the Stefan-Boltzmann law. We use the frac-
tional temperature variation from the full-sky averagedT(e)to characterize the temperature perturbation along theT0spatial direction ea in a gauge-invariant and covariant
manner (Maartens et al. 1995 ; Dunsby 1997). It follows that

[1] dT(e)]4\ 4n
J(0)

P
dEE3f (c)(x, p) , (83)

so that to Ðrst-order

dT(e) \
1

4o(c) ;
l/1

= (2l ] 1)(2l) !
([2)l(l !)2 J

a1...al(l) ea1 . . . eal . (84)

The right-hand side of equation (84) is the covariant
angular expansion of the temperature anisotropy. The
tensors thus provide a natural covariant descriptionJ

a1...al(l)
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of the CMB anisotropy. They may be related to the more
familiar components in the spherical harmonic expan-a

lmsion of by introducing an orthogonal triad in thedT(e)instantaneous rest space at x, so that ea \ (sin h cos /, sin h
sin /, cos h). Then the two expansions are related by

4o(c) ;
m/~l

l
a
lm

Y
lm

(h, /)\ (2l] 1)(2l) !
([2)l(l !)2 J

a1...al(l) ea1 . . . eal .

(85)

Squaring this expression and integrating over solid angles,
we Ðnd the important rotational invariant

1
2l] 1

;
m/~l

l
o a

lm
o2

\ 4n
(4o(c))2

(2l) !
([2)l(l !)2 ha1 b1 . . . hal blJ

a1...al(l) J
b1...al(l) . (86)

The quantity on the left is a quadratic estimator for the
CMB power spectrum (the which we see is related to theC

l
),

covariant tensors in a very simple manner. FurtherJ
a1...al(l)

properties of the covariant and gauge-invariant description
of CMB temperature anisotropies are given by Gebbie &
Ellis (1998).

5. SCALAR PERTURBATIONS

Up to this point, we have treated the scalar, vector, and
tensor modes of linear theory in a uniÐed manner. However,
to obtain solutions to the covariant equations, it proves
useful to consider scalar, vector, and tensor modes separa-
tely. In this section we consider scalar modes ; tensor modes
are discussed brieÑy in ° 7. (Vector modes decay in an
expanding universe in the absence of defects and so are not
likely to have a signiÐcant e†ect on the CMB in inÑationary
models.) In the covariant approach to perturbations in cos-
mology, we characterize scalar perturbations by demanding
that the magnetic part of the Weyl tensor and the vorticity
be at most second-order. Setting ensures thatB

ab
\ O(2)

gravitational waves are excluded to Ðrst-order, and
demanding that ensures that the density gra--

ab
\ O(2)

dients seen by an observer in the ua frame arise from clump-
ing of the density, (3)+2o \ O(1), and not from kinematic
e†ects due to vorticity (the absence of Ñow-orthogonal
hypersurfaces), which give (3)+2o \ O(2) in an almost FRW
universe. Note that we do not classify scalar perturbations
as having (to all orders), which is only aB

ab
\-

ab
\ 0

highly restricted subset of the full set of scalar solutions. For
example, in an (exactly) irrotational dust-Ðlled universe (a
““ silent ÏÏ universe), it can be shown from the exact nonlinear
equations that demanding forces the solution into aB

ab
\ 0

very small class, which probably all have high symmetry
(Ellis 1996) and so cannot represent a very general pertur-
bation. This arises because requiring that be pre-B

ab
\ 0

served along the Ñow lines introduces a series of complex
constraints that greatly reduce the size of the solution set.
However, requiring only that and be at mostB

ab
-

absecond order gives a much larger class of solutions, because
only two new constraints are introduced and these are nec-
essarily preserved by the propagation equations. The solu-
tions with and vanishing exactly comprise a veryB

ab
-

absmall subset of the larger class of exact solutions, which we
classify as scalar perturbations.

On setting and (equality to zero in theB
ab

\ 0 -
ab

\ 0
linearized theory should be taken to imply that the quantity

is at most second order), we see from equation (13) that

(3)+cp
d(a gb)cedue\ 0 F (3)+*a (3)+cp

b+c \ 0 , (87)

where the antisymmetrization is on the indices a and b in
the right-hand equation. This is a necessary condition for

to be constructed from a scalar potential. It follows fromp
abequations (16) and (21) that

(3)+*a qb+\ 0, (3)+*awb+\ 0 , (88)

so that the heat Ñux and acceleration may be written as
spatial gradients of scalar Ðelds (making use of the integra-
bility condition given as eq. [5]). Consistency of (3)+*a qb+\0 with equation (22) for then requires thatq

a
(3)+*a (3)+cn

b+c \ 0 F (3)+*a (3)+cE
b+c\ 0 , (89)

with the implication following from equation (15). It follows
that all vector variables, such as and may beq

a
(3)+bE

ab
,

derived from scalar potentials. The new constraint, given as
equation (87), is only consistent with the propagation equa-
tions if and satisfyE

ab
n
ab

(3)+cE
d(a gb)cedue\ [1

2
i(3)+cn

d(a g
b)cedue . (90)

In the absence of anisotropic stress, we see that the left-hand
side of equation (90) is constrained to be zero, which is
consistent with the propagation equation for given asE

ab
,

equation (18), with If the anisotropic stress does notn
ab

\ 0.
vanish, we include the constraint

(3)+cE
d(a g

b)cedue \ 0 F (3)+cn
d(a g

b)cedue \ 0 (91)

in the deÐnition of a scalar mode, which is easily shown to
be consistent with the propagation equation for E

ab
.

Requiring consistency of equation (91) with the propaga-
tion equation for implied by the photon and neutrinon

abBoltzmann hierarchy yields a series of constraints on the
moments and which are necessary conditionsJ

a1...al(l) G
a1...al(l) ,

for them to be derived from scalar potentials.
The new constraint equations that we have introduced,

by restricting the solution to be a scalar mode, may be
satisÐed by constructing the covariant and gauge-invariant
variables from tensors derived from scalar potentials by
taking appropriate spatial covariant derivatives of the
scalar functions. It proves convenient to separate the tem-
poral and spatial aspects of the problem by expanding the
scalar potentials in the eigenfunctions Q(k) of the generalized
Helmholtz equation

(3)+2Q(k)4 (3)+a(3)+
a
Q(k)\ k2

S2 Q(k) (92)

(Hawking 1966 ; Ellis et al. 1989), which are constructed to
satisfy

Q0 (k) \ 0 . (93)

These equations are correct to zero order only ; in such
equations, equality should be understood to this order only.
In general, we cannot impose equation (92) and Q0 (k)\ 0
exactly, since the constraint equation is inconsistent with
the evolution implied by at Ðrst order. The allowedQ0 (k) \ 0
values of the eigenvalues k2/S2 are determined by the scalar
curvature of the background model (since Q(k) are only
needed to zero order). In a Ñat model, K \ 0, k is a co-
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moving continuous wavenumber º0. In closed models,
K [ 0, k takes only discrete values with k2\ c(c] 2)K,
where c is a nonzero, positive integer. In open models,
K \ 0, k again takes continuous values but with the
restriction k2º oK o . More details may be found in Harri-
son (1967). The eigenfunctions Q(k) are labeled by the
lumped index k. This index, which determines the eigen-
value k2/S2, should be understood to distinguish implicitly
the distinct degenerate eigenfunctions, which all have the
same eigenvalue k2/S2. This multiple use of the symbol k
should not cause any confusion, since the lumped index will
always appear as a superscript or subscript. A function of
the eigenvalue k will be denoted with the eigenvalue as an
argument, for example, A(k), to distinguish it from the quan-
tity which depends on the mode label k and not just theA

k
,

eigenvalue. From the Q(k) we form a vector Q
a
(k),

Q
a
(k)4 S

k
(3)+

a
Q(k) , (94)

which is orthogonal to ua and is parallel transported at zero
order along the Ñow lines :

uaQ
a
(k) \ 0, Q0

a
(k)\ 0 . (95)

We deÐne totally symmetric tensors of rank l, by theQ
a1...al(k) ,

recursion formula (for l[ 1 ; see also Gebbie & Ellis 1998)

Q
a1...al(k) \S

k
A
(3)+(a1 Q

a2...al)(k) [ l[1
2l[1

(3)+bQ
b(a1...al~2
(k) h

al~1al)
B

.

(96)

These tensors satisfy the zero-order properties

ua1Q
a1a2...al(k) \ 0, ha1a2Q

a1a2...al(k) \ 0, Q0
a1a2...al(k) \ 0 ,

(97)

which are readily proved by induction.
The scalar functions Q(k) are the covariant generalizations

of the scalar eigenfunctions of the Laplace-Beltrami oper-
ator on the homogeneous spatial sections of the back-
ground FRW model, which are usually employed in the
harmonic decomposition of perturbed quantities (see, for
example, Bardeen 1980). In the covariant approach, atten-
tion is focused on a velocity Ðeld ua rather than a spatial
slicing of spacetime, so it is natural to employ harmonic
functions deÐned by equation (92). Some of the di†erential
properties of the derived tensors (for l¹ 2) are givenQ

a1...al(k)
in the appendix to Bruni et al. (1992a). We add two more
results to this list that will be useful later :

(3)+a1Q
a1a2...al(k) \ l

2l[1
k
S
C
1[(l2[1)

K
k2
D
Q

a2...al(k) , (98)

(3)+2Q
a1...al(k) \k2

S2
C
1[l(l]1)

K
k2
D
Q

a1...al(k) , (99)

which may be derived from the recursion relation given as
equation (96) and the deÐnition in equation (92). Further
properties of the scalar harmonics are given by Gebbie &
Ellis (1998).

To relate the timelike integration employed in the Bolt-
zmann multipole approach, adopted here, to the lightlike
integration employed in line-of-sight methods (Seljak &
Zaldarriaga 1996), which we consider in ° 5.2, it is conve-

nient to note the following zero-order results for the varia-
tion of the along the line of sight through some pointQ

a1...al(k)
R : Let xa(j) be a null geodesic with tangent vector parallel
to and j satisfying DeÐne a posi-u

a
] e

a
(u

a
] e

a
)+aj \ 1.

tive parameter y(j) along the past null geodesic by dy/
dj \ [k/S with y \ 0 at the point of observation R. Then
the evolution of the quantities is given toQ

a1...al(k) ea1 . . . eal
zero order by the hierarchy

d
dy

(Q
a1...al(k) ea1 . . . eal) \ [Q

a1...al`1
(k) ea1 . . . eal`1

] l2
(4l2[ 1)

C
1 [ K

k2 (l2 [ 1)
D
Q

a1...al~1
(k) ea1 . . . eal~1 , (100)

which follows from the recursion relation given as equation
(96). We shall only consider the solution to this hierarchy in
a K \ 0 universe, in which case we Ðnd the following varia-
tion of Q(k) along the line of sight :

(Q(k))
y
\ ;

l/0

= (2l) !(2l ] 1)
([2)l(l !)2 j

l
(y)(Q

a1...al(k) ea1 . . . eal)
y/0 , (101)

where the are spherical Bessel functions. Equation (101)j
l
(y)

expresses Q(k), a parameter distance y down the line of sight
in terms of the at the point of observation,Q

a1...al(k) ea1 . . . eal
R. If required, the value of down the lightQ

a1...al(k) ea1 . . . eal
cone can be found from the solution for Q(k) (eq. [101]) and
the hierarchy (eq. [100]).

The additional constraints introduced by the conditions
for a scalar mode are satisÐed identically if we construct the
gauge-invariant variables in the following manner :

X
a
(i) \;

k
kX

k
(i)Q

a
(k) , (102)

q
a
(i) \ o(i);

k
q
k
(i)Q

a
(k) , (103)

v
a
(i) \;

k
v
k
(i)Q

a
(k) , (104)

n
ab
(i) \ o(i);

k
n
k
(i)Q

ab
(k) , (105)

Z
a
\ ;

k

k2
S

Z
k
Q

a
(k) , (106)

E
ab

\ ;
k

k2
S2 '

k
Q

ab
(k) , (107)

p
ab

\ ;
k

k
S

p
k
Q

ab
(k) , (108)

w
a
\ ;

k

k
S

w
k
Q

a
(k) , (109)

where i labels the particle species (and we omit the label
when referring to total Ñuid variables). The symbolic sum-
mation in these expressions is a sum over eigenfunctions of
equation (92). For closed background models the sum is
discrete, but in the Ñat and open cases the summation
should be understood as an integral over the continuous
label k, which distinguishes distinct eigenfunctions. The
scalar expansion coefficients, such as are themselvesX

k
(i),

Ðrst-order gauge-invariant variables, which satisfy

(3)+aX
k
(i)\ O(2) . (110)
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They are labeled by the lumped index k. Finally, we assume
that the higher order angular moments of the photon and
neutrino distribution functions may also be expanded in the

harmonics. By considering the zero-order form ofQ
a1...al(k)

the scalar harmonics Q(k) and derived tensors, it is straight-
forward to show that this condition is equivalent to the
usual assumption that the Fourier components of the dis-
tribution functions are axisymmetric about the wavevector
k (see, for example, Seljak & Zaldarriaga 1996). With this
condition, we have

J
a1...al(l) \ o(c);

k
J
k
(l)Q

a1...al(k) , G
a1...al(l) \ o(l);

k
G

k
(l)Q

a1...al(k) ,

(111)

for photons and neutrinos, respectively.

5.1. T he Scalar Equations
It is now a simple matter to substitute the harmonic

expansions of the covariant variables into the constraint
and propagation equations given in °° 2 and 3 in order to
obtain equations for the scalar expansion coefficients that
describe scalar perturbations in a covariant and gauge-
invariant manner. To simplify matters, we assume that the
variations in baryon pressure p(b) due to entropy variations
are negligible compared to those arising from variations in
o(b), so that we may write

+ap(b)\ c
s
2 +ao(b) , (112)

where is the adiabatic sound speed in the baryon/electronc
sÑuid (this is di†erent from the total sound speed in the

tightly coupled baryon/photon Ñuid).
With this assumption, we obtain the following equations

for scalar perturbations : for the spatial gradients of the
densities, we Ðnd

X0
k
(c)\ [k

S
A4
3
Z

k
] q

k
(c)
B

] 4
3

hw
k
, (113)

X0
k
(l)\ [k

S
A4
3
Z

k
] q

k
(l)
B

] 4
3

hw
k
, (114)

X0
k
(c)\ [k

S
(Z

k
] v

k
(c))] hw

k
, (115)

X0
k
(b)\

A
1 ] p(b)

o(b)
BC

[ k
S

(Z
k
] v

k
(b))] hw

k

D

]
Ap(b)
o(b)[ c

s
2
B
hX

k
(b) ; (116)

for the spatial gradient of the expansion, we Ðnd

Z0
k
\ [ 1

3
hZ

k
[ 1

2
S
k

i[2(o(c)X
k
(c)] o(l)X

k
(l))] o(c)X

k
(c)

] (1] 3c
s
2)o(b)X

k
(b)]] S

k
w

k

A3
2

ioc[ 3K
S2
B

, (117)

where c is deÐned in terms of the total pressure p and
density o by p \ (c[ 1)o (note that we do not assume that c
is constant). The heat Ñuxes satisfy

q5
k
(c)]1

3
k
S

(2n
k
(c)(1~3K@k2)[X

k
(c)]4w

k
)\n

e
pT
A4
3

v
k
(b)[ q

k
(c)
B

,

(118)

q5
k
(l)]1

3
k
S

(2n
k
(l)(1~3K@k2)[X

k
(l)]4w

k
)\0 , (119)

and, for the baryon and CDM peculiar velocities,

v5
k
(c)] 1

3
hv

k
(c) ] k

S
w

k
\ 0 , (120)

A
1 ] p(b)

o(b)
BC

v5
k
(b)] 1

3
(1[ 3c

s
2)hv

k
(b)] k

S
w

k

D
[ k

S
c
s
2X

k
(b)

\ [n
e
pT

o(c)
o(b)
A4
3

v
k
(b)[ q

k
(c)
B

. (121)

The propagation equations for the anisotropic stresses are

n5
k
(c)] 3

5
k
S
A
1 [ 8K

k2
B
J
k
(3)[ 2

5
k
S

q
k
(c) [ 8

15
k
S

p
k

\ [ 9
10

n
e
pT n

k
(c) , (122)

n5
k
(l)] 3

5
k
S
A
1 [ 8K

k2
B
G

k
(3)[ 2

5
k
S

q
k
(l)[ 8

15
k
S

p
k
\ 0 , (123)

and the remaining moment equations, for l º 3, are

J0
k
(l)] k

S
G l ] 1
2l ] 1

C
1 [ l(l ] 2)

K
k2
D
J
k
(l`1)

[ l
2l ] 1

J
k
(l~1)

H
\ [n

e
pT J

k
(l) , (124)

G0
k
(l)] k

S
G l ] 1
2l ] 1

C
1 [ l(l ] 2)

K
k2
D
G

k
(l`1)[ l

2l ] 1
G

k
(l~1)

H

\ 0 . (125)

The propagation equations for and becomeE
ab

p
ab

Ak
S
B2A

'0
k
] 1

3
h'

k

B
] 1

2
k
S

io(cp
k
] q

k
)

] 1
6

ioh(3c[ 1)n
k
[ 1

2
ion5

k
\0 , (126)

Ak
S
BA

p5
k
]1

3
hp

k

B
](k/S)2('

k
[w

k
)]1

2
ion

k
\0 . (127)

Finally, the remaining constraint equations become

2
Ak
S
B3A

1 [ 3K
k2
B
'

k
[ k

S
io
C
X

k
]
A
1 [ 3K

k2
B
n
k

D

[ iohq
k
\ 0 , (128)

2
3
Ak
S
B2

[Z
k
[
A
1 [ 3K

k2
B
p
k

D
] ioq

k
\ 0 . (129)

The variables and refer to the total matter and areX
k
, q

k
n
kgiven in terms of the component variables by

oX
k
\o(c)X

k
(c)]o(l)X

k
(l)]o(b)X

k
(b)]o(c)X

k
(c) , (130)

oq
k
\o(c)q

k
(c)]o(l)q

k
(l)](o(b)]p(b))v

k
(b)]o(c)v

k
(c) , (131)

on
k
\o(c)n

k
(c)]o(l)n

k
(l) . (132)
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These equations give a complete description of the evolu-
tion of inhomogeneity and anisotropy from scalar pertur-
bations in an almost FRW universe with any spatial
curvature. The system closes up once a choice for the veloc-
ity ua is made, and it is straightforward to check that the
constraint equations are consistent with the propagation
equations. The equations for and for lº 3 are equiv-J

k
(l) G

k
(l)

alent to those usually found in the literature (see, for
example, Ma & Bertschinger 1995 and set K \ 0). This is
because the moments of the perturbed distribution function
used in such gauge-dependent calculations are gauge-
invariant for lº 1. (The l\ 1 moment does depend on the
choice of coordinates in the real universe, but it is indepen-
dent of the mapping onto the background model, since the
background distribution function has no angular depen-
dence.) Gauge-invariant versions of the usual synchronous-
gauge equations (Ma & Bertschinger 1995) are obtained by
taking ua to coincide with the CDM velocity, so that andw

avanish.v
a
(c)

5.2. T he Integral Solution
The integral solution to the Boltzmann multipole equa-

tions is central to the line-of-sight integration method for
the calculation CMB anisotropies. This method, which has
been implemented in the CMBFAST code of Seljak & Zal-
darriaga (1996), provides a very fast route to calculating the
CMB power spectrum. Although we do not make use of this
method for the numerical calculations presented in this
paper, it may be useful to some readers to have available the
integral solution to the covariant and gauge-invariant
Boltzmann hierarchy, not least because it provides the link
between the lightlike integrations along the observational
null cone, employed in line-of-sight methods (which
includes the original calculation by Sachs & Wolfe 1967),
and the timelike integrations along the Ñow lines of the
velocity Ðeld, ua, employed in the Boltzmann multipole
approach. For simplicity, we restrict attention to K \ 0,
almost FRW universes.

The (linearized) integral solution to the hierarchy of Bolt-
zmann multipole equations given in the previous subsection
is, for lº 1,

(J
k
(l))

R
\ 4
P
0

tR
e~q8
GAk

S
p
k
] 3

16
n
e
pT n

k
(c)
B

]
C1
3

j
l
(y8 )] d2

dy8 2 j
l
(y8 )
D

[
Ak
S

w
k
[ n

e
pT v

k
(b)
B d

dy8
j
l
(y8 )

[
C1
3
Ak
S
Z

k
[ hw

k

B
[ 1

4
n
e
pTXk

(c)
D

j
l
(y8 )
H

dt@ , (133)

where denotes the quantity evaluated at R and the(È)
Rintegral is taken along the Ñow line of ua through the point

R. Here, t is proper time along the Ñow line (with att \ t
RR), is k times the conformal time di†erencey8 \ y8 (t

R
, t@)

along the Ñow line between t@ and dt], andt
R

[y8 4/
t@
tR k/S

is an ““ optical depth ÏÏ along the Ñow lineq8 \ q8 (t
R
, t@) [q8 4
dt]. In deriving equation (133) we have neglected/

t@
tR n

e
pTany contribution from initial conditions, since these are

exponentially suppressed by a factor 0)]. It isexp[[q8 (t
R
,

straightforward to verify, by di†erentiating with respect to
that equation (133) is the solution to the Boltzmannt

R
,

hierarchy for scalar perturbations in a K \ 0, almost FRW
universe. VeriÐcation for the l\ 1 moment requires the fol-

lowing formal solution for X
k
(c) :

(X
k
(c))

R
\ 4
P
0

tR
e~q8
GAk

S
p
k
] 3

16
n
e
pT n

k
(c)
B

]
C1
3

j0(y8 ) ]
d2
dy8 2 j0(y8 )

D
[
Ak
S

w
k
[ n

e
pT v

k
(b)
B d

dy8
j0(y8 )

[
C1
3
Ak
S
Z

k
[ hw

k

B
[ 1

4
n
e
pTXk

(c)
D

j0(y8 )
H

dt@ , (134)

where again we have neglected the exponentially suppressed
contribution from the initial conditions. In numerical appli-
cations, it is convenient to manipulate equation (133)
further by integrating by parts (Seljak & Zaldarriaga 1996).

The integral in equation (133) is taken along the Ñow line
of ua through R. However, in the linearized calculation con-
sidered here, the integral can be performed along (any) null
geodesic through R also. To see this, regard and as they8 q8
restrictions to the Ñow line of (zero-order) Ðelds in the past
light cone of R, with and similarly for(3)+

a
y8 \ O(1) q8 .

Replacing the measure dt@ by dxa in the integral in equa-u
ation (133) and noting that and, for example,+*a ub+\ O(1)

it follows that the line integral of ua times the(3)+
a
p
k
\ O(2),

integrand in equation (133) is path-independent. The Ñow
line and null geodesic through R can be joined at early
times by a spacelike curve with dxa \ O(1), which there-u

afore makes only a second-order contribution to the integral
around the closed loop. To zero order, the restriction of the
Ðelds and to the null geodesic through R deÐne quan-y8 q8
tities and on the null curve, wherey \ y(j

R
, j@) q\ q(j

R
, j@)

dj and dj, so that q is the opticaly 4/j@jR k/S q4/j@jR n
e
pTdepth along the line of sight. (The parameter j along the

null geodesic was deÐned in ° 5.) Using the integral along
the line of sight, we can now reassemble the gauge-invariant
temperature perturbations from the mean, at R usingdT(e),equations (84) and (111). Recalling equation (101) for the
variation of the quantities down the line ofQ

a1...al(k) ea1 . . . eal
sight, the temperature anisotropy from scalar perturbations
in an almost FRW universe reduces to

[dT(e)]R \ [1
4

;
k

(X
k
(c)Q(k))

R
] ;

k
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e~q
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k
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(k)eaeb ] k
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w

k
Q

a
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Z
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[ hw

k

B
Q(k)
D

dj@

];
k

P jR
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]
A 3
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n
k
(c)Q

ab
(k)eaeb [ v

k
(b)Q

a
(k)ea ] 1

4
X

k
(c)Q(k)

B
dj@ . (135)

Equation (135), Ðrst given in this covariant form in Challin-
or & Lasenby (1998), is valid for any value of the spatial
curvature, even though the derivation given here considers
the K \ 0 case only. Equation (135) is most easily obtained
by a direct integration of the covariant Boltzmann equation
for the temperature anisotropy along the line of sightdT(e)(Challinor & Lasenby 1998). However, the route followed
here makes clear the link between the lightlike and timelike
integrations, employed in the line of sight and Boltzmann
multipole methods, respectively.

5.3. Initial Conditions on Super-Horizon Scales
In this subsection, we analytically extract the solution of

the scalar perturbation equations in the radiation-
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dominated era. We shall only consider modes with oK o /
k2> 1 so that we may ignore terms involving K in the
scalar equations. Associated with each mode there is a char-
acteristic length scale, S/k. The condition oK o /k2> 1 is
equivalent to requiring that this length scale be small com-
pared to the curvature radius of the universe. For such
modes, k is e†ectively a comoving wavenumber. We shall
also require that the mode be well outside the horizon scale
1/H, so that we consider only those modes satisfying

1 >H
k
2>

H2S2
oK o

, (136)

where is the ratio of the characteristic lengthH
k
4 SH/k

scale to the horizon scale and H2S2/ oK o is the (squared)
ratio of the curvature radius to the horizon scale. If the
universe may be approximated by a K \ 0 universe to zero-
order, equation (136) reduces to The approximateH

k
? 1.

analytic solution may be used to provide initial conditions
for a numerical integration of the scalar equations (see ° 6).

At this point, it is convenient to make a choice of frame.
In the CDM model, the rest frame of the CDM deÐnes a
geodesic frame, which provides a convenient choice for ua,
since the acceleration then vanishes identically. We assume
that this frame choice has been made in the rest of this
paper.

Well before decoupling, the baryons and photons are
tightly coupled because of the high opacity to Thomson
scattering. This scattering damps the photon moments for
lº 2, but a dipole (l\ 1) moment can survive if the baryon
velocity does not coincide with the CDM velocity. To a
good approximation, we may ignore the for lº 2 andJ

k
(l)

set so that the radiation is isotropic in the restv
k
(b) \ 3q

k
(c)/4

frame of the baryons. This is the lowest order term in the
tight-coupling approximation (see ° 6.2). Similarly, we
expect that the higher order neutrino moments will also be
small in the early universe, since the neutrinos were in
thermal equilibrium prior to their decoupling. Further-
more, the baryon and CDM densities, o(b) and o(c), are negli-
gible compared to the radiation and neutrino densities, o(c)
and o(l), in the radiation-dominated era.

A useful Ðrst approximation to the full set of scalar equa-
tions is obtained by setting the neutrino moments, toG

k
(l),

zero for lº 2. It is convenient to take the dependent vari-
able to be instead of the proper time t along thex 4H

k
~1

Ñow lines, so that the scalar propagation equations of the
previous section reduce to the following set :

x2Z
k
@]xZ

k
]3[(1[R)X

k
(c)]RX

k
(l)]\0 , (137)

x2'
k
@]x'

k
]2p

k
]3

2
[(1[R)q

k
(c)]Rq

k
(l)]\0 , (138)
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k
@ ]p

k
]x'

k
\0 , (139)

X
k
(c)@]4

3
Z

k
]q

k
(c)\0 , (140)

X
k
(l)@] 4

3
Z

k
]q

k
(l)\0 , (141)

q
k
(c)@[1

3
X

k
(c)\0 , (142)

q
k
(l)@[1

3
X

k
(l)\0 , (143)

where a prime denotes di†erentiation with respect to x and
we have used the zero-order Friedmann equation in the
form H2\ io/3, since the curvature term may be neglected
by equation (136). We have followed Ma & Bertschinger
(1995) by introducing the dimensionless quantity R deÐned
by

R4
o(l)

o(l)] o(c) . (144)

After neutrino decoupling, R is a constant that depends
only on the number of neutrino species. The remaining
equations that we require are the two scalar constraints,
which reduce to

2x3'
k
[ 3x[(1 [ R)X

k
(c)] RX

k
(l)]

[ 9[(1[ R)q
k
(c)] Rq

k
(l)]\ 0 , (145)

2x2(Z
k
[ p

k
) ] 9[(1[ R)q

k
(c)] Rq

k
(l)]\ 0 . (146)

This set of equations gives a closed equation for '
k
:

3x'
k
@@] 12'

k
@ ] x'

k
\ 0 . (147)

This equation should be compared to the fourth-order
equation for the metric perturbation variable in the syn-
chronous gauge (see, for example, Ma & Bertschinger 1995).
The fourth-order equation admits four linearly independent
solutions, but two of the solutions are gauge modes that
arise from mapping an exact FRW universe to itself. The
gauge-invariant approach adopted here ensures that such
gauge modes do not arise. This is evident from equation
(147), which is only a second-order equation. The two lin-
early independent solutions of this equation both describe
physical perturbations in the Weyl tensor, which vanishes
for an exact FRW universe. It is now straightforward to Ðnd
the general solution of equations (137)È(146). There are two
solutions with nonvanishing Weyl tensor which('

k
D 0),

we write as

'
k
\ [ 3y~3[(Cy[ D) cos y [ (C] Dy) sin y] , (148)

Z
k
\ 3J3y~3[2(C] Dy) cos y ] 2(Cy[ D)

] sin y [ C(2] y2)] , (149)

p
k
\ 3J3y~2[D cos y ] C sin y [ Cy] , (150)

q
k
(c)\ [4J3y~1[C cos y [ D sin y [ C] , (151)

q
k
(l)\ [2J3

R
y~1[(2RC] Dy) cos y

] (Cy[ 2RD) sin y [ 2RC] , (152)

X
k
(c)\ 12y~2[(C] Dy) cos y

] (Cy[ D) sin y [ C] , (153)

X
k
(l)\ 6

R
y~2[(2RC[ Cy2] 2RDy) cos y

] (2RCy[ 2RD] Dy2) sin y [ 2RC] , (154)

where y 4 x/(3)1@2 and C and D are constants. There are
also three solutions with vanishing Weyl tensor ('

k
\ 0),
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which we write as

Z
k
\J3

4
A3y~3(2]y2) , (155)

p
k
\J3

4
A3y~1 , (156)

q
k
(c)\[ 1

J3
(A1cos y[A2 sin y]A3y~1) , (157)

q
k
(l)\R[1

J3R
([A1 cos y]A2 sin y)[ 1

J3
A3y~1 , (158)

X
k
(c)\A1 sin y]A2 cos y]A3y~2 , (159)

X
k
(l)\R[1

R
(A1 sin y]A2 cos y)]A3y~2 , (160)

where and are further constants. The solutionA1, A2, A3with only nonzero describes a radiation-dominated uni-A3verse, which is exactly FRW except that the CDM has a
peculiar velocity (relative to the velocity of the fundamental
observers) where is a Ðrst-order vector,v

a
(c)\ v

a
(0)/S, v

a
(0)

orthogonal to the fundamental velocity, which is parallel
transported along the fundamental Ñow lines : v5

a
(0)\ O(2).

This can be seen most clearly by adopting the energy frame,
deÐned by the condition This is arguably a betterq

a
\ 0.

choice to make in the early universe, since ua is then deÐned
in terms of the dominant matter components rather than a
minority component, such as the CDM, which has little
e†ect on the gravitational dynamics. Choosing the energy
frame and ignoring anisotropic stresses (which are frame-
independent in linear theory), the CDM relative velocity
evolves according to

v5
a
(c) ] 1

3
hv

a
(c)] 1

4S
[(1[ R)X

a
(c) ]RX

a
(l)]\ 0 (161)

in the radiation-dominated era. Since the CDM interacts
with the other matter components through gravity alone
and since the gravitational inÑuence of the CDM on the
dominant matter components may be ignored during radi-
ation domination, equation (161) is the only equation gov-
erning the evolution of the perturbations that makes
reference to the CDM. It follows that any solution of equa-
tion (161) deÐnes a valid solution to the linearized pertur-
bation equations. The solution, which has in anv

a
(c)\ v

a
(0)/S

otherwise FRW universe corresponds to the solution
labeled by in equations (155)È(160). Note that this solu-A3tion decays in an expanding universe. Following standard
practice, we assume that this mode may be ignored (A3\
0), since it would require highly asymmetric initial condi-
tions at the end of the inÑationary epoch if the decaying
mode was signiÐcant during the epoch of interest here.
Similar comments apply to the mode labeled by D in equa-
tions (148)È(154).

An important subclass of these solutions describe adia-
batic modes. We assume that the appropriate covariant and
gauge-invariant deÐnition of adiabaticity is that

(3)+
a
o(i)

o(i)] p(i)\
(3)+

a
o(j)

o(j) ] p(j) , (162)

for all species i and j (Bruni et al. 1992a). This condition,
which is frame-independent in linear theory, is the natural

covariant generalization of the (gauge-invariant) condition

do(i)
o6 (i)] p6 (i)\

do(j)
o6 (j) ] p6 (j) , (163)

where is the usual gauge-dependent densitydo(i)\ o(i)[ o6 (i)
perturbation, and overbars denote the background quan-
tity. Demanding approximate adiabaticity between the
photons and the neutrinos leaves only one free constant of
integration, which we take to be C. The remaining con-
stants are and Note that theA1\A3\ D\ 0 A2\ [6C.
constants of integration will depend on the mode label k, in
general, so we have C\C

k
.

This adiabatic solution may be developed further by
including higher-moments of the neutrino distribution func-
tion and Ðnding a series expansion of the (enlarged) system
in x. To obtain solutions correct to O(x3), it is necessary to
retain and The series solution that results isn

k
(l) G

k
(3).
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k
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54(R]5)
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G
k
(l)\O(xl) for l[3 . (164)

Note that on large scales (x > 1), the harmonic coefficient
of is constant along the Ñow lines. It follows that, on'

k
E
ablarge scales, we may write whereE

ab
\E

ab
(0)/S2, E0

ab
(0)\ O(2).

The series solution given in equation (164) is adiabatic
between the photons and neutrinos to O(x3), but the adia-
baticity is broken by the higher order terms. This di†erence
in the dynamic behavior of radiation and neutrinos is due
to their di†erent kinetic equations ; the neutrinos are colli-
sionless, which allows higher order angular moments in the
distribution function to grow, but the radiation is tightly
coupled to the baryon Ñuid, which prevents the growth of
higher order moments. The baryon relative velocity isv

a
(b)

determined by the condition that the radiation be nearly
isotropic in the rest frame of the baryons,

v
k
(b)\ 3

4
q
k
(c) , (165)

and the spatial gradients of the baryon and CDM follow
from the adiabaticity condition,

X
k
(b) \X

k
(c)\ 3

4
X

k
(c) \ 3

4
X

k
(l) , (166)

where we have neglected the small e†ect of baryon pressure.
The series solution given as equation (164) was used to
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provide adiabatic initial conditions for the numerical solu-
tion of the perturbation equations, discussed in the next
section.

6. ADIABATIC SCALAR PERTURBATIONS IN A K \ 0
UNIVERSE

In this section, we discuss the calculation of the CMB
power spectrum from initially adiabatic scalar pertur-
bations in an almost FRW universe with negligible spatial
curvature. The evolution of anisotropy in the CMB and
inhomogeneities in the density Ðelds resulting from scalar
perturbations may be found by solving numerically the
equations presented in ° 5, with initial conditions deter-
mined from the analytic solutions of the previous section.
For adiabatic perturbations, the speciÐcation of initial con-
ditions is particularly simple ; there is a single function ofC

kthe mode label k to set. This function gives the (constant)
amplitude of the harmonic component of the electric part of
the Weyl tensor on super-horizon scales.

6.1. T he CMB Power Spectrum
The gauge-invariant temperature perturbation from the

mean, denoted by is given by equation (84). Substitut-dT(e),ing for the harmonic expansion of the angular moments
we ÐndJ

a1...al(l) ,

dT(e)\
1
4

;
l/1

= (2l] 1)(2l) !
([2)l(l !)2

C
;
k

C
k
T (l)(k)Q

a1...al(k) ea1 . . . eal
D

,

(167)

where we have introduced the radiation-transfer function
T (l)(k), which is a function of the eigenvalue k only. The
transfer function is deÐned to be the value of for theJ

k
(l)

initial condition Since the dynamics of a scalarC
k
\ 1.

mode labeled by the index k depends only on the eigenvalue
of the eigenfunction Q(k), the transfer function is a function
of the eigenvalue k only. For the linearized theory con-
sidered here, we have J

k
(l)\ C

k
T (l)(k).

We have come as far as we can without making a speciÐc
choice for the scalar harmonic functions Q(k). To proceed,
we introduce an almost FRW coordinate system (Ellis 1996)
as follows : If the perturbations in the universe are only of
scalar type, then the velocity ua is hypersurface orthogonal,
so that we may label the orthogonal hypersurfaces with a
time label t. Furthermore, since we have chosen ua to be the
CDM velocity, which is geodesic, the Ñow-orthogonal
hypersurfaces may be labeled unambiguously with proper
time along the Ñow lines, so that ua \ +at. The orthogonal
hypersurfaces depart from being spaces of constant curva-
ture only at Ðrst order, so we can introduce comoving
spatial coordinates xi in such a way that our (synchronous)
coordinate system is almost FRW in form. (Latin indices,
such as i, run from 1 to 3.) It is then straightforward to show
that the functions eik Õ x, where k Æ x \ kixi and ki are con-
stants, satisfy the deÐning equations for the scalar harmonic
functions (eqs. [92]È[93]), with k2\ kiki, in an almost
FRW universe with negligible spatial curvature. It follows
that we may take

Q(k)\ eik Õ x . (168)

For the open and Ñat cases, the appropriate generalizations
of the eik Õ x (Harrison 1967) should be used for the Q(k). Note
that the expansion coefficients, such as depend on theJ

k
(l),

detailed choice of the scalar harmonics Q(k), but that covari-

ant tensors such as are independent of this;
k

J
k
(l)Q

a1...al(k)
choice. If vector perturbations are also signiÐcant, we
cannot use the velocity ua to deÐne a time coordinate in the
manner described above. Instead, an almost FRW coordi-
nate system should be constructed using an irrotational and
geodesic velocity Ðeld which is close to our chosen fun-uü a,
damental velocity ua. (One possibility is to take uü a P+ao.)
Using this velocity Ðeld, almost FRW coordinates can be
constructed by the above procedure (Ellis 1996). The
resulting Q(k) will satisfy the deÐning (zero-order) properties
of the scalar harmonics in the ua frame, since the relative
velocity of is Ðrst-order.uü a

Since and ua \ +at, we can always choose the xiuae
a
\ 0

so that at our observation point ea \ (0, S~1ei), with
eiei\ 1 (for example, one can choose the xi so that Sxi are
locally Cartesian coordinates in the constant time
hypersurface). Then it follows that, to zero order,

Q
a1...al(k) ea1 . . . eal \ (2i)l(l !)2

(2l) !
P

l
(k)Q(k) , (169)

where k 4 kiei/k and are the Legendre polynomials.P
l
(k)

This result demonstrates that expanding the angular
moments of the distribution function in the covariant
tensors is equivalent to the usual Legendre expan-Q

a1...al(k)
sion of the Fourier modes of the distribution function
(which are axisymmetric about the wave vector k) in an
almost FRW universe, where the spatial curvature may be
neglected.

Following standard practice, we make the assumption
that we inhabit one realization of a stochastic ensemble of
universes, so that the are random variables. (The physi-C

kcal basis on which this assumption rests is that initial Ñuc-
tuations were generated from causal quantum processes in
the early universe, such as during a period of inÑation ; see
for example, Kolb & Turner 1990.) Given our chosen form
for the Q(k), statistical isotropy of the ensemble demands
that the covariance matrix for the takes the followingC

kform:

SC
k
C

k{
*T \ C2(k)d

kk{
, (170)

where C2(k) is the primordial power spectrum, which is a
function of the eigenvalue k. The appearing in equationd

kk{(170) is deÐned by where is an arbitrary;
k
d
kk{

A
k
\ A

k{
, A

kfunction of the mode label k. The CMB power spectrum C
lis deÐned by where are the coefficients inC

l
4S o a

lm
o2T, a

lmthe spherical harmonic expansion of the temperature
anisotropy (see ° 4). Substituting the harmonic expansion of
the into equation (86) and using the zero-order resultJ

a1...al(k)

ha1b1 . . . hal blQ
a1...al(k) Q

a1...al(k)p \ ([2)l(l !)2
(2l) !

, (171)

which follows from Q(k)\ eik Õ x, we Ðnd the familiar expres-
sion for the CMB power spectrum in terms of the transfer
functions and the primordial power :

C
l
\ n2

P
d ln k C2(k)[T (l)(k)]2 . (172)

We make the standard assumption that, on large scales,
the primordial power spectrum may be approximated by a
power law of the form Many inÑationaryC2(k) P kns~1.
models predict that the scalar index will be close to unityn

s(Kolb & Turner 1990). The case describes the scale-n
s
\ 1

invariant spectrum. This term arises from considering the
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logarithmic power spectrum in Fourier space of the (gauge-
dependent) fractional density perturbation evaluated atdohorizon crossing. An analogous result can be found in the
covariant and gauge-invariant approach : we evaluate the
logarithmic power spectrum of the dimensionless scalar
*4 (3)+2o/(oH2) in the energy frame Making use(q

a
\ 0).

of equation (15), with the contribution from anisotropic
stress neglected and the frame-invariance of in(3)+aE

ablinear theory, we Ðnd that

L ln k
S*2T \ 16

9
nH

k
~8C2(k) . (173)

Note that * only receives a contribution at linear order
from scalar modes (Ellis et al. 1990). In deriving equation
(173), which is valid before the modes labeled by k reenter
the Hubble radius, we have assumed that only the fastest
growing scalar mode is signiÐcant, so that is constant'

kbefore horizon crossing. For given k, the logarithmic power
in * evolves in time because of the presence of on theH

kright-hand side of equation (173). However, at horizon
crossing, falls below some critical value of order unityH

kthat is independent of k. It follows that, for the scalar index
the logarithmic power in * at horizon crossing isn

s
\ 1,

independent of scale.

6.2. T he T ight-Coupling Approximation
At early times, when the baryons and photons are tightly

coupled, the radiation is nearly isotropic in the frame of the
baryons. In this limit, it is convenient to replace the propa-
gation equations for the with lº 1 and for theJ

a1...al(l)
baryon relative velocity with approximate equationsv

a
(b)

that may be developed by an expansion in the photon mean
free path The approximate equations are simpler to1/n

e
pT.solve numerically than the exact equations, since the former

do not include the large Thomson scattering terms present
in the latter.

For scalar perturbations, it is simplest to work directly
with the harmonic expansion coefficients, and TheJ

k
(l) v

k
(b).

relevant timescales in the problem are the photon mean free
time the expansion timescale andt

c
4 (n

e
pT)~1, t

H
4 H~1,

the light travel time across the wavelength of the mode
under consideration, In the tight-coupling approx-t

k
4 S/k.

imation, we expand in the small dimensionless numbers
and so that the procedure is valid fort

c
/t
H

t
c
/t

k
, t

c
> min

While a mode is outside the horizon, min(t
H
, t

k
). (t

H
, t

k
) \

whereas min during the acoustic oscillations.t
H
, (t

H
, t

k
)\ t

kIn the CDM frame the procedure is similar to that(w
a
\ 0),

usually employed (Peebles & Yu 1970 ; Ma & Bertschinger
1995) in the synchronous gauge. We combine the propaga-
tion equations given in ° 5.1 for the photon moments J

k
(l)

(lº 1) and the baryon relative velocity to get the exactv
k
(b)

(in linear theory) equations :
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for lº 3 , (177)

where and, for this section, R4 4o(c)/*
k
4 q

k
(c)[ 4v

k
(b)/3

3o(b). Iterating these equations gives the tight-coupling
expansions

v5
k
(b) \ v5 0(b)] v5 1(b)] . . . , (178)
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\ *1] *2] . . . , (179)

n
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(c) \ n1(c)] n2(c)] . . . , (180)

J
k
(l) \ J

l~1(l) ] J
l
(l)] . . . , (181)

where the subscript on the variables on the right-hand side
denotes the order in the expansion parameter v\ max

To avoid cluttering of indices, we leave the(t
c
/t
H
, t

c
/t
k
).

mode label k implicit. We shall only require the results to
Ðrst order in v :
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n1(c)\
16
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The propagation equation for in the tight-couplingq
k
(c)

approximation may be obtained from the exact equation
(174), with replaced by and and*0

k
q5
k
(c) [ 4v5

k
(b)/3 v5

k
(b) n

k
(c)

replaced by their tight-coupling expansions.

6.3. Numerical Results
We are now in a position to evolve an initial set of pertur-

bations from early times to the present in an almost FRW
universe with negligible spatial curvature and to calculate
the power spectrum of the CMB anisotropies that result. In
this section we present the results of a numerical simulation
in the standard CDM model with the parameters H0\ 50
km s~1 Mpc~1, baryon fraction CDM fraction)

b
\ 0.05,

helium fraction 0.24, zero cosmological constant,)
c
\ 0.95,

and a scale-invariant spectrum of initially adiabatic condi-
tions (n

s
\ 1).

Our code to solve the covariant and gauge-invariant per-
turbation equations in the CDM frame, including the Bolt-
zmann hierarchies for the photons and neutrinos, was based
on the serial COSMICS code developed by Bertschinger
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and Bode and described in Ma & Bertschinger (1995).1 We
modiÐed the COSMICS code to solve the covariant equa-
tions given in this paper for the matter variables and for the
spatial gradient of the expansion, The shear, which isZ

a
.

required to solve the Boltzmann hierarchies for the photons
and neutrinos, was determined from equation (16). The elec-
tric part of the Weyl tensor, could then be determinedE

ab
,

from equation (15). Our calculations of the zero-order ion-
ization history of the universe, which fully include the e†ects
of helium and hydrogen recombination, followed Ma &
Bertschinger (1995), as did our truncation schemes for the
photon and neutrino Boltzmann hierarchies. The Ðrst-order
tight-coupling approximation was used at sufficiently early
times that max (t

c
/t
H
, t

c
/t
k
)> 1.

In Figure 1 we show the variation of the harmonic coeffi-
cients of the comoving fractional spatial gradients inX

k
(i)

the CDM frame against redshift in the standard CDM
model. Similar plots were given by Ma & Bertschinger
(1995) for the Fourier components of the (gauge-dependent)
density perturbations where is thedo(i)4 (o(i)[ o6 (i))/o6 (i), o6 (i)
density of the species i in the background model. Our
results, given in Figure 1, agree well with the synchronous-
gauge results of Ma & Bertschinger (1995). This is because
the constant time surfaces in this gauge are orthogonal to
the CDM velocity, so that is a covariant measure of theX

a
(i)

density inhomogeneity in these surfaces. Although isdo(i)gauge-dependent in the synchronous gauge, the gauge con-
ditions restrict this gauge dependence to transformations of
the form where a is a Ðrst-order constant.do(i)# do(i)[ ao6o5 /o6 ,
It follows that the Fourier coefficients of are gauge-do(i)invariant away from k \ 0 in Fourier space.

The qualitative behavior of the comoving density gra-
dients can be seen directly from their propagation equa-
tions. For scalar perturbations, it is simplest to work
directly with the equations of motion (113)È(116) for the
harmonic coefficients in the CDM frame. EliminatingX

k
(i)

the spatial gradients of the expansion, we Ðnd theZ
a
,

following second-order equations :
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where we have ignored baryon pressure except in the acous-
tic term which can be signiÐcant on smallc

s
2(k2/S2)X

k
(b),

1 The COSMICS package, including full documentation, is available at
http ://arcturus.mit.edu/cosmics.

scales. In the limiting case that the mode is well outside the
Hubble radius the equations of motion for each(H

k
? 1),

component reduce to the common form

X�
k
(i)]2

3
hX0

k
(i)\i
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1]p(i)

o(i)
B

;
j

(o(j) ] 3p(j))X
k
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For adiabatic initial conditions, it is clear that the adiabatic
condition, given as equation (162), is maintained while the
mode is outside the Hubble radius. Solving equation (190)
for adiabatic perturbations gives growing modes pro-
portional to t and t2@3 during radiation and matter domina-
tion, respectively.

If a mode enters the Hubble radius prior to last scat-
tering, the photon/baryon Ñuid, which is still tightly
coupled, undergoes acoustic oscillations. To lowest order in
the tight-coupling parameter, the photonmax(t

c
/t
H
, t

c
/t
k
),

and baryon perturbations remain adiabatic, evolving
according to
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where R4 4o(c)/3o(b). The solution of the homogeneous
equation describes acoustic oscillations in a Ñuid with
sound speed squared which are damped(R] 3c

s
2)/3(1 ] R),

by the expansion of the universe. However, the oscillations
are driven gravitationally by the gradient (3)+

a
(o ] 3p),

which gives an almost constant amplitude oscillation in the
radiation-dominated era. The Silk damping that is visible in
Figure 1 for k \ 1.0 Mpc~1 at z^ 10~3.5 arises from
photon di†usion (which is not described by the lowest order
tight-coupling approximation), and so it is not described by
equation (191). The neutrino perturbation also oscillates
once inside the Hubble radius in the radiation-dominated
region, while the power-law growth of the CDM is impeded
by the gravitational attraction of the oscillating dominant
component (the inhomogeneous term in eq. [189]). In the
matter-dominated era, the CDM becomes the dominant
component, so we again see power-law growth of the CDM
perturbation on all scales. Before last scattering, the
photons and baryons remain tightly coupled, but the char-
acter of the driving term in equation (191)(3)+

a
(o ] 3p)

changes from an oscillation to a power law as the CDM
becomes dominant. At last scattering, the photons and
baryons decouple. The baryons no longer feel the pressure
support provided by the photons ; the Jeans length of the
baryons is very small, and the acoustic term in equation
(188) is negligible. The driving term attracts(3)+

a
(o ] 3p)

the baryons into the potential wells caused principally by
inhomogeneity of the CDM, so that relaxes to as aX

a
(b) X

a
(c)

power law. After last scattering, the photons and neutrinos
continue to undergo driven oscillations, which decay
toward the particular integralX

k
(c)\X

k
(l)\ 6H

k
2X

k
(c).

In Figure 2 we show the CMB power spectrum calculated
from a simulation in the standard CDM model. On large
scales, the plateau arises from the usual potential Ñuctua-
tions on the last scattering surface (Sachs &;

k
'

k
Q(k)/3

Wolfe 1967). The oscillations in the CMB power spectrum
on smaller scales (the Doppler peaks) arise from the acous-
tic oscillations in the baryon/photon Ñuid. These oscil-
lations give rise to strongly scale-dependent gradients of the



FIG. 1a

FIG. 1b

FIG. 1.ÈVariation of the harmonic coefficients of the fractional comoving density gradients in the CDM frame with redshift in the standard CDM model :
km s~1 Mpc~1, with helium fraction 0.24, for k \ 0.01 (a), 0.1 (b), and 1.0 (c) Mpc~1. The normalization is chosen so)

c
\ 0.95, )

b
\ 0.05, )" \ 0, H0\ 50

that for all k at early times.'
k
\ 1
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FIG. 1c

photon energy density in the energy frameÈwhich in the
approximation of instantaneous recombination can be
interpreted as temperature variations across the last scat-
tering surfaceÈand a local scale-dependent distortion of
the last scattering surface relative to the energy frame. Since
the last scattering surface is well approximated by a hyper-
surface of constant radiation temperature (so that recombi-
nation does occur there), it is more correct to interpret the
Doppler peaks in terms of the local variations in redshift

FIG. 2.È Power spectrum of scalar CMB anisotropies in the standard
CDM model : km s~1 Mpc~1,)

c
\ 0.95, )

b
\ 0.05, )" \ 0, H0\ 50

with helium fraction 0.24. The normalization of the vertical scale isn
s
\ 1,

arbitrary.

along null geodesics back to the last scattering surface than
in terms of temperature variations on the last scattering
surface. (There is another signiÐcant contribution to the
Doppler peaks, which is of dipole nature on the last scat-
tering surface and tends to Ðll in the power spectrum near
the Ðrst Doppler peak ; see Hu & Sugiyama 1995 and
Challinor & Lasenby 1998 for more details.) On the smal-
lest scales, the power spectrum is damped because of
photon di†usion in the photon/baryon plasma prior to
recombination.

7. TENSOR PERTURBATIONS

The covariant equations of ° 3 are independent of any
nonlocal splitting of the perturbations into scalar, vector,
and tensor modes. In the linear approximation, we have
seen that the equations describing scalar perturbations can
be obtained from the full set of equations in a straightfor-
ward manner. The same is also true for vector and tensor
perturbations. Vector perturbations are not expected to be
important today in nonseeded models, since the vorticity
decays in an expanding universe (Hawking 1966). However,
most inÑationary models do predict the generation of a
primordial spectrum of gravitational waves (tensor modes)
during an epoch of inÑation (see Lidsey et al. 1997 for a
comprehensive review). The existence of such a background
of relic gravitational waves would have a signiÐcant e†ect
on the CMB anisotropy power spectrum on large scales
(Crittenden et al. 1993). For completeness, we give the
tensor multipole equations in this section. We defer a
detailed derivation of the equations and a discussion of
their relation to the multipole equations usually employed
in calculations of the e†ects of tensor modes (Crittenden et
al. 1993) to a future paper (Challinor 1998).
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In the covariant approach to cosmology, gravitational
waves are characterized by requiring that the vorticity and
all gauge-invariant vectors and scalars vanish at Ðrst order
(Dunsby et al. 1997), so that the spatial gradients of the
density and expansion vanish as well as the acceleration
and the heat Ñuxes. The electric and magnetic parts of the
Weyl tensor, the shear tensor, and the anisotropic stress are
constrained to be transverse :

(3)+aE
ab

\ 0, (3)+aB
ab

\ 0, (3)+ap
ab

\ 0, (3)+an
ab

\ 0 .

(192)

It is straightforward to show that these conditions are con-
sistent with the linearized propagation equations given in
° 2 (see also Maartens 1997 for a discussion of consistency
of the exact equations for irrotational dust spacetimes). As
with scalar perturbations, it is convenient to expand harmo-
nically the Ðrst-order covariant variables in tensors derived
from solutions of a generalized Helmholtz equation. For
tensor perturbations, we employ the tensor-valued solu-
tions (Hawking 1966 ; note that we use the sameQ

ab
(k)\ Q(ab)(k)

symbol for the tensor harmonics and the second-rank
tensors derived from the scalar harmonic functions to avoid
cluttering formulae with additional labels), which satisfy the
zero-order relations

Q
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(k)\ 0, Q0
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Expanding and in these tensors (as in ° 5E
ab

, B
ab

, p
ab

, n
abbut with replaced by the tensor harmonics and theQ
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(k)

scalar-valued variables replaced by we obtain simple'
k
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propagation equations for the electric part of the Weyl
tensor and the shear :
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Note that we have used the constraint equation (13) to
eliminate the magnetic part of the Weyl tensor from the
propagation equation for the electric part. Equations (194)
and (195) close up, with the anisotropic stress treated as a
known Ðeld, to give a second-order equation for the shear :
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which generalizes the homogeneous equation derived in
Dunsby et al. (1997) to include anisotropic stress.

For the photon and neutrino angular moments, J
a1...al(l)

and we expand in tensors derived from theG
a1...al(l) , Q

a1...al(k)
tensor harmonics using the same recursion relation as for
scalar perturbations,
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for l º 2. This procedure gives the following covariant
Boltzmann multipole equations for tensor perturbations :
for the anisotropic stress (l \ 2),
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and for l º 3,
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As we stressed earlier, by performing the covariant angular
expansion before harmonically expanding the moments, the
necessary angular dependence of the moments appears
automatically ; whereas in the metric-based approach, this
(azimuthal) dependence must be put in by hand and is dif-
ferent for the two polarizations of gravitational waves. It
should be noted that the moment equations given here are
not the same as those satisÐed by the variablesÈwhere*3

Il
i

i \ ], ] labels the polarization of the gravitational wave
and I denotes the intensity Stokes parameter (we follow the
notation employed in Kosowsky 1996)Èthat are usually
employed in metric-based calculations of the e†ects of
tensor modes. This is because the covariant angular expan-
sion gives rise to a more natural set of variables, the J

k
(l),

which are related to the temperature anisotropy in a simpler
manner than the In particular, the lth multipole of*3

Il
i . C

lthe anisotropy power spectrum depends only on J
k
(l),

whereas depends on the (l [ 2), l, and (l ] 2)th moments,C
lthus obscuring the physical interpretation of these vari-*3

Il
i ,

ables. The relation between the two sets of variables will be
discussed further in Challinor (1998).

The Ðrst-order propagation equations for the shear and
electric part of the Weyl tensor, along with the Boltzmann
multipole equations for the photons and neutrinos, give a
closed set of equations that can be solved to calculate the
temperature anisotropy for given initial conditions. The
numerical solution of these equations will be considered
elsewhere (Challinor 1998).

8. CONCLUSION

We have shown how the full kinetic-theory calculation of
the evolution of CMB anisotropies and density inhomoge-
neities can be performed in the covariant approach to cos-
mology (Ehlers 1993 ; Ellis 1971) using the gauge-invariant
perturbation theory of Ellis & Bruni (1989). Adopting
covariantly deÐned, gauge-invariant variables throughout
ensured that our discussion avoided the gauge ambiguities
that appear in certain gauges and that all variables had a
clear, physical interpretation. We presented a uniÐed set of
equations describing the evolution of photon and neutrino
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anisotropies and cosmological perturbations in the CDM
model, which were independent of a decomposition into
scalar, vector, or tensor modes and the associated harmonic
analysis. Although we only considered the case of linear
perturbations around an FRW universe here, it is straight-
forward to extend the approach to include nonlinear e†ects
(Maartens et al. 1998), which should allow a physically
transparent discussion of second-order e†ects on the CMB.
Indeed, the ease with which one can write down the exact
equations for the physically relevant variables is one of the
major strengths of the covariant approach.

The linear equations describing scalar and tensor modes
were obtained from the full set of equations in a straightfor-
ward and uniÐed manner, highlighting the advantage of
having the full equations (independent of the decomposition
into scalar, vector, and tensor modes) available. For the
scalar case, the Boltzmann multipole equations for the
moments of the distribution functions obtained here were
equivalent to those usually seen in the literature. However,
for tensor modes, the covariant approach led naturally to a
set of moment variables that more conveniently describe the
temperature anisotropy than those usually employed. For
scalar modes, we discussed the solution of the perturbation
equations in detail, including the integral solution of the
Boltzmann multipole equations and the relation between
the timelike integrations performed in the multipole
approach to calculating CMB anisotropies and the lightlike
integrations of the line-of-sight approach. The numerical
solution of the scalar equations in a K \ 0, almost FRW,
CDM universe were also discussed. Our numerical results

provide independent conÐrmation of those of other groups
(see, for example, Ma & Bertschinger 1995 ; Seljak & Zal-
darriaga 1996), who have obtained their results by employ-
ing noncovariant methods in speciÐc gauges. Typically,
these methods require one to keep careful track of all
residual gauge freedom, both to enable identiÐcation of any
gauge-mode solutions and to ensure that the Ðnal results
quoted are gauge-invariant (and hence observable). Fortu-
nately, the isotropy of the photon distribution function in
an exact FRW universe ensures that the CMB power spec-
trum, as calculated from the gauge-dependent perturbation
to the distribution function, is gauge-invariant for lº 1.

We hope to have shown the ease with which the covari-
ant approach to cosmology can be applied to the problem
of calculating CMB anisotropies. The covariant and gauge-
invariant method discussed here frees one from the gauge
problems that have caused confusion in the past and focuses
attention on the physically relevant variables in the
problem and the underlying physics. Future work in this
area will include the discussion of nonlinear e†ects
(Maartens at al. 1998), the inclusion of polarization, and the
e†ects of HDM, all of which can be expected to bring the
same advantages of physical clarity and transparency that
we hope to have demonstrated here.

The development of the COSMICS package was sup-
ported by the NSF under grant AST-9318185. The authors
wish to thank Roy Maartens for useful comments on an
earlier version of this paper.
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