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ABSTRACT
We develop and test a method to compute mass and autocorrelation functions of rich clusters of gal-

axies from linear density Ñuctuations, based on the formalism of Gaussian peaks. The essential, new
ingredient in the current approach is a simultaneous and unique Ðxture of the size of the smoothing
window for the density Ðeld, and the critical height for collapse of a density peak, for a givenr

f
, d

c
,

cluster mass (enclosed within the sphere of a given radius rather than the virial radius, which is hard to
measure observationally). Of these two parameters, depends on both the mass of the cluster in ques-r

ftion and ), whereas is a function of only ) and ". These two parameters have formerly been treatedd
cas adjustable and approximate parameters. Thus, for the Ðrst time, the Gaussian peak method (GPM)

becomes unambiguous, and more importantly, accurate, as is shown here.
We apply this method to constrain all variants of the Gaussian cold dark matter (CDM) cosmological

model using the observed abundance of local rich clusters of galaxies and the microwave background
temperature Ñuctuations observed by COBE. The combined constraint Ðxes the power spectrum of any
model to D10% accuracy in both shape and overall amplitude. To set the context for analyzing
CDM models, we choose six representative models of current interest, including an tilted cold)0\ 1
dark matter model, a mixed hot and cold dark matter model with 20% mass in neutrinos, two lower
density open models with and and two lower density Ñat models with)0\ 0.25 )0\ 0.40, ()0\ 0.25,

and This suite of CDM models should bracket any CDM model that"0\ 0.75) ()0\ 0.40, "0\ 0.60).
is currently viable. The parameters of all these models are also consistent with a set of other constraints,
including the Hubble constant, the age of the universe and the light-element nucleosynthesis with )

bchosen to maximize the viability of each model with respect to the observed gas fraction in X-ray clus-
ters.
Subject headings : cosmology : theory È galaxies : clusters : general È galaxies : formation È

large-scale structure of universe È methods : numerical

1. INTRODUCTION

Clusters of galaxies are cosmologically important
because they contain vitally important information on
scales from a few megaparsecs to several hundred mega-
parsecs, and provide fossil evidence for some of the basic
cosmological parameters Loeb, & Turner(Richstone, 1992 ;

Fan, & Cen The fact that they are among theBahcall, 1997).
most luminous objects in the universe renders them an
e†ective and economical tracer of the large-scale structure,
not only of the local universe but also of the(Bahcall 1988)
universe at moderate-to-high redshift.

Perhaps more interesting is the fact that clusters of gal-
axies are intrinsically rare with typical separations of D50
h~1 Mpc at zD 0 and seemingly rarer at high redshift

& Gioia et al. et al.(Luppino 1995 ; Carlberg 1996 ; Postman
Their rarity is traceable to the fact that they only1996).

form at the rare, high peaks in the initial density Ðeld. Since
the mass in a sphere of radius 10 h~1 Mpc roughly corre-
sponds to the mass of a rich cluster like the Coma cluster,
the abundance of clusters of galaxies (i.e., the cluster mass
function, & Cen provides a sensitive test ofBahcall 1992)
the amplitude of the density Ñuctuations on that scale and
places one of the most stringent constraints on cosmo-
logical models to date Daly, & Juszkiewicz(Peebles, 1989 ;

& Arnaud & Cen &Henry 1991 ; Bahcall 1992 ; Oukbir
Blanchard & Silk Efstathiou, &1992 ; Bartlett 1993 ; White,

1 Princeton University Observatory, Princeton University, Princeton,
NJ 08544 ; cen=astro.princeton.edu.

Frenk hereafter & Liddle1993a, WEF; Viana 1996 ; Eke,
Cole, & Frenk hereafter1996, ECF; Pen 1996).

The spatial distribution of clusters of galaxies provides
complementary information for cosmological models. A
widely used statistic for clusters of galaxies is the two-point
autocorrelation function. Earlier pioneering work (Bahcall
& Soneira & Kopylov has met with1983 ; Klypin 1983)
dramatic improvements in recent years thanks to larger
and/or new cluster samples that have become available

Huchra, & Geller et al.(Postman, 1992 ; Nichol 1992 ;
Dalton et al. et al. et al.1992, 1994 ; Romer 1994 ; Croft

Comparing with cosmological models clearly show1997).
that the two-point correlation function of clusters of gal-
axies provides a strong test on cosmological models on
scales from several tens to several hundred megaparsecs

Bond, & Efstathiou & Cen(Bardeen, 1987 ; Bahcall 1992 ;
Heavens, & Peacock & PrimackMann, 1993 ; Holtzman

& Efstathiou et al. In1993 ; Croft 1994 ; Borgani 1995).
addition, the recent studies of superclusters and supervoids
by Einasto et al. show a very intrigu-(1997a, 1997b, 1997c)
ing property that the correlation function of rich clusters
appears to be oscillatory on large scales. If conÐrmed, this
would challenge most models.

Hence, the combination of cluster mass and correlation
functions provides a critical constraint on cosmological
models on scales º10 h~1 Mpc. While uncertainties remain
in the current clustering analyses as well as the abundance
of observed clusters due chieÑy to still limited cluster
sample sizes typically of order of a few hundred clusters,
large surveys underway such as the Sloan Digital Sky
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Survey (SDSS; and 2dF galaxy redshift surveyKnapp 1997)
should provide much more accurate determi-(Colless 1998)

nations of both.
The groundwork for the gravitational instability picture

of cluster formation was laid down more than two decades
ago & Gott In the context of Gaussian cosmo-(Gunn 1972).
logical models, in a classic paper, put forthKaiser (1984),
the ““ biased ÏÏ structure formation mechanism, where clus-
ters of galaxies were predicted (correctly) to form at high
peaks of the density Ðeld to explain the enhanced corre-
lation of Abell clusters over that of galaxies. This idea was
subsequently extended to objects on other scales including
galaxies and the properties of linear Gaussian density Ðelds
were worked out in exquisite detail & Heavens(Peacock

et al. hereafter1985 ; Bardeen 1986, BBKS).
While alternatives exist (see, e.g., Vilenk-ZelÏdovich 1980 ;

in & Vilenkin1981, 1985 ; Turok 1989 ; Barriola 1989 ;
& Rhie a Gaussian model is simple andBennett 1990),

attractive (largely because of it) in that all its properties can
be fully speciÐed by one single function, the power spectrum
of its density Ñuctuations. Moreover, it is predicted that
random quantum Ñuctuations generated in the early uni-
verse naturally produced Gaussian density Ñuctuations,
whose scales were then stretched to the scales of cosmo-
logical interest by inÑation & Pi &(Guth 1982 ; Albrecht
Steinhardt Steinhardt, &1982 ; Linde 1982 ; Bardeen,
Turner Furthermore, observations of large-scale1983).
structure and microwave background Ñuctuations appear
to favor a Gaussian picture et al.(Vogeley 1994 ; Baugh,
Gaztanaga, & Efstathiou et al.1995 ; Kogut 1996 ; Colley,
Gott, & Park & Weinberg1996 ; Protogeros 1997 ; Colley

So motivated, the present study will focus on the1997).
family of Gaussian CDM models. The reader is referred to

for a discussion of the cluster correlation func-Cen (1998)
tion in non-Gaussian models. We will employ the formal-
ism of of Gaussian density Ðeld to devise an analyticBBKS
method that can be used to directly compute the mass and
correlation functions of clusters of galaxies. The needed
input are : (the power spectrum), and The methodP

k
)0 "0.developed is calibrated and its accuracy checked by a large

set of N-body simulations.
The motivation for having such an analytic method is not

only of an economical consideration (fast speed and much
larger parameter space coverage possible) but also a neces-
sity, especially for studying very rich clusters. For example,
for clusters of mean separation of 200 h~1 Mpc (about rich-
ness 3 and above ; & Cen hereafter aBahcall 1993, BC),
simulation box of size 1170 h~1 Mpc on a side would
contain 200 such clusters, a number that may be required
for reasonably sound statistical calculations. Assuming that
the mass of such a cluster is 1.0 ] 1015 h~1 M

_(approximately the mass of a richness 3 cluster ; andBC)
one requires 500 particles to claim an adequate resolution
of the cluster, it demands a requisite particle mass of
2.0] 1012 h~1 This particle mass requirement dictatesM

_
.

that one discretize the whole simulation box into 108.3)0particles is the density parameter of a model). Mean-()0time, a minimum nominal spatial resolution of 0.5 h~1 Mpc
is needed to properly compute just the cluster mass within
Abell radius of 1.5 h~1 Mpc, which translates to a spatial
dynamic range of 2340. The combined spatial and mass
resolution requirements are formidable for either PM code,
which requires a very large mesh (23403) thus needs more
than 57GB of RAM to allow for such a large simulation and

hence is very expensive, if possible, or an adaptive code such
as P3M et al. or TPM code(Efstathiou 1985) (Xu 1995),
where CPU cost will be prohibitively large even if RAM
permits.

The paper is organized as follows. Descriptions of GPM
for computing cluster mass function are presented in ° 2.1.
Descriptions of GPM for computing the cluster correlation
function are presented in A calibration of the Press-° 2.2.
Schechter method using the Ðtted GPM parameters and
some comparisons between GPM and Press-Schechter
method are presented in We discuss the various° 2.3.
factors that a†ect the cluster mass function in Detailed° 3.
constraints by the local rich clusters and the COBE obser-
vations et al. on all CDM models are present-(Smoot 1992)
ed in A simple relation (with error bars) for CDM° 4. p8-)0models is presented in derived from Ðtting to the° 5,
observed local cluster abundance alone. Conclusions are
given in ° 6.

2. GAUSSIAN PEAK METHOD FOR CLUSTERS

OF GALAXIES

2.1. Gaussian Peak Method for Cluster Mass Function
It is convenient to deÐne some frequently used symbols

Ðrst. Hubble constant is H \ 100 h km~1 s~1 Mpc~1. )0and are the density parameters due to nonrelativistic"0matter and cosmological constant, respectively, at redshift
z\ 0. and are the same parameters at redshift z. is)

z
"

z
rAthe comoving radius of a sphere in units of h~1 Mpc, which

in most times represents the Abell radius with value 1.5. isr
vthe virial radius in comoving h~1 Mpc. is the radius of ar

fsmoothing window in comoving h~1 Mpc. is the massMAwithin a sphere of radius in units of h~1 is therA M
_

. M
vmass within a sphere of radius (virial mass of a halo) inr

vunits of h~1 For formulae related to Gaussian densityM
_

.
Ðeld we will follow the notation of throughout thisBBKS
paper.

The cluster mass function may be derived by relating the
initial density peaks to the Ðnal collapsed clusters, provided
that peaks do not merge. Two pieces of observations suggest
that merger of initial density peaks of cluster size be infre-
quent. First, the typical separation between clusters of gal-
axies is D100 h~1 Mpc, while the typical size of a cluster is
D1 h~1 Mpc. Second, empirical evidence of matter Ñuctua-
tions, as indicated by observed galaxy number Ñuctuations

& Peebles & Willick suggests(Davis 1983 ; Strauss 1995),
that the current nonlinear scale is D8 h~1 Mpc, which is
just about the size of Ñuctuations that collapse to form
clusters of galaxies ; i.e., the majority of clusters of galaxies
form at low redshift. However, a more quantitative argu-
ment, that merger rate should be small, can be made as
follows. Suppose that a cluster is moving at velocity atv0z\ 0, then we can compute the total comoving distance
that the cluster has travelled in its entire lifetime as

d
cm

\
P
0

t0
v0 f (t)(1] z)dt , (1)

where is the current age of the universe, f (t) is a functiont0to describe the evolution of the (proper) peculiar velocity of
the cluster and the last term (1 ] z) relates comoving dis-
tance to proper distance. To illustrate the point we will Ðrst
use which gives the following simple relation :)0 \ 1,

d
cm

\ v0H0. (2)
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To arrive to the above relation we have used the fol-
lowing simple relations : t \ t0(1 ] z)~3@2, t0\ 2H0~1/3,
f (z) \ (1 ] z)~1@2 (linear growth rate of proper peculiar
velocities ; For any reasonable model clustersPeebles 1980).
of galaxies do not move at a speed (peculiar velocity) much
higher than D1000 km s~1 at present Bahcall, &(Cen,
Gramann it can be obtained approximately in linear1994) ;
theory by integrating a power spectrum, smoothed by an
appropriate window, to yield the total kinetic energy (see,
e.g., Cen, & Ostriker Note that some galaxy inSuto, 1992).
a virialized cluster may move at a higher speed, but we are
not considering such objects. So, a cluster moving at 1000
km s~1 today moves a total comoving distance of 10 h~1
Mpc in an universe. The same cluster will move a)0 \ 1
longer distance in a low universe, but not by a large)0factor. An upper bound on in such cases may bed

cmobtained by setting in which case we have)0 \ 0,
f (z) \ (1 ] z), and The uppert0\ H0~1 t \ t0(1 ] z)~1.
bound is

d
cm,ub\ v0H0(1] zmax) , (3)

where is the maximum redshift to which )\ 0 applies.zmaxLet us make a simple, approximate estimate for a realistic
lower bound by taking as follows. For an)0\ 0.2, )0\
0.2 model, the redshift at which )\ 0.5 is 3.0, which we
denote as We treat the redshift range as anzmax. z[ zmax)\ 1 model and treat as an )\ 0 model, whichz\ zmaxgives a simple result :

d
cm

\ v0H0[(1] zmax) ] 1] . (4)

For Since velocity decayed fromzmax\ 3.0, d
cm

\ 5v0H0.to z\ 0, a more reasonable upper bound on iszmax v0km s~1. This gives 12.5 h~1 Mpc for1000/(1] zmax) v0\
1000 km s~1 and zmax \ 3.

Since one needs to collapse a sphere of Mpc9.5)0~1@3 h~1
in a uniform density Ðeld to form a massive cluster of mass
1 ] 1015 h~1 i.e., cluster density peaks have to have aM

_
,

separation of at least h~1 Mpc and more likelyD20)0~1@3
D50 h~1 Mpc (mean separation of rich clusters today), it
thus seems quite unlikely that a signiÐcant fraction of any
massive cluster peaks have merged by z\ 0. This conclu-
sion is, however, not in conÑict with observations that seem
to show signs of recent and/or ongoing merger activity. In
general, merger is an ever-going processes (at least in the
past) in any plausible (i.e., a plausible range in hierarchi-)0)cal structure formation model. But, these mergers or sub-
structures seen in some clusters are subÈrich cluster scale
mergers, i.e., subpeaks within a large cluster scale peak are
in the process of merging, a result that is in fact expected if
clusters have been forming in the recent past in a hierarchi-
cal fashion. To our knowledge, there is no major merger
event of two massive clusters observed. For example, in 55
Abell clusters cataloged by there is no caseDressler (1980),
of two massive clusters in the process of imminent merging,
although there does seem to have signiÐcant substructures
in a signiÐcant fraction of clusters in various optical studies
(see, e.g., & Beers & ShectmanGeller 1982 ; Dressler 1988 ;

Oemler, & Dekel X-ray observations also showWest, 1988).
a large fraction of clusters with substructures (see Forman
& Jones for a review). That being said, one needs to be1994
extra cautious in interpreting such subÈcluster scale merger/
substructure events, due to unavoidable projection con-
taminations (see for a thorough discussion ofCen 1997
projection e†ects).

Having shown that merger should be infrequent, the key
link then is to relate a density peak of height

l\ F/p0 (5)

to the Ðnal mass of a cluster deÐned within a Ðxed radius,
say, the Abell radius Here, F is a density Ðeld smoothedrA.
by a window of size and is the rms Ñuctuation of F. Ar

f
p0Gaussian smoothing window (in Fourier space)

W (kr
f
) \ exp ([r

f
2 k2/2) , (6)

will be used throughout this paper, because it guarantees
convergence of any spectral moment integral with any
plausible power spectrum. Top-hat smoothing does not
have this feature. For the sake of deÐniteness and conve-
nience in comparing with observations, we deÐne a cluster
mass, as the mass in a sphere of comoving Abell radius,MA,

h~1 Mpc, in most cases. Cluster mass deÐnedrA \ 1.5
otherwise will be noted in due course. But the formalism
developed here should be applicable for any plausible
radius.

For a spherical perturbation, the mean density within the
virial radius (at redshift z) in units of the global mean
density (at redshift z) can be parameterized by

o6
v
()

z
, "

z
)\ 178)

z
~0.57 C()

z
, "

z
) . (7)

For and it is well known that a)
z
\ 1 "

z
\ 0, o6

v
\ 178,

result Ðrst derived by & Gott InGunn (1972). equation (7)
(a function of both and has a value close toC()

z
, "

z
) )

z
"

z
)

unity. It has been shown that C\ 1 is a good approx-
imation for both model (see, e.g., & Cole"

z
\ 0 Lacey

and model (see, e.g., for the range1993) "
z
] )

z
\ 1 ECF)

of of interest The mass within the com-)
z

(0.1\)
z
\ 1.0).

oving virial radius, at redshift z is thereforer
v
,

M
v
(z)\ 4n

3
r
v
3 o6

v
()

z
, "

z
)o

c
)0

\ 2.058] 1014)
z
~0.57)0 r

v
3C()

z
, "

z
) , (8)

where is the critical density at z\ 0. Since the sphericalo
cperturbation smoothed by a Gaussian window of comoving

radius is, by assumption, just virialized at the redshift inr
fquestion, we have another expression for as a functionM

vof r
f
:

M
v
(z) \ (2n)3@2r

f
3 o

c
)0\ 4.347] 1012)0 r

f
3 . (9)

Next, we need to relate to the latter of which isM
v

MA,
observationally more obtainable. We assume the following
simple relationship :

MA \ M
v

ArA
r
v

B3~a
. (10)

This relation holds exactly, if the density proÐle of the
cluster has the power-law form:

o(r) P r~a . (11)

But, in general, the density proÐle of a cluster does not have
a power-law form, so should only bea()

z
, "

z
, MA, P

k
)

considered as a Ðtting parameter, which should, in prin-
ciple, be dependent on both the cluster mass and underlying
cosmology. However, motivated by the insight of Navarro,
Frenk, & White that there seems to be a universal(1996)
function (as a function of scaled radius in units of the virial
radius each individual halo) for density proÐles of dark
matter halos, independent of cosmology and halo mass, it is
hoped that a will only be a weak function of both the under-



No. 2, 1998 GAUSSIAN PEAKS AND CLUSTERS OF GALAXIES 497

lying cosmology and cluster mass. As a matter of fact, as we
will show below, the best Ðt to N-body results requires that
a be a constant equal to 2.3, in harmony with the work of

et al. Combining equations andNavarro (1996). (8), (9), (10)
yields

r
f
\ 3.617rA(a~3)@a

A MA
2.058] 1014

B1@a

)
z
0.19(a~3)@a)0~1@aC()

z
, "

z
)(a~3)@3a . (12)

This equation allows us to determine the smoothing radius
for a cluster of mass (within radius given a. Wer

f
MA rA),

see that will be completely deterministic, if a and C can ber
fspeciÐed a priori. As we will subsequently show, we will

choose to Ðx C\ 1 and let its dependence on and be)
z

"
zabsorbed by another Ðtting parameter (see below). There-d

cfore, the Ðnal equation for that we will use isr
f

r
f
\ 3.617rA(a~3)@a

A MA
2.058] 1014

B1@a
)

z
0.19(a~3)@a)0~1@a .

(13)

In this equation a is the only adjustable parameter. But as
will be shown later, a turns out to be a constant. Therefore,

is no longer an adjustable parameter, rather it is a uniquer
ffunction of only and Another useful expression is toMA rA.

relate to (obtained by combining eqs. andM
v

MA [9] [13])
in terms of rA :

M
v
\ 2.058] 1014rA3(a~3)@a

A MA
2.058] 1014

B3@a

] )
z
0.57(a~3)@a)0(a~3)@a (14)

or

MA \ 2.058] 1014rA3~a
A M

v
2.058] 1014

Ba@3

] )
z
0.19(3~a) )0(3~a)@3. (15)

We note that, in the special case where we haverA \ r
v
,

(from eq. [9])

r
f
\
A MA
4.347] 1012

B1@3
)0~1@3 , (16)

which is independent of a, and the virial radius is

r
v
\
A MA
2.058] 1014

B1@3
)

z
0.19)0~1@3. (17)

The circular velocity of the (just virialized) halo at redshift z
can be expressed as

v
c
4
CGM

v
(1] z)
r
v

D1@2 \ 7.4] 102
A MA
1.0] 1014

B1@3

] )
z
~0.095)01@6(1 ] z)1@2 km s~1 . (18)

Note that the dependences of on and are veryv
c

)
z

)0weak. But depends rather strongly on z and somewhatv
cstrongly on The one-dimensional velocity dispersionM

v
. p

Ais just equal to Another useful relation is betweenv
c
/21@2. r

fand (orv
c

p
A
) :

r
f
\ 3.845] 10~3v

c
)

z
0.095)0~1@2(1 ] z)~1@2 , (19)

where is in kilometers per second.v
cOnce we have uniquely determined the smoothing

window for a given cluster mass and cosmology (eq. [13]),

there is only one last parameter to be speciÐed before the
abundance of peaks forming clusters of a given mass is
uniquely Ðxed : we need to specify the required peak height
such that density peaks with such a height just collapse and
virialize at the redshift in question. Here once again, we are
guided by the spherical perturbation model, and we use d

cas a parameter to quantify the required peak height. isd
cthe linear overdensity of a peak at the concerned redshift at

which a peak just collapses and virializes. is 1.68 in thed
cspherical top-hat collapse in an model &)

z
\ 1 (Gunn

Gott Since realistic density perturbations are likely to1972).
be nonspherical and nonÈtop hat and there are models
other than those with also being considered, can)

z
\ 1 d

conly be treated as a Ðtting parameter, to be determined by
comparing to N-body simulations. In other words, the
spherical collapse model is not applied explicitly, rather it is
used as a guide for an initial guess of The actual collapse,d

c
.

or some portion of the collapse in time or in space, of a
density peak may not be spherical. For example, a triaxial
protocluster will require a lower value of than a sphericald

cprotocluster Heavens, & Peacock The valid-(More, 1986).
ity of our method does not critically depend on the spher-
ical collapse model, rather it is made valid by comparing to
N-body simulations treating as a Ðtting parameter.d

cAlthough could depend on and cluster virial massd
c

P
k

M
vas well as and we will restrict our Ðtting procedure as)

z
"

z
,

if only depends on and In any case, the Ðnal Ðt tod
c

)
z

"
z
.

N-body results proves that this assumption is good.
We now set down the basic formulae from forBBKS

computing the number density of peaks of appropriate sizes
and heights for a Gaussian density Ðeld. The di†erential
peak density is

Npk(l) \
1

(2n)2R
*
3 e~l2@2G(c, cl) , (20)

where G(c, w) is, for the convenience of calculation, an
analytic formula approximating the exact three-
dimensional integral (see eq. [A12] of G(c, w) isBBKS).
accurate to better than 1% over the range 0.3 \ c \ 0.7 and
[1 \ w\ O with the accuracy being better than 0.1% for
w[ 1, according to BBKS:

G(c, w)

\ w3 [ 3c2w] [B(c)w2] C1(c)] exp [[A(c)w2]
1 ] C2(c) exp [[C3(c)w]

(21)

(eq. [4.4] of where w4 cl. For all the models thatBBKS),
we have computed or are of current interest we have c[ 0.7
and w[ 1.1 in most cases with the lowest values being
c\ 0.58 and w\ 0.84. Therefore, it is accurate to use
G(c, w) for models of current interest. The various symbols
are deÐned as follows :

A\ 5/2
9 [ 5c2 ,

B\ 432
(10n)1@2(9 [ 5c2)5@2 ,

C1\ 1.84] 1.13(1[ c2)5.72 ,

C2\ 8.91] 1.27 exp (6.51c2) ,

C3\ 2.58 exp (1.05c2) (22)
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(eq. [4.5] of The parameters c and are related toBBKS). R
*the moments of the power spectrum:

c4
p12

p2 p0
,

R
*

4 J3
p1
p2

(23)

(eq. [4.6a] of and are spectral moments :BBKS), p
j

p
j
4
P k2 dk

2n2 P
k
k2jW 2(kr

f
) (24)

(eq. [4.6c] of We are now ready to derive the clusterBBKS).
mass function by counting peaks of appropriate sizes and
heights. The procedure can be described in four steps :

1. For a cluster mass we Ðnd usingMA, r
f

equation (13).
2. We smooth the power spectrum by the square of aP

kGaussian window of radius and then computer
f

(eq. [6])
c and (eqs. andp0, R

*
[23] [24]).

3. Requiring that yields the threshold peaklp0\ d
cheight l

t
\ d

c
/p0.4. Integrating from to O gives the cumu-equation (20) l

tlative cluster mass function :

n([MA)\
P
lt

=
Npk(l)dl . (25)

To summarize, we have three adjustable parameters :
and In general,a()

z
, "

z
, MA, P

k
), d

c
()

z
, "

z
), C()

z
, "

z
). a()

z
,

should be a function of four variables,"
z
, MA, P

k
) )

z
, "

z
,

and whereas and C should depend only onMA, P
k
, d

c
)

zand We choose to Ðx to be unity, independent"
z
. C()

z
, "

z
)

of cosmological parameters, and treat only a and as twod
cadjustable parameters. Since both parameters (C and d

c
)

depend on the same cosmological parameters, this treat-
ment is justiÐed and simpliÐes the Ðtting procedure ; the
dependence of on cosmological parameters isC()

z
,"

z
)

assumed to be absorbed by d
c
()

z
, "

z
).

We now turn to N-body simulations to calibrate GPM to
compute the cluster mass function, i.e., to determine the two
Ðtting parameters in GPM, a and We have 32 cosmo-d

c
.

logical models at our disposal to calibrate GPM and test its
accuracy. The models are listed in The second andTable 1.
third columns are the density parameter and cosmological
constant of the model, respectively. The fourth column is
the linear rms density Ñuctuation in an 8 h~1 Mpc top-hat
sphere at z\ 0. The Ðfth column, EP (excess power), is a
parameter to describe the shape of the power spectrum on
scales D8È300 h~1 Mpc, introduced by et al.Wright (1992).
The deÐnition is where is the linearEP4 3.4p25/p8, p25rms density Ñuctuation in a 25 h~1 Mpc top-hat sphere at
z\ 0. The last column indicates the type of power spectrum
used (details are given in the table footnotes).

Some models are physically self-consistent in the sense
that their power spectrum transfer functions are computed
for the given cosmological parameters, while others are not.
The latter are included to increase the coverage of the
parameter space for calibration purposes. Taken together
these 32 models span the ranges of and EP of)

z
, "

z
, p8,current interest : )

z
\ 0.2] 1.0, "

z
\ 0.0] 0.8, p8\

0.35] 1.5, and EP\ 0.735] 1.923. As a note, et al.Wright
Ðnd that the range of EP that Ðts the COBE data is(1992)

1.30^ 0.15 (1 p), which is consistent with analysis of the

TABLE 1

LIST OF PARAMETERS FOR 32 MODELS

Model )0 "0 p8 EP4 3.4p25/p8 Comment

1 . . . . . . . 1.000 0.000 1.050 0.956 SCDMa
2 . . . . . . . 1.000 0.000 0.700 0.956 SCDMa
3 . . . . . . . 1.000 0.000 0.525 0.956 SCDMa
4 . . . . . . . 1.000 0.000 0.350 0.956 SCDMa
5 . . . . . . . 1.000 0.000 1.050 1.088 P

k
\ k~1

6 . . . . . . . 1.000 0.000 0.808 1.088 P
k
\ k~1

7 . . . . . . . 1.000 0.000 0.700 1.088 P
k
\ k~1

8 . . . . . . . 1.000 0.000 0.525 1.088 P
k
\ k~1

9 . . . . . . . 1.000 0.000 0.350 1.088 P
k
\ k~1

10 . . . . . . 1.000 0.000 1.050 1.923 P
k
\ k~2

11 . . . . . . 1.000 0.000 0.808 1.923 P
k
\ k~2

12 . . . . . . 1.000 0.000 0.700 1.923 P
k
\ k~2

13 . . . . . . 1.000 0.000 0.525 1.923 P
k
\ k~2

14 . . . . . . 0.350 0.000 0.800 1.196 OCDM1b
15 . . . . . . 0.410 0.000 0.689 1.196 OCDM1b
16 . . . . . . 0.446 0.000 0.632 1.196 OCDM1b
17 . . . . . . 0.520 0.000 0.524 1.196 OCDM1b
18 . . . . . . 0.600 0.000 1.000 1.060 OCDM2c
19 . . . . . . 0.661 0.000 0.818 1.060 OCDM2c
20 . . . . . . 0.692 0.000 0.730 1.060 OCDM2c
21 . . . . . . 0.750 0.000 0.575 1.060 OCDM2c
22 . . . . . . 0.818 0.000 0.404 1.060 OCDM2c
23 . . . . . . 0.400 0.600 0.790 1.225 LCDM1d
24 . . . . . . 0.692 0.308 0.591 1.225 LCDM1d
25 . . . . . . 0.842 0.158 0.460 1.225 LCDM1d
26 . . . . . . 0.200 0.800 1.500 1.225 LCDM2e
27 . . . . . . 0.355 0.645 1.321 1.225 LCDM2e
28 . . . . . . 0.458 0.542 1.211 1.225 LCDM2e
29 . . . . . . 0.573 0.427 1.088 1.225 LCDM2e
30 . . . . . . 0.667 0.333 0.982 1.225 LCDM2e
31 . . . . . . 0.796 0.204 0.813 1.225 LCDM2e
32 . . . . . . 0.871 0.129 0.690 1.225 LCDM2e

a The standard CDM model with Hubble constant km s~1H0\ 50
Mpc~1, and n \ 1.0, where n is the power index on very large)0\ 1.0
scale. power spectrum transfer function (their eq. [G3]) is used.BBKS

b An open CDM model with Hubble constant km s~1 Mpc~1,H0\ 70
and n \ 1.0 ; power spectrum transfer function (eq. [G3]))0\ 0.35 BBKS

is used.
c An open CDM model with Hubble constant km s~1 Mpc~1,H0\ 60

and n \ 1.0 ; power spectrum transfer function (eq. [G3]))0\ 0.60 BBKS
is used.

d A CDM model with a cosmological constant with Hubble constant
km s~1 Mpc~1, and n \ 0.95 ; the powerH0\ 65 )0\ 0.40, "0\ 0.60

spectrum transfer function is computed as in et al.Cen 1994.
e A CDM model with a cosmological constant with Hubble constant

km s~1 Mpc~1, and n \ 0.95 ; the powerH0\ 100 )0\ 0.20, "0\ 0.80
spectrum transfer function is the same as for model LCDM1.

galaxy power spectrum by & Dodds andPeacock (1994)
Kaiser & Peacock or observations ofFeldman, (1994),

large-scale galaxy clustering by et al. TheMaddox (1990).
reason that we use EP rather than ! is that ! can(\)0 h)
only be used for CDM type models with n \ 1.

Each model is run using a particle-mesh code with a box
size 400 h~1 Mpc. A large simulation box is needed in order
to produce a signiÐcant number of the rich but rare clusters.
The simulation box contains 7203 cells and 2403\ 107.1
dark matter particles, with a particle mass of 1.3 ] 1012)0h~1 The mass resolution seems adequate for ourM

_
.

purpose : a cluster of mass 6 ] 1014 h~1 containsM
_particles. In each simulation, clusters are selected as462)0~1

the maxima of the mass distribution within spheres of com-
oving radius of h~1 Mpc. The mass of each clusterrA \ 1.5
is determined in a sphere within the Abell radius TherA.
results are not sensitive to the cluster-Ðnding algorithm as
long as the mass is deÐned within a chosen radius. In other
words, di†erent group-Ðnding algorithms such as friends-
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of-friends or DENMAX are all able to locate the density
peaks properly.

Before we present our numerical results, it is important to
check resolution e†ect. We make the following resolution
calibration test. We run two simulations for the SCDM
model (model 1 in with an identical initial realiza-Table 1)
tion in a box of size L \ 128 h~1 Mpc. One of the two
simulations uses the same PM code as for the 32 models
listed in and has the same numerical resolutionTable 1
(1.39 h~1 Mpc) ; the other simulation has a much higher
resolution (0.0625 h~1 Mpc) based on the P3M scheme
utilizing a special computer chip (GRAPE) to solve the PP
part of the force computation Summers, & Ostriker(Brieu,

Since the resolution element of the P3M simulation is1995).
much smaller than the Abell radius, it can be considered as
having an inÐnite resolution (i.e., representing the truth) for
the purpose of calibrating our low-resolution results.
Because the two simulations have identical initial condi-
tions, we are able to identify every rich cluster in one simu-
lation with its counterpart in the other. Having made such a
one-to-one correspondence we can compute the ratio

(HR stands for high resolution and LR for lowMHR/MLRresolution) as a function of cluster mass This allows usMLR.to make corrections to in the lower resolution simula-MLHtion. The above resolution calibration procedure is repeated
for an open CDM model (model 14 in and a CDMTable 1)
model with a cosmological constant (model 23 in Table 1).

Figures show the results for the three models,1aÈ1c
where is plotted against The solid line inM

HR
/MLR MLR.each plot is the best linear Ðt : M

HR
/MLR\ a ] b log10where is in h~1 We Ðnd (a, b) to be ([0.469,MLR, MLR M

_
.

0.103), ([0.0528, 0.0662), ([0.952, 0.137) for models 1, 14,
23, respectively. Let us denote the three Ðtting functions

as and for the three(M
HR

/MLR) R1(M), R035(M), R04(M),
models run : (model 1 in and)

z
\ 1 Table 1), )

z
\ 0.35

(model 14), and and (model 23)."
z
\ 0 )

z
\ 0.40 "

z
\ 0.60

Then, for the mass of each cluster, we correct it byMLR,

FIG. 1.ÈResults for the three models, where is plottedMHR/MLRagainst The solid line in each plot is the best linear Ðt :MLR. M
HR

/MLR\
where is in h~1 We Ðnd (a, b) to be ([0.469,a ] b log 10 MLR, MLR M

_
.

0.103), ([0.0528, 0.0662), ([0.952, 0.137) for models 1, 14, and 29, respec-
tively.

multiplying it by in an openR1] (R035 [ R1)(1 [ )
z
)/0.65

model, or by in a " model,R1] (R04[ R1)(1 [ )
z
)/0.60

where is the density parameter of the model under con-)
zsideration. From we see that the typical correctionFigure 1

is about 5%È10% in the upward direction with a dispersion
of D5%; i.e., lower resolution simulations slightly under-
estimate the mass within the Abell radius, as expected. Cali-
brating the lower resolution simulation results we assign an
error bar of 15% for each cluster mass.

We are now ready to Ðnd the best-Ðtting parameters (a,
by comparing results from GPM to the direct N-bodyd

c
)

results. Before starting the Ðtting procedure, we have some
rough idea about what the values of a and may be. Wed

cpick a \ 2.5 and as an initial guess. In the end, thed
c
\ 1.5

best values are found to be

a \ 2.3 , (26)

a constant independent of the cluster mass and cosmology,
and

d
c
\
G1.40[ 0.01(1.0[ )

z
) for "

z
\ 0 ;

1.40] 0.10(1.0[ )
z
) for )

z
] "

z
\ 1 .

(27)

The best overall Ðt for all the models is judged by the
author by direct visual examination. We Ðnd it very difficult
to design an automated Ðtting procedure to be gauged by
some objective parameters, because of the enormous range
of the number densities of clusters and hard-to-deÐne error
bars hence weighting schemes for the densities. But as we
will see, the Ðnal Ðts are probably as good as one would
have hoped, which suggests that our somewhat subjective
Ðtting procedure works very well. In any case, the Ðnal Ðt
values span very narrow ranges (in fact, a turns out to a
constant, and varies from 1.40 to 1.39 from to 0 ind

c
)

z
\ 1

models, from 1.40 to 1.36 from to 0 in"
z
\ 0 )

z
\ 1 "

zmodels), which indicates that the Ðtting pro-] "
z
\ 1

cedure is robust and stable. We note that the Ðtted value of
a is in excellent agreement with observations et al.(Carlberg

et al. It seems useful to estimate the1996 ; Fischer 1997).
uncertainties in the Ðtted values of a and However, thed

c
.

sensitivity of a Ðt to the two parameters depends on the
Ðtted mass function itself : a low-amplitude mass function
depends more sensitively on the two parameters than a
high-amplitude mass function. This is so, of course, because
the abundance of rarer objects depends more sensitively on
the parameters. Roughly speaking, a serves more to Ðx the
shape of the mass function in a somewhat less sensitive way,
while determines the overall amplitude and more sensiti-d

cvely the amplitude on the high-mass end of the mass func-
tion. Our estimates on the uncertainties are *a\ 0.1 and
*d

c
\ 0.01.

Figures and show the simulation results as symbol2a 2b
for the 32 models with horizontal error bars being the un-
certainties in the mass determination (15%) and the vertical
error bars being the statistical 1 p error bars. Note that
simulation box size limits the density of clusters to more
than 1.56 ] 10~8 h3 Mpc~3, when there is only one cluster
in the whole box. At h3 Mpc~3, there aref ([MA) \ 10~6
65 clusters. The solid curves in are the results fromFigure 2
GPM. We see that the GPM results Ðt remarkably well the
simulation results for all the 32 models examined. We note
that the actual error bars should be larger than what are
shown for the simulated results because of cosmic
variances ; i.e., the simulation box size, although quite large



FIG. 2.ÈMass functions of various models. Each curve is labeled by its model number from The simulation results are shown as symbols withTable 1.
horizontal error bars being the uncertainties in the mass determination (15%) and the vertical error bars being the statistical 1 p error bars for the number of
clusters. The solid curves in are the results from GPM. Note that simulation box size limits the density of clusters to more than 1.56 ] 10~8 h3 Mpc~3,Fig. 2
when there is only one cluster in the whole box. At h3 Mpc~3, there are 65 clusters in the simulation box.f ([MA) \ 10~6
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being 400 h~1 Mpc, may still not be large enough to have
the cosmic variance diminished, especially for models with
signiÐcant power on several hundred megaparsecs scales. In
any case, the GPM results Ðt the N-body results for all the
models within 2 p in the vertical axis, and within a factor of
1.25 in the horizontal axis. Since the observed mass function

has uncertainties in mass about a factor 2.0 and in(BC)
number density about a factor º2.0, the GPM results are
practically precise, for the purpose of comparing model
results computed using GPM with observations.

At this point it seems appropriate to reiterate the virtue
of the current method. The essential unique ingredients are
the introduction of two adjustable parameters, a and thed

c
,

Ðrst of which turns out to be a constant and the second of
which can be simply expressed as a function of (the)

zdensity parameter at the redshift in question). Note that the
Ðtted parameter has a slightly di†erent form for thed

c
()

z
)

case with than for the case with The"
z
\ 0 )

z
] "

z
\ 1.

fact that is only a rather weak function of in both casesd
c

)
zindicates that the method is robust.

2.2. Gaussian Peak Method for Cluster Correlation Function
Having found that the initial density peaks, appropriately

deÐned, indeed correspond to the clusters formed at late
times, as indicated by the goodness of the Ðts of the results
from GPM to the N-body results in terms of cluster mass
function presented in the preceding section, we have some
conÐdence that we may be able to compute the cluster-
cluster two-point correlation function using GPM. We will
now proceed along this route.

Even in the linear regime where dynamic contribution to
the clustering can be ignored, the primary difficulty in cal-
culating the cluster-cluster two-point correlation function
using Gaussian peaks is the ambiguity of relating appropri-
ate peaks to the clusters of interest. This ambiguity is reÑec-
ted in oneÏs inability to Ðx the smoothing length and ther

fthreshold peak height The GPM, described in elimi-l
t
. ° 2,

nates this ambiguity by simultaneously Ðxing both andr
f

l
t
.

This is achieved by demanding that the appropriate peaks
yield the correct cluster mass function, when compared to
direct N-body simulations.

Following we use the following approximateBBKS,
formula, which is applicable when the correlation function
is smaller than unity [however, state that it may wellBBKS
be a reasonable approximation even when the statistical
correlation function (Ðrst term at the right-hand side of eq.

see below) is not really small], to compute the Ðnal[28],
cluster-cluster correlation function including linear dynami-
cal contributions :

mpk,pk B
ASl8 T

p0
] 1
B2

mo,o , (28)

(eq. [6.63] of where is the two-point densityBBKS), mo,oautocorrelation function, and is deÐned bySl8 T

l8 4
P
lt

=
[l[ ch/(1 [ c2)]Npk dl (29)

(eq. [6.45] of where is determined in the pro-BBKS), l
tcedure described in c is deÐned in is° 2 ; equation (23) ; NpkdeÐned in Note that we have chosen a stepequation (20).

function for threshold function in equation (6.45) oft(l/l
t
)

to arrive at i.e., only peaks above areBBKS equation (29), l
tassumed to be able to collapse and no peaks below arel
t

allowed to collapse. A smoother threshold function (see,
e.g., & Davis may be used, but theKaiser 1985 ; BBKS)
primary e†ect will be to slightly change the Ðtting param-
eter We therefore will use the sharp step function as thed

c
.

threshold function without loss of generality. h is deÐned by

h 4
3(1 [ c2) ] (1.216[ 0.9c4) exp [[c/2(cl/2)2]

[3(1[ c2) ] 0.45] (cl/2)2]1@2] cl/2
(30)

(eq. [6.14] of We note that is valid inBBKS). equation (28)
the linear regime when is much less than unity. It ismo,onot yet clear whether the approximation, coupled with our
deÐnitive peak identiÐcation method, also works in the mild
nonlinear regime. Our goal is to Ðnd an approximation
based on that will give sufficiently accurateequation (28)
results for in the regime whose values are of ordermpk,pkunity and below. For this reason we choose to modify

in the following manner :equation (28) mpk,pk B [(Sl8 T/p0)where is a Ðtting parameter] 1]2mo,oD(m6 o,o), D(m6 o,o)that depends only on which is the mean two-pointm6 o,o,matter correlation function, deÐned as m6 o,o(x) 4
The reason for using instead of3/x3 /0x mo,o(y)y2 dy. m6 o,ois that is a better indicator of nonlinearity thanmo,o m6 o,o mo,o.The form of D should be constrained at the linear end :

D(0)\ 1. As we will show below, it turns out that equation
Ðts results very well ; i.e., Ðtting to numerical results(28)

indicates that D\ 1 is a good approximation for the inter-
ested range in To be clear, we use for allmpk,pk. equation (28)
the subsequent calculations of cluster correlation functions.

We now compare the two-point peak-peak correlation
function, calculated using GPM described above, to the
cluster-cluster two-point correlation function obtained
from N-body simulations. We compute the two-point corre-
lation function from N-body simulations using the follow-
ing estimator :

mcc(r)\
NCR(r)
NRR(r)

[ 1 , (31)

where and are the number of pairs betweenNCR(r) NRR(r)clusters and random spatial points and the number of pairs
among random spatial points, respectively, at separation
r ] r ] *r. The number of random spatial points for each
realization within the simulation box (400 h~1 Mpc) is
chosen to be the same as the number of clusters in question.
A total of 100 random realizations are made. The Ðnal ismccaveraged over the 100 estimations and error bars are esti-
mated by separately computing the correlations for each of
the eight octants of each simulation box.

Figures show the results of 28 models for clusters3aÈ3g
with mean separation of 55 h~1 Mpc. Three of the remain-
ing four models do not have enough clusters whose masses
exceed 1.4] 1014 h~1 (the low-mass cuto† for clustersM

_found in the simulations). Model 32 is not shown only to
save space, although the goodness of the Ðt of GPM result
to the N-body result in model 32 is comparable to that of
model 15 top left panel). Figures show the(Fig. 3d, 4a [ 4e
results of 20 models for clusters with mean separation of 34
h~1 Mpc. The models that are not shown, again, do not
have enough clusters with masses greater than 1.4] 1014
h~1 except for model 32. The error bars are 1 p sta-M

_
,

tistical. Three curves are shown in each panel for each
model ; the middle curve is what is obtained using equation

and the top and bottom curves are obtained by adding(28)
^2 h~1 Mpc to each point of the middle curve in the x-axis.



FIG. 3.ÈCluster correlation functions for clusters with mean separation of 55 h~1 Mpc, for 28 models as indicated in the panels. The error bars are 1 p
statistical. Three curves are shown in each panel for each model ; the middle curve is obtained using and the top and bottom curves are obtained byeq. (28)
adding ^2 h~1 Mpc to each point of the middle curve in the x-axis.
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FIG. 3.ÈContinued
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FIG. 3.ÈContinued
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FIG. 3.ÈContinued

We see that GPM works well in the range of scales where
for all the models. Some models Ðt for evenmcc\ 0.1È2.0

larger ranges. In particular, the correlation length seems
quite accurately computable by GPM; h~1r0(GPM)^ 2
Mpc [where is the length scale where the corre-r0(GPM)
lation computed by GPM is unity] appears in(eq. [28])
agreement with the correlation length computed from direct
N-body simulations for all the models studied here.

Several authors have used peaks in Gaussian density
Ðelds to compute the cluster-cluster two-point correlation
function. Heavens, & Peacock use a methodMann, (1993)
developed by & Couchman that combines theBond (1988)
Gaussian peak formalism with ZelÏdovich approximation.
Their method is analytically tractable and fast. Unfor-
tunately, the accuracy of their method has not been care-
fully checked by N-body simulations and the two
parameters and (or and are not fully determin-r

f
d
c

r
f

l
t
)

istic. It will be useful to apply the treatment of a, andr
f
, d

chere to their method. & Primack use aHoltzman (1993)
similar but somewhat di†erent formula Bond, &(Bardeen,
Efstathiou than what is used here to compute the1987)
cluster correlation function in some variants of CDM
models. Aside from the slightly di†erent formula used to
compute the statistical and dynamical correlation terms, the
primary di†erence between ours and theirs lies in the treat-
ment of and In their work is determined by ther

f
d
c
. r

fmass of a cluster in a rough way without taking into
account the fact that the virial radius of a collapsed object is
di†erent from the radius within which observed mass is
deÐned, which consequently also a†ects It might bed

c
.

beneÐcial to check their analytic method against N-body
simulations for a wide range of models, before Ðrm conclu-
sions from detailed comparisons between models and

observations can be drawn. & Efstathiou haveCroft (1994)
checked the same formula as used here to compute the
correlation function of clusters using N-body simulations.
The di†erence between our method and theirs is that andr

fin their approach are only roughly guessed based on ad
cconsideration of the approximate mass of clusters and the

spherical collapse model. Their Gaussian peak method
agrees well with their N-body results for the poorer clusters

h~1 Mpc) in all three models model,(d
c
\ 15 ()0\ 1 )0\
and model, and and model) but0.2 "0\ 0.8 )0\ 0.2 "0the correlation functions from their Gaussian method are

signiÐcantly lower than those from N-body simulations for
richer clusters 50 h~1 Mpc). The behavior of their(d

c
\ 35,

results can be explained by the fact that they choose to ber
findependent of (or the mean separation of clustersMA d

c
,

under consideration ; a larger corresponds to richer, mored
cmassive clusters), whereas in our case correlates withr

f
MA.

Consequently, the correlations of richer clusters from the
Gaussian method of & Efstathiou are under-Croft (1994)
estimated. The primary drawback of all these previous
studies is the inability to uniquely identify a set of peaks
with a set of clusters of interest. Again, this traces to the
ambiguity of choosing and Our method eliminates thisr

f
l
t
.

ambiguity entirely and the results seem satisfactory.

2.3. Calibrating Press-Schechter Formalism
We have shown in °° and that GPM works quite2.1 2.2

well for computing both the cluster mass and correlation
functions. It is tempting to try the same arguments on the
widely used hereafter formalism.Press-Schechter (1974, PS)
We recall that the essential ingredient in GPM is the intro-
duction of two parameters : a and Fitting results fromd

c
.



FIG. 4.ÈCluster correlation functions for clusters with mean separation of 34 h~1 Mpc, for 20 models as indicated in the panels. The error bars are 1 p
statistical.
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FIG. 4.ÈContinued

GPM to N-body results Ðxes a to be a constant of 2.3 and d
cas a function of The Ðtted value of a is consis-)

z
(eq. [27]).

tent with both the theoretical work by et al.Navarro (1996)
and observations et al. et al.(Carlberg 1996 ; Fischer 1997).
So, we will adopt the same a derived from GPM to calibrate
the formalism. But we will adjust by comparingPS d

c
PS

results to N-body results.
The basic Ansatz results in the di†erential virializedPS

halo mass function as

n(M
v
)dM

v
\ [

S2
n

o6
M

v

d
c

p02(Mv
)
dp0(Mv

)
dM

v

] exp
C
[ d

c
2

2p02(Mv
)
D
dM

v
, (32)

where is the mean density of the universe at the redshifto6
under consideration. Substituting by usingM

v
MA equation

with a \ 2.3 gives(14)

n(MA)dMA \ [ 4.945] 1015rA0.913)z
0.173)01.304

] MA~1.304 d
c

p02(MA)
dp0(MA)

dMA
exp

C
[ d

c
2

2p02(MA)
D
dMA.

(33)

To calculate in the above equation we use thep0(MA)
Gaussian smoothing window with the radius determined by

The original formalism was based on theequation (13). PS
sharp k-space Ðlter, but it has been shown subsequently by
many authors that Gaussian Ðlter works at least as well.
The additional virtue of a Gaussian window is that it guar-
antees a convergent integral for for any plausible powerp0spectrum. Now, the only parameter left undetermined is d

c
,

which will be Ðxed by comparing to N-body results. We Ðnd
that the best overall Ðt of results to N-body results isPS
obtained if

d
c
\
G1.23[ 0.05(1.0[ )

z
) for "

z
\ 0 ;

1.23[ 0.01(1.0[ )
z
) for )

z
] "

z
\ 1 .

(34)

The results are shown in We see that ÐtsFigure 5. PS
N-body results quite well except for the modelsP

k
\ k~2

(models 10, 11, 12, 13). The results for all thePS )0\ 1
models except the models appear to be somewhatP

k
\ k~2

above the N-body results at the low-mass end (D5 ] 1014
h~1 and somewhat below the N-body results at theM

_
)

high-mass end (D2.5] 1015 h~1 On the other hand,M
_
).

the results for all the models are signiÐcantlyPS P
k
\ k~2

above the N-body results. So, there is no room for further
adjustments of to achieve better overall Ðts, at least ford

cGaussian smoothing windows.
Note that (D1.23) is smaller than 1.67, which is in thed

cexpected direction because a smoother, Gaussian smooth-
ing window is used here. 1.23 is also somewhat smaller than
that given by et al. who give for aKlypin (1995), d

c
\ 1.40

Gaussian smoothing window in the context of damped Lya
systems. But Klypin et al. also argue that could be as lowd

cas 1.3, were waves longer and shorter than those present in
the simulation box included. We suspect that alsod

cdepends on the shape of the power spectrum in a way that is
analogous to the di†erence between di†erent smoothing
windows : a steeper power spectrum (i.e., n being smaller
with which conspires to form a sharp k-space ÐlterP

k
\ kn),

like that used in the original derivation of requires aPS,
larger while a Ñatter power spectrum requires a smallerd

c
,

With this conjecture, the trend that applications of tod
c
. PS



FIG. 5.ÈMass functions of various models. The simulation results are shown as symbols with horizontal error bars being the uncertainties in the mass
determination (15%) and the vertical error bars being the statistical 1 p error bars for the number of clusters. The solid curves are the results from
Press-Schechter method.



FIG. 6.ÈCluster mass functions for six models at several di†erent normalization amplitudes of the power spectra. Also shown as symbols are the
observations adopted from and as three dashed curves are the Ðts to the symbols. The solid dots represent the cluster mass function from Abell clusterBC,
catalog, the open squares from the Edinburgh-Durham Cluster Catalog et al. and the open circles from the observed temperature function(Lumsden 1992),
of & Arnaud The middle dashed curve is computed by which represents the mean value of the observed mass function well.Henry (1991). eq. (35), nfit([M),
The top and bottom dashed curves are and respectively.4nfit([M) 0.25nfit([M),
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smaller cosmic objects tend to require larger would haved
cbeen predicted, since CDM-like spectra have a slowly

bending shape that is Ñatter at small k (i.e., for larger
systems) and steeper at large k (i.e., for smaller systems).
This conjecture seems to be borne out in the subsequent
analyses, as best summarized as in where theequation (36),
dependence of on ! is consistent with the above hypoth-p8esis. This issue will be addressed elsewhere in more detail.

While works well for CDM-like models for comput-PS
ing halo mass functions, consistent with earlier works

& Rees it seems that GPM(Efstathiou 1988 ; WEF; ECF),
Ðts somewhat better the N-body results for CDM-like
models and also works for other models tested. An addi-
tional advantage is that GPM allows for a determination of
the correlation function as well. Therefore, in subsequent
calculations we will use GPM, if deemed appropriately
applicable.

3. VARIOUS FACTORS THAT AFFECT CLUSTER

MASS FUNCTION

It is worthwhile to understand what factors are relevant
for the cluster mass function. We begin by showing the
cluster mass functions for six variants of the standard CDM
model below), as indicated in Figures at(Table 2 6aÈ6h,
di†erent normalization amplitudes We will return to(p8).in to discuss the various models in detail. TheTable 2 ° 4
primordial power spectrum index is assumed to be n \ 1 for
the shown models in Figures and Also6a, 6b, 6e, 6f, 6g, 6h.
shown as symbols are the observations adopted from BC,
and as three dashed curves are the Ðts to the symbols. The
middle dashed curve is

nfit([MA)\ 2.7] 10~5(MA/2.1 ] 1014)~1
] exp ([MA/2.1 ] 1014) , (35)

where is in h3 Mpc~3 and is the cluster mass withinnfit MAthe Abell radius in h~1 This curve seems to representM
_

.
the mean value of the observed mass function well (note
that is slightly di†erent from the Ðtting formula ineq. [35]

The top and bottom dashed curves are andBC). 4nfit([MA)
It is difficult to estimate the error bars of the0.25nfit([MA).

observed mass function. The top and bottom dashed curves
are intended to serve as 2 p upper and lower bounds (in the
vertical axis) of the observed mass function within the indi-
cated mass range, which we deem to be conservative. Sub-
sequent presentations and explanations will follow this
assertion.

In all cases, we see that the cluster mass function becomes
progressively steeper at the high-mass end as the amplitude
of the density perturbations decreases. The physics behind
this is simple to understand. As the amplitude of Ñuctua-
tions decreases, the required height of the density peaks for
clusters with a given mass increases. Since the abundance of
the high peaks at the very high end drops exponentially, the
mass function steepens as the amplitude of Ñuctuations
decreases. Note that there is only a narrow range in p8,where the model mass function lies within the 2 p limits in
the mass range from 4.8 ] 1014 h~1 to 1.2 ] 1015 h~1M

_M
_

.
Although it is clear that the amplitude of the power spec-

trum sensitively determines the abundance of the clusters,
as seen by comparing di†erent curves within each panel, it is
not yet clear how big the e†ect of on the mass function)0is. is similar to with only one change :Figure 6c Figure 6a

instead of Note that the power spectrum)0\ 0.4 )0\ 1.0.
used in is identical to that used in WeFigure 6c Figure 6a.
see has a signiÐcant e†ect on the mass function. For)0example, the model in has comparablep8\ 1.0 Figure 6c
mass function to the model in but aboutp8\ 0.6 Figure 6a,
2 orders of magnitude lower than the model inp8\ 1.0
Figure 6a.

Next, we examine the e†ect of the shape of the power
spectrum on the shape of the mass function. isFigure 6d
similar to but with n \ 0.75 instead of n \ 1.0.Figure 6a
Comparing with illustrates the sensi-Figure 6d Figure 6a
tivity of the cluster mass function on the shape of power
spectrum. The model shown in has substantiallyFigure 6d
more power on large scales (100È300 h~1 Mpc) than the
model shown in This di†erence results in ÑatterFigure 6a.
mass functions in than in especially forFigure 6d Figure 6a,
the cases with lower A point that we would like to makep8.here is that the cluster mass function depends not only on ),
" and but on in a nontrivial, albeit relatively weak,p8, P

kway, especially at the high-mass end of the mass function.
For example, at 1.2] 1015 h~1 the model shown inM

_
,

has about a factor of 4 more clusters than theFigure 6d
model shown in with the only di†erence betweenFigure 6a,
the two models being a slight tilt of the power spectrum
[n \ 0.75 in vs. n \ 1.0 inFig. 6d Fig. 6a].

Figures and and Figures and show two pairs6e 6g 6f 6h
of low-density models, one being open and the other being
Ñat with a cosmological constant but with a same in)0each pair. One thing to note is that, other things being Ðxed,
the cosmological constant does not make much di†erence
in terms of the shape of the mass function. However, for a
Ðxed the mass function in the model with a cosmologicalp8,constant is systematically lower than that of the model
without a cosmological constant ; the di†erence becomes
larger at lower amplitudes.

Summarizing the above results we see that the factors
that e†ect the cluster mass function in order of decreasing
importance are and The ordering of the lastp8, )0, P

k
, "0.two factors is somewhat more complex ; the factor isP

kmore signiÐcant at the high-mass end, whereas the factor"0a†ects rather uniformly across the board. It is therefore
clear that the tightest constraint may be obtained for forp8a given model with and being speciÐed.)0, "0, P

k
4. NORMALIZING ALL CDM MODELS

In °° and we have shown that the Gaussian peaks2.1 2.2
of cluster size indeed form clusters of galaxies and appropri-
ately identiÐed peaks reproduce both cluster mass function
and cluster two-point correlation function accurately. We
now use the observed zero redshift rich cluster abundance
and the COBE observation to constrain six representative
variants of the standard CDM model, which are of current
interest. The models are listed in Table 2.

The baryon densities for models C and E are computed
using et al. and for models A,)

b
h2\ 0.0125 (Walker 1991),

B, D, and F using & Tytler)
b
h2\ 0.0193 (Burles 1997).

These choices of for the models serve to maximize the)
bviability of each model with respect to the observed gas

fraction in X-ray clusters of galaxies et al.(White 1993b ;
et al. & PenLubin 1996 ; Danos 1998 : ogas/otot\ [0.053

^ 0.004]h~3@2). The power spectrum transfer functions for
all the models are computed using the CMBFAST code
developed by Seljak and Zaldarriaga. The choice of the
Hubble constant is made for each model such that each
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TABLE 2

SIX VARIANTS OF CDM MODELS

Model tageFamily )
c

)
h

"0 H0 )
b

(Gyr)

A . . . . . . 0.936 0.000 0.000 55 0.064 11.8
B . . . . . . 0.736 0.200 0.000 55 0.064 11.8
C . . . . . . 0.220 0.000 0.000 65 0.030 12.4
D . . . . . . 0.346 0.000 0.000 60 0.054 12.7
E . . . . . . 0.220 0.000 0.750 65 0.030 15.2
F . . . . . . 0.346 0.000 0.600 60 0.054 14.5

model is consistent with current measurements of the
Hubble constant. It appears to be a consensus that

km s~1 Mpc~1 can account for the dis-H0(obs) \ 65 ^ 10
tribution of the current data from various measurements
(see, e.g., except for those from Sunyaev-Trimble 1997),
ZelÏdovich observations (for a discussion of a reconciliation
of this di†erence, see Another consideration isCen 1998).
that the age constraint from latest globular cluster
observations/interpretations (see DeglÏInnocenti, &Salaris,
Weiss is not violated.1997)

The SCDM model (number 1 in is the standardTable 2)
CDM with critical density. The mixed hot and cold dark
matter model (HCDM) has critical density but with 20% of
the mass in light massive neutrinos (two species of equal
mass neutrinos are assumed). The next two models,
OCDM25 and OCDM40 (3 and 4), are open models with
matter density of and 0.40, respectively. The last)0\ 0.25
two models, "CDM25 and "CDM40 (5 and 6), are spa-
tially Ñat models with the addition of a cosmological con-
stant but with otherwise similar parameters to the two open
models. Note that for all models, and n are yet to bep8speciÐed, as will be shown below, by normalizing each
model to both COBE and zero redshift cluster abundance.

GPM makes possible economically sample large (four-
dimensional) parameter space spanned by the uncertainties
in and (the Hubble constant constitutes yet)0, "0, p8 P

kanother dimension of uncertainty but its e†ect can be
absorbed into in this case since the Ðnal quantities can allP

kbe expressed in units of h). The dependence on is second-)
bary and ignored here. If the cluster mass function of a model

at any mass does not lie within the range delimited by the
upper and lower dashed curves in in the massFigure 6
range from 4.8 ] 1014 h~1 to 1.2 ] 1015 h~1 weM

_
M

_
,

conclude that the model is ruled out at 2 p conÐdence level
(this adoption of conÐdence level on the mass function is
somewhat crude but we think it is perhaps conservative).

Thus, we can constrain the four-()0, "0, p8, P
k
)

dimensional parameter space by the cluster mass function.
The other, tight constraint currently available is from the
COBE observations of the cosmic microwave background
Ñuctuations on large scales. We will combine these two
observations to constrain the models.

With and (and the composition of dark matter and)0 "0baryonic matter) being Ðxed, the power spectrum transfer
function of a model becomes completely deterministic.
What is left to be speciÐed is the primordial power spectrum
index, n (assuming it is of a power law form). Figures 7aÈ7e
show the constrained two-dimensional parameter space (p8,n) for the six models listed in The dotted hatchedTable 2.
regions are the permitted space in this two-dimensional
parameter plane whose cluster mass functions agree with
observations at the 2 p conÐdence level. The solid hatched
regions are the constraints provided by COBE on large
scales, where the spread in the vertical axis ^14%, 2 p)(p8,is due to the statistical uncertainty of the COBE measure-
ments & White We see that a quite tight con-(Bunn 1997).
straint is obtained in the (n, plane. For the four spatiallyp8)Ñat models 1, 2, 5, and 6 in two cases, with andTable 2,
without the tensor mode (gravitational wave) contribution
to the CMB Ñuctuations on COBE scales, are considered.
We assume the tensor to scalar ratio T /S \ 7(1 [ n) for
n \ 1 & Lyth et al. et(Liddle 1992 ; Davis 1992 ; Crittenden
al. & Lyth and T /S \ 0 for n º 1 (P. J.1993 ; Stewart 1993)
Steinhardt 1997, private communication). For the remain-
ing two models (open models ; models 3 and 4 in weTable 2)
only consider the case without the tensor mode contribu-
tion ; it turns out to make no di†erence in the end whether
tensor mode is considered or not, as the values of n in the
allowed range are greater than unity. The permitted ranges
of n, and EP for all the models are tabulated inp8, Table 3
to clearly show their distinctly di†erent ranges for all the
models. However, current observations by COBE on n

et al. et al. et al.(Gorski 1996 ; Bennett 1996 ; Hinshaw 1996 ;
& White and by large-scale galaxy distributionBunn 1997)

on EP et al. or equivalently by ! parameter,(Wright 1992 ;
et al. et al. & DoddsMaddox 1990 ; Feldman 1994 ; Peacock

as indicated as the last two rows in while1994), Table 3,
signiÐcantly constraining models at 1 p conÐdence level, do
not yet place 2 p conÐdence level constraint on this set of
models.

The values of n and for the central model in eachp8variant of the CDM model are shown as solid dots in six
panels of To facilitate further examination of andFigure 7.
intercomparison among the models, the parameters of the

TABLE 3

CONSTRAINTS ON n, AND EP FOR THE SIX VARIANTS OFp8, TABLE 2

Model Family Tensor Mode n Range p8 Range EP Range

A . . . . . . . . . . . . . . . . . Yes 0.72È0.82 0.52È0.57 1.01È1.05
A . . . . . . . . . . . . . . . . . No 0.45È0.68 0.49È0.52 1.07È1.20
B . . . . . . . . . . . . . . . . . Yes 0.79È0.92 0.45È0.54 1.44È1.53
B . . . . . . . . . . . . . . . . . No 0.61È0.84 0.43È0.53 1.49È1.65
C . . . . . . . . . . . . . . . . . No 1.39È1.49 0.91È1.14 1.11È1.16
D . . . . . . . . . . . . . . . . No 0.98È1.23 0.64È0.84 1.25È1.40
E . . . . . . . . . . . . . . . . . Yes 0.98È1.23 0.81È1.10 1.25È1.40
E . . . . . . . . . . . . . . . . . No 0.96È1.23 0.80È1.10 1.25È1.42
F . . . . . . . . . . . . . . . . . Yes 0.87È0.99 0.65È0.82 1.40È1.47
F . . . . . . . . . . . . . . . . . No 0.74È0.98 0.62È0.81 1.40È1.56
COBE(obs) . . . . . . . . . 1.20^ 0.60 (2 p) . . . . . .
LSS(obs) . . . . . . . . . . . . . . . . . 1.30^ 0.30 (2 p)
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FIG. 7.ÈConstrained two-dimensional parameter space n) for the six models as tabulated in The dotted hatched regions are the permitted(p8, Table 2.
space in this two-dimensional parameter plane whose cluster mass functions agree with observations at the 2 p conÐdence level. The solid hatched regions are
the constraints provided by COBE on large scales, where the spread in the vertical axis ^14%, 2 p) is due to the statistical uncertainty of the COBE(p8,measurements & White For the four spatially Ñat models (models 1, 2, 5, and 6) two cases, with and without the tensor mode (gravitational(Bunn 1997).
wave) contribution to the CMB Ñuctuations on COBE scales are considered (see text). For the remaining two models (open models ; models 3 and 4 ofTable

we only consider the case without the gravitational wave contribution.2)

six central models are given in These six modelsTable 4.
likely bracket all ““ viable ÏÏ CDM models of current interest.
This is an attempt to set the context for future discussions of
CDM models that will share a common standard.

TABLE 4

SIX COBE AND CLUSTER-NORMALIZED CDM MODELS

Model H0 n )
c

)
h

"0 )
b

p8
tCDM . . . . . . . . . . 55 0.77 0.936 0.00 0.0 0.064 0.55
HCDM . . . . . . . . 55 0.88 0.736 0.20 0.0 0.064 0.52
OCDM25 . . . . . . 65 1.47 0.220 0.00 0.0 0.030 1.00
OCDM40 . . . . . . 60 1.15 0.346 0.00 0.0 0.054 0.80
"CDM25 . . . . . . 65 1.10 0.220 0.00 0.75 0.030 0.95
"CDM40 . . . . . . 60 0.96 0.346 0.00 0.60 0.054 0.80

RELATION5. p8-)0
Let us now steer o† the main course for a moment and

examine the relation that has been widely utilizedp8-)0& Liddle We Ðrst note that it is(WEF; Viana 1996 ; ECF).
very clear from and that the shape of theFigure 7 Table 3
power spectrum plays a signiÐcant role. While we Ðnd that
the power spectrum shape dependence of forp8 )0\ 1
models (models A and B in is modestTable 3) *p8D
0.03È0.1, in agreement with the power spectrumECF,
shape dependence of for low-density models is substan-p8tial, being Therefore, a more accurate*p8\ 0.17È0.30.
relation of cannot be obtained until the shape of thep8-)0power spectrum is more accurately Ðxed. The latter is cur-
rently unavailable, as indicated by the last two rows of

A tentative solution to circumvent this situation isTable 3.



FIG. 7.ÈContinued

FIG. 8.ÈConstraint on the plane, for two cases : !\ 0.25 and (a) and !\ 0.25 and (b). The dotted region in each Ðgure()0, p8) "0\ 0 )0] "0\ 1
represents the permitted regions of parameters whose models have the cluster mass functions at z\ 0 consistent with what is observed at 2 p conÐdence level.
The hatched region is the Ðt by et al. at 2 p conÐdence level and the short-dashed curve is the Ðt by & Liddle The long-dashed curveEke (1996) Viana (1996).
is the Ðt by et al. The solid curve is the best Ðt to the dotted region with the Ðtting formula being indicated in the Ðgure. (c) Results and Ðts toWhite (1993).
them for !\ 0.20 and !\ 0.27. The best Ðt of the results, allowing ! to vary within the indicated range, is presented in eq. (36).
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to choose a shape of the power spectrum that is deemed to
best match observations of large-scale galaxy distribution.
This approach was used by & LiddleWEF, Viana (1996),
and it will also be adopted here.ECF;

shows the constraint on the plane, forFigure 8 ()0, p8)two cases : !\ 0.25 and and !\ 0.25 and"0\ 0 (Fig. 8a)
The dotted region in each Ðgure rep-)0] "0\ 1 (Fig. 8b).

resents the permitted regions of parameters where models
have the cluster mass functions at z\ 0 consistent with the
observations at 2 p conÐdence level. The hatched region is
the Ðt by at 2 p conÐdence level and the dotted curve isECF
the Ðt by & Liddle The dashed curve inViana (1996). Figure

is the Ðt by The solid curve is the best Ðt to the8b WEF.
dotted region. The general agreements among various
studies are very good. The small di†erences perhaps reÑect
the di†erences in the procedures of Ðtting to observa-
tional data points, the small di†erences in the adopted
observations being Ðt, and di†erent theoretical approx-
imations used for the models. Our best Ðt to the results of
GPM to the observed mass function of for !\ 0.25,BC,
is (2 p) : for andp8()0)\ (0.52~0.05`0.04))0~0.39 "0 \ 0 p8 \

for(0.52~0.05`0.04))0~0.43 )0] "0\ 1.
Given the sizable allowed range in ! currently con-

strained by observation & Dodds !\(Peacock 1994),
(2 p), it is useful to quantify the dependence of the0.23~0.03`0.04

above relationships on the shape of the power spectrum.
shows the results and Ðts to them for !\ 0.20Figure 8c

and !\ 0.27, with the best Ðts being (2 p) p8()0) \for and(0.485~0.05`0.04))0~0.39 "0\ 0 p8\ (0.485~0.05`0.04))0~0.43
for for !\ 0.20, and)0] "0\ 1 p8()0)\for and for(0.52~0.04`0.05))0~0.39 "0\ 0 p8 \ (0.52~0.04`0.05))0~0.43

for !\ 0.27. The best Ðt of all the results for)0] "0\ 1
CDM-like models, allowing ! to vary within the indicated
range (0.20È0.27), is (2 p) given in equation This(36). p8-)0relation best summarizes a constraint on CDM-like models
provided by the observations of zero redshift rich cluster
abundance.

6. CONCLUSIONS

We have developed and tested a method to compute the
mass function and correlation function of peaks, based on
the formalism for Gaussian density Ðeld. We should call this
method Gaussian peak method (GPM). The essential new
ingredient in this relatively old method is a simultaneous

determination of the smoothing window size (to select
appropriate peaks) and the critical peak height of collapse.
A large set of 32 N-body simulations are used to test the
accuracy of the method and it is shown that the method is
accurate for all the models tested, which cover the param-
eters space of interest spanned by andP

k
, )0, "0, p8.The GPM permits economical search of parameter space.

We Ðnd that relation is somewhat dependent uponp8-)0the shape of the power spectrum. Normalizing CDM
models to the observed local rich cluster abundance alone,
allowing for the observed uncertainty in the shape param-
eter gives (2 p)!(4)0 h)\ (0.20È0.27),

p8()0, !)

\
G[0.50] 0.5(![ 0.23)^ 0.05])0~0.39 ("0\ 0) ;
[0.50] 0.5(![ 0.23)^ 0.05])0~0.43 ()0] "0\ 1) .

(36)

Matching both COBE on very large scales and the abun-
dance of local rich clusters of galaxies Ðxes both the shape
(n) and amplitude of the power spectrum of any model(p8)to about 10% accuracy. Consequently, all models become
almost completely deterministic. A set of six CDM models
(including cold plus hot dark matter model) likely(Table 4),
bracketing all potentially interesting models, is advertised
together. This should be viewed as an attempt to set the
context for future discussions on a set of standardized
models to facilitate comparison of results between workers
in the Ðeld.
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