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ABSTRACT
We solve the Boltzmann equation for cosmological neutrinos around the epoch of the electron-

positron annihilation in order to verify the freeze-out approximation and to compute accurately the
cosmological neutrino distribution function. We Ðnd the radiation energy density to be about 0.3%
higher than predicted by the freeze-out approximation. As a result, the spectrum of the cosmic micro-
wave background anisotropies changes by D0.3%È0.5%, depending on the angular scale, and the ampli-
tude of the mass Ñuctuations on scales below about 100 h~1 Mpc decreases by about 0.2%È0.3%.
Subject headings : early universe È elementary particles È cosmic microwave background È

nuclear reactions, nucleosynthesis, abundances

1. INTRODUCTION

Anisotropies in the cosmic microwave background
(CMB) provide a powerful tool to probe the cosmological
parameters Sugiyama, & Silk The results of 4(Hu, 1997).
years of work of the COBE satellite et al.(Bennett 1996)
allow us to determine the power spectrum of the CMB
anisotropies to an accuracy of 7% but with relatively poor
angular resolution, New planned satellite mis-hFWHMB 7¡.
sions, and will achieve an accuracy ofMAP1 Planck,2
better than 1% in the power spectrum with the subdegree
resolution Efstathiou, & Tegmark(Bond, 1997 ;

Spergel, & Seljak In turn, we need toZaldarriaga, 1997).
bring the theoretical models to the same level of accuracy.

In the standard cosmological model, after the epoch of
the big bang nucleosynthesis, the relativistic particles
include photons and the three species of neutrino &(Kolb
Turner While the abundance of1990 ; Peebles 1993).
photons is directly measured from the CMB observations,
the abundance of primordial neutrinos can only be assessed
theoretically. The standard way to perform such a calcu-
lation is to use the so-called freeze-out approximation,
which assumes that neutrinos decouple instantaneously
from the rest of the universe at a temperature of about
4 MeV. Then the distribution function of all three neutrino
species retains the Fermi-Dirac form with the only param-
eter, the neutrino temperature, uniquely tied to the
observed CMB temperature.

However, even after decoupling, the high-energy neu-
trinos still interact, albeit slowly, with the electron-positron
plasma, contrary to the basic assumption of the freeze-out
approximation. This interaction leads to some of the
photon energy being transferred into neutrinos. But
because it is the photon energy density that is directly mea-
sured, the total energy density of the universe in the rela-
tivistic species relative to the energy density in photons
(which is measured observationally to about 0.3% accuracy)
will be somewhat higher than the one predicted by the
freeze-out approximation.

1 See C. Bennet et al. at http ://map.gsfc.nasa.gov.
2 See M. Bersanelli et al. at http ://astro.estec.esa.nl/SA-general/

Projects/Cobras/cobras.html.

Several previous attempts, & TurnerDodelson (1992)
being the most comprehensive, have been made to compute
cosmological neutrino decoupling in greater detail, though
still assuming that neutrino distribution functions have
Maxwellian form et al. & Hacyan(Dicus 1982 ; Herrera

& Mitra & Fukugita .1989 ; Raha 1991 ; Dolgov 1992)
Recently, two more papers have addressed this problem
with the full account for the Fermi-Dirac form of the neu-
trino distribution functions & Madsen(Hannestad 1995 ;

Hansen, & Semikoz Neither of these studies,Dolgov, 1997).
however, has achieved the desired level of accuracy of
numerical calculation (about 10~4, which is equivalent to a
1% accuracy in a 1% correction to the freeze-out
approximation). The problem is complex : solution of the
full Boltzmann equation in three dimensions is at the very
edge of modern computing capabilities. As a result, the pre-
vious calculations have only been able to cover slightly
more than two decades in the neutrino momentum, which is
insufficient to compute an asymptotic behavior of the neu-
trino distribution function.

In this paper we complete the calculation of cosmological
neutrino decoupling using an extensive calculation on a
parallel supercomputer, placing special emphasis on achiev-
ing complete numerical convergence and covering over
seven decades in the neutrino momentum.

The paper is composed in the following way. We derive
and solve the Boltzmann equations for all three neutrino
species in In we brieÑy touch upon the relevant° 2. ° 3
numerical issues, relegating the details of our numerical
method to the Finally, in we present ourAppendix. ° 4,
results for the neutrino energy density and compare them to
the freeze-out approximation. We also obtain accurate dis-
tribution functions for the cosmological neutrinos.

2. NEUTRINO KINETICS IN THE EXPANDING UNIVERSE

The Boltzmann equation for neutrinos in the expanding
universe is & Turner(Kolb 1990)

El
Lfl
Lt

[ Hq2 Lfl
LEl

\C[ fl] , (1)

where is the neutrino distribution function, is thefl(q, t) Elneutrino energy since the neutrino mass, even if it(El\ q,
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TABLE 1

NEUTRINO REACTIONS

Reaction M2
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exists, is assumed to be much smaller than our character-
istic energy scale, DMeV), and is the collisional inte-C[ fl]gral. Hereafter we use units in which + \ c\ 1. In the case
of neutrinos interacting with the electron-positron pairs and
other neutrino species via annihilation and scattering reac-
tions, the collisional integral is & Madsen(Hannestad 1995)

C[ fl]\ ;
1

2(2n)5
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] M2d4(p6 1]p6 2[p6 3[p6 4) , (2)

where p14 q, f14 fl,

"( f1, f2, f3, f4) 4 f4 f3(1 [ f2)(1[ f1) [ f1 f2(1 [ f3)(1[ f4) ,

M2 is the matrix element squared and summed over initial
and Ðnal spin states, are the 4-momenta of the incomingp6

i(1, 2) and outgoing (3, 4) particles, and the sum is taken over
all of the reactions involving f1.The list of all neutrino reactions is presented in Table 1,
along with the respective matrix elements &(Hannestad
Madsen Indices i, j, k run over electron, muon, and1995).
tau neutrinos, with the exception that The factor isj D i. GFthe Fermi coupling constant, and coefficients and forC

V
C

Adi†erent types of neutrinos are given by the following equa-
tions (for example, et al.Kaminker 1992) :
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where is the Weinberg angle and we adopt#W sin2 #W\
0.23.

Quantities are deÐned as follows :Q
i

Q1 \ (p6 1 É p6 2)(p6 3 É p6 4) ,

Q2 \ (p6 1 É p6 3)(p6 2 É p6 4) ,

Q3 \ (p6 1 É p6 4)(p6 2 É p6 3) ,

Q4 \ m2(p6 1 É p6 2) ,

Q5 \ m2(p6 1 É p6 3) , (3)

where m is the electron mass. As has been shown by
& Madsen integrals over and overHannestad (1995), d3p4angles in and can be computed analytically, yield-d3p2 d3p3ing
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In order to minimize the possibility of error in the compli-
cated factors we have used the MathematicaF(p1, p2, p3),software package to perform the calculations. The resultant
expressions are too large to present here, but the original
Mathematica script and the FORTRAN source code are
available upon request.

In order to calculate the evolution of the neutrino dis-
tribution functions, we need to include the equationsfl(f),describing the evolution of the scale factor and the energy
density of the universe :

da
dt

\
C8nG

3
o
D1@2

a , (5)

and

do
dt

\ [3H(o ] p) , (6)

where o and p are the energy density and the pressure,
respectively, and
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where j 4 m/T and the functions are deÐned asC
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Here is the energy density in the three neutrino species :ol

ol \ 1
n2
P
0

=
q3[ fle(q) ] flk(q) ] flq(q)]dq .

We also note that since the coefficients and are theC
V

C
Asame for muon and tau neutrinos, their distribution func-

tions are equal.

3. NUMERICAL ISSUES

along with equations and can now beEquation (1), (5) (6),
integrated numerically for each of the neutrino species. In
order to eliminate the derivative with respect to the neu-
trino momentum in we employ the comovingequation (1),
momentum f\ qa. We lay out the neutrino distribution
function on a logarithmically spaced mesh in the range
10~5.5¹ q/T ¹ 101.7 with 40 points per decade (289 points
altogether). By appropriately changing the limits and sam-
pling of the momentum mesh, we have veriÐed that such a
discretization o†ers a fully convergent solution to an accu-
racy of better than 10~4. After this procedure, equation (1)
becomes a system of coupled ordinary di†erential equa-
tions. We begin the integration at T \ 10 MeV and carry it
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out to T \ 10~3 MeV, at which point the desired precision
is achieved. The relative accuracy of the integration at each
time step is set to 10~7.

The resultant ordinary di†erential equations are sti† and
present a considerable computational challenge. Standard
methods require computing the full Jacobian, which is vir-
tually impossible for our fairly complicated system of equa-
tions. For the purpose of this calculation, we develop a
special numerical scheme, presented in the whichAppendix,
can handle sti† equations of the Boltzmann type and does
not require computing the full Jacobian. Our scheme is
more efficient than the standard Ðfth-order adaptive Runge-
Kutta method by a factor of 20È60.

Finally, we note that the most time-consuming calcu-
lation, that of the collisional integral, can be done very
efficiently in parallel. Our Ðnal computation has been per-
formed on the NCSA Power Challenge Array with 12
R10000 processors and has consumed about 200 processor
hours.

4. RESULTS AND DISCUSSION

The main outcome of our calculations is the number
density and the energy density of all three neutrino species
at the current epoch relative to those of photons. The
results are presented in For comparison, we alsoTable 2.
give the respective numbers computed in the freeze-out
approximation. All values are accurate to the last decimal
place shown. The most important quantity, the total radi-
ation energy density in the universe, di†ers from the freeze-
out approximation by only 0.3%.

Another way of presenting this di†erence is the e†ective
number of neutrino species, We can rewrite the expres-Neff.sion for the energy density of the universe as

v
R

\ [1] Neff 78( 411)4@3]aR
T 0,c4 , (7)

where in the freeze-out approximation FromNeff \ 3.
we obtainTable 2

Neff \ 3.022 .

This number does not, of course, mean that there are more
than three species of neutrinos ; it is simply a number that
should be used in the freeze-out approximation to repro-
duce the exact result. Since most of the previously obtained
results and existing numerical codes are based on the freeze-
out approximation, it is convenient to use one simplyNeff :has to use 3.022 instead of 3.0 every place in the code that
the neutrino energy density is computed.

We note here that we Ðnd a somewhat larger e†ect than
both & Madsen and et al.Hannestad (1995) Dolgov (1997),

TABLE 2

MAIN RESULTS

Quantity Exact Value Freeze-out Approximation

(aT )before/(aT )after . . . . . . 0.7144 0.7138
v
R
/(a

R
T 0,c4 ) . . . . . . . . . . . . 1.6863 1.6813

vle/(aR
T 0,c4 ) . . . . . . . . . . . . 0.2293 0.2271

vlk/(aR
T 0,c4 ) . . . . . . . . . . . . 0.2285 0.2271

vlq/(aR
T 0,c4 ) . . . . . . . . . . . . 0.2285 0.2271

nle/nc . . . . . . . . . . . . . . . . . . . 0.2745 0.2727
nlk/nc . . . . . . . . . . . . . . . . . . . 0.2739 0.2727
nlq/nc . . . . . . . . . . . . . . . . . . . 0.2739 0.2727

who found and from 3.013 to 3.019Neff \ 3.017 Neff(depending on the method of calculation), respectively. We
attribute this di†erence to the higher accuracy of our calcu-
lation and the lack of numerical convergence in the pre-
vious work. In particular, when we adopt a momentum
range q/T \ 10~1 to 101.3, as in et al. weDolgov (1997),
obtain in agreement with those authors. If weNeff \ 3.019,
further reduce the momentum range q/T \ 10~0.3 to 101.1,
as in & Madsen we recover their result,Hannestad (1995),
Neff \ 3.017.

We can also characterize the Ðnal neutrino distribution
function. Let us introduce the e†ective neutrino tem-
perature, asTeff,

fl(q) 4
1

eq@Teff ] 1
. (8)

Since the neutrino distribution function is not of the Fermi-
Dirac form any more, is a function of the neutrinoTeffmomentum q. shows the deviation of the e†ectiveFigure 1
temperature at the current epoch, from the freeze-outT0,eff,approximation value, as a function ofT0,l 4 (4/11)1@3T0,c,q/T (this ratio is independent of time after electron-positron
annihilation). For the high neutrino momenta, the e†ective
neutrino temperature asymptotically approaches the
photon temperature, because the high-energy neutrinos can
efficiently interact with the electrons via pair creation even
after annihilation,

Teff ] T for q ] O .

For the low momenta, q > T , neutrino interactions with
electrons and positrons are suppressed by a factor q2 and
do not a†ect the evolution of the distribution function.
However, the rate of the neutrino-neutrino interactions is
proportional to the Ðrst power of the momentum q. Thus, in

FIG. 1.ÈFractional di†erence between the e†ective neutrino tem-
perature and its value in the freeze-out approximation as a function of the
neutrino momentum, q. The solid line is for the electron neutrino tem-
perature, and the dashed line is for the muon and tau neutrino tem-
peratures.
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the limit of small momenta,

Lfl(q)
Lt

\ q
T eff2

dTeff
dt

P q ,

and we Ðnd that

Teff ] const for q ] 0 .

The value of the constant is for the electron0.99950T0,lneutrinos and for the muon and tau neutrinos.0.99918T0,lOur results have several immediate cosmological impli-
cations. First, the change of the radiation energy density of
the universe will a†ect the spectrum of CMB anisotropies at
about the 0.3% level just behind the Ðrst acoustic peak,
lD 300, and at about the 0.5% level at the damping scale,
lD 1000 et al. If more than 0.5% accuracy is(Hu 1995).
required in calculating the CMB anisotropies, equation (7)
should be used.

Second, the change of the radiation energy density of the
universe a†ects the evolution of linear density Ñuctuations
on galactic and subgalactic scales. We have computed the
matter transfer function using the COSMICS package

and we Ðnd that for a cosmological(Bertschinger 1995),
model with h \ 0.5, and the rms density)0\ 1, )

b
\ 0.05,

Ñuctuation at a 8 h~1 Mpc scale, decreases by aboutp8,
0.2%, and the rms density Ñuctuation on a 100 h~1 kpc
scale decreases by about 0.3%. The latter changes, however,
are too small to be of any interest in the foreseeable future.

In addition, neutrino decoupling a†ects primordial
helium production. However, & TurnerDodelson (1992)
showed that the net change in the primordial helium abun-
dance is virtually unobservable because of the cancellation
of two competing e†ects : one is the higher expansion rate,
which leads to a higher helium abundance, and the other is
the faster neutron decay rate, which leads to a lower helium
abundance. A small change in the neutrino number density
will produce a small change in the massive neutrino mass
density & Madsen but this change is(Hannestad 1995),
again too small to be of any practical interest.

Thus, we conclude that only in computing the CMB
anisotropies should one need to worry about the accurate
calculation of neutrino decoupling ; otherwise, the e†ect is
negligibly small. Overall, our calculations conÐrm the valid-
ity of the freeze-out approximation. If the accuracy of a few
percent is sufficient, one can safely use the freeze-out
approximation to compute any property of cosmological
neutrinos.

We are grateful to D. Yakovlev, J. Ostriker, D. Spergel,
J. Madsen, B. Fields, S. Hannestad, and A. Dolgov for
valuable comments. We thank the anonymous referee for
pointing out to us an error in the original manuscript.
N. G. was supported by the UC Berkeley grant 1-443839-
07427. Calculations were performed on the NCSA Power
Challenge Array under the grant AST 96-0015N.

APPENDIX

NUMERICAL METHOD

In this paper we are dealing with a particular kind of an ordinary di†erential equation that can be presented in the
following form:

dy
dt

\ f (y)4 w(y) [ k(y)y , (A1)

where both w and k are slow functions of y, but not of t, and k is positive. This equation is sti†, and a numerical method that
does not handle sti† equations requires a time step *t such that

k *t > 1 .

Numerical methods that can deal with sti† equations usually have a much less stringent restriction on the time step,

K Lw
Ly
K
*t > 1 ,

and, because w is a slow function of y, we assume that

K Lw
Ly
K
> k .

However, standard techniques for sti† equations require computing the full Jacobian,

J \ Lw
Ly

[ Lk
Ly

y [ k .

In our case this quantity is very difficult to compute, because w is an integral over y and numerical evaluation of the integral
involves nontrivial interpolation.

We therefore proceed di†erently and design a numerical scheme that involves only a partial Jacobian,

JŒ 4 [k ,

which can be computed simultaneously with the right-hand side of at no extra cost.equation (A1)
An additional advantage of using the partial Jacobian instead of the full Jacobian J is that for a system of equations, theJŒ

partial Jacobian is a diagonal matrix that can be inverted much faster than the full Jacobian, which is usually a general matrix.
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TABLE 3

CONSTANTS

Constant Value

c . . . . . . . . . 0.788675134594812882251
a21 . . . . . . 1
a31 . . . . . . 0.56698729810778067662
a32 . . . . . . 1/4
c21 . . . . . . . [1.26794919243112270647

TABLE 4

CONSTANTS UNDER TWO NUMERICAL SCHEMES

Constant Third-Order Scheme Second-Order Scheme

c31 . . . . . . . [3/2 [3.183012701892219323
c32 . . . . . . . [1.1830127018922193234 [2.781088913245535264
b1 . . . . . . . . 1.3779915320718537844 1.566987298107780677
b2 . . . . . . . . 0.9553418012614795489 1.038675134594812883
b3 . . . . . . . . 2/3 0.21132486540518711775

However, we cannot simply take a standard numerical scheme and replace the full Jacobian with the partial one, because
the di†erent orders of the numerical error will not cancel out in this case. Thus, we need to design a special scheme that will
assure the proper cancellation of the numerical error up to a given order.

The numerical scheme to update y from to in a time interval h is constructed as follows :y \ y0 y \ y1

g1\ hf (y0)
1 ] chk

,

g2\ hf (y0] a21 g1) ] c21 g1
1 ] chk

,

g3\ hf (y0] a31 g1] a32 g2) ] c31 g1] c32 g2
1 ] chk

,

y1\ y0] b1 g1] b2 g2] b3 g3 , (A2)

where c, and are constants. The values for c, and are given ina
i
, b

i
, c

i
a21, a31, a32, c21 Table 3.

By varying the remaining constants, we construct two numerical schemes : the third order and the second order, respec-
tively Thus, the di†erence between the values of computed with the two schemes can serve as an estimate of(Table 4). y1numerical errors. Again, Mathematica was used to compute the values of the constants that give the cancellation of numerical
errors to the required order.

REFERENCES
C., et al. 1996, ApJ, 464,Bennett, L1.

E. 1995, preprint (astro-ph/9506070)Bertschinger,
J. R., Efstathiou, G., & Tegmark, M. 1997, MNRAS, submittedBond,
D. A., Kolb, E. W., Gleeson, A. M., Sudarshan, E. C. G., Teplits,Dicus,

V. L., & Turner, M. S. 1982, Phys. Rev. D, 26, 2694
S., & Turner, M. S. 1992, Phys. Rev. D, 46,Dodelson, 3372

A. D., & Fukugita, M. 1992, Soviet Phys.ÈJETP Lett., 56,Dolgov, 123
A. D., Hansen, S. H., & Semikoz, D. V. 1997, Phys. Lett. B, 407,Dolgov, 12

S., & Madsen, J. 1995, Phys. Rev. D, 52,Hannestad, 1764
M. A., & Hacyan, S. 1989, ApJ, 336,Herrera, 539

W., Scott, D., Sugiyama, N., & White, M. 1995, Phys. Rev. D, 52,Hu, 5498
W., Sugiyama, N., & Silk, J. 1997, Nature, 386,Hu, 37

A. D., LevenÐsh, K. P., Yakovlev, D. G., Amsterdamski, P., &Kaminker,
Haensel, P. 1992, Phys. Rev. D, 46, 3256

E. W., & Turner, M. S. 1990, The Early Universe (Reading : Addison-Kolb,
Wesley)

P. J. E. 1993, Physical Cosmology (Princeton : Princeton Univ.Peebles,
Press)

N. C., & Mitra, B. 1991, Phys. Rev., D64,Raha, 363
M., Spergel, D. N., & Seljak, U. 1997, ApJ, 488,Zaldarriaga, 1


