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ABSTRACT
We apply a multiresolution analysis to hard X-ray (HXR) time proÐles f (t) of solar Ñares. This method

is based on a wavelet transform (with triangle-shaped wavelets), which yields a dynamic decomposition
of the power at di†erent timescales T , the scalogram P(T , t). For stationary processes, time-averaged
power coefficients, the scalegram S(T ), can be calculated. We develop an algorithm to transform these
(multiresolution) scalegrams S(T ) into a standard distribution function of physical timescales, N(T ). We
analyze 647 solar Ñares observed with the Compton Gamma Ray Observatory (CGRO), recorded at ener-
gies º25 keV with a time resolution of 64 ms over 4 minutes in each Ñare. The main Ðndings of our
wavelet analysis are :

1. In strong Ñares, the shortest detected timescales are found in the range s. TheseTminB 0.1È0.7
minimum timescales are found to correlate with the Ñare loop size r (measured from Yohkoh images in
46 Ñares), according to the relation cm) s. Moreover, these minimum timescales areTmin(r)B 0.5(r/109
subject to a cuto†, which corresponds to the electron collisional deÑection time at theTmin(ne

) ZTDefl(ne
),

loss-cone site of the Ñare loops (inferred from energy-dependent time delays in CGRO data).
2. In smoothly varying Ñares, the shortest detected timescales are found in the range s.TminB 0.5È5

Because these smoothly varying Ñares exhibit also large trap delays, the lack of detected Ðne structure is
likely to be caused by the convolution with trapping times.

3. In weak Ñares, the shortest detected timescales cover a large range, s, mostly a†ectedTminB 0.5È50
by Poisson noise.

4. The scalegrams S(T ) show a power-law behavior with slopes of (for strong Ñares)bmax B 1.5È3.2
over the timescale range of Dominant peaks in the timescale distribution N(T ) are found in[Tmin, Tpeak].the range s, often coinciding with the upper cuto† of N(T ).Tpeak B 0.5È102
These observational results indicate that the fastest signiÐcant HXR time structures detected with wave-
lets (in strong Ñares) are related to physical parameters of propagation and collision processes. If the
minimum timescale is associated with an Alfve� nic crossing time through elementary accelerationTmincells, we obtain sizes of km, which have a scale-invariant ratio to Ñare loopsracc B 75È750 racc/r B 0.03
and are consistent with cell sizes inferred from the frequency bandwidth of decimetric millisecond spikes.
Subject headings : methods : statistical È Sun: Ñares È Sun: X-rays, gamma rays È waves

1. INTRODUCTION

Wavelet analysis allows a local decomposition of time-
scales in time series of transient nature or nonstationary
processes. This is an important extension to Fourier
analysis, which is designed to provide a global decomposi-
tion of time series with stationary properties. Wavelet
analysis has been increasingly applied to astrophysical data
sets, e.g., to study solar diameter variations &(Vigoroux
Delache quasi-periodic oscillations in accretion disks1993),

et al. the Ðne structure of the Encke gap(Scargle 1993),
ringlet Petit, & Spahn gamma-ray bursts(Bendjoya, 1993),

Meredith, & Ryan solar magnetograms(Young, 1995),
(Komm solar cycle variability (Watari1994, 1995), 1995,

solar chromospheric oscillations &1996), (Bocchialini
1 Present address : Lockheed-Martin, Solar & Astrophysics Labor-

atory, Department H1-12, Building 252, 3251 Hanover Street, Palo Alto,
CA 94304 ; aschwanden=sag.lmsal.com.

Baudin stellar chromospheric variations et al.1995), (Frick
weak source detection in ROSAT soft X-ray images1997),

(Damiani et al. solar helioseismology1997a, 1997b),
et al. solar millimeter bursts et al.(Fro� hlich 1997), (Schwarz

and other astrophysical applications (see1998), Scargle
and references therein). Here we attempt to investigate1993,

the timescales that govern solar Ñare hard X-ray (HXR)
emission, which exhibits a challenging irregular temporal
behavior that has never been successfully characterized by
any time series method.

Extensive time series analysis of solar HXR data has been
attempted with the Fourier method, but without revealing
signiÐcant periodicities. et al. computedKiplinger (1982)
2000 power spectra in 95 HXR Ñares observed with the
Hard X-Ray Burst Spectrometer (HXRBS) Frost, &(Orwig,
Dennis on board the Solar Maximum Mission (SMM)1980)
satellite, recorded with a time resolution of 128 ms at ener-
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gies º25 keV, but found only three cases with marginal
peaks in the Fourier power spectrum (at periods of
T \ 0.17, 0.39, and 0.81 s). Another search for periodicities,
using HXR data from the more sensitive Burst and Tran-
sient Source Experiment (BATSE) et al. on(Fishman 1989)
board the Compton Gamma Ray Observatory (CGRO),
yielded a similar null result (M. E. Machado 1993, private
communication). However, two preferred timescales were
noticed by visual inspection of BATSE time proÐles

et al. (1) fast Ñuctuations on timescales of(Machado 1993) :
B0.1 s, and (2) large-amplitude Ñuctuations with timescales
of B2È10 s, dubbed ““ elementary Ñare bursts ÏÏ in earlier
studies Jager & De Jonge Such large-amplitude(De 1978).
Ñuctuations were found to be quasi-periodic sometimes
(e.g., 16 s period, & Winckler 8.2 s period inParks 1969 ;
1980 June 7 Ñare, et al. A systematicKiplinger 1983b).
analysis of timescales in BATSE HXR data was carried out
by a numerical peak detection algorithm, using a 5 p signiÐ-
cance criterion in two energy channels (25 and 50 keV),
yielding a total of 5430 HXR pulses from 181 di†erent
Ñares, which were characterized by an exponential distribu-
tion of timescales, N(T ) expP ([T /0.44s) above a Ðlter
cuto† of T [ 0.3 s Schwartz, & Alt(Aschwanden, 1995b).
An obvious restriction of such a ““ sequential ÏÏ pulse detec-
tion method is the lack of multiscale resolution, a capability
that requires Fourier or wavelet methods.

While not much e†ort has been spent on time series
analysis of HXR data of solar Ñares, there have been numer-
ous methods applied to radio data. Because radio emission
during solar Ñares is produced chieÑy by nonthermal elec-
trons as in HXRs, time structures of common electron
acceleration and energy release processes are expected to
show up in both wavelengths, as has been conÐrmed by
numerous correlation studies (see, e.g., et al.Dennis 1984 ;

Benz, & Schwartz et al.Aschwanden, 1993 ; Aschwanden
Time series analyses from radio data are therefore1995a).

highly relevant to HXR data, although time structures of
radio emission are probably convolved with timescales of
the radiation process in a more complicated manner than
for HXR bremsstrahlung radiation. Time series analyses of
solar radio bursts include Fourier methods et al.(Cliver

& Pick Mangeney, & Pick1976 ; Mangeney 1989 ; Zhao,
pulse interval statistics et al.1991), (Trottet 1981 ;

Benz, & Montello autocorrelationAschwanden, 1994b),
methods et al. correlation dimension(Aschwanden 1994a),
or strange attractor dimension methods (Kurths & Herzel

& Karlicky Benz, &1986, 1987 ; Kurths 1989 ; Kurths,
Aschwanden & Benz et al.1991 ; Isliker 1994 ; Ryabov

symbolic dynamics methods et al.1997), (Schwarz 1993),
and multiscale resolution or wavelet methods (Kurths,
Schwarz, & Witt et al.1995 ; Schwarz 1998).

In this paper we apply for the Ðrst time a wavelet analysis
to HXR data of solar Ñares. We use a discrete wavelet algo-
rithm et al. et al. that(Bendjoya 1993 ; Schwarz 1998)
employs triangle-like wavelets, producing an output in form
of scalograms P(T , t) and time-averaged scalegrams S(T ).
Because scalegrams represent the intrinsic timescales T in a
convolved manner because of the multiresolution nature,
we develop Ðrst a transformation that converts a scalegram
S(T ) into a standard distribution function of physical time-
scales N(T ) We test the reliability of our transform-(° 2).
ation method by simulating surrogate data of time series
f (t) with predescribed distributions of timescales N(T )sim,
from which we calculate the scalegrams S(T ) and the
inverted timescale distribution functions N(T )inv (°° 3.1, 3.2,

and Further, we simulate test data with Poisson noise3.3).
to study the sensitivity limit of the wavelet method on the
shortest signiÐcant timescales In we present(° 3.4). ° 4
results from the wavelet analysis of the complete highÈtime
resolution database from BATSE/CGRO, including 647
solar Ñares. We show scalegram examples from various
Ñares, including the Masuda Ñare strong impulsive(° 4.2),
Ñares and slowly varying Ñares We explore the(° 4.3), (° 4.4).
shortest signiÐcant time structures and relate them to(° 4.5)
the spatial sizes and electron densities of Ñare loops(° 4.8)

In we discuss some physical parameters and Ñare(° 4.9). ° 5
models in the context of wavelet timescales. A summary and
conclusions are given in ° 6.

2. WAVELET ANALYSIS METHOD

2.1. Multiresolution Algorithm
The wavelet transform can be considered as a gener-

alization of the Windowed Fourier Transform, which yields
a gliding power spectrum as function of time. The wavelet
decomposition of a time series f (t) yields information on the
distribution of power at di†erent temporal scales (an analog
of the power spectrum) in every part of the time series. An
orthogonal set of wavelet basis functions is derived from a
““mother wavelet ÏÏ W (t) that satisÐes the admissibility con-
dition (see, e.g., & RyanDaubechies 1992 ; Meyer 1993),
which, in particular, implies that if W (t) is/~== W (t)dt \ 0,
L 1 integrable. The wavelet functions are obtained by scaling
a and translation b of the mother wavelet,

W
a,b(t)\ C(a)W [a~1(t [ b)] , (1)

where the normalization factor C(a) is often chosen as
C(a) \ o a o~1@2 to obtain an orthonormal basis. There exist
unique decomposition and reconstruction formulas. Choos-
ing a \ 2j and b \ k *t, where *t is the sampling interval of
the signal f (t), these formulas read

D
j,k(t)\

P
~=

=
f (t)W

j,k(t)dt , j, k ½ Z , (2)

and

f (t) \ ;
j

;
k

D
j,k W

j,k(t) , (3)

where are the wavelet coefficients and Z is the set ofD
j,kintegers.

Introducing a set of smoothing functions enablesq
j,k(t)efficient calculation of wavelet coefficients by recursion,

often referred to as the discrete or pyramidal wavelet algo-
rithm or multiresolution analysis The(Mallat 1989). q

j,k(t)are again derived by scaling and translation of one function
q(t), which must be appropriately chosen to form an orthog-
onal basis in conjunction with the wavelet functions and to
lead to convenient recursion formulas. In this paper we
employ very compact wavelet and smoothing functions that
enable analysis of time series down to the shortest scalesÈ
our main goalÈand are necessarily coarse in the resolution
of di†erent timescales. These functions have already been
used in et al. with emphasis on noiseBendjoya (1993)
reduction and are given by

1
2

[ 3 o t o

4 *t
for

o t o

*t
¹ 1 ,

w(t)\g (4)
o t o

4 *t
[ 1

2
for 1\

o t o

*t
¹ 2 ,

0 otherwise ,
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q(t) \
71
2

[ o t o

2*t
0

for
o t o

*t
¹ 1 ,

otherwise ,
(5)

w
k
j(t) \ w[2~( j~1)(t [ k *t)] , j \ 1, 2, . . . , k ½ Z , (6)

q
k
0\ 2q(t [ k *t) , (7)

and

q
k
j(t) \ q[2~j(t [ k *t)] , j \ 1, 2, . . . , k ½ Z . (8)

The function w(t) is sometimes called the triangle wavelet
(see top panel). In this algorithm, auxiliary coeffi-Fig. 1,
cients at level j \ 0 are Ðrst obtained from the data points

i \ 0, 1, 2, . . . , N [ 1 according tof
i
\ f (t

i
) \ f (i *t),

c
k
0\ ;

i
f (t

i
)q

k
0(t

i
) . (9)

It can easily be seen that these coefficients are simply the
data points themselves, i.e., no smoothing has yetc

k
0\ f

k
,

been performed and no contribution by wavelet coefficients
is necessary to reconstruct the signal The auxiliaryf (t

i
).

coefficients at higher levels are computed by successively
smoothing the time series at the corresponding scale :

c
k
j \;

i
c
i
j~1 q

k
j(t

i
) , j \ 1, 2, . . . , (10)

where also the sampling increment increases by a factor of 2
between subsequent levels, i.e., the index i in the sum runs in
steps of 2j~1. A series of low-pass Ðlters, whose width
decreases by a factor of 2 between each level, is thus applied
to the signal. Inserting yieldsequation (8)

c
k
j \ 12ckj~1 ] 14(ck~2j~1j~1 ] c

k`2j~1j~1 ) , j \ 1, 2, . . . . (11)

The wavelet coefficients that are derived from the smoothed
time series (again with i running in steps of 2j~1),

d
k
j \;

i
c
i
j~1w

k
j(t

i
) , j \ 1, 2, . . . , (12)

primarily contain contributions to the signal in the
bandpass between levels j [ 1 and j of the smoothing pro-
cedure. This becomes apparent also by evaluating the
wavelet coefficients using equation (6) :

d
k
j \ c

k
j~1[ c

k
j . (13)

Equations and together with constitute the(11) (13) c
k
0\ f

krecursion formulas used to calculate the wavelet coefficients
At level j, mutually independent information about ad

k
j .

scale exists on a sparse grid with spacing 2j`1*tT
j
\ 2j *t

only, but the recursion can be performed for any k \ 0, 1, 2,
. . . , N [ 1. It is meaningful at most up to a level N.j \ log2Close to the end points of the time series, the missing value
in parentheses on the right-hand side of isequation (11)
replaced by the end point or respectively, so thatc0j~1 c

N~1j~1 ,
the wavelet coefficients are inaccurate in an interval ;

m/1j
at both ends. In the middle part of2m~1 *t \ (2j [ 1) *t

the time series, the reconstruction formula follows directly
from andequation (13) c

k
0\ f

k
:

f (t
k
)\ c

k
jmax ] ;

j/1

jmax
d
k
j , (14)

where is the highest level included in the recursion.jmaxThe plot of the wavelet coefficients as function of timed
k
j

and (logarithmic) scale is referred to as the scalogram,t
k

T
jP(t, T ). Averaging the squares of the wavelet coefficients

over (quasi-stationary) time intervals yields the[t1, t2]scalegram,

S(T ) \ S oP(t, T ) o2To
t1:t:t2

, (15)

which represents in some sense the analog to the Fourier
power spectral density P(l) that is expressed as function of
frequency l\ T ~1. Examples of two-dimensional scalo-
grams P(t, T ) and one-dimensional scalegrams S(T ),
obtained from solar radio burst data, have been presented
by et al.Schwarz (1998).

2.2. Transformation of Scalegrams into Distribution
Functions of T imescales

Scalegrams S(T ) contain information on the distribution
of timescales T of which the time proÐle f (t) is composed.
The scalegram can be considered as a convolution of the
standard distribution function N(T ) of timescales T that are
contained in f (t). Here we introduce a kernel function p(T )
that describes this convolution and enables us to invert the
timescale distribution N(T ) from a scalegram S(T ). This
inversion is generally not unique, because the character-
ization of a time proÐle f (t) by wavelet coefficients, as well
as the superposition of multiple time structures per se, rep-

FIG. 1.ÈUpper panel : Triangle mother wavelet function w(t) (thick line)
and smoothing function q(t) (dotted line). L ower panel : Schematic illustra-
tion of the convolution of a standard distribution function N(T ) (bottom
plot) of timescales with kernel functions that sum up to ap(T

i
) (eq. [16])

scalegram S(T ).
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resents an information loss. However, if there are single or
dominant timescales T present in a time proÐle f (t), the
inversion with an appropriate kernel function p(T ) allows
us to retrieve these dominant timescales T , which otherwise
appear in the wavelet scalegrams S(T ) in a highly convo-
luted manner. It is important to note that the relationship
between N(T ) and S(T ) will in general depend upon the
choice of the wavelet algorithm, in particular on the chosen
mother wavelet function. For a detailed theoretical study of
scalegram properties as function of various elementary time
proÐles (e.g., triangles, rectangles, Gaussian proÐles, etc.) we
refer to a subsequent paper et al.(Kliem 1998).

Because time structures in solar Ñare HXRs generally
exhibit Gaussian-like shapes (which can also be justiÐed on
a physical basis in terms of the logistic equation ;

Dennis, & Benz we employ the scale-Aschwanden, 1998a),
gram S(T ) of a Gaussian proÐle to infer the elementary
kernel function p(T ). The scalegram S(T ) of a single Gauss-
ian time proÐle f (t) can be approximated by a double power
law, having its steepest slope at small timescales (b1B 4),
and a less steep negative slope at large timescales (b2B
[1), i.e.,

p(T )\
G(T /q)4
(T /q)~1

for T ¹ q ,
for T º q ,

(16)

where q is the characteristic timescale of the chosen elemen-
tary structure (the double FWHM for a Gaussian
structure). This functional shape of p(T ) can also be calcu-
lated analytically (see et al.Kliem 1998).

Using the kernel function p(T ) deÐned in equation (16),
we can write the functional form of a scalegram S(T ) as a
superposition of all convolutions of independent time-p

j
(T

i
)

scales i.e.,T
i
,

S(T
j
) \ S

j
\ ;

i/1

n
n
i
p
j
(T

i
) \ ;

i/1

j
n
i

AT
j

T
i

B~1

] ;
i/j`1

n
n
i

AT
j

T
i

B4
. (17)

This convolution can be written in form of a linear equation
system, where the scalegram is expressed by a matrixS

jmultiplication with the coefficientsM
ij

n
i
,

S
j
\ n

i
M

ij
, (18)

where the matrix has the numerical valuesM
ij

M
ij
\

1 2~1 2~2 2~3 . . . 2~(n~1)
2~4 1 2~1 2~2 . . . 2~(n~2)
2~8 2~4 1 2~1 . . . 2~(n~3)

a2~12 2~8 2~4 1 . . . 2~(n~4)b .< < < < } <
2~4(n~1) 2~4(n~2) 2~4(n~3) 2~4(n~4) . . . 1

(19)

The determination of the standard distribution of time-
scales N(T ) from a given scalegram S(T ) corresponds to the
solution of this linear equation system which can(eq. [18]),
be achieved by inverting the matrix M

ij
,

n
i
\ S

j
M

ji
~1 , (20)

The inversion of matrix M speciÐed in yieldsequation (19)

]1 131 [ 231 0 0 . . . 0
[1631 ]1 231 [ 231 0 . . . 0

0 [1631 ]1 231 [ 231 . . . 0
M

ji
~1\a 0 0 [1631 ]1 231 . . . 0 b ,< < < < } <

0 . . . 0 [1631 ]1 231 [ 231
0 . . . 0 0 [1631 ]1 131

(21)

which has the form of a tridiagonal matrix. The power coef-
Ðcients of the unconvolved timescale distributionn

i
\ n(T

i
)

can now directly be calculated from a scalegram S
j
\ S(T

j
)

with and the matrix speciÐed inequation (20) M
ji
~1 equation

(21).
Because the timescales of a scalegram areT

i
\ *t ] 2i

computed in steps by powers of 2, the bin widths are*T
iproportional to the timescales i.e.,T

i
,

*T
i
\ T

i`1 [ T
i
\ *t(2i`1 [ 2i)\ *t ] 2i\ T

i
. (22)

In order to determine the distribution function N(T ) of
timescales T , we have therefore to normalize the power

by the bin width i.e.,n
i
(T

i
) *T

i
,

N(T
i
) P

n
i
(T

i
)

*T
i

\ n
i
(T

i
)

T
i

. (23)

In summary, we derived an algorithm to back-transform a
wavelet scalegram S(T ) into the timescale distribution N(T ),
for the special case in which the time proÐle f (t) consists of
Gaussian functions. If the time proÐle consists of a single
Gaussian function or a sequence of identical Gaussian func-
tions, the back transformation should be fairly exact and
render a d-function of timescales, i.e., N(T ) \ d(T [ q). If
the time proÐle f (t) consists of a superposition of many
Gaussian proÐles with similar widths T B q, the inversion is
expected to produce a peak in the timescale distribution
N(T ) at T B q. If the time proÐle f (t) consists of a super-
position of a multitude of timescales, the inversion is not
unique but should at least render the approximate range of
timescales. We will demonstrate the accuracy of the inver-
sion with examples in ° 3.

We illustrate in the convolution of a timescaleFigure 1
distribution function N(T ) with the kernel function p(T ).
The scalegram is composed of a sum of individualS(T

j
)

scalegrams with power coefficients Wep
j
(T

i
) n

i
\ N(T

i
) ] T

i
.

visualize this convolution for the case of a distribution func-
tion that is constant, N(T ) \ const, over a range T1\

The resulting scalegram S(T ) has a power-law slopeT \T2.b,

b(T ) \ log2 [S(T ] *T )][ log2 [S(T )]
log2 (T ] *T )[ log2 (T )

, (24)

with a value of b \ 4 at the shortest timescales aT \ T1,value of b \ [1 at the largest timescales and anT [T1,intermediate value of b B 1 in between (see middleFig. 1,
panel). The particular value of the slope in the intermediate
time range depends also to some extent on the time inter-
vals between the superimposed structures (see et al.Kliem

Although the inversion of N(T ) is not unique, we1998).
expect with this method to retrieve dominant timescales, or
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the approximate ranges of signiÐcant timescales in the dis-
tribution function N(T ).

3. WAVELET ANALYSIS OF SIMULATED DATA

The following numerical simulations serve the purpose to
deepen our understanding of the employed wavelet code,
especially : (1) how di†erent temporal structures translate
into a scalegram, (2) what information of the original time
structure can be retrieved with our transformation into
standard distribution functions of timescales, and (3) how
accurately our inversion procedure renders the originally
convolved timescales.

3.1. Single T ime Structures
First we start with time series that contain only one single

time structure, having the shape of a Gaussian proÐle, for
which our inversion algorithm is optimized. We simulate
time proÐles f (t) with Gaussian proÐles of various widths q,
using a time resolution *t \ 0.064 s and a length of
N \ 3776 data points identical to the solar HXR data
analyzed below. The time proÐle f (t) of one case is shown in

(top left panel ; simulation A), for a Gaussian proÐleFigure 2
with a width of q\ 24.1 s. The resulting scalegram (Fig. 2,
top middle panel) exhibits a maximum slope with a power
law of for timescales that are shorter than thebmax\ 3.79,

FIG. 2.ÈEight numerical simulations (AÈH) of time proÐles f (t) (left panels), the computed wavelet scalegrams S(T ) (middle panels), and the inverted
timescale distribution functions N(T ) (right panels). The time proÐles contain also the noise templates (left panels). The scalegrams (middle panels, diamonds)
also contain the ““ noise scalegrams ÏÏ (thin solid lines) with the 3 p limit (dashed lines). The slope is measured at the steepest part of the scalegrams. Thebmaxinverted timescale distribution functions (right panels, histograms) are compared with the theoretical distribution functions (thick lines) used in the simulation
of f (t), with mean timescales and are compared with the inverted peak times (weighted over the hatched part of histogram).Tsim, Tpeak
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Gaussian duration, T \ q, and bends over to a slightly
negative slope b B[1 for timescales that are longer than
the Gaussian duration, T [ q. Therefore, the scalegram of
this single Gaussian proÐle reproduces closely the kernel
function p(T ) deÐned in Applying our trans-equation (16).
formation (eqs. and yields a peaked[20], [21], [22], [23])
distribution function N(T ) top right panel), with a(Fig. 2,
peak value at a timescale of T \ 16.3 s, and thus matches
the Gaussian width (q\ 24.1) to within a factor of 1.3. This
is acceptable, given the coarse resolution of scalegrams by
factors of 2. This test demonstrates the consistency of the
inversion procedure for a singular time structure. We per-
formed similar tests with triangular functions f (t) and found
an equally satisfactory inversion of triangle timescales.

Because peaks in timescale distributions N(T ) are often
asymmetric, we deÐne a weighted mean that includes also
the adjacent bins to the peak (labeled with index i

p
),

log2 (Tpeak) \
;

i/ip~1ip`1 N
i
log2 (T

i
)

;
i/ip~1ip`1 N

i
. (25)

This notion is especially important in the next examples.

3.2. Random Distributions of T ime Structures
Since wavelet analysis, unlike the Fourier Transform,

provides local power decomposition in time, the degree of
periodicity or randomness in the temporal arrangement of
repeated time structures should not a†ect much the shape of
a time-averaged scalegram. We expect therefore that the
scalegrams of periodic or random sequences of identical
Gaussian functions should be similar to that of a single
Gaussian function. Consequently, our transformation of
scalegrams into standard distribution functions N(T )
should also reveal the same d-function d(T [ q) as for a
single Gaussian function with duration q.

We test this prediction with three simulations, labeled
simulations B, C, and D in The time proÐles f (t) ofFigure 2.
these three cases were generated by superposition of 10, 102,
or 103 identical Gaussian proÐles with a duration of
q\ 24.1 s. The superposition of many structures leads to an
erratic time proÐle where many elementary Gaussian pro-
Ðles become unresolved. Despite of this confusion problem,
the typical shape of elementary time structures still domi-
nates the overall structure of the time proÐles f (t), and thus
the wavelet decomposition produces scalegrams that are
similar to that of a single Gaussian proÐle. Consequently,
also the inverted distribution N(T ) reveals the same time-
scale of the convolved Gaussian time structure. For the
three simulated cases, we retrieve the following values of the
peak in the timescale distribution : andTpeak \ 16.5, 17.1,
34.4 s, which are all within a factor of of the elemen-[1.4
tary Gaussian duration, q\ 24.1 s. We performed similar
tests with periodic sequences of Gaussian structures and
triangles. These tests conÐrm that elementary timescales
can be retrieved from time-averaged scalegrams, regardless
whether elementary time structures are fully or partially
resolved, and irrespective of their degree of periodicity or
randomness.

3.3. Multiscale Distributions
While we dealt with single-scale distributions in the pre-

vious simulations, we proceed now to the next level of com-
plexity by introducing a Ðnite width in the timescale
distribution N(T ). In four simulations shown in Figure 2

(simulations E, F, G, and H), we employ a Gaussian dis-
tribution of logarithmic timescales, with aN[log2 (T )]
logarithmic width of centered around the time-p

T
/q\ 2,

scales q\ 2~0.5`2*i, i \ 0, . . . , 3. The time proÐles f (t) are
generated by superimposing 200 Gaussian functions with
durations T deÐned by the Gaussian distribution function
N(T ). In the wavelet analysis, we now obtain Ñatter slopes
in the scalegrams, 2.27, 2.66, and 2.14, whichbmax\ 2.13,
are distinctly lower than those obtained for identical time-
scales in simulations AÈD) and thus indi-(bmax \ 3.79È3.85
cate broader distributions of timescales according to our
model of the convolution function The inverted(eq. [16]).
distributions N(T )inv of timescales have a width comparable
to the simulated Gaussian distribution N(T ). The inferred
timescales of the peaks in N(T ), 6.8, 15.7, andTpeak \ 1.1,
105.2 s, match the expected values of q\ 0.7, 2.8, 11.3, and
44.8 s to within a factor of B2È3, comparable with the
resolution of scalegrams. There is a bias toward longer
timescales in some inverted timescale distributions, prob-
ably because of the clustering e†ect of closely spaced struc-
tures, an ambiguity that cannot be circumvented without a
priori assumptions. From these and additional tests with
other distributions N(T ), we conclude that our inversion
procedure is capable of retrieving the peak timescale ofTpeakan arbitrary distribution N(T ) to within an accuracy of a
factor of in most cases.[ 2

3.4. Poisson Noise
The count rate of HXR photons obeys Poisson statistics.

If N counts are recorded with a time resolution *t, the
count rate is deÐned by C\ N/*t, and the expected 1 p
Ñuctuation in the count rate due to Poisson statistics is

p
N
(t) B JN(t) \ JC(t) *t (26)

in the approximation of N ? 1. For CGRO/BATSE, the
background is of order counts s~1 for theCbackgr B 3 ] 103
Ðrst DISCSC channel (25È50 keV), while maximum count
rates up to counts s~1 are registered beforeCmax [ 2 ] 105
instrumental saturation (pulse pile-up) occurs. For the high-
resolution data used here (*t \ 0.064 s), the Poisson noise
varies therefore between 7% for the weakest Ñares and 1%
for the strongest Ñares.

The Poisson noise can dominate the shortest timescales
in power spectra or in scalegrams S(T ) of wavelet analysis.
In order to evaluate the minimum timescale belowTminwhich Poisson noise dominates time structures, we also
compute for each analyzed Ñare time proÐle C(t) the scaleg-
rams of a corresponding Poisson noise template,

Cnoise(t) \ o(t)p
C
(t) \ o(t)

p
N
(t)

*t
\ o(t)

SC(t)
*t

, (27)

where o(t) represents a random number for each time bin
drawn from a Poissonian random distributiont

i
\ i *t,

with a standard deviation of From this noise tem-po\ 1.
plate we calculate the scalegrams Com-Cnoise(t), Pnoise(T ).
paring these ““ noise scalegrams ÏÏ with thePnoise(T )
scalegrams S(T ) of Ñare data, we consider signiÐcant only
those time structures that have timescales in which the sca-
legram exceeds the ““ noise scalegram ÏÏ by a factor of 3 p
(corresponding to a signal-to-noise ratio of [3), i.e.,

S(T [ Tmin)
Snoise(T [ Tmin)

º 3 , (28)
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deÐning a criterion for the minimum timescale aboveTmin,which time structures are signiÐcant. A similar technique
was used by et al. who subtracted the ““ noiseScargle (1993),
scalegram ÏÏ to obtain a ““ noise-corrected ÏÏ scalegram, i.e.,
Scorr(T )\ S(T ) [ Snoise(T ).

The inÑuence of Poisson noise on the range of signiÐcant
timescales in the scalegram S(T ) is illustrated inT [TminFor an arbitrary (smoothed) Ñare time proÐle withFigure 3.
a count rate of C\ 2 ] 105 counts s~1, we Ðnd a minimum
timescale of s top row). If we scale theTmin\ 0.99 (Fig. 3,
Ñux of the same time proÐle by factors of 0.1 and 0.01, the
minimum timescale increases to values of andTmin\ 2.07
4.74 s, respectively second and third rows). If we(Fig. 3,
generate pure Poisson noise (from a random generator), the
scalegram does not show any signiÐcant structure up to

s bottom row). The inverted timescaleTmin[ 38.93 (Fig. 3,
distribution N(T ) shows a peak for the shortest unresolved
structures T ¹ 0.128 s.

From the simulations in we see also that theFigure 3,
steepest slope of the scalegram systematically drops from a
value of at high count rates top row) tobmax\ 2.46 (Fig. 3,

at the Poisson noise level. The latter scalegrambmaxB 0.38
is consistent with a white noise spectrum or 1/f-noise pro-
cesses. To visualize the Poisson noise limit in scalegrams,
we display also the ““ noise scalegram ÏÏ in allPnoise(T )
Ðgures. In these scalegrams, it can clearly be seen that the
scalegram S(T ) of real data always shows a steeper slope for
signiÐcant timescales than the ““ noise scalegram ÏÏT [ TminNote that Ñatter slopes have also been observedPnoise(T ).
for the radio noise of the quiet Sun (b \ 1.37^ 0.59) and
the sky (b \ 1.03^ 0.96) in et al.Schwarz (1998).

4. WAVELET ANALYSIS OF OBSERVED DATA

4.1. Data Set
For our wavelet analysis of solar hard X-ray (HXR) data,

we require a high signal-to-noise ratio and a large dynamic

range of timescales. These criteria are best satisÐed with
data from the Burst and Transient Source Experiment
(BATSE) et al. on board the CGRO space-(Fishman 1989)
craft. The eight large-area detectors (LADs), with a collect-
ing area of 2000 cm2 each, are the most sensitive HXR
detectors ever Ñown and thus have (despite of the higher
background count rate) a higher signal-to-noise ratio than
other HXR detectors used for solar Ñare observations (e.g.,
Hinotori, SMM/HXRBS, or Yohkoh/HXT, with typical col-
lecting areas of B70 cm2). From the BATSE archive, we
select the DISCSC burst trigger data, which have a uniform
time resolution of 64 ms over a duration of 4 minutes and
thus provide a dynamic range of Tmax/Tmin\ 241.664
s/0.064 s \ 3776 B 212 for timescale analysis. We restrict
our wavelet analysis to the lowest of the 4 DISCSC energy
channels, 25È50 keV, which has the most counts per
channel. The DISCSC data set contains 647 (analyzable)
solar Ñare events during the years 1991È1995. We analyze
the full data set in order to obtain representative results.

4.2. Example of an Analyzed Flare
As an example, we show a two-dimensional scalogram

P(T , t) for the most prominent Ñare of our data set, the
Masuda Ñare on 1992 January 13, 1727 UT This(Fig. 4).
Ñare is known for the discovery of above-the-loop-top HXR
sources and has been extensively analyzed(Masuda 1994)
(Masuda et al. et al.1994, 1995 ; Takakura 1993 ; Hudson

& Ryan et al.1994 ; Hudson 1995 ; Wang 1995 ; Doschek,
Strong, & Tsuneta & Melrose1995 ; Wheatland 1995 ;
Tsuneta et al. et al.1995, 1996 ; Shibata 1995 ; Aschwanden

& Metcalf The HXR time proÐle of1996a ; Alexander 1997).
the 25È50 keV HXR Ñux is shown along with the noise
template in the top panel of The two-(eq. [27]) Figure 4.
dimensional scalogram P(T , t) is shown in the middle panel
of in which the gray scale renders the logarithmicFigure 4,
power of the 11 timescales between 0.128 s and 131.072 s as

FIG. 3.È(Slightly averaged) time proÐle (top row) taken from the Ñare 1991 May 31, 1653 :15 UT, is scaled down by factors of 0.1 (second row) and 0.01
(third row), with adjusted Poisson noise, to demonstrate the increase of the minimum signiÐcant timescale (indicated at bottom of scalegrams in middleTminpanels). The time proÐle in the bottom row shows pure Poisson noise, for which no signiÐcant timescale is found up to s with the 3 p signiÐcanceTmin [ 39
criterion (eq. [28]).
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FIG. 4.ÈTime proÐle (top panel), scalogram P(T , t) (middle panel with gray scale), time-averaged scalegrams S(T ) (third row), and inverted timescale
distribution functions N(T ) (fourth row) for the Masuda Ñare, 1992 January 13, 1727 :42 UT, observed with BATSE/CGRO.

function of time. We show time-averaged scalegrams for
three subsequent time intervals (2È90 s, 90È130 s, and 130È
240 s), and for the total Ñare interval (2È240 s) in the third
row of Note that the maximum slope of the scaleg-Figure 4.
ram is high during the impulsive phase (bmax\ 1.25È3.20),
but drops to the white-noise level after the Ñare (bmax[ 0).
Averaging the entire Ñare yields still a value (bmax\ 2.77)
that is typical for the most impulsive part, because the quiet
interval after the Ñare has only a negligible contribution in
the averaging of power coefficients. The selection of the
analyzed time interval is therefore not critical, because the
average is always dominated by the most structure-rich epi-
sodes. Investigating the shortest signiÐcant time structures,

we Ðnd that the minimum timescales vary from Tmin\ 1.36
s during the weakly modulated Ñare peak (t \ 2È90 s) to

s during the stronger modulated decay phaseTmin\ 0.77
(t \ 90È130 s) and indicate no structures up to sTmin[ 131
after the Ñare (t \ 130È240 s). The inverted timescale dis-
tributions N(T )inv bottom row) show during the main(Fig. 4,
Ñare peak (t \ 2È90 s) the most dominant structure at

s and a secondary dominant structure atTpeak\ 57.4
s. The latter timescale, s, becomesTpeak\ 4.2 Tpeak\ 4.2

dominant in the decay phase (t \ 90È130 s), revealing a
broad distribution N(T ) of timescales, extending over an
approximate range of s. This example demon-1 [ T [ 32
strates that the distribution function of physical timescales
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N(T ) is clearly peaked, a characteristic that is not imme-
diately evident from the scalegram S(T ).

4.3. Examples of Strong Impulsive Flares
In we show eight examples of strong Ñares withFigure 5,

count rates of counts s~1, which have an excellentCZ 105
signal-to-noise ratio and should thus reveal the timescales
of the shortest detected time structures. These eight events
represent the largest CGRO Ñares (recorded with high time
resolution) that have been simultaneously observed with
Yohkoh ; they are also analyzed in et al.Aschwanden (1996c,
and references therein). The scalegrams of these eight Ñares
all exhibit high values for the maximum slope, bmax\1.53È2.87 middle column). Short dominant timescales(Fig. 5,
of are found in four Ñares, while the longerTpeak\ 1.0È6.1
dominant timescales in the range s are typicalTpeakB 20È90

for the duration of the Ñare or the main peak. However,
signiÐcant time structures are found down to Tmin\
0.128È0.58 s for these eight Ñares. It is interesting to note
that the autocorrelation width of Ðltered pulses analyzed in

et al. has intermediate valuesAschwanden (1996b) wAC\
0.4È1.6 s, between the fastest signiÐcant and dominant(Tmin)time structures identiÐed here.(Tpeak)An exceptional case among these eight Ñares is the last
one (1992 February 14, 2306 UT), which shows no domi-
nant time structure up to s. The time proÐleTpeak\ 76
shows almost no modulation depth. A deconvolution of this
time proÐle into a directly and trap-precipitating com-
ponent revealed an unusually high trapping ratio of

(Table 1 inqTrap\ (1 [ qprec)\ 0.8^ 0.1 Aschwanden,
Schwartz, & Dennis Because trapping represents a1998b).
convolution of the electron injection proÐle pulses with a

FIG. 5.ÈTime proÐles (left panels), scalegrams (middle panels), and inverted timescale distribution functions N(T ) (right panels) for the eight strongest Ñares
simultaneously observed with CGRO and Yohkoh et al. Representation similar to(Aschwanden 1996c). Fig. 2.
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usually longer trapping timescale, the high trapping effi-
ciency measured for this particular Ñare explains the lack of
fast time structures, and thus the lack of a dominant short
timescale. Consequently, because of the occasionally sub-
stantial contamination by trapped particles, information on
intrinsic timescales of electron injection or acceleration pro-
cesses can be heavily masked in the signal f (t), and hence
also in the scalegrams S(T ) and the inverted distribution
functions N(T ).

4.4. Examples of Smoothly Varying Flares
The occasional lack of detected Ðne structure is most

evident in a subset of Ñares (See that was selected byFig. 6)
the criterion of large energy-dependent time delays for high-
energy electrons. This subset of Ðve Ñares, where the largest
negative delays were measured, i.e., keVq\ t25 keV [ t50\[2.3, . . . , [7.6 s, is also analyzed in Figures 7 and 8 of

& Schwartz Because these time delaysAschwanden (1995).
were found to be consistent with the energy-dependent
timing of trapped electrons in terms of collisional deÑection
times these Ñares were interpreted in[tDefl P (E)E3@2/n

e
],

terms of high trapping efficiencies & Schwartz(Aschwanden
Because of the relatively long trapping times (B2È71995).

s), all shorter time structures of the injection function are
smoothed out, leading to a smoothly varying time proÐle
for the observed HXRs. Consistent with this interpretation,
we Ðnd minimum timescales of s from theTmin\ 2.35È5.81
scalegrams with our wavelet analysis, indicating that there
are no shorter time structures present in the data, although
the count rate is sufficiently high to allow for detection of
subsecond structures at fairly low modulation depths (say

see These examples clearly demonstrate thatZ3%; Fig. 7).

the shortest detected time structures are sometimesTminrelated to physical processes rather than to the signiÐcance
limit of Poisson noise, as is usually the case for weak Ñares.

4.5. T he Shortest SigniÐcant T ime Structures
The timescale diagnostics of wavelet analysis extends

down to a limit of twice the data time resolution, here
T º 2 ] *t \ 0.128 s, because the smallest resolved struc-
tures extend over two sampling intervals. On the other side,
the Poisson noise of the HXR photon count statistics
imposes Ñuctuations during a timep

N
\ (CT )1@2 (eq. [26])

interval T . Considering a Ðne structure with count rate
which we characterize with a modulation depth q \C

q
,

with respect to the ““ local background ÏÏ count(C
q
[ C)/C

rate C, the signiÐcance in units of the rms noise isnp

np\ N
q

p
N

\ (C
q
[ C)T

JCT
\ qJCT . (29)

From this criterion we can specify the shortest signiÐcant
timescale with a signiÐcance of (e.g., as func-Tsign np np [ 3)
tion of the count rate C and modulation depth q :

Tsign \
Anp

q
B2 1

C
. (30)

These shortest signiÐcant timescales are shown inTsign(left panel, dashed lines) as function of the countFigure 7
rate C, for and di†erent modulation depths q \ 0.1,np º 3
0.03, and 0.01.

On the other hand, we measured the minimum signiÐcant
timescales of 647 solar Ñares from the ““ noiseTmin

FIG. 6.ÈTime proÐles (left panels), scalegrams (middle panels), and inverted timescale distribution functions N(T ) (right panels) for Ðve smoothly varying
Ñares with the largest observed trap delays & Schwartz Representation similar to(Aschwanden 1995). Fig. 5.
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FIG. 7.ÈScatter plot of the minimum timescale vs. the peak count rate C (left panel), and of the maximum (scalegram) power-law slope vs. peakTmin bmaxcount rate C (right panel), measured from 647 CGRO Ñares. The 3 p signiÐcance limits for three di†erent modulations depths (q \ 0.01, 0.03, and 0.1) as
deÐned in are indicated with dashed lines (left panel).eq. (30)

scalegrams ÏÏ with criterion (as illus-Pnoise(T ) equation (28)
trated in These observed minimum timescales areFig. 3).
plotted with cross symbols in (left panel). The theo-Figure 7
retical curves shown inTsign(C, q \ const, np\ 3) (eq. [30])

yield a lower limit of the modulation depth q for aFigure 7
structure to be detected at a signiÐcant level. The lack of
detected signiÐcant structures on timescales T (C) \Tmin(C)
in our scalegrams is, however, not always caused by
Poisson noise but could also indicate the absence of physi-
cal processes on such short timescales as T \Tmin.

4.6. Distribution of Minimum and Peak T imescales
From our wavelet analysis, we determined two kinds of

timescales for each of the 647 Ñares : (1) the minimum time-
scale which represents the shortest signiÐcant detectedTmin,time structures, and (2) the peak times of the invertedTpeakdistribution function N(T ). In the case of multiple peak
timescales we refer to only the shorter one in theTpeak,following. The distributions and a scatter plot of the two
timescales and are shown in Both dis-Tmin Tpeak Figure 8.
tributions of timescales extend down to the waveletTpeakresolution *T \ 0.128 s. The distribution of peak times

can be characterized with a power lawTpeak N(Tpeak) Pover a limited range, s, or with anT peak~0.73 8s ¹ Tpeak¹ 64
exponential distribution s) overN(Tpeak) P exp ([T /34.6
a larger range, at least 0.5È64 s bottom panel). The(Fig. 8,
distribution of minimum timescales has much lowerTminvalues and can be characterized with an approximate
power law of in a limited range, 0.5 s \N(Tmin) PT min~0.70

s, or with an exponential distributionTmin\ 4 N(Tpeak) Pexp ([T /2.8s) over a larger range middle panel). In(Fig. 8,
comparison, the distribution of 5430 pulse durations meas-
ured in et al. was characterized withAschwanden (1995b)
an exponential distribution s), overN(T

P
) P exp ([T

P
/0.44

a similar timescale range (0.3 s). There is nos \ T
P
\ 2

obvious correlation between the two timescales andTmin(see top panel). The range of timescalesTpeak Fig. 8, Tmin\
represents for each Ñare a continuous distributionT \Tpeakof detected timescales, with a concentration of the spectral

power at the timescale Tpeak.

4.7. Slope of Scalegrams
Because the power-law slope b of scalegrams(eq. [24])

S(T ) was used in earlier work to characterize the scaling
behavior in di†erent events, we show this quantity for all
647 analyzed Ñares in (right panel), as function ofFigure 7
the count rate C. Because this slope varies as function of the
timescale T , we show the maximum values which tendbmax,to arise at the smallest scales above the noise limit Tmin.From we note several properties : (1) the slopeFigure 7 bmaxis always steeper than the slope expected for white noise

(2) but never exceeds the theoretically predicted(b Z[1)
upper limit of b ¹ 4, and (3) the slope is steepest (bmaxB1.5È3.2) for strong Ñares counts s~1) and (4) picks(CZ 105
up systematically lower values for weaker(bmaxB 0.0È2.5)
Ñares counts s~1). The latter e†ect is clearly pro-(C[ 104
duced by the increased Poisson noise contamination at
shorter timescales for weak Ñares. Consequently, we should
concentrate on the strongest Ñares to investigate the inher-
ent distribution of physical timescales.

The scalegram slopes of the strongest HXR Ñares, bmax B
1.5È3.2, are found to be compatible with those reported for
solar radio bursts at millimeter wavelengths, with b B 2.2È
2.7 during the main Ñare phase. The latter were brought
into context with the physical process of fractional Brown-
ian motion, which was realized with a scalegram slope of
b \ 2.25 et al.(Schwarz 1998).

4.8. Minimum T imescales and Flare L oop Sizes
For a subset of 46 events of the 647 analyzed CGRO

Ñares, the Ñare loop geometry was determined from images
of the Yohkoh Soft X-Ray Telescope (SXT) and Hard X-Ray
Telescope (HXT) in a study by et al.Aschwanden (1996b).
The curvature radii r of the Ñare loops were measured from
the footpoint separation of the magnetically conjugate
HXR footpoint sources, after loop identiÐcation with SXT
and correction for geometric projection e†ects. This sample
of Ñare loops was found to have radii in the range
r \ 3,000È25,000 km, and a scaling law between the loop
half-length s \ r(n/2) and the electron time-of-Ñight dis-
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FIG. 8.ÈDistribution of peak timescales (bottom panel) andN(Tpeak)minimum timescales (middle panel), and scatter plot of the twoN(Tmin)timescales (top panel). Note that there is no correlation between the two
timescales.

tance was discovered : i.e.,lTOF lTOF/s \ 1.4^ 0.3
et al.(Aschwanden 1996b).

We show a scatter plot of the Ñare loop radii r, deter-
mined by spatial images from Yohkoh, and the minimum
timescales measured with our wavelet analysis fromTmin,CGRO data for this subset of 46 Ñares in (leftFigure 9
panel). The minimum timescales are bound by a lowerTminlimit of 0.128 s because of the wavelet resolution and are
distributed mostly in the range s. InTminB 0.1È0.7 Figure 9
we mark each of the 46 Ñares with a symbol whose magni-
tude is proportional to the (logarithmic) peak count rate of
the Ñare. The scatter plot in (left panel) reveals aFigure 9
systematic correlation between the shortest detected time-
scales and the Ñare loop size r. The functional relationTminis approximately linear, with a ratio that has the following
mean and standard deviation for the range s,Tmin\ 0.9

Tmin\ 0.49^ 0.28
A r
109 cm

B
s . (31)

This relation seems not to be a†ected by sensitivity limi-
tations due to Poisson noise, because the peak count rate C
is not correlated with the loop size r. Only large values of
the minimum timescale s are more likely toTminZ 0.9
belong to weaker Ñares, where Poisson noise probably
a†ects the shortest detected signiÐcant timescales (see also
Fig. 7).

4.9. Minimum T imescales and Flare L oop Densities
For the same subset of Ñares we correlate the minimum

timescale with the electron density determined in 34Tmin n
e
,

Ñares from the collisional deÑection time tDefl P (E)E3@2/n
ethat was Ðtted to energy-dependent time delays of the HXR

trap component et al. These electron(Aschwanden 1996b).
densities were found in a range cm~3.n

e
B 1010È2 ] 1012

High densities cm~3 may have a systematicn
e
Z 1012

uncertainty toward too high values, because they are based
on the separation of two small but competing delays.
However, the lower density values cm~3 haven

e
[ 1011

relatively small uncertainties (see et al.Aschwanden 1996b).
The minimum timescales detected in wavelet scale-Tmingrams here are found to be systematically longer for low

electron densities than for high densities right panel)(Fig. 9,
and thus appear to be correlated with the electron density
in a reciprocal way. This trend is most pronounced for the
smallest minimum timescales detected at eachTmin(ne

)
density forming a sharp cuto†. This sharp cuto† appliesn

e
,

to Ñares with medium to high peak count rates (large
symbols in right panel) and is thus not a†ected byFig. 9,
Poisson noise. In we discuss how this cuto† relates to° 5
collisional timescales.

5. DISCUSSION

The wavelet analysis has revealed two di†erent time-
scales, the minimum timescale and the peak timescaleTminIn the following we discuss the possible meaning ofTpeak.these timescales in terms of some physical parameters that
are likely to play roles in the Ñare process.

5.1. T he Spatio-Temporal Correlation
The main result of this study is the discovery of the two

correlations and for the minimum timescaleTmin(r) Tmin(ne
)

found in wavelet scalegrams. The correlation between these
three physical parameters was obtained from two com-
pletely independent data sets. While the minimum timescale

was measured from CGRO time proÐles, and the elec-Tmintron density from energy-dependent time delays inn
eCGRO dynamic spectra, the Ñare loop (curvature) radii r

have been measured from Yohkoh/HXT and SXT images.
The parameters r and however, are largely uncorrelated,n

e
,

and therefore appear to be independent. It is not clear how
the two correlations and can be combinedTmin(r) Tmin(ne)into a single functional relation without applyingTmin(r, n

e
)

a speciÐc physical Ñare model.
The correlation indicates an approximately con-TminP r

stant ratio between a spatial and temporal scale, which has
the physical dimension of a velocity. The proportionality
constant could therefore be related to a characteristic veloc-
ity that does not depend on the size of the Ñare loop, e.g., (1)
the speed of light c, (2) a particle propagation speed (3)v

p
,

an Alfve� nic propagation speed or (4) a shock wave pro-vA,
pagation speed. If the timescale corresponds to a pro-Tminpagation time over a distance l with an approximatelyTpropconstant velocity v, this distance l \ qr has necessarily to
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FIG. 9.ÈCorrelation of the minimum timescale with the Ñare loop radius r (left panel) and trap electron density (right panel) for a subset of 46 ÑaresTmin n
esimultaneously observed with CGRO and Yohkoh et al. The symbol size of the data points is proportional to the logarithm of the count(Aschwanden 1996b).

rate. The mean ratio is indicated (left panel, solid line), and collisional timescales for 25 keV electrons are shown (right panel, dashed and dottedTmin/r (eq. [31])
lines).

scale with the Ñare loop size r, in order to be consistent with
the correlation TminP r,

Tprop \ l
v
\ qr

v
. (32)

For a given velocity v, we then obtain the relative size
q \ l/r of the propagation distance l (in units of Ñare loop
radii r) from our correlation by setting(eq. [31]) Tprop \

i.e.,Tmin,

q \ v
Tprop

r
\ v

Tmin
r

B 0.5
A v
109 cm s~1

B
. (33)

1. Electromagnetic Propagation.ÈIt is unlikely that Tminis associated with a light travel speed v\ c\ 3 ] 1010 cm
s~1 because the required propagation distances would be a
factor of q \ 0.5(c/109 cm s~1) \ 15 times larger than the
Ñare loops.

2. Particle Propagation.ÈElectron propagation dis-
tances also seem to be too large. If we consider 25È50 keV
electrons which contribute most to the(v

e
\ 0.3È0.4c),

observed º25 keV HXR emission to which the wavelet
analysis is applied, we obtain a distance ratio that is q \
l/r \ 4.5È6 times larger than the Ñare loop radius. For com-
parison, the average electron time-of-Ñight distance was
inferred to be a factor of 2È3 smaller from the analysis of
HXR pulse delays, namely lTOF/r \ (n/2)\1.4^ 0.3\ 2.2

et al.^ 0.5 (Aschwanden 1996b).
Propagation.ÈIf we consider the propaga-3. Alfve� nic

tion time of an Alfve� nic disturbance (with velocity vA)
through a spatial structure with size l\ qr, we obtain from
the deÐnition of the Alfve� n velocity vA \ 2.18 ] 106B
[G]/(n

e
[cm~3])1@2,

q \ 0.5
A vA
109 cm s~1

B
\ 0.034

A B
100 G

BA n
e

1011 cm~3
B~1@2

.

(34)

Such small spatial scales of only B3% of the Ñare loop
radius, which correspond to distances of l \ 75È750 km in

our sample of Ñares (with r \ 2.5È25 Mm), could possibly
be associated with the sizes of elementary acceleration cells.
Subsecond timescales observed in HXRsTminB 0.1È0.7
have traditionally been associated with elementary spatial
cells of a fragmented energy release region (see, e.g.,

et al. et al.Kiplinger 1983a ; Emslie 1983 ; Machado 1993 ;
& MooreLaRosa 1993).

4. Shock Propagation.ÈSince the speeds of shocks are
comparable with Alfve� nic speeds, with some variation by
the Mach number depending on the subsonic or supersonic
regime, similar small spatial scales of l B 102È103 km would
result as determined above for Alfve� nic disturbances.
Recent models on particle acceleration in shocks produced
by reconnection outÑows can be found, e.g., in &Somov
Kosugi and & Naito(1997) Tsuneta (1998).

5.2. T he Density-Temporal Correlation
A likely cause of the density-temporal relation TminP n

e
~1

is a collisional process, because the collisional loss or deÑec-
tion time has the same reciprocal relation to the electron
density of the ambient plasma. Comparing the collisional
deÑection time (see, e.g., Trubnikov 1965 ; Spitzer 1967 ;
Schmidt 1979 ; Benz 1993),

TDefl(ne)\ 0.95] 108
AEkeV3@2

n
e

BA 20
ln "
B

s , (35)

where ln " is the Coulomb logarithm,

ln "\ ln [8.0] 106(T
e
n
e
~1@2)] , T

e
[ 4.2] 105 K , (36)

we Ðnd for 25 keV electrons an approximate relation (Fig. 9,
right panel, dashed curve),

TDefl(ne
, E\ 25 keV)B 0.12

A n
e

1011 cm~3
B~1

s~1 , (37)

that coincides closely with the lower cuto† function of the
values found from our wavelet analysis rightTmin(ne

) (Fig. 9,
panel, squares).

Comparing the same data with the collisional energy loss
time which is deÐned by (see, e.g.,TLoss, Trubnikov 1965 ;
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Spitzer 1967)

TLoss\ 2TDefl , (38)

we Ðnd that most of the minimum wavelet timescales Tminstill last longer than the collisional loss time TLoss (Fig. 9,
right panel, dotted line). This observational result implies
therefore that the HXR time structures are not produced by
the energy loss mechanism itself, which would ““ erase ÏÏ all
time structures longer than the energy loss time It isTLoss.therefore likely that the HXR time structures are gener-Tminated by a modulation mechanism of the acceleration or
injection process in a low-density region in the upper
corona where the collisional deÑection or loss time is longer
then the density values measured here, supposedly apply-n

eing to the loss-cone site where electrons precipitate out of
trap regions in Ñare loops. This result indicates that the
acceleration and injection occurs in a low-density region
above Ñare loops, as was also demonstrated by density
comparisons of bidirectional (type III]RS) electron beams
versus SXR-bright Ñare loops, where underdensity ratios of

were inferred for the acceleration siten
e
acc/n

e
SXR \ 0.005È0.13

& Benz(Aschwanden 1997).

5.3. T he Peak T imescales Tpeak
The wavelet scalegrams exhibit power in a continuous

range of timescales between the minimum sTminB 0.1È0.7
and the peak value s. The peak valueTpeak B 0.5È128 Tpeakseems, therefore, to represent an upper cuto† value of a
hierarchical range of physical timescales that all play a role
in the Ñare process. The upper cuto† value is likely toTpeakbe controlled by a macroscopic timescale that encompasses
the largest coherently modulated volume of the energy
release process (e.g., during a magnetic reconnection or a
loop-loop interaction process). The fact that we did not Ðnd
a correlation between the peak time and the Ñare loopTpeaksize r, together with the fact that we found up to three
dominant peak timescales per Ñare, indicates some degree
of complexity that a Ñare is probably made of a super-
position of multiple subprocesses.

An interesting idea comes from turbulence theory, in
which energy is supplied at the largest spatial scales (and
thus largest timescales), which cascades without dissipation
over some inertial range down to smaller scales, where it is
Ðnally dissipated through viscosity at the smallest scales. It
is tempting to apply this turbulence theory to the coronal
Ñare plasma. The upper cuto† or peak timescales Tpeakcould thus be attributed to the macroscopic size of the Ñare
energy release site, where magnetic energy is supplied in
form of long-wavelength Alfve� nic waves, which is then
redistributed via an MHD-turbulent cascade to smaller
scales without signiÐcant dissipation but is Ðnally dissi-
pated at elementary cells where resistivity is sufficiently
high. Such a model has been proposed by & MooreLaRosa

In their scenario, the primary energy source is sup-(1993).
plied from magnetic reconnection outÑows, which become
unstable and turbulent because of the shear viscosity of the
plasma, so that the kinetic energy is dissipated in a turbu-
lent cascade. & Moore estimate sizes ofLaRosa (1993)
B100È1000 km for the largest turbulent eddies and time-
scales of B0.3 s for the resulting HXR spikes, which corre-
spond to our observed minimum timescales of TminB
0.1È0.7 s. Moore, & Shore suggest that elec-LaRosa, (1994)
trons are also trapped in the large-scale turbulent eddies for
about 0.3 s, during which they get accelerated. This trap-

ping mechanism in elementary acceleration cells can
explain our observed cuto† of the acceleration time as func-
tion of electron density. In summary, an attractive feature of
the MHD-turbulent cascade model is the prediction of an
inertial range of dissipation timescales, whose power spec-
trum scales with the wavenumber and can be related to the
power-law range in our wavelet scalegrams.[Tmin, Tpeak]Considering energy release in large-scale current sheets as
a possible alternative, we note that the obtained size of
acceleration cells r B 75È750 km is of the order of the mean
free path of the coronal background plasma, kmjmfpB 75
(at a temperature of 107 K and a density of 1011 cm~3). The
mean free path is just the lower size limit of magnetic island
structures that form in metastable current sheets under the
action of localized anomalous resistivity, i.e., at the onset of
rapid dissipation & Kliem(Kliem 1995 ; Schumacher 1996).
The emerging Ðlamentary current sheet passes through
intense dynamical phases of multiple island coalescence and
acceleration of the resulting plasmoids, known as the impul-
sive bursty mode of reconnection Substantial(Priest 1985).
electric Ðelds are induced during these processes, which also
accelerate particles efficiently in subsecond time intervals

Brunel, & Sakai & de(Tajima, 1982 ; Kliem 1994 ; Sakai
Jager & Kliem Intermediate time-1996 ; Schumacher 1996).
scales are associated with the plasmoids formed by multiple
island coalescence in such dynamic current sheets. Hence,
these are also consistent with the excitation of a broad
range of timescales, as is apparent in the obtained distribu-
tions N(T ).

In a Ñare scenario proposed by & KosugiSomov (1997),
a collapsing trap is produced by the downward moving
reconnection outÑow, which slams into the fast oblique col-
lisionless shock located above the SXR-emitting Ñare loop.
Electrons are energized by Ðrst-order Fermi acceleration in
the collapsing trap. This scenario is also largely consistent
with our observed correlations, because the acceleration
time is proportional to the spatial size of the collapsing trap
in the cusp region and the scattering time out of(TminP r)
the collapsing trap is related to a collisional timescale. The
lifetime of a collapsing trap, which is estimated to B10 s by

& Kosugi may correspond to the dominantSomov (1997),
peak time s detected in our wavelet scaleg-TpeakB 0.5È128
rams.

Besides the maximum timescales of the elementary dissi-
pation processes, some secondary processes can produce a
convolution of the elementary timescales and thus lead to
large values in our inverted timescale distributionsTpeakN(T ). A well-known secondary process is magnetic trapping
of accelerated electrons in the Ñare loop. The examples
described in all exhibit large time delays° 4.4 (Fig. 6)
(q \ [2.3, . . . , [7.6) for high-energy electrons and are
thus consistent with collisional trapping times. For these
cases, we found a complete lack of fast Ðne structure up to
timescales of . . . , 5.8 s. The corresponding peakTmin[ 2.3,
timescales s (in the cases of are there-Tpeak\ 31È108 Fig. 6)
fore dominated by the convolution with trapping times.

5.4. Radio Counterparts of Fast HXR T ime Structures Tmin
There are very few other observations that provide

potential diagnostics on elementary time and spatial scales
in the energy release region of solar Ñares. The probably
best evidence for elementary scales in fragmented energy
release sites comes from dynamic spectra of decimetric
millisecond spikes which show clusters of(Benz 1985),
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elements that correlate in their temporal evolution[104
closely with HXRs & Gu� del From the(Aschwanden 1992).
frequency bandwidth (*l/lB 1%) of individual spikes,

estimated elementary source sizes of *h B 200Benz (1986)
km, which match well our estimated range, racc B 75È750
km. Moreover, the electron density range n

e
B 109È1012

cm~3 & Benz estimated from the plasma fre-(Gu� del 1990)
quency of decimetric millisecond spikes agrees well with our
density range cm~3 determined from then

e
B 1010È1012

energy-dependent delays of the HXR trap component
et al. From highÈtime resolution obser-(Aschwanden 1997).

vations (down to 0.5 ms), & Benz measuredGu� del (1990)
the detailed time proÐles of individual spikes and found
durations of s and an exponential decayTradioB 0.02È0.10
proÐle that correlated with the frequency, i.e., T radiodecayP
l~1, and was thus interpreted in terms of collisional
damping, assuming that the observed frequency is in some
relation to the plasma frequency, These radiolBl

p
(n

e
).

results bear a remarkable similarity with the Ðndings from
our HXR wavelet analysis. Both the decimetric milli-
second spikes and the shortest detected HXR pulses have
similar durations s for HXR spikes), they are(TminB 0.1È0.7
detected at similar electron densities, they show a detailed
coevolution, and both have decay times that scale recipro-
cally with the electron density and thus are likely to be
attributed to collisional processes. The mutual agreement in
all parameters strongly suggests that both the radio and
HXR phenomena are associated with the same elementary
acceleration processes. We can now exploit complementary
information. Decimetric ms spikes appear in clusters of [

per major HXR peak (T B 10È102 s), occurring103È104
with rates of B5È100 s~1. This might reveal the true degree
of spatial fragmentation. A di†erence is that the radio
spikes, despite their close coevolution with HXRs, exhibit a
systematic delay of 2È5 s & Gu� del(Aschwanden 1992).
However, this delay can be accounted for if the energy of the
radio-producing electrons (say B100 keV) is higher than
the º25 keV HXR-producing electrons and thus can be
explained in terms of trapping time di†erences. The global
organization of spike clusters was also investigated by
means of symbolic dynamics methods et al.(Schwarz 1993),
from which it was concluded that the clustered radio spikes
do not represent an ensemble of independently Ñashing
sources but rather are organized by cascades, an interpreta-
tion that ties in with the MHD-turbulent cascade model of

& MooreLaRosa (1993).
If we use the observed rate (&B 5È102 s~1) of decimetric

millisecond spikes as a measure of the spatial fragmentation
of the primary energy release site, which is not too di†erent
from the burst rates found in type IIIÈrich Ñares (e.g., B10
s~1 in the 1980 June 27 Ñare ; et al. andAschwanden 1990),
if we associate the minimum timescale as a character-Tministic acceleration time, we can estimate the total number of
electrons accelerated in such elementary cells (with a spatial
scale of l\ qr),

dNacc
dt

\ An
e
dV

Tmin
\An

e
; (qr)3
Tmin

, (39)

where A denotes the efficiency of the acceleration process.
According to the inferred scaling law for Alfve� nic waves
(q B 0.034 ; we Ðnd for typical parameters,eq. [34]),

dNacc
dt

\ 4 ] 1036A
A n

e
1011 cm~3

BA ;
100
B

]
A r
109 cm

B3ATmin
0.1 s

B~1
electrons s~1 , (40)

This inferred rate of accelerated electrons dNacc/dt [

4 ] 1036 s~1 is able to supply the required number of non-
thermal º25 keV electrons up to the largest observed Ñares
(see, e.g., et al.Kane 1983).

6. CONCLUSIONS

We performed for the Ðrst time a wavelet analysis of
HXR data from solar Ñares, using highÈtime resolution data
(64 ms) from BATSE/CGRO recorded during 647 Ñare
events (1991È1995). We used a wavelet code with triangular
wavelets and developed a transformation to convert the
obtained scalegrams S(T ) into standard distribution func-
tions N(T ) of timescales, which have a more direct physical
meaning than scalegrams. We performed numerical simula-
tions of time series with single, multiple, periodic, randomly
distributed, and multiscale Gaussian time structures, and
demonstrated that dominant timescales can beTpeakretrieved with an accuracy of B2 with our scalegram inver-
sion method. We established a signiÐcance criterion based
on Poisson noise that allows us to quantify the minimum
signiÐcant timescale detected in a wavelet scalegram.TminApplying this wavelet analysis to 647 solar Ñares we Ðnd the
following results :

1. The detected minimum timescales cover a veryTminbroad time range from the wavelet resolution (128 ms) up to
a maximum of B102 s. In strong Ñares (with high count
rates), the shortest detectable timescales are found in the
range s. In smoothly varying HXR time pro-TminB 0.1È0.7
Ðles, which are produced in Ñares with high trapping effi-
ciency, the shortest detected timescales are found in the
range s, most likely produced by convolutionTminB 0.5È5
with trapping timescales. In weak Ñares, the shortest
detected timescales are found to be arbitrarily longer, obvi-
ously a†ected by Poisson noise.

2. The dominant timescales that produce a peak inTpeakthe timescale distribution N(T ) are found to cover a broad
range, B0.5È102 s, in di†erent Ñares. The peak timescale

is not correlated with the minimum timescaleTpeak Tmin.The scalegrams show a continuous distribution of time-
scales over the range with typical power-law[Tmin, Tpeak],slopes of (for strong Ñares), which are com-bmaxB 1.5È3.2
patible with those found for radio bursts in millimeter
wavelengths (b B 2.2È2.7 ; et al.Schwarz 1998).

3. Correlating the minimum timescale with theTminspatial size r of Ñare loops from Yohkoh data, we Ðnd a
functional dependence Interpreting the timescaleTmin(r) P r.

in terms of an Alfve� nic propagation time across anTminelementary acceleration cell, we obtain sizes of racc B
75È750 km, which scale with the Ñare loop size r, (racc/r B
3%). These spatial scales of elementary acceleration cells
agree with those inferred from the frequency bandwidth of
decimetric millisecond spikes.

4. The minimum timescale as function of theTmin(ne)electron density exhibits a cuto† that coincides roughlyn
ewith the collisional deÑection time for º25 keVTDefl(ne

)
electrons at the loss-cone site of Ñare loops.

While this study represents only a Ðrst step in the explo-
ration of wavelet analysis applied to solar Ñare HXR emis-
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sion, a lot of tasks are left for future work. One aspect that
has not been addressed in our wavelet analysis is the sta-
tionarity. In principle, the Ñare processes manifested during
the 4 minute intervals analyzed here could be nonstationary
and intermittent, requiring a subdivision into stationary
intervals & Kurths & Schwarz(Isliker 1993 ; Kurths 1994 ;

& Benz A more detailed modeling is necessaryIsliker 1994).
to interpret our Ðndings. The identiÐcation of stationary
intervals might provide more accurate scalegrams and
inverted timescale distributions N(T ). Also, a detailed theo-
retical study on scalegram properties as function of elemen-
tary time proÐles is the subject of a subsequent study (Kliem
et al. 1998).
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