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ABSTRACT
We present a new method designed for optimal subtraction of two images with di†erent seeing. Using

image subtraction appears to be essential for full analysis of microlensing survey images ; however, a
perfect subtraction of two images is not easy, as it requires the derivation of an extremely accurate con-
volution kernel. Some empirical attempts to Ðnd the kernel have used a Fourier transform of bright
stars, but solving the statistical problem of Ðnding the best kernel solution has never really been tackled.
We demonstrate that it is possible to derive an optimal kernel solution from a simple least-squares
analysis using all the pixels of both images, and we also show that it is possible to Ðt the di†erential
background variation at the same time. We show that point-spread function (PSF) variations can be
easily handled by the method. To demonstrate the practical efficiency of the method, we analyzed some
images from a Galactic Bulge Ðeld monitored by the OGLE II project. We Ðnd that the residuals in the
subtracted images are very close to the photon noise expectations. We also present some light curves of
variable stars and show that despite high crowding levels, we get an error distribution close to that
expected from photon noise alone. We thus demonstrate that nearly optimal di†erential photometry can
be achieved even in very crowded Ðelds. We suggest that this algorithm might be particularly important
for microlensing surveys, where the photometric accuracy and completeness levels could be very signiÐ-
cantly improved by using this method.
Subject headings : methods : data analysis È methods : statistical È techniques : image processing

1. INTRODUCTION

The search for microlensing events toward the LMC
(with MACHO et al. and EROS[Alcock 1993] [Aubourg
et al. the Galactic Bulge (with OGLE et al.1993]), [Udalski

MACHO and DUO & Guibert or the1994], [Alard 1997]),
M31 galaxy (with AGAPE), has provided us with an
impressive database of images of densely crowded Ðelds.
The target Ðelds have been monitored for several seasons,
providing us with time series containing hundreds of
images. Light curves for millions of stars can then be easily
obtained with one of the widely used proÐle-Ðtting codes,
such as DoPHOT & Mateo, The search(Schechter 1993).
for variable objects among these huge light curve databases
has proved very fruitful for microlensing (with MACHO,
OGLE, DUO, and EROS), and also for variable stars (with
MACHO, OGLE, DUO, and EROS). However, we would
like to emphasize that photometry and detection of variable
(including moving) objects should be based on the di†er-
ence between frames, whereas photometric codes like
DoPHOT are designed to perform proÐle-Ðtting photo-
metry of stars detected on a reference frame. If a variable
object appears but was not seen on the reference, it will not
be detected, leading to a serious loss of efficiency for micro-
lensing. The completeness of the variable star catalogue will
also be seriously a†ected. Another concern is photometric
accuracy. With multiproÐle Ðtting techniques, the absolute
photometry of a given (crowded) star requires perfect point-
spread function (PSF) estimation and careful modeling of
all other close components, and also a correct estimate of
the background value around each star. For the particular
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problem of Ðnding light curves of variable objects, it is more
efficient to estimate only that part of the starÏs brightness
that varies from image to image ; this is exactly the problem
that image subtraction is designed to solve.

The Ðrst attempt at image subtraction was made by
& Crotts hereafter for data takenTomaney (1996 ; TC)

toward the M31 galaxy & Tomaney To make(Crotts 1996).
a perfect subtraction of two images, one must match the
frames to exactly the same seeing. proposed degrading aTC
good seeing image to match a reference frame with bad
seeing. The quality achieved in the subtracted image is very
dependent on the quality of the kernel determination, and
Ðnding the proper kernel is a very delicate operation. TC
proposed deriving the kernel by simply taking the ratio of
the Fourier transform of a bright star on each image.
However, the high frequencies are dominated by noise, and
they were forced to use a Gaussian extrapolation to deter-
mine the wings & Davies This method pro-(Phillips 1995).
vides no guarantee of producing the highest attainable
quality of the subtracted image. Even apart from the non-
Gaussian wings of the true kernel, and given the limited
number of bright, uncrowded stars with sufficient signal-to-
noise ratio, this method is not optimal in the sense that it
does not use all the information available ; in fact, every star,
even if extremely crowded, contains information about the
kernel, and to get an optimal solution we must use all of
that information. In addition, their method has difficulty
with rapid, complicated PSF variations, and does not
intrinsically handle background subtraction.

An interesting step toward the optimal solution was per-
formed by et al. Their method Ðnds theKochanski (1996).
kernel solution that will minimize the discrepancy between
the two images used to subtract. However, this method is a
nonlinear least-squares Ðtting process and has a prohibitive
computing time, even for uncrowded Ðelds and when only a
fraction of the pixels are Ðtted. We wish to develop a
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method that will also solve the least-squares problem. This
method must perform best for the very crowded Ðelds of the
microlensing surveys. The challenge will be to achieve a
reasonable computing time for processing the huge amount
of data from the microlensing experiments. It is essential
that the computing time be reduced by at least a factor of
100.

2. THE METHOD

2.1. Preliminaries
Before looking for the optimal subtraction, we need to

perform some basic operations to register the frames to a
reference frame. Usually the frames have slightly di†erent
centers and orientation (and possibly scale), and we need to
perform an astrometric transform to match the coordinates
of the reference frame. We determine this transform by
Ðtting a two-dimensional polynomial using 500 stars on the
reference frame, and the same number on the other frame.
Using this transform, we then resample the frame on the
grid deÐned by the reference frame. This resampling is per-
formed by interpolation using bicubic splines, which gives
excellent accuracy. All the frames are then on the same
coordinate system, and we can proceed to match the seeing.

2.2. T he Reference Frame
Here we emphasize that we choose to take the best seeing

frame as the reference. We do not wish to degrade the frame
to the worst seeing frame, as this will clearly lower the
signal-to-noise ratio. Later we will match the seeing in our
frames by convolving the reference to the seeing of each
other frame. Matching the image quality to that in good
seeing frames is more difficult, but we are looking for an
optimal result.

2.3. Seeing Alignment to the Reference
We now arrive at the fundamental problem of matching

the seeing of two frames with di†erent PSFs. We do not
want to make any assumption concerning the PSF on the
frame, and we plan to use all the pixels. The important point
is that most of the stars on a given frame do not have large
amplitude variations, varying by at most 1% or 2%. This
allows us to say that most of the pixels on any two frames of
the same Ðeld should be very similar if the seeing were the
same. Consequently, one possibility is to try to Ðnd the
kernel by Ðnding the least-squares solution of the equation

Ref (x, y)? Kernel (u, v) \ I(x, y) , (1)

where Ref is the reference image and I is the image to be
aligned. The symbol ? denotes convolution.

In principle, solving this equation is a nonlinear problem.
An attempt to solve this nonlinear problem was made by

et al. in order to look for variabilities ofKochanski (1996)
active galactic nuclei. However, the computing time of such
methods is prohibitive, and they cannot be applied to large
data sets, such as those of the microlensing surveys. We
need to Ðnd a more tractable solution to this problem.

An important consideration is that if we decompose our
kernel using some basis of functions, the problem becomes a
standard linear least-squares problem. If we use the kernel
decomposition of the form

Kernel (u, v) \ ;
i

a
i
B

i
(u, v) , (2)

solving the least-squares problem gives the following matrix
equation for the coefficients :a

i
Ma \ V ,
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In choosing to solve the problem by least-squares, we have
implicitly approximated the images Poisson statistics by
Gaussian distributions with variance p(x, y)2, such that

p(x, y) \ kJI(x, y) .

We set the constant k by taking into account the gain of the
detector (the ratio of photons detected to the analog-to-
digital converter unit [ADU]). We also assume the noise in
the reference image to be negligible. Note that the matrix M
is just the scalar product of the set of vectors and theC

i
,

vector V is the scalar product of the vectors with I. All weC
ihave to do now is to look for a suitable basis of functions to

model the kernel. The functions must have Ðnite sums, and
must drop rapidly beyond a given distance (the size of an
isolated starÏs image). To solve this problem, we start with a
set of Gaussian functions, which we modify by multiplying
with a polynomial. These basis functions allow us to model
the kernel, even if its shape is extremely complicated. We
adopt the following decomposition :

Kernel (u, v) \ ;
n

;
dnx

;
dny

a
k
e~(u2`v2)@2pn2udnxvdny ,
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nof the polynomial corresponding to the nth Gaussian com-
ponent. There are a total of terms for(D

n
] 1)(D

n
] 2)/2

each value of n. The value of k is implicit in the values of the
other indexes.

In the notation of equation (2),

B(u, v)4 e~(u2`v2)@2pn2udnxvdny .

In practice, it seems that three Gaussian components with
associated polynomial degrees in the range of 2 to 6 can
give subtracted images with residuals comparable to
21@2] photon noise.

2.4. Di†erential Background Subtraction
Another important issue is that the di†erential back-

ground variation between the frames can be Ðtted simulta-
neously with the kernel. In we did not considerequation (1)
any background variations between the two frames ; to do
so, let us modify in the following way :equation (1)

Ref (x, y)? Kernel (x, y) \ I(x, y) ] bg (x, y) . (3)

We use the following polynomial expression for bg (x, y) :

bg (x, y)\;
i

;
j

a
k
xiyj ,

where and is the degree of0 \ i¹ Dbg, 0 \ i] j ¹ Dbg, Dbgthe polynomial used to model the di†erential background
variation. The least-squares solution of willequation (3)
lead to a matrix equation similar to the previous one, except
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that we must increase the number of vectors ; our deÐni-C
itions of the matrix M and vector V relative to remain theC

isame as in We then have° 2.3.

C
i
(x, y) \

Gxjyk ,
I(x, y) ? B

i
(x, y) ,

i \ 0 . . . nbg [ 1
i \ nbg . . . nbg] n ,

where andnbg \ (Dbg] 1)(Dbg ] 2)/2 [ 1 n \ ;
j
(D

jnote that for the are identical to] 1)(D
j
] 2)/2 ; i ] nbg, C

iour previous results.

3. TAKING INTO ACCOUNT THE PSF VARIATIONS

There are two ways to handle the problem of PSF varia-
tions. First, most of the time the Ðeld is so dense that a
transformation kernel can be determined in small areas,
small enough that we can ignore the PSF variation. Of
course, this would not apply to less dense Ðelds, such as
those in a supernova search. This is the great advantage of a
method that does not require any bright isolated stars to
determine the kernel, but can be used on any portion of an
image, provided that the signal-to-noise ratio is large
enough to determine the kernel. Indeed, the more crowded
the Ðeld, the easier it is to model variations of the PSF. A
second possibility is to make an analytical model of the
kernel variations. We take the kernel model

Kernel (x, y, u, v) \;
n

;
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;
dny

;
dx

;
dy

a
k
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x
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k
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y
] d

x
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k
, D

kof the polynomial transform that we use to Ðt the kernel
variations. Provided that the kernel variations with x and y
are small enough compared to the u, v variations, we can
easily calculate new expressions for C

i
:
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Unfortunately, these equations do not guarantee the con-
servation of Ñux. Consequently, we need to add the condi-
tion that the sum of the kernel must be constant. To
simplify the equation, we also normalize the functions soB

ithat each sums to one. We can then rewrite the kernel
decomposition as

Kernel (x, y, u, v)\ ;
k/0

n~1
a
k
xdxydy

][B
i
(u, v) [ B

n
(u, v)]] norm ] B

n
We can calculate the norm (the sum of the kernel) by
making a constant PSF Ðt in several small areas. The di†er-
ent values will then be averaged to get the constant norm.

The solution of the system for the coefficients is verya
nsimilar to the previous case of a constant PSF. We do not

bother to give all the details here.

4. APPLICATION OF THE METHOD TO OGLE DATA

The OGLE team has kindly provided us with a stack of
images of a Ðeld situated 2¡ from the Galactic Center, in
order to experiment with our method. In these particular
images the optimal kernel has a complicated shape, which
would probably be very difficult to compute reliably with a

simple Fourier division ; we consider this Ðeld an excellent
test of our method. The data were taken in drift-scan mode
(TDI), so the form of the PSF can vary rapidly with row
number on the CCD. We extracted a small (500] 1000)
subframe from the 2048 ] 8192 original images. One of the
images has quite outstanding seeing, and we took it as a
reference. All frames were resampled to the reference grid
using the method described above. To model the kernel, we
took three Gaussian components with associated poly-
nomials. We took p \ 1 pixels for the Ðrst Gaussian, and
p \ 3 and p \ 9 for the two others. The degree of the
associated polynomials were 6, 4, and 2, respectively. We
divided the subframe into 128 ] 256 pixel regions. We
applied our method to each of these regions, providing us
with one subtracted image per region. We reconstructed the
subtracted image of our whole subframe by mosaicing the
subtracted images obtained for each region. In this set of 86
images, the seeing varies from to and some of the0A.7 2A.5,
frames have elongated stellar images. We started by making
an initial residual image using all unsaturated pixels. We
then made a 3 p rejection of the pixel list, to get rid of the
variables. We usually used four iterations of the method, to
be completely unbiased by large-amplitude variables. We
found that for all images, the Ðnal residual calculated from
the subtracted image was very close to that expected from
Poisson statistics. To illustrate this result, we plot in Figure

the initial images and the subtracted image for a small1
Ðeld containing a variable star at its center.

The stellar images are sharply peaked on the reference,
while they look quite fuzzy and asymmetric on the other
image. This is conÐrmed by the shape of the best convolu-
tion kernel, which looks elongated and has a complicated
shape. This example clearly illustrate the ability of our
method to deal with any kernel shape. We can imagine that
in this case, any Gaussian approximation of the kernel itself
or of its Fourier transform would not be satisfactory. For
illustrative purposes, we also normalized the subtracted
image by the sum of the photon noise expected from the two
images (see Once this normalization is applied, weFig. 2).
see that the larger deviations visible at the location of the
bright stars disappear, suggesting that the subtraction
errors correspond to Poisson noise. This is conÐrmed by
calculating the reduced s2, for which we Ðnd s2/l\ 1.05
(before doing this calculation, we removed a small area
around the variable star at the center of the image). We also
plot the histogram of the normalized deviations in Figure 2.
This histogram is very close to a Gaussian with zero mean
and unit variance [i.e., N(0, 1)]. We observe deviations sig-
niÐcantly larger than the Poisson expectations only for very
bright stars (about 5 to 10 times brighter than the brightest
stars in the small Ðeld we present). We believe that these
residuals are due to seeing variations (see for more° 5
details) ; the number of such bright stars in an image is very
small.

To spot the variables stars, we created a ““ deviation
image ÏÏ by coadding the square of the subtracted images.
We normalize the deviation image by normalizing by the
pixelsÏ standard deviations. We found many variables at
very signiÐcant levels. Most of these seem to be bright
giants with small amplitudes. Some of the variables
appeared to be periodic ; we found a few RR Lyraes and
some eclipsing variables. We computed the Ñux variations
for these stars by making simple aperture photometry. In
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FIG. 1.ÈExample of subtracted image. The two bottom Ðgures of the panel are the original images. On the right is the reference image, and on the left is
the image to be Ðtted by kernel convolution. The two upper Ðgures show the best kernel solution on the right, and the subtracted image on the left. Note the
complicated shape of the kernel.

Figures and we give an illustration of the result we have3 4
obtained.

5. COMPUTING TIME

One might think that a method that Ðts all the pixels in
an image (even if the Ðt is linear) would be much more time
consuming than conventional methods. But the actual cost
of the calculations is much lighter than might appear at Ðrst
glance. Most of the computing time is taken by the calcu-
lation of the matrix we deÐne in an N2 process (where° 2.3,
N is the number of basis function we used). The rest of the
calculation is an N process. However, the matrix could be
calculated once and then used to Ðt the kernel solution for
all images. One problem with this approach is that we reject
di†erent pixels on each frame (due to new saturated pixels
or variable stars), so consequently the matrix elements
change. But in practice, we Ðnd that we reject no more than
1% percent of the total number of pixels, so that all that we

have to do is to calculate the matrix elements for the reject-
ed pixels and subtract them from the original values. This
process costs very little CPU, and once the original matrix
has been built, the kernel solution can be Ðtted very quickly
even if we use several clipping passes. The rest of the oper-
ation requires about the same computing time. By applying
this method, we can process a 1024 ] 1024 frame in about 1
minute with a 200 MHz PC; this could certainly be
improved further by using better numerical algorithms for
the solution of the linear system.

6. SOURCES OF NOISE IN THE RESIDUAL IMAGE

As discussed above, the variance of the residual image is
approximately equal to the sum of the variances of the input
images. If we created a reference image by coadding a large
number of images with good seeing, we could remove the
contribution of the noise in the reference ; we would, of
course, have to be careful about variability between the
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FIG. 2.ÈNoise in the subtracted image. The image on the left is the subtracted image normalized by the Poisson deviations of both the reference and the
image for the small Ðeld presented in the previous Ðgure. On the right we show the histogram of the pixels in this image. We superimposed on this histogram
a Gaussian of variance 1 (dashed line). Note that the deviations due to the bright stars are no longer visible. The variable star at center clearly stands out at
very signiÐcant level. The dark pixel in the image is a cosmic ray.

di†erent reference frames. Upon inspection of the residual
images, however, some showed signiÐcantly larger residuals
than expected from Poisson statistics near the position of
bright, but nonsaturated, stars (representing less than 1% of
the stars visible on the frame). These showed the character-
istic signature of centering errors, with equal positive and
negative residuals even for stars that show no evidence of
variability (i.e., the sum of all residuals within a few arcse-
conds is zero). We believe that this e†ect is produced by the
turbulent atmosphere modulating our kernel on the scale of
our subregions.

& Colavita quote the variance in the angleShao (1992)

between two stars separated by h as

pd2 B 5.25(h/rad)2@3(t/s)~1
P

C
n
2(h)h2@3V ~1(h)dh

for the regime in which we are interested (their eq. [2]). In
this equation, is the structure function of the refractiveC

nindex, h is the height above the telescope, V is the wind
speed, and t is the integration time. They evaluate the inte-
gral using data from et al. for a night onRoddier (1990)
Mauna Kea with seeing to giveB0A.5

pd B 1.1(h/rad)1@3(t/s)~1@2 arcsec .

FIG. 3.ÈExamples of bright giant light curves. The x-axes are days, the y-axes are percentage variation (with respect to reference frame). Errors bars are
derived from the Poisson deviations associated with each image ; we do not include the deviations associated with the reference image.
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FIG. 4.ÈPeriodic variables. The x-axes represent the phase, the y-axes are percentage variation (with respect to reference frame).

If we assume that the integral over the atmosphere scales
with seeing in a way similar to the integral

P
C

n
2(h)dh ,

which enters into the deÐnition of the Fried parameter, r0,we may expect that this result will scale as (a(r0j~6@5)~5@6
result that is independent of j as a result of the wavelength
dependence of In 1A seeing, therefore, we may expectr0).

pdB 2(h/rad)1@3(t/s)~1@2 arcsec .

On the typical scale of our 128] 256 regions, and for 128 s
exposures, this corresponds to an rms image motion of
about If we model the PSF as a Gaussian with width0A.011.
parameter a (a B 0.424 for 1A FWHM images), this would

produce a maximum residual of exp or 1.6%.pd/a ([12),This is on the same order as the residuals that we see in our
frames.

7. HARMONIC FITTING TO THE PERIODIC VARIABLES

We expect the periodic variablesÏ light curves to be well
approximated by truncated Fourier series. We calculate the
period using the Renson method and we Ðt(Renson 1978),
Fourier series with di†erent numbers of harmonics. The
errors are calculated from the photon noise in each image.
We do not include the noise associated with the reference
image because it only produces an error in the total magni-
tude, and to Ðrst order does not a†ect the variable part of
the objectÏs Ñux. We estimate at each time the s2 per degree
of freedom and we look for the best s2 with the(s

d
2),
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TABLE 1

HARMONICS FITTING TO THE PERIODIC VARIABLES

Mean Residual
Variable s

d
2 (%) *mag

P1 . . . . . . 2.01 1.0 [1.117
P2 . . . . . . 1.43 1.1 [0.4402
P3 . . . . . . 1.55 1.6 0
P4 . . . . . . 1.46 1.2 0
P5 . . . . . . 1.17 1.3 0
P6 . . . . . . 1.1 0.6 [0.4348

NOTEÈIn the third column we give the value of
the mean residual to the Ðt. It is useful to compare
this residual to possible Ñat-Ðelding errors. We also
give an estimate of the star magnitude di†erence to
the RR Lyrae We assume that the RR Lyrae all*mag.have the same mean magnitude. A crude estimate for
the RR Lyrae mean magnitude in this Ðeld is I^ 17.

minimum number of harmonics. The results are given in
where we see that the resulting value of is closeTable 1, s

dto unity for most variables. Except for variable P1, our
mean error is at most only 25% larger than the Poisson
expectation (i.e., of course, this excess is sig-s

d
2\ 1.56) ; s

d
2

niÐcant. In the case of the variable P1, the is very incon-s
d
2

sistent with the Poisson expectation. This variable has
about the same brightness as P6. We checked the quality of
the subtracted images, but could not identify any defects.
The quality of the image subtraction is as good for P1 as for
P6, and they have about the same brightness ; so what is
wrong? Considering that the mean error is fairly small
(about 1%), we might suspect some residual error due to
Ñat-Ðelding. However, we get a mean residual of only 0.6%
for P6 and showing that the Ñat-Ðelding errors ares

d
2\ 1.1,

much smaller than 0.6%. This is not surprising, because
these images were taken in drift-scan mode, and conse-
quently we average the sensitivity of many pixels. We con-
clude that there must be some intrinsic reason for P1Ïs bad

It is possible that variables do not repeat perfectly froms
d
2.

cycle to cycle. This kind of variable star is well known to
have spots that are likely to induce variability at the sub-
percent level. It is also possible that the RR Lyraes do not
repeat perfectly ; they are known to show the Blashko e†ect,
and we can explain some of the as an e†ect of cycle-to-s

d
2

cycle variations. Although estimating the of periodics
d
2

variable stars is not an absolute test, we conclude that on
average we are only about 20% above the Poisson error,
and consequently there is not much to be gained from
improving our method. However, we must note that the
errors attributable to the reference frame are the same for
the integrated Ñux of a star on each image only at the Ðrst
order of approximation. By convolving the reference each
time to Ðt the seeing variations, we slightly change the noise
distribution around the star. Especially for the case in which
a bright star is close to our object, convolving with the
kernel might spread some noise into our photometric aper-

TABLE 2

HARMONICS FITTING TO THE LIGHT

CURVES OBTAINED WITH THE

NEW REFERENCE

Mean Residual
Variable s

d
2 (%)

P1 . . . . . . 2.0 1.0
P2 . . . . . . 1.16 1.0
P3 . . . . . . 1.27 1.45
P4 . . . . . . 1.45 1.2
P5 . . . . . . 1.15 1.3
P6 . . . . . . 1.03 0.6

NOTEÈIn the third column we give
the value of the mean residual to the Ðt.
It is useful to compare this residual to
possible Ñat-Ðelding errors. We also
give an estimate of the star magnitude
di†erence to the RR Lyrae We*mag.assume that the RR Lyrae all have the
same mean magnitude. A crude esti-
mate for the RR Lyrae mean magni-
tude in this Ðeld is I^ 17.

ture. This e†ect will be negligible for good seeing frames,
but noticeable when the seeing is bad. An obvious solution
is to construct a reference with as good a signal-to-noise
ratio as possible by stacking the best seeing images (see ° 8).

Another approach with potential for improving the
signal-to-noise ratio would be to use a matched Ðlter to
measure the variability of our stars. Unfortunately, simply
applying the usual PSF Ðlter leads to problems with aper-
ture corrections, and we do not investigate this approach
here.

8. IMPROVING THE REFERENCE FRAME

We averaged the 20 best seeing images to build a refer-
ence frame with an excellent signal-to-noise ratio. The
resulting seeing is of course not as good as it was in our
previous reference, which was the best image. But the seeing
variations are much reduced, as is the noise amplitude. All
the images were reprocessed using this new reference. We
found that all the subtracted frames were improved. Even
for the good seeing frame, where the seeing quality of the
reference is critical, we found some improvements. The light
curves of the variables stars were also improved ; we give the
result of harmonic Ðtting in Table 2.
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