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ABSTRACT
Following renewed interest, the problem of whether the cosmological expansion a†ects the dynamics

of local systems is reconsidered. The cosmological correction to the equations of motion in the locally
inertial Fermi normal frame (the relevant frame for astronomical observations) is computed. The evolu-
tion equations for the cosmological perturbation of the two-body problem are solved in this frame. The
e†ect on the orbit is insigniÐcant, as are the e†ects on the galactic and galactic-cluster scales.
Subject headings : celestial mechanics, stellar dynamics È cosmology : theory È relativity

1. INTRODUCTION

A recurring issue in cosmology concerns the nature and
extent of the cosmological expansion. If expansion were to
occur in proportion and in every minutia of detail for every
element of the universe, then every clock and every measur-
ing apparatus of distance would be altered in proportion. If
in addition, the laws of physics were to remain unaltered in
the process, the very concept of expansion would lose its
meaning, as it would be intrinsically unobservable. This is
not what is being contemplated for our universe, since we
observe a systematic redshift of distant galaxies and hence
we are able to deduce that there is an expansion in progress,
at least on the cosmological scale. While the e†ect is
actually registered in the small distances of a wavelength of
light, this is simply an imprint of the expansion at the
largest (Hubble) scale.

Recently there has been a(Anderson 1995 ; Bonnor 1996),
revival of interest in the question as to whether the cosmo-
logical expansion also proceeds at smaller scales. There is a
tendency to reject such an extrapolation by confusing it
with the intrinsically unobservable ““ expansion ÏÏ (let us refer
to this as ““ pseudo-expansion ÏÏ) described above. By con-
trast, the metric of Friedman-Robertson-Walker (FRW) in
general relativity is intrinsically dynamic, with the increase
(decrease) of proper distances correlated with redshift
(blueshift). It does so on any scale, provided that the light
travel time is much longer than the wave period. Thus, the
cosmological metric alone does not dictate a scale for
expansion, and in principle, it could be present at the small-
est practical scale as realÈas opposed to pseudoÈ
expansion and observable in principle.

However, it is reasonable to pose the question as to
whether there is a cuto† at which systems below this scale
do not partake of the expansion. It would appear that one
would be hard put to justify a particular scale for the onset
of expansion. Thus, in this debate, we are in agreement with

that it is most reasonable to assume thatAnderson (1995)
the expansion does indeed proceed at all scales. However,
there is a certain ironical quality attached to the debate in
the sense that even if the expansion does actually occur at
all scales, we will show that the e†ects of the cosmological
expansion on smaller spatial and temporal scales would be
undetectable in general in the foreseeable future, and hence
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one could just as comfortably hold the view that the expan-
sion occurs strictly on the cosmological scale.

The question of whether the expansion of the universe
a†ects local systems like clusters of galaxies or planetary
systems was Ðrst raised many years ago and has received
continued scrutiny Ja� rnefelt(McVittie 1933 ; 1940, 1942 ;

& Peebles et al.Pachner 1963 ; Dicke 1964 ; Callan 1965 ;
& Petrosian with the mostIrvine 1965 ; Noerdlinger 1971),

recent consideration being by who extendsAnderson (1995),
the question to the stellar scale and even below this. The
recurrent attention paid to this issue indicates that to this
point a deÐnitive answer is still lacking. However, it is our
sense that the prevalent perception is that the physics of
systems that are small compared to the radius of curvature
of the cosmological background is essentially una†ected by
the expansion of the universe.

In the presence of spherical symmetry, the analysis of a
spherical cavity embedded in an FRW universe is well
known: as a consequence of Birkho†Ïs theorem, the metric
inside the spherical cavity is the Minkowski one, and the
physics is the same as in Ñat space & Straus(Einstein 1945 ;

& Peebles et al.Schu� cking 1954 ; Dicke 1964 ; Callan 1965 ;
However, when spherical symmetry isBonnor 1996).

absent, a satisfactory quantitative answer is missing in the
literature, and certain statements about small systems being
sheltered from the cosmological expansion recur (see, e.g.,

et al. and the discussion inMisner 1973 Anderson 1995).
& provide a quantitative treatment,Noerdlinger Petrosian

but it is limited to the particular problem of the collapse of
galaxy clusters. paper employs theAndersonÏs (1995)
Einstein-Infeld-Ho†mann method to derive the cosmo-
logical corrections to the equations of motion of a system of
particles subject to external forces. When the dynamics of a
single particle are considered, the correction to the particleÏs
acceleration is found to be proportional to the velocity of
the particle. However, it is not clear how to relate the
coordinates used by Anderson to the coordinates used by
observers making astronomical observations. This is an
important issue, because the computation does not provide
a coordinate-invariant quantity, but rather a correction to
the three-dimensional equations of motion, which are
dependent upon the chosen coordinate system. Bonnor

studies a distribution of pressureless charged dust in(1996)
equilibrium between electrical repulsion and gravitational
attraction, and concludes that it participates in the univer-
sal expansion.

A qualitative answer to the problem of whether local
systems are a†ected by the expansion of the universe is
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easily provided if one considers the equivalence principle
and its geometric formulation. Although the cosmological
expansion is described by the time-dependent scale factor in
the FRW metric and, we believe, a†ects lengths at all scales,
the curved spacetime manifold can be locally approximated
by its (Ñat) tangent space at every spacetime point p. This
approximation is valid only in a neighborhood U(p) of the
point p considered ; the error involved in the approximation
increases with the size of the neighborhood U(p), and the
approximation breaks down completely when the size of
U(p) becomes comparable to the radius of curvature of
spacetime (the Hubble radius in the case of an FRW
spacetime). From the physical point of view, the tangent
space at p describes the spacetime seen by a freely falling
observer in the so-called locally inertial frame (LIF; see

& Lifshitz This frame is the one in whichLandau 1989).
astronomical observations are carried out. Thus, the e†ect
of the cosmological expansion is seen to be negligible
locally and grows in signiÐcance with distance, reaching full
import on the cosmological scale. This conclusion is qualit-
ative, and it is certainly well-known to most relativists, but,
to the best of the authorsÏ knowledge, has yet to be well-
formulated quantitatively. In earlier treatments, the coordi-
nate systems adopted do not correspond to those used by a
physical observer.

The purpose of the present paper is to provide a clear
quantitative answer to the problem. The motion of a parti-
cle subject to external forces in the (approximate) LIF using
Fermi normal coordinates is analyzed. It is the locally iner-
tial frame based on a geodesic observer, and it continues to
be locally inertial following the observer in time. This is the
frame in which astronomical observations are performed,
and we compute the corrections to the dynamics due to
cosmology. In this paper, we assume that homogeneous
isotropic expansion is actually universal, and we analyze the
consequences of this assumption.

The plan of the paper is as follows : In the equation of° 2
timelike geodesics in the LIF in an EinsteinÈde Sitter uni-
verse is investigated, and the cosmological perturbations to
the three-dimensional equations of motion in the LIF are
derived. In the orders of magnitude of the e†ects in° 3
realistic astrophysical systems are estimated, and it is
demonstrated that they are very small and unobservable
with present and foreseeable technology. In the two-° 4
body problem in the LIF is studied in detail, using the
correction to the equations of motion computed in thus° 3,
providing a solution to the evolution equations for the per-
turbations. It is shown that cumulative e†ects of the cosmo-
logical expansion on the present orbital radius of Earth and
its orbital motion are essentially negligible. con-Section 5
tains a discussion and the conclusions.

2. EQUATIONS OF MOTION IN THE LIF

In this section we Ðnd the equations of motion for a
particle in the LIF using the geodesic deviation equation.
We refer the reader to the Appendix for the details of the
calculation.

The metric in FRW coordinates for an EinsteinÈde Sitter
universe is given by

ds2 \ [dt2] a(t)2(dx2] dy2] dz2) , (2.1)

where a(t) is the scale factor. Consider an observer whose
world line is the geodesic t \ q and r \ 0. In Fermi normal
coordinates, the metric on the geodesic is and agkl \ gkl,

parallely propagated orthonormal tetrad is given by

eü
t
F\ (1, 0, 0, 0) , eü

x
F\ (0, 1, 0, 0) , (2.2)

eü
y
F\ (0, 0, 1, 0) , eü

z
F\ (0, 0, 0, 1) . (2.3)

The FRW basis vectors are related to the viaelFRW eü kF
eü kF\ "kl elFRW , (2.4)

where diagonal (1, a~1, a~1, a~1). The Riemann"kl \
tensor in Fermi normal coordinates along the geo-MxFkN,desic, is given by (Greek indices range from 0 to 3, Latin
indices from 1 to 3)

RabklF \"ap "bj"ku "liRpjuiFRW (2.5)

(where the superscript ““ F ÏÏ denotes quantities in Fermi
normal coordinates), and the geodesic deviation equation

d2xk

dq2 ] !abk
dxa
dq

dxb
dq

] R0l0k xl\ 0 (2.6)

becomes

d2xFk
dq2 ] R0l0k xFl \ 0 (2.7)

in Fermi normal coordinates, since Thus, to!ab(F)k\ 0.
lowest order in xk and dxk/dq (the order to which the geo-
desic deviation equation is valid), the equations of motion
in Fermi normal coordinates are (see the Appendix)

d2xFk
dq2 [

Aa�
a
B
xFk \ 0 , (2.8)

where an overdot denotes di†erentiation with respect to the
comoving time t.

3. ORDER OF MAGNITUDE ESTIMATES

In this section the order of magnitude of the e†ect created
by the cosmic expansion on the dynamics of local systems is
estimated. Astronomical systems for which the velocities
involved are nonrelativistic are considered. The present
value of the age of the universe is taken to be 6.3 ] 1017 s.

3.1. Acceleration on the Scale of the Solar System
It is sufficient for our purposes to use the present value of

the average size of the Earth-Sun system, i.e., the astronomi-
cal unit of 1.5 ] 1011 m and the present orbital frequencyr0of 2] 10~7 s~1. From of the correc-u0 equation (4.10) ° 4,
tion to the acceleration for this distance and frequency due
to the cosmological expansion at the present matter-
dominated [a(t)P t2@3] epoch is

dr� \ [ 4r0
3t4u02

\ [3.17] 10~47 ms~2 . (3.1)

This is to be compared to the predominant gravitational
acceleration of Earth toward the Sun,

g \ GM
_

r02
\ 6 ] 10~3 ms~2 , (3.2)

which completely overwhelms the e†ect of the cosmological
expansion by 44 orders of magnitude. This is in qualitative
agreement with a cruder order-of-magnitude estimate in

et al.Lightman (1975).
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3.2. Acceleration on the Galactic Scale
As an example, consider our Galaxy, a spiral in which the

Sun is located at Kpc from the center and hasr0\ 8.5 ^ 1
orbital velocity km s~1 & Tremainev0\ 220 ^ 15 (Binney
1987).

Thus, the gravitational acceleration of the Sun toward
the center of the galaxy m s~2.g \ v02/r0^ 1.9] 10~10
Since the orbital period is ^2 ] 108 yr, the angular velocity

is of the order 10~15 s~1. Thus, the correction of theu0acceleration of the Sun due to the cosmological expansion,

r� \ [ 4r0
3t4u02

, (3.3)

is of the order 10~21 m s~2 at the present epoch, which is 11
orders of magnitude smaller than the Galactic g.

3.3. Acceleration on the Galactic Cluster Scale
Assuming the core radius of a galaxy cluster (r0D 250

Kpc) and the line-of-sight velocity dispersion p ^ 800 km
s~1 & Tremaine and assuming that the gal-(Binney 1987),
axies at the edge of the core of the cluster are in orbit
around the center of the core with velocity p, they are
subject to the gravitational acceleration g \ (v0)2/r0^ 8
] 10~11 m s~2. This is to be compared to the correction
due to the cosmological expansion,

r� \ [ 4r03
3t4v2\ [5.6] 10~18 ms~2 . (3.4)

While this is 7 orders of magnitude smaller than the galactic
cluster g and thus of considerably greater relative signiÐ-
cance than was found for the galactic and the solar system
scales, it is still nevertheless essentially ignorable.

4. COSMOLOGICAL CORRECTIONS TO THE TWO-BODY

PROBLEM IN THE LIF

The e†ects of the expansion of the universe on the
dynamics of local systems are exempliÐed by the corrections
induced in the two-body problem. The two-body problem
in a cosmological background has been analyzed in pre-
vious papers & Peebles(McVittie 1933 ; Dicke 1964 ;

& Petrosian with di†er-Noerdlinger 1971 ; Anderson 1995)
ing results. reached the conclusion that theMcVittie (1933)
orbital radius stays constant for an observer using coordi-
nates Ðxed in the solar & Peeblessystem.3 Dicke (1964)
used a conformal technique to show that the coordinate
radius of the orbit decreases as the inverse of the scale factor
and that the proper radius stays constant. &Noerdlinger
Petrosian considered the two-body problem inside a(1971)
cluster and found that, in a dust-dominated FRW universe,
the time derivative of the average orbital radius obeys the
equation

Sr5 T \ 3v
1 ] 4v

HSrT , (4.1)

where v is the ratio of average energy densities in the cluster
and in the rest of the universe (compare eq. [8] of

& Petrosian According to this result, theNoerdlinger 1971).
orbital radius increases, and the e†ect is proportional to

The more recent result of agreesoH0 xi o. Anderson (1995)

3 See et al. for a modern criticism of McVittieÏs coordi-Ferraris (1996)
nates in astrophysical applications.

with that of & Peebles but in di†erent coordi-Dicke (1964),
nates. A comparison of all these results is rendered difficult
by the di†erent coordinate systems adopted in the di†erent
studies. Moreover, no treatment of the problem was given
in the LIF, which is the frame of reference relevant for
astronomical observations performed by a freely falling
observer. In fact, the three-dimensional equations of motion
of a particle are not coordinate invariant, and, like the
equations of motion themselves, the correction due to the
cosmic expansion is dependent upon the frame employed.
In this section, we apply the results obtained in to° 2
compute the perturbations of the two-body problem in the
LIF in an expanding, matter-dominated EinsteinÈde Sitter
universe. For simplicity, we restrict ourselves to the case of
circular orbits, in which the equation of motion for the
two-body problem takes the form

d2r
dt2 [ a�

a
r \ [ GM

r2 e
r
, (4.2)

where M is the mass of the central object. In this section we
only use quantities deÐned in the LIF, and we drop the
subscripts. Cylindrical coordinates (r, h, z) are used, with
associated unit vectors and Since the perturbatione

r
, eh, e

z
.

of the central force is also central, the motion is again con-
Ðned to the unperturbed orbital plane. We consider the
perturbation of the orbital coordinates r, h, given by

r(t) \ r0] dr(t) , (4.3)

h(t) \ u0 t ] dh(t) . (4.4)

Substitution into yieldsequation (4.2)

r0 dh� ] 2 dr5 u0\ 0 , (4.5)

dh5 \ [ 2u0
r0

dr , (4.6)

dr� [ 3u02 dr [ 2u0 r0 dh5 [ a�
a

r0\ 0 , (4.7)

where

a�
a

\ [ 2
9t2 (4.8)

in a matter-dominated universe. Combining equations
yields(4.6)È(4.8)

dr� ] u02 dr ] 2
9t2 r0 \ 0 . (4.9)

It is easy to show that is negligible relative to the otherdr�
two terms in when t is of the order of the ageequation (4.9)
of the universe and is of the order of 1 yr. Thus, we Ðndu0~1
that

r(t) ^ r0
A
1 [ 2

9t2u02
B

. (4.10)

For the Earth-Sun system, we take mr0^ 1.5] 1011
(although strictly speaking, it is actually the value of asr0t ] O). The value of t is taken as the age of the universe,
approximately 2] 1010 yr or 6.3] 1017 s. The angular fre-
quency is taken to be for the Earth year, approximatelyu02 ] 10~7 s~1.
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From equations and(4.6) (4.10),

dh5 \ 4
9t2u0

. (4.11)

Thus, (1) the angular velocity decreases with time : as t
approaches inÐnity, u approaches so strictly speaking,u0,is actually the terminal angular velocity ; (2) the orbit sizeu0grows with time : as t approaches inÐnity, r approaches r0.Now consider the fractional rate of change of frequency :

Au5
u
B
present

\ [8.9] 10~41 s~1\ [2.8] 10~33 yr~1 .

(4.12)

This can be compared to the observed rate of variation of
the orbital period of the Moon about Earth,
(2.22^ 0.35)] 10~11 yr~1 Flandern which is(Van 1975),
larger by approximately 22 orders of magnitude. The
cosmological e†ect is not signiÐcantly di†erent at the birth
of the solar system. For t, we would use the present time
minus the age of the solar system, which is still of order
1017 s. Thus, the rate at birth of the solar system was not
signiÐcantly di†erent.

For the fractional change in radius of the orbit, we use
to Ðndequation (4.6)

dr5
r0

\ [ dh�
2u0

, (4.13)

which gives the same kind of insigniÐcant rate of radius
growth with the expansion of the universe. Over the life
span of the solar system, of order 1017 s, the fractional
change in radius was a mere 10~24.

5. DISCUSSION AND CONCLUSIONS

The e†ect of the cosmic expansion on the dynamics of
local spherically symmetric systems is well known (Einstein
& Straus & Peebles et al.1945 ; Dicke 1964 ; Callan 1965 ;

In the nonspherical case, it is generally recog-Bonnor 1996).
nized that the expansion of the universe does not have
observable e†ects on local physics, but few discussions of
this problem in the literature have gone beyond qualitative
statements. A serious problem is that these studies were
carried out in coordinate systems that are not easily compa-

rable with the frames used for astronomical observations
and thus obscure the physical meaning of the computations.
Moreover, di†erent treatments lead to apparently conÑict-
ing results, as in the case of the two-body problem. This is
the reason why the computations of °° and performed in2 4,
the LIF, are particularly relevant to the problem. While it is
reasonable to assume that the time dependence of the scale
factor in the FRW metric a†ects lengths at all(eq. [2.1])
scales in principle (see the discussion in Anderson 1995 ;

the magnitude of the e†ect in the LIF is theBonnor 1996),
physically relevant one, and its computation constitutes the
essential aspect of this work.

The computation of the cosmological correction to the
local equations of motion performed in allows one to° 2
estimate numerically the magnitude of the correction to the
acceleration of a particle subject to external forces. The
numerical estimates obtained in suggest that the correc-° 3
tion is extremely small and unobservable for galaxy clusters,
galaxies, and the solar system, and negligible for smaller
systems such as stars, and even more so for molecules and
atoms (cf. When the cosmological correc-Anderson 1995).
tion to the local equations of motion is applied to the New-
tonian two-body problem, the evolution equations for the
perturbation of the orbit can be solved. It is found that the
cumulative e†ect of cosmological expansion on the radius
and angular motion of the Sun-Earth system is also negligi-
ble. The cosmic expansion plays an increasingly important
role for systems whose sizes and lifetimes become increas-
ingly comparable to the Hubble radius and to Hubble
times, respectively. In this case, the approximation used in
this paper becomes invalid. It is well known that the cosmo-
logical expansion must be taken into account, for example,
in the Ñuid-dynamical treatment of the formation of struc-
tures in the universe As a conclusion, it is(Weinberg 1972).
reasonable to assume that the expansion of the universe
a†ects all scales, but the magnitude of the e†ect is essentially
negligible for local systems, even at the scale of galactic
clusters.

We are grateful to W. B. Bonnor and E. L. Wright for
helpful discussions. This research was supported, in part, by
a grant from the Natural Sciences and Engineering
Research Council of Canada.

APPENDIX A

In this appendix we Ðnd the transformations from FRW coordinates to Fermi normal coordinates. We also Ðnd the metric
to order o x o2 and the equations of motion to lowest order.

Consider an observer whose world line is the geodesic r \ 0. To Ðnd the Fermi normal coordinates of a point P\ (tFRW,
we Ðnd the unique spacelike geodesic that goes through the point P and intersects r \ 0 orthogonally. For a sufficientlyxFRW),

small region about r \ 0, such a unique geodesic is guaranteed to exist. Let Q be the point of intersection between r \ 0 and
this geodesic, and let the geodesic parameter q\ 0 at Q. The initial velocity vector is chosen so that theT k \ dxk/dq oq/0geodesic reaches P at q\ 1. The Fermi normal time is taken to be the proper time from the initial cosmological singularitytFto the point Q along the geodesic r \ 0. The Fermi normal spatial coordinates are given by the projection of T k onto the
orthonormal triad where and point in the x-, y-, and z-directions, respectively.e(a)k , e(1)k , e(2)k , e(3)k

The geodesic equation has solutions of the form

xk\ xk(q, c
m
) , t \ t(q, c

m
) , (A1)

where is a set of eight constants. From the above discussion we have the following conditions :Mc
m
N

xk(0, c
m
) \ 0 , tF\ t(0, c

m
) , (A2)

Lt
Lq

(0, c
m
) \ 0 , xFk \ a(tF)

Lxk

Lq
(0, c

m
) . (A3)
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This set of equations allows us to solve for Substituting this intoc
m

\ c
m
(xFk , tF).

xFRWk \ xk(1, c
m
) , tFRW\ t(1, c

m
) , (A4)

gives the required transformations

xFRWk \ xFRWk (xFm, tF) , tFRW\ tFRW(xFm, tF) . (A5)

The geodesic equations are

d2t
dq2] aa5

CAdx
dq
B2]

Ady
dq
B2]

Adz
dq
B2D\ 0 (A6)

and

d2xk

dq2 ] 2
a5
a

dt
dq

dxk

dq
\ 0 . (A7)

From we haveequation (A7)

dxk

dq
\ C1k

a2 , (A8)

where the are constants. From we haveC1k equation (A6)

dt
dq

\
S

C2] o C1 o2
a2 , (A9)

where is a constant.C2We now specialize to FRW spacetimes with

a(t) \ (at)n , (A10)

where a and n are constants. The above di†erential equations have the power series solutions

t(q) \ t0]
S

C2] oC1 o2
(at0)2n

q[ n o C1 o2
2(at0)2nt0

q2] (2n ] 1)n o C1 o2
6(at0)2nt02

S
C2] o C1 o2

(at0)2n
q3 ]O(q4) , (A11)

xk(q) \ x0k ] C1k
(at0)2n

q[ nC1k
(at0)2nt0

S
C2 ] o C1 o2

(at0)2n
q2] nC1k[(2n ] 1)C2] (3n ] 1) o C1 o2/(at0)2n]

3(at0)2nt02
q3] O(q4) , (A12)

where and are constants. Now gives xk(q\ 0) \ 0 gives givest0 x0k tF\ t(q\ 0) tF\ t0, x0k \ 0, xFk \ a(t0)dxk/dq oq/0 C1k \
and gives Thus, using and we have(atF)nxFk , dt/dq oq/0\ 0 C2\ [ o xF o2. tFRW \ t(q\ 1) xFRWk \xk(q\ 1),

tFRW\ tF[ n o xF o2
2tF

] O( o xF o4) (A13)

and

xFRWk \ xFk
(atF)n

A
1 ] n2 o xF o2

3tF2
B

] O( o xF o4) . (A14)

Note that to lowest order, and so that to lowest order, Fermi normal coordinates are justxFk \ a(tFRW)xFRWk tF\ tFRW,
““ physical ÏÏ coordinates in FRW spacetime.

The spatial components of the geodesic equation, to lowest order in xk and arex5 k,

d2xF
dt2 [ a�

a
xF \ 0 , (A15)

which is identical to The metric in Fermi normal coordinates isequation (2.8).

ds2 \ [
C
1 [ n(n [ 1) o xF o2

tF2
D
dtF2]

C
d
kl

A
1 [ n2 o xF o2

3tF2
B

] n2x
k
F x

l
F

3tF2
D
dxFk dxFl . (A16)

This can be written, to lowest order in asxF,

ds2\ [ (1] R0l0mF xFl xFm)dtF2[ (43R0ljmF xFl xFm)dtF dxFj ] (d
ij
[ 13Riljm

F xFl xFm)dxFi dxFj , (A17)
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since, to lowest order, the nonzero components of the Riemann tensor are

R0x0xF \ R0y0yF \R0z0zF \ [ a�
a

\ [ n(n [ 1)
tF2

(A18)

and

R
xyxy
F \R

xzxz
F \ R

yzyz
F \

Aa5
a
B2\ n2

tF2
(A19)

(plus components related to these by symmetry). This expression is identical to the metric in Fermi normal coordinates given
by & MisnerManasse (1963).
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