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ABSTRACT
An analytic approximation of the mass function for gravitationally bound objects is presented. Based

on the Zeldovich approximation, we extend the Press-Schechter formalism to a nonspherical dynamical
model. A simple extrapolation of that approximation suggests that the gravitational collapse along all
three directions, which eventually leads to the formation of real virialized object clumps, occurs in the
regions where the lowest eigenvalue of the deformation tensor, is positive. We derive the conditionalj3,probability of as a function of the linearly extrapolated density contrast d and the conditionalj3[ 0
probability distribution of d, provided that These two conditional probability distributions showj3[ 0.
that the most probable density of the bound regions is roughly 1.5 on the characteristic mass(j3[ 0)
scale and that the probability of is almost unity in the highly overdense regions (d [ 3p).M

*
j3[ 0

Finally, an analytic mass function of clumps is derived with the help of one simple Ansatz, which is
employed to treat the multistream regime beyond the validity of the Zeldovich approximation. The
resulting mass function is renormalized by a factor of 12.5, which we justify with a sharp k-space Ðlter by
means of the modiÐed Jedamzik analysis. Our mass function is shown to be di†erent from the Press-
Schechter one, having a lower peak and predicting more small-mass objects.
Subject headings : cosmology : theory È galaxies : clusters : general È large-scale structure of universe

1. INTRODUCTION

Our present universe is observed to be quite clumpy, with numerous galaxies, groups of galaxies, galaxy clusters, etc., which
span a large dynamic range in mass. The mass distribution function of these large-scale structures is a crucial key to the nature
of primordial density Ñuctuations from which the cosmic structures are believed to have arisen through gravitational growth,
recollapse, and virialization & Turner Since these gravitational processes are inherently nonlinear and sufficient-(Kolb 1990).
ly complicated, it is not an easy task to Ðnd analytically the mass distribution function for bound objects. Owing to its
important role in cosmology, however, much e†ort has been made to determine even an approximate expression of the mass
function (e.g., et al. & Villumsen & Menci et al.Peebles 1985 ; Williams 1991 ; Brainerd 1992 ; Cavaliere 1994 ; Vergassola 1994 ;

Menci, & Tozzi For a recent review, seeCavaliere, 1996). Monaco (1997).
The pioneering attempt in this Ðeld has been ascribed to & Schechter hereafter who proposed an analyticPress (1974, PS),1

formalism for the mass function based on two simple assumptions : (1) the initial density Ðeld is Gaussian, and (2) the
gravitational collapse of mass elements is spherical and homogeneous. Along with these two assumptions, also postulatedPS
that the number densities of bound objects could be counted by Ðltering the initial linear density Ðeld. Although much
criticism thereafter was poured on the formalism regarding its unrealistic treatment of the collapse process and unclariÐedPS
arguments, including the notorious normalization factor of 2, the mass function has survived many numerical tests,PS
showing good agreement with the results from N-body simulations (e.g., et al. et al. &Efstathiou 1988 ; Bond 1991 ; Lacey
Cole 1994).

Motivated by the somewhat unexpected success of the mass function, many authors have tried to understand why itPS
works so well in practice. & Heavens and et al. have shown, by using the excursion set theory, thatPeacock (1990) Bond (1991)
the ““ fudge factor ÏÏ of 2 in the formalism, which is directly related to the cloud-in-cloud problem, can be justiÐed with aPS
sharp k-space Ðlter. solved this cloud-in-cloud problem by means of the integral equation for the massJedamzik (1995)
function. He insisted that the mass function should be altered even in the case of a sharp k-space Ðlter. YetPS Yano,
Nagashima, & Gouda have argued that the sharp k-space Ðlter recovers the mass function with the normalization(1996) PS
factor of 2 even in the Jedamzik formalism if a mathematically consistent deÐnition of isolated bound objects is used and the
spatial correlations are neglected. They have also shown by introducing the two-point correlation function into the Jedamzik
formalism that the possible overlapping e†ect of density Ñuctuations, which is responsible for the fragmentation and the
coagulation of bound objects (see & White & Menci can be neglected either on verySilk 1978 ; Lucchin 1988 ; Cavaliere 1993),
small or on large mass scales.

The approach has been also applied to nonspherical dynamical models. has suggested that the massPS Monaco (1995)
function should be treated as a Lagrangian quantity. Employing the Zeldovich approximation as a proper Lagrangian
dynamics, he computed the collapse epoch along the Ðrst principal axis and showed that the shear shortens the collapse time
and thus that more high-mass structures are expected to form than the original mass function predicts. This e†ect of thePS
shear explains dynamically the lowered density threshold detected in several N-body experiments (e.g., &(d

c
^ 1.5) Efstathiou

Rees & Couchman et al. & Myers1988 ; Carlberg 1989 ; Klypin 1995 ; Bond 1996).
& Klypin have shown by N-body simulations that nonlinear clumps form from the Lagrangian regionsShandarin (1984)

where the smallest eigenvalue of the deformation tensor, reaches a local maximum. Recently, Teyssier, & Alimij3, Audit,

1 See also Doroshkevich (1967).
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have proposed some analytic prescriptions to compute the collapse time along the second and the third principal axes,(1997)
pointing out that Lagrangian dynamics is not valid after the Ðrst-axis collapse but that the formation of real virialized clumps
must correspond to the third-axis collapse. Their argument agrees with the N-body result obtained by & KlypinShandarin

In their analysis, the shear delays the third-axis collapse rather than fastens it, in contrast to its e†ect on the Ðrst-axis(1984).
collapse, which is in agreement with Peebles (1990).

The normalization problem, however, has not been well addressed in these nonspherical approaches to the mass function.
adopted the normalization factor of 2 used in the formalism, while et al. just assumed that theMonaco (1995) PS Audit (1997)

mass function could be normalized properly in any case.
In this paper we study the eventual formation of clumps in a spatially Ñat matter-dominated universe, with fragmentation

and coagulation e†ects ignored. In we review the statistical treatment of the mass function, highlighting the formalism.° 2, PS
In a nonspherical approach to the collapse condition based on the Zeldovich approximation is described, and two useful° 3,
conditional probability distributions relating the density Ðeld to the collapse condition are derived. In an Ansatz is° 4,
proposed to extend the validity of the Lagrangian dynamics to the third-axis collapse. With a help of this Ansatz, an analytic
approximation to the mass function for clumps is derived. In we justify the normalization factor 12.5 of the resulting mass° 5,
function by using the Jedamzik integral equation. In the results are discussed and Ðnal conclusions are drawn. We relegate° 6,
the detailed calculations and derivations to Appendices A and B.

2. STATISTICAL DESCRIPTION OF MASS FUNCTIONS

The mass function n(M) is deÐned such that n(M)dM is the comoving number density of gravitationally bound objects in
the mass range (M, M ] dM). To compute this statistic, it is assumed that the number densities of bound objects can be
inferred from the linearly extrapolated density contrast Ðeld, (where is the mean density). In other words, if a givend 4 do/o6 o6
region of the linear density Ðeld satisÐes a speciÐed criterion of collapse, then it is supposed to collapse and form a bound
object.

Let F(M) be the probability of Ðnding a region satisfying a given collapse condition in the linear density Ðeld Ðltered at
mass scale M or, equivalently, the fraction of the volume occupied by the regions that will eventually collapse into bound
objects with masses greater than M. Then we may write F(M) as follows :

F(M) \
P
~1

=
p(d)Cdd . (1)

Here p(d)dd is the probability that the smoothed density Ðeld at any given point will have a value in the range (d, d ] dd) and
C stands for the probability that the chosen point with density d will actually collapse. Once p(d) and C are determined and
F(M) is found, the mass function n(M) can be easily obtained as

n(M)\ o6
M
K dF
dM
K
, (2)

where is nothing but the volume of a bound region with mass M.M/o6
The speciÐc functional form of C is determined by the chosen dynamics to explain the collapse process, while p(d) depends

on the property of the initial density Ðeld, which is often assumed to be Gaussian in the standard cosmology (see et al.Bardeen
The probability distribution of the Gaussian density Ðeld smoothed out by a window function W (R) of scale radius R is1986).

given by

p(d) \ 1

J2np(M)
exp

C
[ d2

2p2(M)
D

. (3)

Here the mass variance p2(M) is a function of scale mass and is estimated byM Po6 R3

p2(M)\
P d3k

(2n)3 o d
k
o2W

k
2(R) , (4)

where and are the Fourier components of the density d and the window function W (R), respectively.d
k

W
k
(R)

According to the top-hat spherical model adopted by the bound objects form in the regions where the linearlyPS,
extrapolated density contrast d, growing with time, reaches its critical value in a Ñat universed

c
^ 1.69 (Peebles 1993).

Therefore, the regions with when Ðltered at scale radius R, correspond to the bound objects with masses greater thand [ d
c
,

M(R), since they will have when Ðltered at some larger scale. Thus, in the formalism, the collapse probability C ind \ d
c

PS
is determined solely by the density Ðeld itself and can be expressed by the following Heaviside step function :equation (1)
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CPS\ #(d [ d
c
) . (5)

Using equations and one obtains(1), (3), (5),

F(M) \ 1

J2np(M)

P

~1

=
exp

C
[ d2

2p2(M)
D
#(d [ d

c
)dd ,

\ 1

J2np(M)

P

dc

=
exp

C
[ d2

2p2(M)
D
dd ,

\ 1
2

erfc
C d

c
J2p(M)

D
, (6)

where erfc (x) is the complementary error function.
One obvious problem with the above analysis is that the integral of dF/dM over the whole range of mass does not give

unity :

P
0

= dF
dM

dM \
P
0

=
dF\ 1

2
. (7)

This normalization problem originates from the fact that the formalism does not properly account for the underdensePS
regions. Even for regions with at a given Ðltering scale, there is still a nonzero probability that such regions will haved \ d

cwhen Ðltered at some larger scale. But the formalism completely ignored those underdense regions in estimatingd [d
c

PS
F(M), so half the mass initially present in the underdense regions was not taken care of. avoided this normalizationPS
problem simply by multiplying dF/dM by a factor of 2 and wrote the mass function in the form such that

nPS(M) \ 2
o6
M
K dF
dM
K
\ 2

o6
M
K dp
dM

LF
Lp
K
,

\
S2

n
o6
M
K dp
dM
K d

c
p2(M)

exp
C
[ d

c
2

2p2(M)
D

. (8)

As mentioned in the ““ cooked-up ÏÏ normalization factor of 2 in has been shown to be correct in the case of a° 1, equation (8)
sharp k-space Ðlter and various numerical tests have conÐrmed the mass function as a satisfactory[W

k
(R) \ #(n/R[ k)], PS

approximation. Nevertheless, it still leaves much to be desired. The physical meaning of the sharp k-space Ðlter has yet to be
understood ; the gravitational collapse should be treated in more realistic models than the top-hat spherical one ; the lowered
density threshold obtained in many numerical tests cannot be explained by this statistical argument, so the mass(d

c
^ 1.5) PS

function is degraded to a phenomenological device.

3. NONSPHERICAL APPROACH TO THE COLLAPSE CONDITION

Since derived their mass function on the basis of the top-hat spherical model in 1974, the nonspherical nature of thePS
gravitational collapse has been demonstrated by many authors (e.g., et al. Melott, & ShandarinShandarin 1995 ; Kuhlman,

The shear especially has been shown to play a very important role in the formation of the nonlinear structures (e.g.,1996).
et al. Therefore, it is necessary to consider more realistic dynamical models toPeebles 1990 ; Monaco 1995 ; Audit 1997).

understand the collapse process and Ðnd the mass function.
We choose the Zeldovich approximation as a suitable Lagrangian dynamics to take into account the nonspherical aspect of

the gravitational collapse. However, instead of bringing the e†ect of the shear up to the surface, we try to retain the framework
of the formalism, counting the number densities of bound objects from the Ðltered linear density Ðeld but with a di†erentPS
dynamical collapse probability C in equation (1).

3.1. T he Zeldovich Approximation
The Zeldovich approximation asserts that the trajectory of a cosmic particle in the comoving coordinates(Zeldovich 1970)

can be expressed by the following simple formula :

x \ q [ D
`
(t)$((q) . (9)

Here q and x are the Lagrangian (initial) and the Eulerian (Ðnal) coordinates, respectively, the particle ((q) is the perturbation
potential, which is a Gaussian random Ðeld, and describes the growth of density Ñuctuations as a function of time.D

`
(t)

Throughout this paper, we focus on a spatially Ñat matter-dominated universe with vanishing cosmological constant, in
which case [where a(t) is the cosmic expansion factor].D

`
(t)P a(t)P t2@3
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Applying a simple mass conservation relation to gives the following expression of the masso6 d3q \ o(x)d3x equation (9)
density :

o(x) \ o6
[1[ D

`
(t)j1(q)][1[ D

`
(t)j2(q)][1[ D

`
(t)j3(q)]

, (10)

where are the ordered eigenvalues of the deformation tensor,j1, j2, j3 (j1[ j2[ j3)

d
ij
\ L2(

Lq
i
Lq

j
. (11)

shows that the three random Ðelds in the Lagrangian space are now the new dynamicEquation (10) j1(q), j2(q), j3(q)
quantities determining the collapse condition of given cosmic masses in the corresponding Eulerian space. Thus, the mass
function of bound objects can be built on this Lagrangian dynamical theory (see also Monaco 1995).

The actual dynamics for the formation of gravitationally bound objects is very complex. Even in the frame of the Zeldovich
approximation, the description of the gravitational collapse along all three directions is far from being simple and is too
cumbersome to use Shandarin, & Zeldovich Here we employ rather a simpliÐed dynamical model to(Arnold, 1982).
approximate the collapse process and determine the collapse condition for the formation of clumps.

Provided that at least one of the eigenvalues is positive at a given (Lagrangian) point, the denominator in canequation (10)
become zero as increases with time, so the density o(x) will diverge, signaling collapse at the corresponding EulerianD

`
(t)

point. If only the largest eigenvalue is positive in a given region, then it collapses into a pancake. If two(j1[ 0, j3\j2 \ 0)
eigenvalues are positive while the third one is negative then a Ðlament forms. The formation of a(j1[ j2[ 0) (j3\ 0),
virialized bound object clump occurs only if all three eigenvalues are positive, i.e., So, in our dynamical model basedj3 [ 0.
on the Zeldovich approximation, it is assumed that the lowest eigenvalue, plays the most crucial role in determining thej3,collapse condition for the formation of clumps. This assumption is in general agreement with & KlypinShandarin (1984).

The useful joint probability distribution of an ordered set is derived by(j1, j2, j3) Doroshkevich (1970) :

p(j1, j2, j3) \
3375

8J5np6
exp

A
[ 3I12

p2 ] 15I2
2p2
B
(j1[ j2)(j2[ j3)(j1[ j3) , (12)

where and p2 is the mass variance as deÐned in FromI1\ j1 ] j2] j3, I2\ j1 j2] j2 j3] j3 j1, equation (4). equation
one can see that the Zeldovich approximation excludes both exactly spherical and exactly cylindrical(12), (j1\ j2\ j3)collapse. Both types of collapse have zero probability of occurring. (However, the points with(j1\ j2, j2\ j3, j3\ j1)exist in generic Ðelds on lines, that is, on a set of measure zero in three dimensions, while the points withj

i
\ j

j
j1\ j2\ j3do not exist at all.)

In order to obtain a deeper qualitative understanding of the collapse in the Zeldovich approximation, it may be also useful,
in addition to this joint probability distribution to have an individual probability distribution of eachequation (12),

(see Appendix A) :eigenvalue2

p(j1) \
J5
12np

C
20

j1
p

exp
A
[ 9j12

2p2
B

[ J2n exp
A
[ 5j12

2p2
B

erf
A
J2

j1
p
BA

1 [ 20
j12
p2
B

[ J2n exp
A
[ 5j12

2p2
BA

1 [ 20
j12
p2
B

] 3J3n exp
A
[ 15j12

4p2
B

erf
AJ3j1

2p
B

] 3J3n exp
A
[ 15j12

4p2
BD

, (13)

p(j2) \
J15

2Jnp
exp

A
[ 15j22

4p2
B

, (14)

p(j3) \ [ J5
12np

C
20

j3
p

exp
A
[ 9j32

2p2
B

] J2n exp
A
[ 5j32

2p2
B

erfc
A
J2

j3
p
BA

1 [ 20
j32
p2
B

[ 3J3n exp
A
[ 15j32

4p2
B

erfc
AJ3j3

2p
BD

. (15)

The above individual probability distributions, equations and for the rescaled variable j/p are plotted in(13), (14), (15), Figure
Note that the distribution of is Gaussian despite the fact that is not a Gaussian random Ðeld.1. j2(q) j2(q)
According to has a low probability of occurring, i.e., 0.08 (see or Appendix A).equation (15), j3[ 0 Doroshkevich 1970

However, the small value of does not indicate that only 8% of all the regions will collapse into clumps.P(j3[ 0) \ 0.08
Rather, it indicates that the probability of Ðnding a bound region at Ðltering mass scale M is 0.08, provided that it is included

derived the probability distribution of But we found a typo in his result. Except for the typo, agrees with his result.2 Doroshkevich (1970) j1. equation (13)
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FIG. 1.ÈIndividual probability distributions of three eigenvalues of the deformation tensor. The solid lines show the analytic results obtained in this
paper for the rescaled variable j/p. The numerical results from the Monte Carlo simulation are also plotted (dotted lines).

in an isolated bound object with larger mass M@[ M (see Here the isolated bound objects indicate the bound objects that° 5).
have just collapsed at a given epoch.

In the following subsection, we derive the conditional probabilities of and d, reveal the correlated properties betweenj3[ 0
them, and determine a nonspherical collapse probability C.

3.2. Conditional Probabilities
In the linear regime when is still less than unity, can be approximated byD

`
(t) equation (10)

o ^ o6 [1] D
`
(j1] j2] j3)] . (16)

Setting at the present epoch, the linearly extrapolated density contrast is now written asD
`

4 1

d \ do
o6

\ j1] j2 ] j3 . (17)

Let us choose (d, as a new set of variables. Then can be reexpressed as a joint probability distribution ofj2, j3) equation (12)
(d, such thatj2, j3)

p(d, j2, j3) \
3375

8nJ5p6
exp

C
[ 3d2

p2 ] 15
2p2 (j2] j3)(d [ j2 [ j3)]

15
2p2 j2j3

D
(d [ 2j2[ j3)(j2[ j3)(d [ j2 [ 2j3) .

(18)

Direct integration of the above joint distribution over gives the two-point probability distribution of (d,equation (18) j2 j3) :

p(d, j3)\
P
j3

(d~j3)@2
p(d, j2, j3)dj2

\ 3J5
16np4 (15d2[90j3 d]135j32[8p2) exp

A
[ 9d2[30j3 d]45j32

8p2
B

] 3J5
2p2n exp

A
[ 6d2[30j3 d]45j32

2p2
B

, (19)
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where the upper limit and the lower limit of are and respectively, because of the condition ofj2 (d [ j3)/2 j3, j1[ j2[ j3.Using we can investigate various correlated properties between the d-Ðeld and the First of all, let usequation (19), j3-Ðeld.
calculate the probability distribution of d conÐned in the regions with j3[ 0 :

p(d o j3[ 0)\ p(d, j3[ 0)
P(j3 [ 0)

\ /0d@3 p(d, j3)dj3
P(j3[ 0)

\
G
[75J5/(8np2)d exp

A
[ 9d2

8p2
B

] 25

4J2np
exp

A
[ d2

2p2
BC

erf
AdJ10

4p
B

] erf
AdJ10

2p
BDH

#d . (20)

Here # stands for the Heaviside step function and the condition is used again to determine d/3 for the upperj1[j2 [j3limit of compares the unconditional Gaussian distribution of the density Ðeld with this conditionalj3. Figure 2 equation (3)
probability distribution for the rescaled variable d/p. It is shown that the maximum of is reachedequation (20) p(d o j3[ 0)
when d ^ 1.5p. That is, the linearly extrapolated density of the regions satisfying is most likely to be around 1.5p. Thej3[ 0
average density contrast, can be also computed withSdTj3;0, equation (20) :

SdTj3;0 \
P
0

=
dp(d o j3 [ 0)dd \ 25J10p

144Jn
(3J6 [ 2) ^ 1.65p . (21)

So, in the regions with the average density is slightly higher than the most probable density, say, Wej3[ 0, SdTj3;0 dj3;0max .
note that for p \ 1, roughly coincides with the lowered density threshold of the mass function, whiledj3;0max d

c
^ 1.5 PS

is close to the spherical threshold value Setting p equal to 1 means Ðltering the density Ðeld on aSdTj3;0 d
c
^ 1.69.

characteristic mass scale [deÐned by Thus the regions with for p \ 1 correspond to clumps withM
*

p(M
*
) \ 1]. j3[ 0

masses In fact, as argued by it is unavoidable to limit our Lagrangian dynamical approach to theM [ M
*
. Monaco (1995),

FIG. 2.ÈProbability distribution of the rescaled density Ðeld (d/p). The solid line represents the rescaled density distribution under the condition of
while the dashed line shows the unconditional Gaussian distribution. The vertical dotted line indicates the position of d/p \ 1.5.j3[ 0,
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FIG. 3.ÈConditional probability of as a function of the rescaled density d/p. The vertical dotted line indicates the position d/p \ 1.5.j3[ 0

high-mass section since the Zeldovich approximation is valid only in the single-stream regions, while the multi-(M [ M
*
)

stream regions are rare for et al.M [M
*

(Kofman 1994).
Another conditional distribution worth deriving is the probability that a given region with density d will haveP(j3[ 0 o d),

all positive eigenvalues :

P(j3[ 0 o d)\ p(d, j3[ 0)
p(d)

\
G
[ 3J10

4Jnp
d exp

A
[ 5d2

8p2
B

] 1
2
C
erf
AdJ10

4p
B

] erf
AdJ10

2p
BDH

#d . (22)

The resulting conditional probability (22) for the rescaled variable d/p is plotted in The probability of beginsFigure 3. j3 [ 0
to exceed when d ^ 1.5p and reaches unity when d ^ 3p. This implies that the collapse of highly overdense regions (d ? p)12will be always along all three directions (see also Bernardeau 1994).

We take as our nonspherical collapse probability C and proceed to derive the mass function of clumpsequation (22)
analytically in the next section.

4. AN ANALYTIC APPROXIMATION TO MASS FUNCTIONS

As noted earlier, the Zeldovich approximation as a Ðrst-order Lagrangian theory works very well until the Ðrst orbit
crossing (corresponding to the formation of pancakes) but breaks down afterward in the multistream regime &(Shandarin
Zeldovich Therefore, the rather restrictive collapse condition based purely on this Lagrangian formalism may not be1989).
fully satisfactory to describe the formation of clumps, especially low-mass objects.

On the other hand, & Klypin have shown by N-body simulations that the clumps form from theShandarin (1984)
Lagrangian regions where the smallest eigenvalue of the deformation tensor reaches a local maximum. Thus, one practicalj3way to overcome the limited validity of the Zeldovich approximation within the framework of our dynamical approach to
mass functions is to parameterize the collapse condition by assuming that the critical value of is a free parameter.j3[j3c, j3cEmploying this simple Ansatz to derive n(M), we Ðrst calculate the following probability distribution with equations (3)
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and (19) :

P(j3[ j3c o d) \ p(d, j3[ j3c)
p(d)

\ /j3cd@3 p(d, j3)dj3
p(d)

\
A
[ 3J10

4Jnp
(d [ 3j3c

B
exp

C
[ 5(d [ 3j3c)2

8p2
D

] 1
2
G
erf
C(d [ 3j3c)J10

4p
D

] erf
C(d [ 3j3c)J10

2p
DHB

#(d [ 3j3c) . (23)

Comparison of with reveals that is just horizontally shifted along the d-axis byequation (23) equation (22) P(j3[ j3c o d) 3j3cfrom with its shape unchanged.P(j3[ 0 o d)
Consequently, this Ansatz is mathematically equivalent to a parallel transformation of the density Ðeld itself by [3j3c.Thus, is now expressed as follows :equation (1)

F(M) \
P
~1

=
p(d ] 3j3c) ] P(j3 [ 0 o d)dd ,

\ 1

J2np
P

0

=
exp

C
[ (d ] 3j3c)2

2p2
DG

[ 75J10

8Jnp
d exp

A
[ 5d2

8p2
B

] 25
4
C
erf
AdJ10

4p
B

] erf
AdJ10

2p
BDH

dd . (24)

Here the volume fraction F(M) is normalized by a factor of 1/0.08\ 12.5, which we justify with a sharp k-space Ðlter in ° 5.
This normalization factor is much larger than the factor of 2 in the formalism. However, this larger normalization factorPS
can be explained by the larger amount of cloud-in-cloud occurrences in our dynamical formalism than in the formalism, asPS
shown in where the amount of cloud-in-cloud occurrences is computed. In an ideal hierarchical model, all the masses are° 5,
included in clumps. According to our dynamical model, only about 8% of all the masses are included in the clumps with the
““ largest ÏÏ mass (the ““ largest ÏÏ mass of bound objects in the universe is, in a practical sense, This is in roughM ^ M

*
).

agreement with the fraction of the galaxies in the Abell clusters (e.g., All the remaining masses arePadmanabhan 1993).
included in the clumps at smaller Ðltering mass scales.

Di†erentiating with respect to p, we haveequation (24)

LF
Lp

\ L
Lp
A 1

J2np
P

0

=
exp

C
[ (d ] 3j3c)2

2p2
DG

[ 75J10

8Jnp
d exp

A
[ 5d2

8p2
B

] 25
4
C
erf
AdJ10

4p
B

] erf
AdJ10

2p
BDH

dd
B

\ 25J10j3c
2Jnp2

A5j3c2
3p2 [ 1

12
B

exp
A
[ 5j3c2

2p2
B

erfc
AJ2j3c

p
B

] 25J15j3c
8Jnp2

exp
A
[ 15j3c2

4p2
B

erfc
AJ3j3c

2p
B

[ 125J5j3c2
6np3 exp

A
[ 9j3c2

2p2
B

. (25)

shows the generic behavior of this di†erential volume fraction (25) as changes. Since LF/Lp is directly proportion-Figure 4 j3cal to n(M), one can conclude from that as increases, the number densities of small-mass clumps (large p) increaseFigure 4 j3cwhile the large masses (small p) are reduced and the peak is lowered.
For simple power-law spectra the mass variance becomeso d

k
o2P kn,

p2(M)\
AM
M

*

B~(n`3)@3
. (26)

So in this case, the mass function can be expressed explicitly in terms of M :

n(M) \ o6
M
K dF
dM
K
\ o6

M
K dp
dM

LF
Lp
K

\ 25J10j3c
2Jn

An ] 3
6
B o6

M2
AM
M

*

B(n`3)@6GC5j3c2
3
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M

*

B(n`3)@3[ 1
12
D
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C
[ 5j3c2

2
AM
M

*

B(n`3)@3D
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C
J2j3c

AM
M

*

B(n`3)@6D] J6
8

exp
C
[ 15j3c2

4
AM
M

*

B(n`3)@3D
erfc

CJ3j3c
2

AM
M

*
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M

*

B(n`3)@6
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C
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2
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M

*

B(n`3)@3DH
. (27)
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FIG. 4.ÈDi†erential volume fraction for 0.4, 0.7, and 1.0 (dot-dashed, solid, dashed, and long-dashed lines). The dotted line is the standardj3c\ 0.1,
di†erential volume fraction.(d

c
^ 1.69) PS

We display the resulting mass function for in The value of 0.37 for is chosen to make our results forj3c ^ 0.37 Figure 5. j3cthe high-mass section Ðt well with the mass function, which has been tested to be a good approximation (seed
c
^ 1.5 PS

The original mass function with is also shown for comparison. For every power index n from [2Monaco 1995). PS d
c
^ 1.69

to 1, the mass function is characterized by the following properties :equation (27)

1. In the high-mass section it Ðts quite well with the mass function.(M/M
*

[ 1), d
c
^ 1.5 PS

2. Its peak is lower than that of the one, which agrees with N-body results (see, e.g., et al.PS Efstathiou 1988).
3. It has approximately the same slope as the mass function but predicts more structures in the low-mass sectionPS

(M/M
*

\ 1).

5. NORMALIZATION

Up to now, following the approach, we assumed that is correct. In other words, the probability ofPS-like equation (2)
Ðnding a region with at a Ðltering mass scale M is assumed to be proportional to the fraction of the volume occupiedj3[ j3cby the regions that will eventually collapse into bound objects with masses greater than or equal to M.

Strictly speaking, however, is not quite correct since the resulting mass function always has to be renormalized.equation (2)
Even in the regions with at the Ðltering mass scale M, there is still a nonzero probability of when the densityj3\ j3c j3\ j3cÐeld is Ðltered at some larger scale M@([M). But this marginal probability is ignored by the approach, which hasPS-like
resulted in a large normalization factor 12.5 of our mass function.

suggested a generalization ofJedamzik (1995) equation (2) :3

K dF
dM
K
\ d

dM
K P

0

=
dM@n(M@)

M@
o6

P(M, M@)
K
. (28)

Here P(M, M@) is the conditional probability of Ðnding a bound region at Ðltering mass scale M, provided that it is(j3[j3c)included in an isolated bound object with mass M@([M). The isolated bound objects at a given epoch are those that(j3\ j3c)have just collapsed. Thus, in our formalism, the isolated bound objects correspond to the regions with at a givenj3\ j3cÐltering mass scale.

3 In the original analysis based on the top-hat spherical model, did not use a mathematically correct deÐnition of isolated bound objects.Jedamzik (1995)
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FIG. 5.ÈMass function for the power index n \ ] 1, 0, [1, and [2. The solid lines show our analytic results with while the dashed andj3c \ 0.37,
dotted lines represent the mass function with and 1.69, respectively.PS d

c
\ 1.5

We Ðnd that the conditional probability P(M, M@) for the case of a sharp k-space Ðlter is given by (see Appendix B)

P(M, M@) \ 0.08#(M@ [ M) . (29)

reveals that results in P(M, M@) \ 0.08 (M \ M@). So, in our formalism, the probability ofEquation (29) P(j3[ 0) \ 0.08
Ðnding a bound region of mass scale M included in an isolated bound region with mass greater M is only(j3[j3c) (j3\ j3c)0.08. And this is directly related to our normalization factor of 1/0.08\ 12.5. Whereas in the formalism, the probabilityPS
P(M, M@) is 0.5, which is again directly related to the normalization factor of 1/0.5\ 2.PS

Now, with equations and we have(28) (29),

K dF
dM
K
\ 0.08

P
0

=
dM@n(M@)

M@
o6

dD(M@[ M)

\ 0.08
M
o6

n(M) , (30)

where stands for the Dirac delta function. More explicitly,dD

n(M)\ 12.5
o6
M
K dF
dM
K
, (31)

which is exactly the same formula as with the normalization factor of 12.5 explicitly included.equation (2)
Thus justiÐes the normalization factor 12.5 of our mass function in the case of a sharp k-space Ðlter.equation (31)

6. DISCUSSION AND CONCLUSIONS

We have derived an analytic approximation of the mass distribution function for clumps. The underlying dynamics has
been described by the Zeldovich approximation, which treats the nonspherical gravitational collapse. Like &Shandarin
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Klypin and et al. we have assumed that the clumps would be formed by the mass elements that have(1984) Audit (1997),
experienced gravitational collapse along all three directions.

We have given a somewhat di†erent interpretation to the analysis by reexpressing the fraction of the volume occupiedPS
by the bound regions in terms of two probabilities : the probability of the Gaussian density distribution and the collapse
probability of the given dense regions. The Zeldovich approximation has led us to determine a nonspherical collapse
probability that is di†erent from the one, relating the density Ðeld to the positive lowest eigenvalue of the deformationPS
tensor.

We have shown that the collapse probability reaches almost unity when d [ 3p, which indicates that the highly overdense
regions will always collapse along all three directions. In addition, we have found the density distribution of the regions that
meet the collapse condition based on the Zeldovich approximation. This distribution has shown that the most probable
density contrast of such regions is around 1.5 at the characteristic mass scale M

*
.

We have proposed a simple Ansatz in order to treat the multistream regions where the Lagrangian dynamics is not
applicable. This Ansatz has enabled us to derive an analytic mass function characterized by one free parameter, The bestj3c.approximate value of this parameter was chosen to be We admit that there is no background dynamical theory forj3c ^ 0.37.
determining directly the value of this free parameter, which thus has to be found phenomenologically. However, the following
arguments may give a clue to understanding why this parameter has this value. A simple extrapolation of intoequation (10)
the multistream regions suggests that only the mass elements with collapse along all three directions by thej3[ j3c \ 1
present epoch of However, the collapse along the Ðrst two directions increases the density, which therefore speeds upD

`
\ 1.

the collapse along the third direction. This roughly agrees with the conclusion of et al. Using equation (24)Audit (1997). from
Audit et al. with their choice of the parameters (v\ 1, a \ 0.8, one can easily obtain for the(1997) d

c
\ 1.69, p

c
\ 0.74),

collapse epoch which is always earlier than the prediction of the Zeldovich approximationa
c
\ 1/(0.8j3] 0.32d), (a

c
\ 1/j3),provided that j3[ 0.

For power-law spectra, it has been shown that our resulting mass function with is in good agreement with thej3c^ 0.37
mass function in the high-mass section but has a lower peak and predicts more small-mass structures, which are ind

c
^ 1.5 PS

agreement with what has been detected in N-body simulations (e.g., et al. & HeavensEfstathiou 1988 ; Peacock 1990).
However, it should be noted that the prediction concerning the small-mass structures is least reliable not only in any PS-like
approach but also in our dynamical approach to the mass function since the validity domain of the Zeldovich approximation
is limited to the high-mass section as outlined in ° 3.2.

Like the other formalisms, a normalization factor for the mass function has been introduced, which in our case isPS-like
12.5. We have justiÐed the normalization factor with a sharp k-space Ðlter by using the Jedamzik integral equation, showing
that this rather large normalization factor is due to the low probability of Ðnding a bound region at Ðltering mass(j3 [j3c)scale M included in an isolated bound region with larger mass M@. But the physical meaning of the sharp k-space(j3\ j3c)Ðlter has yet to be fully understood.

We postpone the numerical testing of our mass function to a later paper.

We are grateful to Lev Kofman, Paolo Catelan, and the referee for useful discussions and helpful comments. This work has
been done under the support of NASA grant NAG 5-4039 and an EPSCoR 1996 grant.

APPENDIX A

In found the joint probability distribution, of an ordered set of eigenvalues in1970, Doroshkevich p(j1, j2, j3), (eq. [12] °

corresponding to a Gaussian potential. In this Appendix, we sketch the derivation of and (eqs.3.1), p(j1), p(j2), p(j3) [13],
and in and investigate their statistical properties.[14], [15] ° 3.1)

The two-point probability distributions, and can be easily obtained from the direct integrationp(j1, j2), p(j2, j3), p(j1, j3)of such thatp(j1, j2, j3)

p(j1, j2)\
P
~=

j2
p(j1, j2, j3)dj3

\ 1125

64J5np4
G
(j1[ j2)(3j1 [ j2) exp

A
[ 3j12

p2 ] 3j1j2
p2 [ 9j22

2p2
B

]J3np
12

(j1[ j2)
C
8 ] 3

p2 (3j1[ j2)(3j2[ j1)
D

] exp
A
[ 45j12

16p2] 15j1j2
8p2 [ 45j22

16p2
B

erfc
CJ3

4p
(j1 [ 3j2)

DH
#(j1[ j2) , (A1)

p(j2, j3)\
P
j2

=
p(j1, j2, j3)dj1

\ 1125

64J5np4
G
(j2[ j3)(j2 [ 3j3) exp

A
[ 3j32

p2 ] 3j2j3
p2 [ 9j22

2p2
B
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]J3np
12

(j2[ j3)
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8 ] 3

p2 (j2[ 3j3)(j3[ 3j2)
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] exp
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16p2] 15j2j3
8p2 [ 45j32

16p2
B

erfc
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4p
(3j2 [ j3)

DH
#(j2[ j3) , (A2)

p(j1, j3)\
P
j3

j1
p(j1, j2, j3)dj2

\ 1125

64J5np4
A
(j1[ j3)(3j1 [ j3) exp

A
[ 3j12

p2 ] 3j1j3
p2 [ 9j32

2p2
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] (j1[ j3)(j1[ 3j3) exp
A
[ 3j32
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p2 [ 9j12

2p2
B

]J3np
12

(j1[ j3)
C 3
p2 (3j1 [ j3)(j1[ 3j3) [ 8

D
] exp

A
[ 45j12

16p2] 15j1j3
8p2 [ 45j32

16p2
B

]
G
erfc

CJ3
4p

(3j1[ j3)
D

[ erfc
CJ3

4p
(3j3[ j1)

DHB
#(j1[ j3) (A3)

In order to derive and we have to integrate the above two-point distributions, which involve complexp(j1), p(j2), p(j3),error function terms as one can see. We Ðnd the following recursion formula, which is useful in integrating such complex
terms :

P
tn exp ([a2t2)erf (bt)dt \ n [ 1

2a2
P

tn~2 exp ([a2t2) erf (bt)dt

[ 1
2a2 tn~1 exp ([a2t2) erf (bt)] b

a2Jn
P

tn~1 exp [[(a2] b2)t2]dt . (A4)

With the above recursion formula, it is straightforward to derive the individual distributions. The results are shown in ° 3.1
(eqs. and[13], [14], [15]).

Now the probability that each eigenvalue is positive as well as the mean and the variance of each eigenvalue can be
computed with the above results :

P(j1[ 0) \ 23/25 , P(j2[ 0) \ 12 , P(j3[ 0)\ 2/25 ; (A5)

j6 1\ 3

J10n
p , j6 2\ 0 , j6 3\ [ 3

J10n
p ; (A6)

pj12 \ 13n [ 27
30n

p2 , pj22 \ 2
15

p2 , pj32 \ 13n [ 27
30n

p2 ; (A7)

which are all in agreement with Doroshkevich (1970).

APPENDIX B

In the framework of our formalism, the conditional probability P(M, M@) is written as

P(M, M@) \ P(j3[ j3c o j3@ \ j3c) \
P(j3[ j3c, j3@ \ j3c)

P(j3@ \ j3c)
, (B1)

where and are the lowest eigenvalues of the deformation tensor at the same point but at two di†erent Ðltering massj3 j3@scales, M and M@, respectively.
In order to derive the probability we start with the multivariate Gaussian joint probability distribu-P(j3[j3c, j3@ \ j3c),tion (see et al. for the six independent elements of the deformation tensor at two di†erentDoroshkevich 1970 ; Bardeen 1986)

mass scales :

p
J
(y1, . . . , y6@ )dy1, . . . , dy6@ \ exp ([Q)

(2n)6Jdet (V )
dy1, . . . , dy6@ , (B2)

Q\ 12yt Æ V Æ y . (B3)

Here V is the covariance matrix, while and are the six independent elements of the deformation tensor (deÐnedMy
i
N
i/16 My1@ Ni/16

by in at mass scales M and M@, respectively.eq. [11] ° 3.1 ; y1 4 d11, y24 d22, y34 d33, y44 d12, y54 d23, y64 d31)
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In the case of a sharp k-space Ðlter, the mutual correlations between and areMy
i
N
i/16 My1@ Ni/16

Sy
i
2T \ p

M
2
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, Sy
i
y
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T \p
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2

15
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, (B4)
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@T \p

M{2
15

, (B5)

for i, 2, 3, andj(D i) \ 1,

Sy
i
2T \p

M
2

15
, Sy

i
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j
T \ 0 , Sy

i
y
i
@T \p
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15

, (B6)

Sy
i
@2T \p

M{2
15

, Sy
i
@ y

j
@T \ 0 , Sy

i
y
j
@T \ 0 , (B7)

for i, 5, 6. Here and are the mass variance of the density Ðeld Ðltered at the mass scales M and M@,j( D i) \ 4, p
M
2 p

M{2
respectively.

From equations along with the similarity transformation of the deformation tensor into its principal axes, we(B2)È(B7),
Ðnd the following joint probability distribution of the three eigenvalues of the deformation tensor at ÐlteringMj

i
N
i/13 , Mj

i
@N
i/13

mass scales M, M@(M \ M@), respectively :

p
J
(j1, . . . , j3@ )dj1, . . . , dj3@ \ p

J1(*1, *2, *3)d*1 d*2 d*3] p
J2(j1@ , j2@ , j3@ )dj1@ dj2@ dj3@ , (B8)

p
J1 \ 53] 33

24n3p*6J5
exp

A
[ 3I12

p*2
] 15I2

2p*2
B
(*1[ *2)(*2[ *3)(*3[ *1) , (B9)

p
J2 \ 53] 33

24n3p
M{6 J5

exp
A
[ 3I1@2

p
M{2 ] 15I2@

2p
M{2
B
(j1@ [ j2@ )(j2@ [ j3@ )(j3@ [ j1@ ) , (B10)

where

*
i
4 j

i
[ j

i
@, p*24 p

M
2 [ p

M{ , (B11)

I14 *1 ] *2] *3, I24 *1*2] *2*3 ] *3*1 , (B12)

I1@ 4 j1@ ] j2@ ] j3@ , I2@ 4 j1@ j2@ ] j2@ j3@ ] j3@ j1@ . (B13)

Note the similarity between and In fact, the above equations are useful only in the case of a sharp k-space Ðlter.p
J1 p

J2.The integration of over and gives us the joint probability density distribution,p
J

j1, j2, j1@ , j2@ p(j3, j3@ ) :
p(j3, j3@ )dj3 dj3@ \ p(*3)d*3 p(j3@ )dj3@ . (B14)

Here the probability density distributions of and have the same form as except for the value of thep(*3) p(j3@ ) p(j3) (eq. [15])
variance.

Finally, we derive the conditional probability P(M, M@) :

P(M, M@)\ P(j3[ j3c, j3@ \ j3c)
P(j3@ \ j3c)

\ p(j3@ \ j3c)dj3@ /0= d*3c p(*3c)
p(j3@ \ j3c)dj3@

\
P
0

=
d*3c p(*3c) \

P
0

=
dj3 p(j3)\ 0.08#(M@[ M) , (B15)

where is*3c j3[ j3c.
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