ERRATUM

In the paper "Signatures of Stellar Reionization of the Universe" by Zoltan Haiman and Abraham Loeb (ApJ, 483, 21 [1997]), the stated values of the normalization $\sigma_{8 h^{-1}}$ are misleading as they are based on Gaussian, rather than conventional top-hat filtering. We calculated the value of σ_{81-1} from the power spectrum $P(k)$ with a Gaussian filter; i.e., using $W(k)=\exp \left(-k^{2} r^{2} / 2\right)$ in the expression $\sigma^{2}(r)=\int d^{3} k W^{2}(k) P(k)$. With the BBKS power spectrum (J. M. Bardeen, J. R. Bond, N. Kaiser, \& A. S. Szalay, ApJ, 304, 15 [1986]), this gives a 2.23 times smaller value for $\sigma_{s h-1}$ than one would obtain with the conventional top-hat filter, $W(k)=3 j_{1}(k r) / k r$. Accordingly, our values quoted for $\sigma_{8 h^{-1}}$ should be multiplied by a factor of 2.23 to correspond to the conventional interpretation.

Our results remain valid, except that our models with $\sigma_{8 h^{-1}}($ Gaussian $)=0.67$, for example, correspond to $\sigma_{8 n^{-1}}($ (op-hat $)=$ 1.49. We have reproduced our calculations using the conventional top-hat normalization in each case. Table 1 summarizes the corrected reionization redshifts and electron scattering optical depths for the original range of parameters. Although in all cases reionization occurs somewhat later than originally stated (at $z=18$ rather than $z=25$ in our standard model), the electron scattering optical depths remain similar and are detectable by MAP and the Planck Surveyor. The authors would like to thank N. Gnedin for a discussion that led to their noticing and correcting the error.

TABLE 1
Corrected Paraneter Values

Parameter	Standard	Range	Reionization Redshift	Optical Depth
$\sigma_{3 h-1}$	0.67	0.67-1.0	18-22	0.07-0.11
n	1.0	0.8-1.0	13-18	0.04-0.07
Ω_{1}	0.05	0.01-0.1	17-19	0.02-0.13
$f_{\text {star }}$	13\%	1\% $/ 10 \%$	12-24	0.05-0.09
$f_{\text {csc }}$	$f_{\text {esc }}(z)$	$3 \%-100 \%$	11-18	0.05-0.07
IMF tilt (β)	0	0-1.69	18-1	0.01-0.07
H_{2} feedback.	Yes	Yes/No	18-20	0.07-0.11

