ERRATUM

In the paper "Signatures of Stellar Reionization of the Universe" by Zoltán Haiman and Abraham Loeb (ApJ, 483, 21 [1997]), the stated values of the normalization σ_{8h-1} are misleading as they are based on Gaussian, rather than conventional top-hat filtering. We calculated the value of σ_{8h-1} from the power spectrum P(k) with a Gaussian filter; i.e., using $W(k) = \exp(-k^2r^2/2)$ in the expression $\sigma^2(r) = \int d^3k W^2(k)P(k)$. With the BBKS power spectrum (J. M. Bardeen, J. R. Bond, N. Kaiser, & A. S. Szalay, ApJ, 304, 15 [1986]), this gives a 2.23 times smaller value for σ_{8h-1} than one would obtain with the conventional top-hat filter, $W(k) = 3j_1(kr)/kr$. Accordingly, our values quoted for σ_{8h-1} should be multiplied by a factor of 2.23 to correspond to the conventional interpretation.

Our results remain valid, except that our models with $\sigma_{8h-1}(Gaussian) = 0.67$, for example, correspond to $\sigma_{8h-1}(top-hat) = 1.49$. We have reproduced our calculations using the conventional top-hat normalization in each case. Table 1 summarizes the corrected reionization redshifts and electron scattering optical depths for the original range of parameters. Although in all cases reionization occurs somewhat later than originally stated (at z = 18 rather than z = 25 in our standard model), the electron scattering optical depths remain similar and are detectable by MAP and the Planck Surveyor. The authors would like to thank N. Gnedin for a discussion that led to their noticing and correcting the error.

CORRECTED PARAMETER VALUES				
Parameter	Standard	Range	Reionization Redshift	Optical Depth
σ_{Bh-1}	0.67	0.67-1.0	18-22	0.07-0.11
<i>n</i>	1.0	0.8 - 1.0	13-18	0.04-0.07
Ω_h	0.05	0.01-0.1	17-19	0.02-0.13
$f_{\rm star}$	13%	1%-40%	12-24	0.05-0.09
f_{cac}	$f_{exc}(z)$	3%-100%	11-18	0.05-0.07
IMF tilt (β)	0	0-1.69	18-1	0.01-0.07
H ₂ feedback	Yes	Yes/No	18-20	0.07-0.11

TABLE 1