
THE ASTROPHYSICAL JOURNAL, 498 :137È142, 1998 May 1
1998. The American Astronomical Society. All rights reserved. Printed in U.S.A.(

HOP: A NEW GROUP-FINDING ALGORITHM FOR N-BODY SIMULATIONS

DANIEL J. AND PIETEISENSTEIN HUT

Institute for Advanced Study, Princeton, NJ 08540
Received 1997 July 23 ; accepted 1997 December 9

ABSTRACT
We describe a new method (HOP) for identifying groups of particles in N-body simulations. Having

assigned to every particle an estimate of its local density, we associate each particle with the densest of
the particles nearest to it. Repeating this process allows us to trace a path, within the particle setNhopitself, from each particle in the direction of increasing density. The path ends when it reaches a particle
that is its own densest neighbor ; all particles reaching the same such particle are identiÐed as a group.
Combined with an adaptive smoothing kernel for Ðnding the densities, this method is spatially adaptive,
coordinate-free, and numerically straightforward. One can proceed to process the output by truncating
groups at a particular density contour and combining groups that share a (possibly di†erent) density
contour. While the resulting algorithm has several user-chosen parameters, we show that the results are
insensitive to most of these, the exception being the outer density cuto† of the groups.
Subject headings : cosmology : theory È dark matter È methods : numerical

1. INTRODUCTION

Many astrophysical projects hinge upon assigning
importance to overdense regions in a set of points. Exam-
ples include identifying collapsed halos in a cosmological
simulation, determining whether two galaxies have merged,
Ðnding clusters of galaxies in a survey, or locating dwarf
galaxies in star counts. Because the objects represented by
the groups of close points often have fuzzy edges that may
overlap with other groups, there is no perfect algorithmic
deÐnition of a group ; consequently, the answers to ques-
tions posed about the objects may depend upon the way in
which membership in the groups was decided. It is therefore
useful to have several di†erent methods available for divid-
ing a set of points into groups of associated particles ; each
will have its advantages and drawbacks.

In gravitational N-body simulations, one wishes to
associate the clumps of particles with real-world objects, be
they galaxies, dark matter halos, or clusters. While one has
full six-dimensional phase-space information, in practice
the particles cover phase space too sparsely to provide
unambiguous di†erentiation of groups on the basis of veloc-
ity. Hence, as a Ðrst cut, it is usual to consider only the
spatial information, in which one looks for density enhance-
ments. We focus here on methods that divide the set of
particles into equivalence classes, i.e., so that each particle is
a member of one and only one group ; one could imagine
alternatives in which particles could belong to a series of
nested or overlapping groups or even have their group
membership expressed only in a probabilistic way.

Some of the more popular group-Ðnding algorithms are
friends-of-friends (FOF; et al. see &Davis 1985 ; Barnes
Efstathiou for a generalization), DENMAX1987

& Gelb Gelb & Bertschinger(Bertschinger 1991 ; 1994 ;
and various methods based on the over-Frederic 1995),

density within spherical regions et al.(Warren 1992 ; Lacey
& Cole & Myers Because they raise1994 ; Bond 1996).
issues related to our method, we will describe the Ðrst two of
these in more detail.

In the FOF algorithm et al. two particles(Davis 1985),
are part of the same group if their separation is less than
some chosen value ; chains of such pairs then deÐne the
groups. The method is therefore coordinate-free and has

only one parameter ; moreover, the outer boundaries of the
groups tend roughly to correspond to density contours,
related to the inverse cube of the linking distance. Unfor-
tunately, some groups found by the method may appear to
the eye as two clumps, linked by a small thread of particles
running between the subgroups. This can be harmless for
some applications but may be inappropriate for others.

DENMAX takes a quite di†erent approach, Ðrst estimat-
ing the density at each point in space and then allowing
each particle to determine its group membership by tracing
a path along the gradient of this density surface until it
reaches a local maximum. All particles that end up at the
same maximum are assigned to the same group. Unfor-
tunately, the resolution with which one deÐnes the density
Ðeld results in a trade-o† between oneÏs ability to recognize
smaller groups and oneÏs propensity to split groups because
of the discovery of multiple local maxima at Ðner
resolution. These splittings may be undesirable, and it is
difficult to assign physical importance to the way in which
low-density particles are assigned to groups on the basis of
the details of the locations of multiple local maxima in the
high-density regions. Some implementations of DENMAX

& Bertschinger calculate the densities(Gelb 1994)
using a grid, although a more recent version known as
SKID (http ://www-hpcc.astro.washington.edu/tools/SKID;

et al. Hernquist, & KatzStadel 1998 ; Weinberg, 1997)
employs a coordinate-free method.

In this paper, we describe a new method, dubbed HOP,
similar in spirit to DENMAX but rather di†erent in its
implementation. Instead of constructing the density gra-
dient Ðeld, we conÐne ourselves to the point set, associate a
density to every particle, and replace the concept of the
gradient with a simple search for the highest density among
a particleÏs nearest neighbors. We link each particle to its
densest neighbor, then on to that particleÏs densest neigh-
bor, and so on, until we reach a particle which is its own
densest neighbor. All particles that are traced to the same
such particle, hereafter called a maximum, constitute a
single group. Because each ““ hop ÏÏ moves to a higher density
particle, this process is guaranteed to converge. We thus
avoid any numerical integration of the density gradient
Ðeld, with its associated subtlety of a stopping condition ;
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moreover, the method is coordinate-free and can be spa-
tially adaptive if the scales used to determine the density
and the hopping process are tuned to reÑect the local
densityÈfor example, by using a constant number of
nearest neighbors.

At this point, every particle is assigned to a group ; since
we are interested in the high-density regions, we simply
remove particles below a given density threshold. However,
one now Ðnds that the method will have split the particles
within that particular density contour into several pieces,
one for each maximum within. As this may be undesirable,
we reconnect those groups that share a sufficiently dense
boundary, using two density thresholds to guard against
small Ñuctuations in a contour that split a group in two.
Finally, we demonstrate that, while the method thus has
three integral parameters for near-neighbor searching and
three density thresholds to be chosen, in fact the results are
insensitive to oneÏs choices for Ðve of these : only the outer
density contrast is important for determining group proper-
ties.

2. METHOD

2.1. Finding Groups by Hopping
We wish to divide the particles into distinct sets such that

particles in individual high-density regions are grouped
together and left separate from those in other regions. To
do this, we attempt to distinguish between nearby groups
by assigning each particle to the group nucleus that it
reaches by following in the direction of increasing density.
Rather than construct an estimate of the density gradient at
every point in space, we instead calculate an estimate of the
density at every particle position and then determine, of the
particle and its nearest neighbors, which of theNhop[ 1
particles has the highest density. We next associate each
particle with its highest density neighbor and continue
hopping to higher and higher densities until we reach a
particle that is its own highest density neighbor (a
““ maximum ÏÏ). Because one always hops to increasing
density, it is impossible to enter a nonconvergent loop. All
particles that hop to the same maximum are placed into a
group. Every particle is assigned to one and only one
group ; hence, we are establishing a set of equivalence
classes among the particles.

We assign a density estimate to each particle by using the
radial positions of the nearest neighbors of the givenNdensparticle. Generally, we use the SMOOTH algorithm
(htpp ://www-hpcc.astro.washington.edu/tools/SMOOTH),
which calculates the densities from the by a spher-Ndensically symmetric cubic spline kernel & Lattan-(Monaghan
zio giving unit weight to particles at zero distance1985),
from the given particle and zero weight to those at distances
equal to or greater than the radial distance to the Ndensnearest neighbor. We also ran some tests with the simpler
prescription that the density is proportional to

& Hut In either case, the(3/4n)Ndens rN~3 (Casertano 1985).
smoothing length for calculating the density automatically
adapts to the density itself, becoming smaller in high-
density regions.

Thus, the above algorithm for assigning particles to
groups is spatially adaptive, coordinate-free, and involves
two parameters, and Once the densities areNhop Ndens.found, the group Ðnding proceeds without the numerical
subtleties that DENMAX must face ; there are no di†eren-

tial equations to solve and the stopping condition is trivial.
In general, quantities other than the density, e.g., the gravi-
tational potential or the magnitude of the acceleration

& Cole could be substituted.(Lacey 1994),
The HOP algorithm could be useful for other applica-

tions besides group Ðnding in large-scale cosmological
simulations. For example, to study the process of galaxy
merging, one might set up a series of automated scattering
experiments in which each experiment starts o† with two
galaxies approaching each other with di†erent relative
velocities and orientations. During such experiments, the
HOP algorithm could be used to Ñag the occurrence of a
merger from the fact that the total number of groups has
been reduced from two to one. Of course, additional care
would have to be taken to check that the merger is per-
manent rather than a temporary stage during which the two
galaxies pass through each other, only to separate again
later.

2.2. Merging Groups by Boundaries
In many cases, we are interested simply in distinguishing

dense clumps from less dense regions and wish to ignore the
substructure within highly dense regions. In this case, the
algorithm as it stands has two problems. First, all particles
are assigned to groups, so no distinction between the dense
halo and its surroundings has yet been made. Second,
because the density is determined adaptively, even highly
dense regions may have multiple maxima, causing the
group to split into many pieces with unphysical shapes ; e.g.,
a spherical halo might be cut into sectors. Here we o†er
solutions to these two problems.

As the density around each particle has already been
computed, the obvious solution to the Ðrst problem is to
include only particles that exceed some density threshold

As this places us in a position to select groups baseddouter.on density contours, we address the second problem in the
following way : We adopt two additional density thresholds,

and usually picked so thatdsaddle dpeak, douter¹ dsaddle¹We next deÐne a boundary pair between two groupsdpeak.when a particle and one of its nearest neighbors areNmergein di†erent groups ; the density of the boundary pair is
deÐned to be the average of the densities of the two par-
ticles. We then merge two groups if their densest boundary
pair (which is our equivalent of a saddle point) exceeds the
density Furthermore, groups whose maximum den-dsaddle.sities (i.e., the density of the group maximum) are less than

are disbanded unless they share a boundary pairdpeakdenser than with a group whose density does exceeddoutersuch groups are attached to the group with whichdpeak ;they share the largest boundary pair.
We depict these rules visually in The intentionFigure 1.

of the algorithm is that groups consist of central regions
whose maximum densities exceed but whose bound-dpeakaries are deÐned by contours of a lower density thedsaddle ;connectivity of the contours near ““ pinch points ÏÏ isdsaddleadjudicated via the nearest neighbors. However,Nmergefrom these centers, the groups extend out to a yet smaller
density contour of with affiliation between rival dis-douter,joint interior contours of density being determined bydsaddlethe process of hopping toward increasing density. In the
rarer case where that hopping takes one to a density
maximum with the entire subgroup isdouter\ d \ dpeak,attached to the viable group with which it shares(d[dpeak)the highest density contour.
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FIG. 1.ÈIllustration of the algorithm to merge maxima. The shaded
regions represent areas with density exceeding The solid heavy con-dpeak.tours represent the dashed heavy contours represent and lightdouter, dsaddle,contours represent other values. Maxima A and B are merged into a single
group because they lie within a single contour ; C and E are separatedsaddlegroups because they do not share this contour. The maxima D, F, G, and
H cannot be group centers because they do not achieve they ared \ dpeak ;
attached to other groups because they share contours with them. F,douterG, and H are attached to E, while D is attached to the A-B group rather
than C because it shares a higher boundary with the former. The situation
with F and G demonstrates the beneÐt of having had theydsaddle \ dpeak ;
been equal, this small Ñuctuation in the contour would have split the
group. All groups would be truncated at density resulting in thedouter,three groups enclosed by the solid and dash-dotted heavy contours.

Dealing with these two problems has introduced four
new parameters, and thandouter, dsaddle, dpeak, NmergeÈmore
one might have wished for. Clearly, the deÐnition of the
outer boundary of a group must involve a parameter such
as We shall demonstrate below that the results ofdouter.merging are insensitive to the value of Finally, theNmerge.possibility of choosing o†ers the fol-dpeak D dsaddleD douterlowing advantages : Simply selecting groups on the basis of
a single density contour (i.e., candpeak \ dsaddle\ douter)produce groups that appear by eye to be multiple groups
linked by thin bridges. By allowing one sup-dsaddle[ douter,presses such groups by splitting them according to the
topology of a second, more interior contour. By using

one e†ectively blurs out this boundary so thatdpeak[ dsaddlea group cannot split in two because of minor Ñuctuations
exactly at the contour. For example, in ifdsaddle Figure 1,

the group EFG would have been splitdsaddle\ dpeak,because of a small Ñuctuation in the contour ; by using
this split is avoided.dsaddleD dpeak,

2.3. Implementation
The HOP method relies heavily on being able to

efficiently extract lists of the N nearest neighbors for each
particle. For this, we use the tree-based, near-neighbor
search algorithm made publicly available as part of the
SMOOTH program (htpp ://www-hpcc.astro.washington.

To implement HOP, we modiÐededu/tools/SMOOTH).
this program so as to alter how these lists of neighbors were
used.

We make three passes through the data set. First, we
calculate the density around each particle using Ndens

nearest neighbors. Second, we search for the densest of each
particleÏs nearest neighbors. After tracing each particleNhopto its maximum in order to label the groups, we make a
third pass with neighbors, compiling the densestNmergeboundary pairs between each pair of groups. We then write
as output the densities and group memberships of each
particle as well as all the densest boundary pairs. We can
then quickly and repeatedly apply di†erent choices for the
density cut and group-merging parameters(douter) (dsaddle,allowing us to vary these thresholds without rerun-dpeak),ning the main code.

For our tests, we use a single-time output of a cold dark
matter simulation, kindly provided by G. Xu, R. Cen, and J.
Ostriker. The simulation, run with the Tree Particle Mesh
(TPM) method has 16.8 million particles, and the(Xu 1995),
nonlinear mass scale (where the top-hat rms mass Ñuctua-
tions equal 1.69) contains about 12,000 particles. The HOP
code runs on this simulation in somewhat under 2 CPU
hours on an UltraSparc 170E (for Ndens \ 64, Nhop\ 16).
More than half of this time is spent calculating the densities,
as this requires the largest number of neighbors to be found.

2.4. Insensitivity to Parameters
With six free parameters, it is important to test the sensi-

tivity of the results to changes in these parameters. As stated
above, it is clear that at least one of these parameters, the
density threshold used to clip the outer extent of the groups,
will make a signiÐcant di†erence. We will argue, however,
that varying the remaining Ðve parameters produces little
change in the results.

We adopt as our canonical parameter set Ndens \ 64,
andNhop\ 16, Nmerge\ 4, dpeak \ 160, dsaddle\ 140,

with densities normalized relative to the meandouter\ 80,
density. We adopt the notation (Ndens-Nhop-Nmerge) [dpeak-to label sets. In we present the frac-dsaddle-douter] Figure 2
tion of the total mass held in groups per logarithmic inter-

FIG. 2.ÈPlot of the fraction of mass in groups per logarithmic interval
of group mass vs. the logarithm of the group mass. Our canonical case is

and Here weNdens \ 64, Nhop \ 16, Nmerge \ 4, dpeak \ 120, douter \ 80.
show three curves, varying from 8 to 64.Nhop
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FIG. 3.ÈSame as but is varied from 1 to 8Fig. 2, Nmerge

val of group mass (i.e., membership number). The e†ects of
varying from 8 to 64 are shown; the di†erences areNhopsmall, but, as expected, smaller values of produceNhopslightly more small groups, while larger values of causeNhopsome of the small groups to be swallowed by larger groups.

In we show the same statistic, but we varyFigure 3
There is practically no di†erence betweenNmerge. Nmerge \ 4

and allows slightly more smallNmerge \ 8. Nmerge \ 1
groups to survive unmerged.

In we show the same statistic while comparingFigure 4
values of 64 and 128. The most important result hereNdensis that groups below the scale tend not to be identiÐed.Ndens

FIG. 4.ÈSame as but is varied from 64 to 128 and alsoFig. 2, Ndenscompared to the results using with a top-hat kernel rather thanNdens \ 24
the cubic spline.

Presumably, clumps of only a few particles either do not
achieve sufficient density after smoothing to be included, or,
if they do get included, they get absorbed into larger groups.
Also, for about 4% fewer particles have suffi-Ndens \ 128,
ciently high-density (80 in this case) to be in anydoutergroup ; most of this discrepancy is on the small-mass end.
We also show results when estimating the density as the
inverse cube of the distance to the 24th nearest neighbor
(i.e., using a top-hat kernel rather than a cubic spline). This
slightly reduces the size of large groups while identifying
more small ones.

In we show the same statistic while varyingFigure 5 dpeakand at Ðxed We set to bedsaddle douter\ 80. dsaddle (3dpeakAs increases, group sizes decrease as fringe] douter)/4. dpeakgroups are left unattached to large groups. Also, the total
number of particles in groups decreases because more and
more groups are disqualiÐed for failing to have a maximum
density in excess of This is particularly important fordpeak.the smallest groups in that it is nearly impossible for a
group to have one particle with a density of, say, 800 while
having only 100 particles above a density of 80. We prefer

to be a small multiple of perhaps 2 or 3.dpeak douter,In we show the same statistic, ÐxingFigure 6 dpeak \ 240
and and letting vary between the two. Fordouter\ 80 dsaddlethe method selects groups as any closeddsaddle\ douter,contour of density that achieves a density some-douter dpeakwhere within it. As increases, a group may be sub-dsaddledivided as the region interior to contours of density dsaddlegoes from one connected volume (at to multiple dis-douter)joint volumes. At each closed contour ofdsaddle\ dpeak,density deÐnes a group center, with the group mem-dpeakbership extending out to by hopping. Hence, asdouter dsaddleincreases, groups are broken into pieces, producing fewer
large groups and more small groups, as seen in the Ðgure.

In we show the same statistic, varyingFigure 7 dpeak,and but keeping the ratio Ðxed. We also showdsaddle, douterthe results for two FOF groupings, with link lengths of 0.1
and 0.2 in units of the mean particle separation [denoted

FIG. 5.ÈSame as but and are varied at ÐxedFig. 2, dpeak dsaddle douter.We maintain dsaddle \ (3dpeak ] douter)/4.
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FIG. 6.ÈSame as but is varied from 80 to 240 whileFig. 2, dsaddle douterand are held constant at 80 and 240, respectively.dpeak

FOF(0.1), etc.]. At certain choices of the results of ourdouter,method produce a rather similar plot to those of FOF,
suggesting that both algorithms are approximating criteria
based on density contours. As discussed above, the exis-
tence of a second density parameter in HOP producesdpeakslight di†erences from FOF in the case of groups with
multiple centers. Also note that the two methods produce
very di†erent behavior for groups with fewer than 50È100
particles. In particular, FOF Ðnds a very large number of

FIG. 7.ÈSame as but we vary the density cuto†s while holdingFig. 2,
and Also shown are the results for twodpeak \ 2douter dsaddle \ 1.75douter.choices of FOF linking parameter b, in units of the mean interparticle

spacing. The top pair of curves are for and b \ 0.1, and thedouter \ 600
bottom pair are for and b \ 0.2.douter \ 80

small groups, mostly in the fringes of larger groups et(Bond
al. The shapes of the FOF curves in the plot show1991).
that this behavior is simply a numerical artifact : there is no
physical e†ect to provide the upturn at N B 50. This rein-
forces the lesson that the identiÐcation of small groups, even
up to dozens of particles, may not be trustworthy when the
groups are well below the nonlinear mass scale and selected
only with the particle position data. In contrast, HOP pro-
duces almost no small groups. Of course, this is also a
numerical artifact ; since the density is found using the
nearest particles, it is difficult for a group to have aNdensmaximum density exceeding (as required to be viable)dpeakand yet have many fewer than particles with densityNdensabove douter.

3. DISCUSSION

At heart, our method relies on the idea that searching
among the nearest N particles is an efficient way to collect
particles into density maxima. In this sense, the HOP algo-
rithm is an attractive alternative to the usual numerical
treatments of integrating the gradient of an interpolated
density Ðeld. By choosing di†erent means of estimating the
density or even choosing other scalar Ðelds to maximize,
one can imagine a variety of di†erent group Ðnders. For
example, by estimating the density with a Ðxed smoothing
scale, one would stay more faithful to the original
DENMAX scheme.

In our particular implementation, we use an adaptive
smoothing scale for the density estimates. By avoiding a
Ðxed smoothing length, we retain sensitivity to smaller
groups. However, the resultant small smoothing lengths in
high-density regions can cause groups to be split into multi-
ple pieces because of the presence of several local maxima in
their centers. These pieces generally do not represent true
substructure, so we wish to recombine them. We do this by
merging groups that share high-density boundaries. The
two density scales used for this may be chosen to be di†er-
ent from the density contour that deÐnes the outer bound-
ary of the group(s) so as to guard against the merging of
groups connected only by thin necks. To quantify this, we
considered the ratio of the two largest eigenvalues of the
moment-of-inertia tensor of groups with more than 1000
particles and counted the fraction of such groups with a
ratio greater than 2.5. We found that 4.6% of FOF(0.2)
groups were this prolate, while for HOP with (Ndens-Nhop-andNmerge) \ (64-16-4) [dpeak-dsaddle-douter]\ [80-80-80],
[160-140-80], [240-200-80], and [800-620-80] the fractions
were 6.6%, 3.1%, 1.8%, and 0.9%, respectively. Hence, a
ratio of to of 2È3 substantially reduces thedpeak douternumber of extremely prolate objects. Perhaps extensions of
FOF using the generalization of & EfstathiouBarnes (1987)
or techniques of minimal spanning trees Sonoda,(Barrow,
& Bhavsar & Splinter could provide1985 ; Bhavsar 1996)
other ways to suppress these thin-neck groups.

The HOP algorithm has six free parameters ; however, we
have demonstrated that the results are quite insensitive to
all but one : the choice of outer density contour Wedouter.recommend a default choice of (64-16-4) and [3douter-The resulting behavior is rather similar to2.5douter-douter].the FOF algorithm but with the advantages that group
membership is explicitly based on the smoothed density
Ðeld rather than pair percolation and that groups prema-
turely merged by thin necks may be separated by use of a
second density threshold.
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