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ABSTRACT
We have developed a new automatic void-searching algorithm for three-dimensional redshift surveys

and N-body simulations. We strictly deÐne the condition that is called a void. This deÐnition is used to
make a new and automatic algorithm that Ðnds voids from particle distributions. We introduce our
algorithm and show with test simulations that it is a robust tool for automatic void searching and void
statistics calculations.
Subject headings : galaxies : statistics È large-scale structure of universe È methods : numerical

1. INTRODUCTION

The discovery of large voids from galaxy and cluster red-
shift surveys is an important discovery for theories about
the origin of the structure of the universe (Zeldovich,
Einasto, & Shandarin & Huchra1982 ; Oort 1983 ; Geller

Costa et al. Einasto et al. In1989 ; da 1994 ; 1994, 1997).
particular, recent claims about the 120 Mpc periodicity in
the distribution of galaxy superclusters have alleviated the
need to study void-supercluster statistics more closely and
carefully than before et al. &(Broadhurst 1990 ; Kaiser
Peacock & Gramann et al.1991 ; Einasto 1993 ; Einasto
1997).

The major goal of the automatization of void searching is
to derive a uniform and objective picture of the void struc-
ture of di†erent particle distributions. One of the major
difficulties is that we need to know exactly what we are
looking for. There are several accepted deÐnitions for a void
and various methods for void searching ; Einasto,Einasto,
& Gramann use the ““ empty sphere method ÏÏ to(1989)
approximate the minimum diameters of voids. Ryden (1995)
and & Melott search elliptical empty regionsRyden (1996)
in two-dimensional particle distributions varying the shape
and direction of the ellipses. & FairallKaufmann (1991)
used an algorithm whereby one puts the largest possible
cube into the galaxy distribution so that no galaxies are
inside it and then adds smaller rectangular volumes outside
the parent cube until the void is completely mapped. El-Ad,
Piran, & da Costa and & Piran used an(1996) El-Ad (1997)
algorithm whereby the voids consist of connected spheres
with variable radii The latter two algorithms basi-r \ rmin.cally can Ðnd all arbitrarily shaped voids, but in order to
prevent the voids from joining together by thin connecting
tunnels (Ðngers), one has to (arbitrarily) limit the minimum
radius of the sphere or the cube used for Ðnding.

In this paper we will be mathematically deÐning voids
and a new void-searching algorithm more precisely than
before. In we give a formal deÐnition of voids, and in° 2 ° 3
the new void-searching algorithm is described. In °° and4 5
we discuss the resulting data and possible variations of the
algorithm, respectively. We describe the simulated data and
analysis of it in °° and Finally, in we give our6 7. ° 8
conclusions.

2. THE DEFINITION OF A VOID

Let the distribution of particles be placed for simplicity in
a cubic region L3 ½ R3 with side length L . First, following
closely the ““ empty sphere method ÏÏ of et al.Einasto (1989),
we deÐne a scalar Ðeld D :L3] R as the distance of a given
point x to the nearest galaxy, thus

D(x) \ min
n

M o x [ X
n
o N , (1)

where are the locations of the particles.X
n
, n \ 1, . . . , N

We call this Ðeld a distance Ðeld (DF). The local maxima of
DFs are the points in L3 with the longest distance to the
nearest particle. They are the ““ centers ÏÏ of empty regions (cf.

et al.Einasto 1989).
Let M ½ L3 be a local maximum of the DF. We deÐne a

subvoid as a region around M as follows : Pointv
M

\ L3
x ½ L3 belongs to the subvoid if and only if when startingv

Mfrom x and moving continuously in the direction of the
highest ascent of the DF (i.e., in the direction of the deriv-
ative +D when deÐned) we end up at the maximum M. This
is a good deÐnition because for almost every point x ½ L3
there is a unique maximum M such that As an extrax ½ v

M
.

condition we set a small distance which deÐnes theDmin,minimum distance between the point x and a particle, so
that the point can be a member of a subvoid. The latter is
merely a computational need to avoid particles belonging
to a void. Parameter can be arbitrarily small.DminThe upper deÐnition of a subvoid leads to the interpreta-
tion that it is a simple, connected, compact region around a
maximum of a DF. It does not have thinner parts between
thicker ones ; it does not form complex coral- or spongelike
structures. The galaxies (particles) exist only on the outer
boundaries of subvoids. The shape of a subvoid is com-
pletely determined by the distribution of particles and is not
predeÐned.

Although a subvoid clearly belongs to one intuitively
determined void, the subvoid does not necessarily cover the
whole void volume. There may be more than one maximum
of a DF inside a void, with approximately the same values
for the DF (cf. et al. We have to continue theLinder 1995).
deÐnition process to get results more like the intuitive ones.

Let the distance between maxima and beM1 M2 d1,2 \
534
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We have successfully used the following uni-oM2[ M1 o.
Ðcation of subvoids as a deÐnition for a void : Subvoids v

Miand belong to the same void V if (1) the maxima andv
Mj

M
iare nearer to each other than the nearest particle, i.e.,M

j
d
i,j ¹ min MD(M

i
), D(M

j
)N , (2)

where is the value of the DF at point or (2) ifD(M
k
) M

k
,

there exists a chain of subvoids such thatMv
Mk

N
k/1n d

i,1¹

formin MD(M
i
), D(M1)N, d

k,k`1 ¹min MD(M
k
), D(M

k`1)Nall k \ 1, . . . , n [ 1 and (i.e.,d
n,j¹ min MD(M

n
), D(M

j
)N

there exists a chain of subvoids obeying the condition in eq.
between the two subvoids). Hence, the voids are deÐned[2]

here as a kind of ““ friends-of-friends ÏÏ percolation of sub-
voids.

The deÐnition of a void is illustrated in the left panel of
the (two-dimensional) particle distribution (bigFigure 1 ;

dots) forms four voids (bounded by lines). The local maxima
of the DFs (““ centers ÏÏ of subvoids) are marked with small
dots and the ““ main maxima ÏÏ of each voidÈthe maxima of
the DFs inside a voidÈare marked with crosses. The
topmost void consists of four subvoids. Circles with radius

are drawn around the two maxima andD(M
i
) M1 M2.Because the maxima are inside each otherÏs circles, the

apparent subvoids belong to the same void. The boundaries
of voids in the picture are not exact. They are found by the
algorithm, which will be described next.

3. THE ALGORITHM

Numerically, the DF is calculated by deÐning a cubical
mesh over the survey volume (cf. et al. WeEinasto 1989).
divide the cube L3 into k3 elementary cells, where k \ L /s
and s is called a resolution parameter. It tells the spatial

resolution of the void analysis. For each elementary cell
center we calculate the minimum of distances to the par-
ticles. We get a discrete DF D(x), from which it is easy to
Ðnd the local maxima. Let us call the apparent maximum
cells (In fact, the discrete DF should be smoothedM

i
.

before the search for maxima to avoid some numerical arti-
facts.)

In practice it is easier to organize the DF maxima into
single-void groups before the search for subvoids and hence
go straight to searching for voids. The maximum groups
can be found, for example, by using the multiple labeling
technique of & Kopelman withHochen (1976) equation (2)
as the joining condition. After this we know which voids
each of the elementary cells belongs to. Now all we haveM

ito do to map the voids is to divide the rest of the elementary
cells x among the voids. This is done by using the ““ climber
algorithm.ÏÏ The void to which an elementary cell x belongs
is found by ““ climbing ÏÏ from x to the neighboring cell of x,
say x@, that has the highest value in the DF. The climbing
continues from x@ to the neighboring cell xA that again has
the highest value in the DF. The stopping condition for
climbing is satisÐed when a maximum cell is achieved.M

iThe cell x now belongs to the same void as Because ofM
i
.

the way the climbing is done, all the elementary cells along
the climbing path also belong to the same void as x. So we
have concurrently determined the void for them too.

It is not always necessary to climb all the way up to the
maximum cell. If the climbing ends up in a cell that has
already joined into a void, we can just join the cells along
the climbing path to the void. That is because we know
immediately where the climbing will lead us. Also there is a
possibility of ending up in the boundary of the volume L3. If
we are interested only in the interior voids of L3 we ignore

FIG. 1.È(L eft) Example of the two-dimensional particle distribution with four voids. The maxima of the DF are shown by dots. Crosses denote the main
maxima of voids. The condition for joining two subvoids with centers in and into one void is illustrated by drawing the circles with radiusM1 M2around the apparent maxima. The two subvoids belong to the same void, because the distance between the maxima is smaller than theD(M

i
), i \ 1, 2 M

idistances Since is the main maximum of DF inside the void, the radius is (following the deÐnition in the main radius of the void. InD(M
i
). M1 D(M1) ° 5) ° 7

we approximate the size of the void by a sphere with radius equal to the main radius of the void. It can be seen that here the circle clearlyD(M1)underestimates the size of the uppermost void. However, the size of the small triangular void in the middle would be overestimated with the method, as can be
seen by drawing the apparent circle to the DF maximum of this void. (Right) Voids found from the two-dimensional mock galaxy catalog.R

V
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this path, or in practice join the elementary cells along the
climbing path into a ““ null void.ÏÏ We may also want to
ignore the elementary cells that have particles inside them.
This is done by checking the value of the DF. If D(x)\ s/2
[or s/(2)1@2] where s is the resolution parameter, we join x to
the null void. So we choose Dmin\ s/2.

In order to Ðnd all the voids, we have to start from every
elementary cell x one at a time, climb, and see where we end
up. If the starting cell is already a part of a void we just start
from the next free elementary cell. Hence, the voids we Ðnd
are collections of elementary cells.

4. THE RESULTING DATA

The results that the algorithm directly gives are the
number and locations of the elementary cells in each void.
The volume V of the void V is the number of cells in the
void, multiplied by the volume of elementary cells, s3.n

V
,

The main radius of the void, is deÐned as the maximumR
V
,

of the DF inside the void, i.e., it is the maximum of the DF
maxima inside the void :D(M

k
)

R
V

\ max
Mk | V

MD(M
k
)N . (3)

The corresponding elementary cell is called the main
maximum of the void The main radius deÐnes theM

V
.

radius of the central (or main) sphere of voids.
Another useful statistical measure of size is the (largest)

diameter of voids. We deÐne the diameter of a void as thed
Vmaximum of distances between two cell centers in the void

added with the resolution parameter s. The adding of s
corrects an error caused by using cell centers as the ends
when measuring distances. The correction is especially
necessary in the case of small voids. The diameter also
deÐnes the largest distance between two galaxies bounding
the void. The locations of voids can be given by or byM

Vthe ““ center of mass ÏÏ where the x areX
V

\ 1/n
V

;
x | V

x,
the locations of elementary cells.

The di†erence between and can be seen ind
V

r
V

Figure 1.
The as the maximum distance between two cell centers ind

Vthe void is a kind of extreme size of the void. On the other
hand, the main radius is a more conventional measure ofr

Vthe void size. However, one should note that the radius R
Vis not the radius of the largest sphere inside the void (see

although conceptually this is a good way to thinkFig. 1),
about it. Both radii can be used to approximate the volume
of void, but both give only an estimate, as will be discussed
later.

The shapes of voids can be approximated as ellipsoids by
using the method of inertia tensors. The inertia tensor

is diagonalized, where (i, j\ x, y, z)M
ij
\;

x | V
x
i
x
j

x
i
, x

jare the coordinates of an elementary cell x in the ““ center of
mass ÏÏ coordinates of the void V . The axial ratios of the
ellipsoid are given by and c/a \b/a \ (M

yy
@ /M

xx
@ )1@2

where a [ b [ c are the lengths of the axles(M
zz
@ /M

xx
@ )1@2,

and M@ is the diagonalized inertia tensor.
The void probability function /(R) is directly determined

by checking the relative number of elementary cells having
a value in the DF smaller than R. So /(R)\ [number of
elementary cells x with D(x) \ R]/k3.

5. VARIATIONS OF THE METHOD

When dealing with dense particle distributions in particu-
lar, it is sometimes convenient to deÐne a void as an under-
dense region in space. In such cases the algorithm can be

boosted with a wall-Ðnder algorithm (cf. et al.El-Ad 1996 ;
& Piran Before using the void-searching algo-El-Ad 1997).

rithm we can identify so-called wall galaxiesÈthe galaxies
that mainly form the walls and Ðlaments in the basic wall-
void structure. The remaining Ðeld galaxies are removed
from the distribution so that the underdense regions remain
totally empty and are recognized as voids by our algorithm.
A wall galaxy is deÐned as et al. & Piran(El-Ad 1996 ; El-Ad

a galaxy that has n other wall galaxies within a sphere1997)
of radius l around them. The adding of the wall Ðnder
brings two extra parameters to the void-Ðnding system, that
is the ““ number of neighbors ÏÏ n and the ““ linking length ÏÏ l.
The values of the parameters will lead to some qualitative
di†erences, e.g., in the distribution of the sizes of voids.1

A similar kind of result, not taking lonely particles into
account, can also be achieved by choosing another scalar
Ðeld to climb. If we replace the distance Ðeld D(x) by the
Ðeld that tells the distance to the nth nearest particle,D

n
(x)

where n \ 2, 3, . . . , then the algorithm does not notice
lonely particles or small enough groups. The bigger the n
the denser are the structures that count in the void-Ðnding
process. The DF can also be replaced by some other Ðeld
that depends on the mass distribution of particles. The
voids can be found using, for example, the gravitational
Ðeld, i.e., the less particles there are the less they gravitate.
The density Ðeld smoothed by a Gaussian function could
also work. If the ““ climbing ÏÏ direction is turned toward the
mass concentrations, for example, in the density Ðeld case,
the climbing algorithm may also be used for group Ðnding.
Some promising preliminary analyses with these scalar
Ðelds other than the DF was done, and they will be treated
in depth in forthcoming papers.

6. APPLICATION TO SIMULATED DISTRIBUTIONS

We have tested our algorithm with a two-dimensional
test distribution of particles and with simulated three-
dimensional ““ galaxy ÏÏ distributions. Our goal is simply to
show that our algorithm works robustly. We leave the
proper treatment of a large number of simulations and true
redshift catalogs (Abell-ACO, CfA) for a forthcoming paper.

The two-dimensional case helps the visual judgement of
the results of the algorithm. The two-dimensional distribu-
tions were made by projecting parts of the following three-
dimensional simulations and using the wall-Ðnder
algorithm to create large empty regions. The right panel of

shows the voids found by the algorithm in one ofFigure 1
the two-dimensional test distributions.

The three-dimensional N-body simulations have been
done with the AP3M code Thomas, & Pearce(Couchmann,

which was used as a simple P3M code with 10031995),
particles in a 2563 mesh. We have studied three di†erent
realizations. The physical size of the simulation box was 300
h~1 Mpc. We used the )\ 1 standard cold dark matter
(CDM) model power spectrum for simulations using the
primordial density Ñuctuation (PDF) function of &Bond
Efstathiou (1984) :

P(k) \ k
M1 ] [ak ] (bk)3@2] (ck)3]N , (4)

1 We would like to point out here that this kind of classiÐcational
division of galaxies into walls and Ðeld galaxies is basically a technical one,
which is done to empty the underdense parts of the space and to make the
void Ðnding easier. It should not be confused, for example, with the divi-
sion made by & Gott which is more physical in nature.Turner 1975,
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FIG. 2.È(L eft) Dense particle clumps (““ galaxies ÏÏ) found from the typical real-space three-dimensional simulation. Only the 30 h~1 Mpc thick slice is
shown. (Right) Voids and wall galaxies found from the same simulation.

where a \ 6.4() h2)~1, b \ 3.0() h2)~1, c\ 1.7() h2)~1,
and l\ 1.13. Two di†erent epochs were studied, one with a
density Ñuctuation variance within the 8 h~1 Mpc sphere p8of 1.0 and another of 0.69.

The galaxylike clumps were found by the friends-of-
friends algorithm et al. and that algorithm(Einasto 1984),
gave us approximately 100,000 ““ galaxies ÏÏ within a box.
The wall galaxies were searched with parameters n \ 3 and

where is the mean distance from a galaxyl\ l6
n
] 1.5p

n
, l6

nto its third nearest neighbor and is the variance of thep
n

l
n
.

The number of wall galaxies was about 10% less than the
original number of galaxies.

The voids were found in real space using 643 elementary
cells. The number of voids in the simulation box was about
550 ^ 20 for and 680 ^ 20 for The sizesp8\ 1.0 p8\ 0.69.
of the voids were (24^ 24) ] 103(h~1 Mpc)3 for p8\ 1.0
and (18^ 17) ] 103(h~1 Mpc)3 for p8\ 0.69.

In the left panel of we show the galaxies in a 30Figure 2
h~1 Mpc thick slice of one of the simulations at Inp8\ 1.0.
the right panel are the voids found from the same slice

FIG. 3.È(L eft) Galaxies found from the typical redshift-space three-dimensional simulation. Only the 30 h~1 Mpc thick slice is shown. (Right) Voids and
wall galaxies found from the same simulation.
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FIG. 4.È(L eft) Distribution of the void volumes V for di†erent simulations. The volumes are determined by counting the elementary cells belonging to the
void. The solid line represents the real space with and the long-dashed line represents the real space with The redshift-space simulationsp8\ 1.0, p8\ 0.69.
are represented with the short-dashed and dotted lines for and respectively. (Right) Integrated proportion of the simulation box volumep8\ 1.0 p8\ 0.69,
belonging to the voids larger than V . The line types are same as in the left panel.

together with the wall galaxies. Because of the three dimen-
sionality, the voids are partly one on top of another.

We also tested the algorithm in the redshift space. The
real-space galaxy coordinates were mapped into the redshift
space using the linear Hubble law and known peculiar
velocities. The number of voids decreased to 340^ 10 for

and to 430 ^ 15 for The sizes of voidsp8\ 1.0 p8\ 0.69.
were (23^ 33) ] 103(h~1 Mpc)3 for andp8 \ 1.0
(16^ 25)] 103(h~1 Mpc)3 for The galaxies andp8\ 0.69.
voids in the redshift space are shown in Figure 3.

In the case of real-space void Ðnding, the program needs
about 20 minutes to Ðnd voids from a distribution of
100,000 galaxies. In fact, the generation of the DF takes
about 20 minutes and the rest of the algorithm needs only
D15 s. All the timings were done in AlphaStation 500/266
running Digital Unix.

7. ANALYSIS

In this section we show some statistical properties of
voids found by our algorithm. We also compare our results

with the results of the empty sphere method et al.(Einasto
by an analysis of the main radii of the voids. In a1989)

forthcoming paper a more detailed comparison with the
method of et al. and & Piran andEl-Ad (1996) El-Ad (1997)
the use of real redshift catalogs is introduced.

In the left panel of we show the average distribu-Figure 4
tion of the volumes of voids V over the three realizations of
the di†erent types of simulations. The right panel of Figure

shows how much of the simulation-box volume belongs to4
the voids whose volume is larger than V . As the volume of
voids V reaches zero, we get the total volume of voids found
by the algorithm. The rest of the volume belongs to the
elementary cells, which are ignored during the search (i.e.,
cells that are not empty or are on the boundaries of the
simulation box). This value is correlated to the resolution
parameter s, but also to the distribution of galaxies as can
be seen from the graph.

The left panel of shows the distribution of mainFigure 5
radii of the voids. The radii maximum distancesR

V
R

V
Èthe

to the nearest galaxiesÈhave been used in earlier works to

FIG. 5.È(L eft) Distribution of the main radii (the largest value of the DF inside the void) for di†erent simulations. The line types are as in (Right)R
V

Fig. 4.
Volumes of voids approximated from the size of the ““ central sphere ÏÏ with radius equal to the main radius of the void : vs. the ““ real volumes ÏÏV

R
\ (4/3)nR

V
3

V . All voids from all of the real-space simulations are included in the graph. The behavior of the volumes was very similar for all types of simulations.
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FIG. 6.È(L eft) Distribution of the void diameters (the largest distance between a pair of elementary cells in the void) for di†erent simulations. The lined
Vtypes are as in (Right) Volumes of voids approximated from the diameters of the voids vs. the ““ real volumes ÏÏ V . All voids from all ofFig. 4. V

R
\ (4/3)n(d

V
/2)3

the real-space simulations are included in the graph.

approximate the minimum radii of voids. However, if we
adopt the void deÐnition above, this approximation fails.
The radius is not the radius of the largest sphere thatR

V
r
Vcan be put inside the void. In fact, since whenr

V
¹ R

V
,

centered in the sphere almost always reachesM
R
, R

Voutside the void. This behavior is especially signiÐcant with
smaller voids because of the relative sparseness of the parti-
cle walls bounding them (cf. the circles drawn in the left
panel of also note the small triangular void in theFig. 1 ;
middle of the same Ðgure). This phenomenon is illustrated
in the right panel of It shows the behavior of theFigure 5.
volume of a void approximated by the size of the centralV

Rsphere of voids as a function of the ““ real[V
R

\ (4/3)nR
V
3]

volume ÏÏ V of the void. The equality line is alsoV
R

\ o V o
drawn.

The right panel of can be used in the comparisonFigure 5
of the present method with the empty sphere method of

et al. This is because the sizes approximatedEinasto (1988).
by the main radii of voids are, in fact, the same as the sizes
of voids found by the empty sphere method. The Ðgure

FIG. 7.ÈShapes of voids of the real-space simulation with inp8\ 1.0
the axial ratio (b/a-c/a) coordinates. The shapes have been determined
using the inertia tensor method described in ° 5.

shows that the empty sphere method estimates the large
voids to be much smaller than the present method. (That is
because the empty sphere method only tries to approximate
the minimum diameters of voids.) Also, the empty sphere
method clearly overestimates the sizes of the smallest voids
when compared with the results of the present method.
Notice that there are dots above the equality line in the
small end of the voids.

The left panel of shows the distribution of theFigure 6
diameters of the voids. In the right panel of anFigure 6
approximation of volumes similar to the one above is done,
this time with the void diameters. The diameter volumes

are compared with the detected volumes ofV
d
\ (4/3)n(d/2)3

voids. If the right panels of Figures and are compared,5 6
one can see that the diameter volumes correlate more lin-
early with the volumes of voids V than the main radius
volumes In a forthcoming paper we shall give a moreV

R
.

detailed comparison of our results with et al.Frisch (1995).
Finally, an example of the shape distribution determined

with the inertia tensor method is shown in ThisFigure 7.
Ðgure presents the shapes of voids found from the p8\ 1.0
real-space simulations. The coordinates b/a and c/a are the
axial ratios of the ellipsoids approximating the voids.

8. CONCLUSIONS

We have shown that our simple algorithm is a robust tool
for automated void searching. This method does not prede-
Ðne the shape of a void, and it has no other adjustable
parameter than the resolution parameter of the mesh. The
value of the resolution parameter is bounded only by the
available memory of the computer used, and, in principle,
the algorithm can be used in the continuum limit.

The deÐnitions we have used are (1) the natural mathe-
matical deÐnition of a subvoid as that which surrounds a
DF maximum and (2) the deÐnition of a void as that which
consists of a certain set of subvoids. The algorithm gives
simple quantitative parameters to describe voids, e.g., main
radius, outer diameter, and volume. The ellipsoid approx-
imation can be used to approximate the shape. The algo-
rithm is very versatile. Analyses can also be done with scalar
Ðelds other than the DF, and the algorithm can be boosted
with the wall-Ðnder algorithm. Further work is needed to
compare the results with other methods, such as the algo-
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rithm of El-Ad & Piran, and to use it for a real redshift
catalog and di†erent cosmological model simulations.

This work was partly supported by the Academy of
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resources provided by the Center of ScientiÐc Computing
and the University of Oulu. We thank the referee, who
provided a number of suggestions that greatly improved the
quality of the paper.
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