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ABSTRACT
In the near future, a new generation of CCD-based galaxy surveys will enable high-precision determi-

nation of the N-point correlation functions. The resulting information will help to resolve the ambi-
guities associated with two-point correlation functions, thus constraining theories of structure formation,
biasing, and Gaussianity of initial conditions independently of the value of ). As one of the most suc-
cessful methods of extracting the amplitude of higher order correlations is based on measuring the dis-
tribution of counts in cells, this work presents an advanced way of measuring it with unprecedented
accuracy. Szapudi & Colombi identiÐed the main sources of theoretical errors in extracting counts in
cells from galaxy catalogs. One of these sources, termed as measurement error, stems from the fact that
conventional methods use a Ðnite number of sampling cells to estimate counts in cells. This e†ect can be
circumvented by using an inÐnite number of cells. This paper presents an algorithm, which in practice
achieves this goal ; that is, it is equivalent to throwing an inÐnite number of sampling cells in Ðnite time.
The errors associated with sampling cells are completely eliminated by this procedure, which will be
essential for the accurate analysis of future surveys.
Subject headings : large-scale structure of universe È methods : numerical

1. INTRODUCTION

Since the two-point correlation function and its Fourier
counterpart, the power spectrum, do not contain phase
information, higher order statistics are needed for full
description of the (highly non-Gaussian) galaxy density
Ðeld. The immediate generalization of the two-point corre-
lation function is the set of N-point correlation functions,
which corresponds to higher order moments of a spatial
distribution. These objects are, however, difficult to
measure and interpret mainly because of the combinatorial
explosion of terms and the small conÐguration space associ-
ated with them, especially for high orders. Therefore other
(indirect) methods, such as moments of counts in cells, biÈ
counts in cells, void probability, structure functions on
minimal spanning trees, wavelet methods, genus, etc.,
became popular alternatives. Of these, counts-in-cells tech-
niques 1980 ; 1992 ; et al. 1993 ;(Peebles Gaztan8 aga Bouchet

1994 ; et al. 1995 ; andGaztan8 aga Colombi Szapudi,
Meiksin, & Nichol 1996, hereafter were some of theSMN)
most successful in the recent past ; the aim of this paper is to
present a new technique for calculating counts in cells with
unprecedented accuracy. First, however, to substantiate the
need of such a method, their connection to N-point corre-
lation functions is reviewed brieÑy.

Mathematically, counts in cells and N-point correlation
functions are equivalent according to well-known theorems
in spatial statistics, which state that, if suitable conditions
hold, factorial moment measures and random measures on
Borel sets are equivalent descriptions of a discrete random
process (see, e.g., While the former are relatedRipley 1988).
to the N-point correlation functions, the latter are essen-
tially counts in cells. In practice, however, one never
extracts all possible conÐgurations or extracts them to inÐn-
ite order (higher order correlation functions), and neither
uses all possible cell shapes and sizes (counts in cells), so in
both cases information is lost.

Therefore the two approaches are somewhat complemen-
tary in their information content, and there is also a di†er-
ence in efficiency and accuracy. The choice between them is

of entirely practical nature ; generally both are interesting to
study.

Direct determination of the N-point correlation functions
using DD . . . D-type methods can, in principle, measure the
full N-point function, while counts-in-cells method gives
only its smoothed version in a cell. Therefore the former is
inherently more accurate than the latter, if the sole purpose
is to extract higher order correlation functions. However,
measurement of N-point correlation functions is burdened
with the large number of variables on which they depend.
The CPU time becomes exponentially expensive with order

where is the number of galaxies), and the(^NparN , Nparresults are extremely difficult to interpret since they depend
on many variables (3N [ 5). In contrast, counts in cells are
easy to measure, any order can be straightforwardly calcu-
lated (once measured), and the results can be easily inter-
preted, since in the simplest cases the only parameter is the
scale of the cell. On the other hand, conÐguration depen-
dence can be studied by using a series of di†erent shapes for
sampling cells. The errors on counts-in-cells measurements
are smaller for high orders than the corresponding direct
determination because of the larger conÐguration space
available for averaging. Presently, full nonlinear analytical
formulae are available for the errors on moments of counts
in cells, including all higher order e†ects &(Szapudi
Colombi 1996, hereafter while only cruder approx-SC96),
imations are possible for the N-point functions.

The most successful version of the technique calculates
the factorial moments and cumulants & Szalay(Szapudi

see also & Schae†er from the distribu-1993 ; Balian 1989)
tion of galaxy counts in cells. The resulting cumulants, or
amplitudes of the higher order correlation functions accord-
ing to the deÐnition in turn can be comparedS

N
\ m6

N
/m6 2N~1,

with results from perturbation theory 1980 ;(Peebles
Bouchet, & Colombi 1993 ; 1992 ;Juszkiewicz, Bernardeau

N-body simulations, and the theoryand Bernardeau 1994),
gravitational statistics based on the BBKGY equations

& Peebles 1977 ; 1980 ; et al. 1995 ;(Davis Peebles Colombi
Gaztan8 aga, & Efstathiou 1995 ; and et al.Baugh, Szapudi
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These theories, assuming gravity and Gaussian initial1998).
conditions, predict a certain set of cumulants, whileS

N
Ïs,

non-Gaussian initial conditions and(Colombi 1992),
biasing & Gaztan8 aga have di†erent predictions.(Fry 1994)
Therefore, high-precision determination of the in fullyS

N
Ïs

sampled CCD-based catalogs, such as the future Sloan
Digital Sky Survey, will be crucial in resolving the ambi-
guities associated with the two-point correlation functions
(and its reincarnations) to constrain theories of structure
formation, biasing, and the nature of initial conditions.

Note that similar statements are true about cumulant
correlators & Szalay a matrix version of the(Szapudi 1997),

which is based on bi-counts in cells. These containS
N
Ïs,

more information (albeit slightly more complicated) than
regular counts in cells, but they are simpler to calculate
(although they carry somewhat less conÐguration
information) than the full N-point functions.

The above arguments explain why direct measurement of
the higher order correlation functions (e.g., isPeebles 1980)
complicated for N [ 4, and accurate methods based on
counts in cells became crucial for understanding higher
order statistics of the distribution of galaxies. However,
especially with new powerful computers and new methods
designed to eliminate edge e†ects & Szalay(Szapudi 1998),
extracting N-point functions will gain more interest in the
near future. Moreover, for low-order moments, such as
N ¹ 4, direct methods are certainly viable and, as outlined
above, contain more accurate shape information. Despite
these recent and anticipated advances, there will always be
a degree of complementarity between direct determination
of N-point functions and counts in cells ; thus, advanced
measurement techniques are most useful for both. This is
the motivation for the method presented here to extract
counts in cells with unprecedented accuracy by diminishing
the errors associated with sampling cells.

examined in detail the problem of errors on sta-SC96
tistics related to counts in cells. They found that theoretical
errors fall into two distinct classes : cosmic errors (including
Ðnite volume e†ects, discreteness e†ects, and edge e†ects)
and measurement errors. While the former is an inherent
property of the galaxy catalog at hand and, thus, can be
improved upon only by creating a larger, denser catalog,
the second one can be eliminated in principle by throwing
an inÐnite number of cells. As discussed in theSC96,
number of cells one needs to throw (““ number of indepen-
dent cells ÏÏ) depends on the statistic and scale at question.
The asymptotic behavior of the errors is proportional 1/C,
where C is the number of sampling cells, with the constant
of proportionality increasing toward higher order quan-
tities and smaller scales. While at least massive over-
sampling is recommended to control the errors up to a
certain order, only inÐnite sampling makes the measure-
ment error term completely disappear for all order. Sur-
prisingly, inÐnite sampling can be achieved in practice. This
work presents such a method with moderate CPU invest-
ment, compared to the alternative of mending the tradi-
tional procedure with massive oversampling. The next
section describes the algorithm, and evaluates a practical° 3
implementation, presents measurements, and discusses the
relevance of the results.

2. THE ALGORITHM

The basic observation underlying the method is that the
measurement of counts in cells by throwing an inÐnite

number of random cells is equivalent to a series of integrals
over step functions. These can be evaluated to arbitrary
precision without actually throwing any cells. Thus the tra-
ditional way of throwing random cells corresponds to a
Monte Carlo integration, while the other popular method
involving a grid is equivalent to EulerÏs formula. Here the
exact calculation is proposed for ultimate accuracy.

Let me deÐne the following set of functions :

f
N
(x) \

G1
0

if M \ N
otherwise ,

(1)

where M is the number of objects within a cell centered on
x. Clearly the estimator for isP

N

P
N

^ lim
C?~;=

1
C

; f
N
(x

i
)\
P
V
d3 xf

N
(x) , (2)

where C, the number of random cells at positions tendsx
i
,

to inÐnity, and the Monte Carlo realization of the integral
approaches the integral itself. Obviously, calculating the
integral is equivalent to throwing an inÐnite number of
sampling cells. Exact calculation is possible because the
function is piecewise constant. Note also thatf

N
; f

N
(x) \ 1

for any x ; therefore, only one of the can be nonzero.f
N
Ïs

Also, for any Ðnite galaxy catalog, there exists a maximum
number in the galaxy cell counts (for instance, it is bounded
by the total number of objects). These two properties facili-
tate the computation of all the simultaneously./ f

N
Ïs

A geometric interpretation of the above idea is most
useful to devise an algorithm to calculate the needed inte-
grals exactly. illustrates the problem of measuringFigure 1
counts in cells for a special conÐguration. There are four
points in a rectangular box. Around each object (large dots)

FIG. 1.ÈGeometric calculation of counts in cells. There are four points
within the solid boundary. The centers of square cells can lie within the
dashed boundary. Around each point a square is drawn to represent the
possible centers of cells that contain that point. The problem of counts in
cells can now be reformulated as calculation of the ratios of all overlap
areas (represented with di†erent shadings on the Ðgure) within the dashed
boundary.
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a square is drawn, identical to the sampling cell used for
counts in cells. The possible centers of random cells all lie
within the dashed line, which follows the boundary of the
bounding box. Since the square around each point corre-
sponds to the possible centers of (random) cells containing
that same point, the question can be reformulated in the
following way : let us partition the area of the possible
centers of cells according to the overlap properties of the
cells drawn around the objects. If N squares overlap in a
partition, then throughout the partition and the restf

N
\ 1

of the are all zero. This is illustrated with di†erent shad-f
j
Ïs

ings on the Ðgure. Thus, the problem of calculating the
integral exactly is equivalent to Ðnding the sum of areas in
the partitions for each N.

The above considerations, although illustrated with
square cells, apply to any cell shape, and for Ðnite number
of points. However, it is easiest to determine overlaps of
rectangular cells (in any dimension) ; therefore, the rest of
the paper will be restricted to rectangular shape. This is not
a serious restriction, because the shape dependence is not
expected to be severe in the galaxy distribution, even
though spherical cells do have some theoretical advantages,
such as being directionless.

One obvious possibility for calculating the needed over-
laps is a tree data structure (similar to a tree N-body code)
to Ðnd all the neighbors of a point for determining the
overlaps in an adaptive mesh. I found, however, that the
““ sweep ÏÏ paradigm from computational geometry can be
used to construct a simpler and more memory-efficient
algorithm. This can also be thought of as an adaptive grid
covering the total area ; however, only the part immediately
needed for the calculation is stored in memory. For simpli-
city, I refer to the conÐguration on in the followingFigure 1
description of the method. The calculation for any conÐgu-
ration should be obvious from this.

Imagine a rigid vertical line moving slowly from the left
of toward the right ; the boundary can be ignoredFigure 1
temporarily. Before the line touches any of the squares, it
sweeps through an area with Therefore at the pointf0\ 1.
of Ðrst contact all the swept area contributes to and can/ f0be recorded. After the contact the line is divided into seg-
ments sweeping through areas with andf0\ 1 f1\ 1,
respectively. The boundaries of these segments can be imag-
ined as two markers on the line, corresponding to the upper
and lower corner of the square being touched. As the sweep
continues, the results can be recorded at any contact with
the side of a square during the movement of the line : the
areas swept are assigned according to the markers on the
line to di†erent This is done with a one-dimensional/ f

N
Ïs.

sweep on the line counting the two kinds of markers. Then
the segmentation of the line is updated. Whenever the line
makes contact with the left-hand side of a square, two
markers are added ; whenever it touches the right-hand side
of a square, the corresponding markers are dropped. The
boundaries and rectangular masks can be trivially taken
into account by only starting to record the result of the
sweep when entering the area of possible centers. Non-
rectangular masks can be converted to rectangular by
putting them on a grid.

If there are N objects in the plane, the above procedure
will Ðnish after 2N updating. The algorithm can be trivially
generalized for arbitrary rectangles, any dimensions. For
instance, in three dimensions the basic sweep is done with a
plane, while the plane has to be swept by a line after each

contact. The generalization for circles, spheres, and arbi-
trary shapes seems to be fairly complicated, though it might
be possible.

3. DISCUSSION

From the deÐnition of the algorithm, it follows that the
required CPU time scales as ND(d/L )D(D~1)@2 in D dimen-
sions, where N is the number of objects and d/L is the ratio
of the scale of measurement to the characteristic survey
length. ArtiÐcial galaxy catalogs were generated using ran1
from et al., in a rectangle of 19¡ by 55¡, matchingPress, 1992
exactly the dimensions of the Edinburgh-Durham Southern
Galaxy Catalog as used by shows theSMN. Figure 2
scaling measured for a family of two-dimensional catalogs.
The dashed line shows the approximate scaling t ^ 2.8

on both panels, which is in good agreement] 10~8N2 ddegwith the expectations. The memory requirement is approx-
imately linear with N.

The accuracy of the code can be judged by inspecting
where a series of measurements are shown in aFigure 3,

two-dimensional artiÐcial catalog with 106 objects in it. The
theoretical Poisson distribution is shown with dotted lines,
the inÐnitely sampled measurements with solid lines. The
di†erent curves correspond to a series of scales ranging
from to 2¡. The theoretical and measured curves0¡.016
agree perfectly with each other. With massive oversampling,
roughly 108 . . . 1010 random cells would achieve the same
accuracy. Note, that Poisson distribution is actually simpler
to measure accurately than the long-tailed distribution of
the galaxy surveys because of the non-Gaussian error dis-
tribution (SC96).

The code was also applied to real galaxy data by SMN.
On their Figure 1, the traditional method of calculating
counts in cells on a single grid totally misses the shape of the
probability distribution. It was found that the inÐnite over-
sampling provided by the proposed algorithm was most
essential on small scales, where Poisson noise can dominate
the signal. In this regime undersampling can severely under-
estimate the moments of the distribution, especially for
higher order. This e†ect can be understood in terms of the
theoretical results by where the ““ number of sta-SC96,
tistically independent cells ÏÏ was found to increase sharply
toward smaller scales and increasing order. Since the error
distribution is fairly skewed, many will underestimate the
moments from an ensemble of low-sampled measurements,
while a few will overestimate them substantially. The sum
will still give the right ensemble average identical to the
inÐnitely oversampled measurements. This means that a
particular undersampled measurement is likely to under-
estimate the moments, since the small number of sampling
cells can miss a rare cluster with high probability. Similarly,
there is a small chance of largely overestimating the
moments when, with a small probability, a cell happens to
hit a rare cluster exactly. In e†ect, this phenomenon can
cause the unbiased statistical estimator to give lower values
for the moments. Only massive oversampling, and prefer-
ably the algorithm outlined in this work, can yield accurate,
unbiased measurements.

Note that ““ inÐnite sampling ÏÏ is not strictly true, even in
the case of the algorithm presented here : in principle, one
should sample all possible orientations of a square.
However, it was found theoretically that the form factors
associated with square and circular cells are quite similar

1994 ; Szapudi, & Szalay(Gaztan8 aga Boscha� n, 1994 ;
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FIG. 2a FIG. 2b

FIG. 2.ÈCPU time of the measurements of counts in cells in artiÐcial galaxy catalogs is displayed. The solid line represents the actual measurements,
while the dotted line is the theoretical scaling where the universal constant was ““ Ðt ÏÏ by a few trials. displays the time as at ^ 2.8] 10~8N2ddeg, Fig. 2a.
function of the number of galaxies in the survey, while is a parameter, doubling from to 2¡ from below. displays t as a function of whileddeg 0¡.016 Fig. 2b. ddeg,N is 5104, 105, 2105, 2.9105, 4105, and 106 from below.

et al. which was conÐrmed with measure-Colombi 1995),
ments in simulations Gaztan8 aga, & Efstathiou(Baugh,

Nevertheless, it is worthwhile to note that if rectangu-1995).
lar cells with long aspect ratios are usedÈespecially in a
smaller survey that is possibly dominated with Ðlamentary
structuresÈit could be necessary to sample more than one
orientation. In most cases, however, the proposed algorithm

FIG. 3.ÈMeasurement of counts in cells in an artiÐcial galaxy catalog
of 19¡ by 55¡ with N \ 106 galaxies. The measurements are shown with
solid lines, while the dotted lines display the theoretical curves. The agree-
ment shows the unprecedented accuracy of the proposed method.

FIG. 4.ÈDisplays the measurement of counts in cells in the EDSGC
catalog with cell aspect ratio 1 : 2. The lower panel shows the raw counts-
in-cells results, with two orientations displayed. The scales associated with
the curves from left to right are 0.015625 ] 0.03125, doubling to 1 ] 2
degrees. The variance of the two curves is small and only present in the
tails of the distribution. The upper panel shows the (obtained similarlyS

N
Ïs

to as a function of scale (the geometric mean of the two sides of theSMN)
rectangular sampling cell). The squares and stars represent the two orienta-
tions : they overlap perfectly. For orientation, the results from areSMN
displayed as well with triangles and solid lines. Note the excellent agree-
ment, which indicates a fairly weak shape dependence, and virtually no
dependence on orientation.
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is close to ““ inÐnite sampling,ÏÏ even with one orientation.
To demonstrate this, displays counts-in-cells mea-Figure 4
surements in the EDSGC survey with 1 : 2 cell aspect ratio.
Detailed description of the data can be found in NoteSMN.
that the curvature of the sky was compensated for with a
projection to physical (equal area) coordinates. Again, this
is a good approximation in light of the weak shape depen-
dence. The lower panel shows the raw counts-in-cells
results : there is a slight variation in the tail of the distribu-
tion, but it is by no means signiÐcant. The upper panel
shows this even more clearly, where the higher order cumu-
lants, are displayed (see for the method of theS

N
Ïs, SMN

calculation). The scale of the measurement is the side of an
equivalent square, i.e., the geometrical average of the two
sides. The squares and stars show the two perpendicular
orientations measured, and up to ninth order they perfectly
overlap. The accuracy of the agreement can be judged from
a few sample values of fractional di†erences, deÐned as

The largest deviation is at and forS
N
1>2/S

N
2>1[ 1. 0¡.044,

N \ 3, 4, 5, it is 0.04, 0.21, 0.55, respectively. For other
scales the fractional di†erence is typically an order of mag-
nitude less, except maybe for the largest scales, where it is
only a factor of 2 less than the quoted maximum values. For
orientation, the original measurement by is shownSMN
with triangles and solid lines. Interestingly, the shape
dependence seems to be negligible at most scales : the largest
deviation again occurs at but it is still a lot smaller0¡.044,
than the errors of the original measurement (see forSMN
details). The Ðgure illustrates that (1) the proposed method
can be used in most cases without sampling di†erent orien-
tations, and (2) the algorithm is capable of extracting shape
dependence of higher order statistics by using di†erent rec-
tangular shapes. Exploring di†erent cell shapes will in fact
be useful to disentangle biasing from gravitational ampliÐ-
cation Scoccimarro, & Szapudi in the near(Frieman, 1998)
future. Note that while the technique proposed here cannot
be easily extended to bi-counts in cells (e.g., &Szapudi
Szalay it can be used to obtain similar information by1997),
studying di†erent aspect ratios.

As expected from the construction of the sweep, the CPU
time for the real data of was of the same order as forSMN
an artiÐcial catalog with same number of objects in it. The

CPU time comparison with the alternative of throwing a
large number of random cells is ambiguous, since the e†ec-
tive number of sampling cells for the method of this work is
inÐnity. On the data set of the number of cells wasSMN,
increased in the traditional algorithm using multiple over-
sampling grids until the resulting, irreducible Nth moments
do not change signiÐcantly. It was found that order of
twenty times more CPU was appropriate for up to ninth
order. However, the results of the inÐnite precision calcu-
lation are not only faster, but more accurate as well. The
convergence of actually throwing a large number of cells is
slow because of the 1/C asymptotic.

While the above detailed tests were performed for the
two-dimensional version of the code, a three-dimensional
version was implemented as well. Because of the sharp
increase in CPU time, proportional to N3, this version is
practical only for a moderate redshift survey of tens of thou-
sands of galaxies with widely available computers. Perhaps
supercomputers can remedy the situation somewhat, since
the algorithm is naturally parallelizable via domain decom-
position. For N-body simulations containing millions of
particles, a pair of new algorithms will be described else-
where et(Szapudi al.1998).

This paper presents a new method for the measurement
of counts in cells, a quantity central to higher order sta-
tistics. The new method is equivalent to throwing an inÐnite
number of sampling cells in a traditional algorithm and, as
such, eliminates the contribution to the ““ measurement
errors ÏÏ This way the full one-point information is(SC96).
extracted from the data, if the negligible e†ect of sampling
di†erent orientations is disregarded. The implementation of
the code is signiÐcantly more accurate and orders of magni-
tude faster than the traditional approach, making it a
natural choice for analyzing future galaxy surveys.
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