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ABSTRACT
In previous attempts to measure cosmological parameters from the angular sizeÈredshift (h-z) relation

of double-lobed radio sources, the observed data have generally been consistent with a static Euclidean
universe rather than with standard Friedmann models, and past authors have disagreed signiÐcantly as
to what e†ects are responsible for this observation. These results and di†erent interpretations may be
due largely to a variety of selection e†ects and di†erences in the sample deÐnitions destroying the integ-
rity of the data sets, and inconsistencies in the analysis undermining the results. Using the VLA FIRST
survey, we investigate the h-z relation for a new sample of double-lobed quasars. We deÐne a set of 103
sources, carefully addressing the various potential problems that, we believe, have compromised past
work, including a robust deÐnition of size and the completeness and homogeneity of the sample, and
further devise a self-consistent method to assure accurate morphological classiÐcation and account for
Ðnite resolution e†ects in the analysis. Before focusing on cosmological constraints, we investigate the
possible impact of correlations among the intrinsic properties of these sources over the entire assumed
range of allowed cosmological parameter values. For all cases, we Ðnd apparent size evolution of the
form lP (1 ] z)c, with cB [0.8^ 0.4, which is found to arise mainly from a power-size correlation of
the form lP Pb (b B [ 0.13^ 0.06) coupled with a power-redshift correlation. Intrinsic size evolution is
consistent with zero. We also Ðnd that in all cases, a subsample with cB 0 can be deÐned, whose h-z
relation should therefore arise primarily from cosmological e†ects. These results are found to be indepen-
dent of orientation e†ects, although other evidence indicates that orientation e†ects are present and con-
sistent with predictions of the uniÐed scheme for radio-loud active galactic nuclei. The above results are
all conÐrmed by nonparametric analysis.

Contrary to past work, we Ðnd that the observed h-z relation for our sample is more consistent with
standard Friedmann models than with a static Euclidean universe. Though the current data cannot
distinguish with high signiÐcance between various Friedmann models, signiÐcant constraints on the
cosmological parameters within a given model are obtained. In particular, we Ðnd that a Ñat, matter-
dominated universe a Ñat universe with a cosmological constant, and an open universe all()0\ 1),
provide comparably good Ðts to the data, with the latter two models both yielding with)0B 0.35
1 p ranges including values between D0.25 and 1.0 ; the cB 0 subsamples yield values of near unity)0in these models, though with even greater error ranges. We also examine the values of implied by theH0data, using plausible assumptions about the intrinsic source sizes, and Ðnd these to be consistent with
the currently accepted range of values. We determine the sample size needed to improve signiÐcantly the
results and outline future strategies for such work.
Subject headings : cosmology : observations È galaxies : fundamental parameters È quasars : general È

radio continuum: galaxies

1. INTRODUCTION

The angular sizeÈredshift (h-z) relation for a cosmological population of standard rods is a powerful probe of the large-scale
geometry of the universe. For a universe characterized by the Friedmann-Robertson-Walker metric, with curvature arising
from the energy density of ordinary matter, and possibly a cosmological constant, the angular size of a rod of intrinsic length l,
viewed at an angle / to the line of sight is given by
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where is the angular-size distance, is the present value of the Hubble constant, is the expansion(Weinberg 1972), D
A

H0 R0scale factor in units of time, c is the speed of light, is the present ratio of the matter density to the critical density,)0(where " is the cosmological constant), and &(x)\ sin x, x, sinh x for closed, Ñat, and open geometries,)" \ "/3H02respectively. Contributions to the energy density arising from more exotic phenomena such as textures will a†ect the angular
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FIG. 1.ÈThe h-z relation for deprojected rods of length 200 kpc for di†erent cosmologies. The choices for and in the three Friedmann modelsh0~1 )0 )"(denoted in parentheses) are listed on the Ðgure. The curve for a static Euclidean universe is shown for comparison. In practice, the curves actually deÐne
upper limits to the observed angular sizes, since projection e†ects will scatter the observed sizes downward. Note the presence of the minimum near zD 1.5 in
the Friedmann models.

size in a straightforward manner but are not considered here. illustrates the h-z relation for deprojected rodsFigure 1
(/\ 90¡) with an intrinsic size of l \ 200 kpc is the Hubble constant in units of 100 km s~1 Mpc~1) for threeh0~1 (h0Friedmann cosmologies : (1) an EinsteinÈde Sitter universe with and (2) a Ñat universe with)04 1 )" \ 0 ; 0 \)0¹ 1,

and (3) a nonclosed, matter-dominated universe with (we will hereafter refer to these as)0] )" \ 1 ; 0 \ )0¹ 1, )" \ 0
models 1, 2, and 3, respectively). Model 1 is, in e†ect, a limiting case of models 2 and 3, and we do not consider models with

The particular values chosen for and in the Ðgure are listed, and the curve for a static Euclidean universe, with)0[ 1. )0 )"h P z~1 (hereafter referred to simply as the Euclidean model), is shown for comparison. The amplitudes of the Friedmann
curves are scaled by while their shapes and, in particular, the location of the minimum in the angular size (typicallyh0,between z\ 1 and z\ 2) depend on and For randomly oriented rods, these curves actually deÐne upper limits to the)0 )".
observed angular size distribution, since projection e†ects will scatter the observed sizes downward. Note that for the
conventional parameter values listed in the curves for the di†erent Friedmann models, particularly the underdenseFigure 1,

possibly less than 1) models 2 and 3, are fairly similar.()0With the discovery of double-lobed radio galaxies and quasars, it was hoped that a standard rod had been found that could
constitute a useful high-redshift sample for measuring the geometry of the universe. Early work & Miley(Miley 1971 ; Wardle

et al. revealed, however, that the upper limit to the h-z data traced a Euclidean curve, implying that some1974 ; Hooley 1978)
e†ect must be diminishing the apparent sizes of these objects at high redshift. Subsequent studies (Kapahi Singal1985, 1989 ;

& Miley & Onuora et al. &1988, 1993 ; Barthel 1988 ; Onuora 1989 ; Ubachukwu 1993 ; Nilsson 1993 ; Chyz5 y Zi”ba 1993),
looking at the variation of binned mean or median angular sizes as a function of redshift to compensate for projection e†ects,
all conÐrmed that the observed h-z data was strikingly consistent with a Euclidean model.

Three main explanations have been proposed to account for this observation : (1) The characteristic length scale of
double-lobed sources may change with cosmic epoch, presumably due to di†erences in the density of the intergalactic medium
(IGM) and/or changes in the energetics of the active galactic nuclei (AGN) that power these sources. Intrinsic size evolution of
the form l P (1] z)n, with n \ 0 so that higher redshift objects are intrinsically smaller, would reconcile the data with
Friedmann models. (2) Since power, P, and redshift are necessarily correlated in any Ñux-limited sample, usually approx-
imated by PP (1] z)x, a negative correlation between power and intrinsic size, typically parameterized as lP Pb, with b \ 0,
would give rise to an apparent correlation between l and z, given by lP (1] z)bx, e†ectively mimicking size evolution. In
general, e†ects 1 and 2 may both be present, giving rise to overall observed size evolution of the form (1] z)c, where
c\ bx ] n (3) According to the uniÐed model for radio sources, the classiÐcation of an object as a radio(Ubachukwu 1995).
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galaxy or a quasar depends only on its orientation, with quasars having inclinations within about 45¡ of the line of sight, with
a median inclination of 31¡, and radio galaxies being inclined roughly between 45¡ and 90¡, with a median inclination of 69¡

et al. If the uniÐed scheme is correct, then in studies that include both radio galaxies and quasars,(Barthel 1989 ; Lister 1994).
the high-redshift population (dominated by quasars) would have systematically smaller mean angular sizes than the low-
redshift population (dominated by radio galaxies), making the universe appear more Euclidean. A similar scheme has been
proposed to unify the two classes of radio-loud quasars, the core-dominated and lobe-dominated quasars (CDQs and LDQs)

& Browne assuming that only the radio Ñux from the compact core is relativistically beamed. In this model, the(Orr 1982),
moderately beamed LDQs, with a median ratio of the core-to-lobe Ñux density, RD 0.1, have a median inclination of 40¡ to
the line of sight, while the more strongly beamed CDQs, with a median RD 10, have a median inclination of 10¡ &(Hough
Readhead If the observed fraction of CDQs increases with redshift, as might be expected in a1989 ; Ubachukwu 1996).
Ñux-limited sample, then even studies limited to quasar samples would also reveal a deÐcit of larger sources at higher
redshifts.

While most previous studies agree that the observed data follow a Euclidean trend, they disagree substantially as to what
combination of the above e†ects is responsible. Several authors Ðnd evidence for signiÐcant size evolution (Kapahi 1985 ; Oort
et al. & Miley et al. while others claim to Ðnd an l-P correlation with little or1987 ; Barthel 1988 ; Kapahi 1989 ; Neeser 1995),
no intrinsic size evolution et al. & et al.(Hooley 1978 ; Masson 1980 ; Onuora 1991 ; Chyz5 y Zi”ba 1993 ; Nilsson 1993).
Moreover, there has been considerable disagreement as to whether the properties of radio galaxies and quasars follow similar
trends. Some authors Ðnd evidence for stronger size evolution in the double-lobed radio galaxy population (Onuora 1989 ;

& than in the double-lobed quasar population, while several workers have found a negativeChyz5 y Zi”ba 1993 ; Singal 1993)
l-P correlation for quasars but a positive one for radio galaxies & et al. Others(Chyz5 y Zi”ba 1993 ; Nilsson 1993 ; Singal 1993).
have claimed to see identical trends in the two populations & Kulkarni and even to reconcile the(Gopal-Krishna 1992)
observed h-z data with Friedmann cosmologies based on orientation e†ects within the uniÐed scheme (Onuora 1991).

The lack of concordance among these previous results strongly suggests that the construction and analysis of samples of
double-lobed objects has been dominated by systematic and/or selection e†ects that are unrelated to the intrinsic behavior of
the sources. In fact, several investigations have traced the inconsistent results of various studies to such selection e†ects

et al. or to di†erent sample deÐnitions et al. We believe that other substantive issues have not(Neeser 1995) (Nilsson 1993).
been properly incorporated into the study of the h-z relation for double-lobed sources and have also compromised the results.
We summarize these issues below:

1. In determining the morphological properties of double-lobed sources, it is desirable to characterize each source using
parameters that make no a priori assumptions about the source structure and are related as directly as possible to the
measured data. The moments of the brightness distribution, B(0), where 0 represents two-dimensional, quasi-Cartesian
coordinates, form one such set of parameters & Conway In particular, the second moment,(Burn 1976). hsm\ 2[/ 02B(0)d0/
/ B(0)d0]1@2, is a model-independent measure of the source size that, for sufficiently large sources of the beam), is(Z13independent of the beam resolution P. H. Coleman 1996, private communication). For double-lobed sources,(Condon 1988 ;
however, is an unstable diagnostic since it is a Ñux-weighted quantity ; two sources with identical lobe structures (i.e.,hsmapparent shapes, sizes, and lobe-lobe separation) would yield a di†erent value of (a) if one exhibited a signiÐcant corehsmcomponent (e.g., because it was an intrinsically large source with its core Ñux relativistically boosted by projection, as opposed
to a smaller, deprojected source with the same apparent lobe properties but no detected core Ñux), (b) if the ratio of the lobe
Ñuxes in the two sources di†ered, or (c) if the maps of the two source Ðelds had di†erent signal-to-noise properties. In addition,
surveys with di†erent Ñux sensitivities and limiting resolutions can yield di†erent values of for the same source. The morehsmcommonly used measure of the angular size of double-lobed sources is the ““ largest angular size ÏÏ (LAS), typically taken to be
either the maximum linear extent over which a given level of radio emission is detected, or the peak-to-peak angularhmax,separation, The former deÐnition, however, is also a poor measure of size since it is highly sensitive to the details of thehpp.observation ; radio observations conducted with di†erent instruments at di†erent frequencies, with di†erent Ñux sensitivities
and beamwidths, can yield drastically di†erent values of for the same object. An example of this is illustrated in ethmax Neeser
al. Even within a given radio data set, the measured value of for an arbitrary distribution of high-redshift,(1993). hmaxextended objects is highly susceptible to the e†ects of cosmological surface brightness dimming.

For these reasons, many authors studying the h-z relation for double-lobed sources focus on Fanaro†-Riley type II (FR-II)
objects & Riley which exhibit radio-bright hot-spots near the outer edges of the lobes. For these objects, the(Fanaro† 1974),
peak-to-peak size is largely independent of the details of the observation and thus provides a fairly robust measure of the
angular size (see for further However, the peak positions, and thus peak-to-peak sizes, are typically derived° 2 discussion).8
from Ðtting a speciÐc model (usually Gaussians) to the brightness distribution of each source. Fitting Gaussians to the highly
asymmetric, edge-brightened lobe components of FR-IIs will necessarily return peak positions that are slightly closer to the

8 Though is fairly insensitive to details of the observation, it may be asked whether the hot spots in di†erent FR-II sources occur at the same relativehpppositions, so that one is in fact measuring a stable quantity for di†erent sources. The canonical criterion for FR-II sources is that the ratio, FR\
is deÐned as the greatest linear extent of the outer lobes measured to the 1% contour, be greater than 0.5. Though may generallyhpp/hmax,where hmax hmaxdepend on the details of the observation, studies have shown that FR-IIs invariably tend to have FR values near unity. Stocke, & EllingsonRector, (1995)

study a sample of 30 FR-IIs in the range 0.26 \ z\ 0.63 and Ðnd, for those with well-determined values of FR, a mean FR value of 0.85 with a standard
deviation of 0.07, with all having FR[ 0.7. Thus, the relative peak-to-peak scales in these sources vary by at most 17% from the mean value, although
typically much less, and show no systematic variation with redshift. It should be noted that the spread in FR may arise from the fact that if the lobes
themselves are not spherically symmetric, FR will vary simply because the apparent location of the hot spots within the optically thin lobes will vary for
sources with di†erent projection angles, even if the relative positions of the hot spots within the lobes of these sources are identical, suggesting that is inhppfact a more stable quantity that FR. The variation in FR may also be due in part to instrumental e†ects and/or cosmological surface brightness dimming
operating in the determination of rather than intrinsic di†erences inhmax, hpp.
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central core and, thus, will underestimate the peak-to-peak angular size. The resulting fractional error in the angular size
would be small for large sources, but it may be appreciable for smaller sources where the resolved lobe size is comparable to
the angular distance between lobes. For small enough sources, standard Gaussian Ðtting routines may Ðt only one or two
components to a source that clearly exhibits a more complicated morphology and thus drastically underestimate Thesehpp.e†ects would become most pronounced at higher redshifts where the relative fraction of smaller sources is(0.5[ z[ 3.0),
greatest (cf. and precisely where cosmological e†ects in the h-z plane become important, thus making the universeFig. 1),
appear more Euclidean at higher redshifts. It is preferable therefore to measure for FR-II sources directly from the radiohppdata of a single, high-resolution survey, rather than from multiple survey catalogs generated by model-speciÐc Ðtting
algorithms. Despite these considerations, most of the h-z studies to date have, in fact, employed samples compiled from output
catalogs of multiple radio surveys et al. Singal et al.(Miley 1971 ; Hooley 1978 ; 1988, 1993 ; Kapahi 1989 ; Nilsson 1993 ;

et al. A further danger in using data taken from multiple surveys is that such a study may selectively omit someNeeser 1995).
sources altogether. For example, large, low surface brightness objects detected in a low-resolution sample may be resolved out
in a deep, high-resolution sample, and a high-frequency sample will generally contain more compact sources than a low-
frequency sample. The mixing of sources from di†erent samples may thus destroy the consistency of the set required to
measure the h-z relation.

2. The sizes of double-lobed sources are measured from radio data, but the redshift information is often obtained in an
optically selected fashion. Thus, constructing a h-z diagram from quasar catalogs (as all previous studies have done) might
mix radio-measured angular sizes with optically selected redshifts and may introduce serious selection e†ects. Although one
may hope that the highly heterogeneous manner in which lists of quasar redshifts have been developed would ““ wash out ÏÏ any
such e†ects, it is easy to conceive of scenarios wherein the sizes of an optically selected subset of double-lobed radio objects
could be systematically larger or smaller than the population as a whole. Such a selection e†ect, if present, would operate even
when using catalogs with complete optical identiÐcations and redshift information. To eliminate this potential problem would
require obtaining redshift information for a complete set of radio-selected double-lobed objects, but such a h-z study has not
been carried out to date.

3. For the purposes of studying cosmology using the h-z relation, double-lobed sources are chosen to the extent that they
might represent a population of standard rods. It is clear, however, that a given double-lobed source does not maintain a Ðxed
size, but rather, grows with time, over a period of roughly 107È108 yr et al. (This growth is not to be(Gopal-Krishna 1996)
confused with the intrinsic size evolution discussed above, which occurs over cosmological time frames and refers to evolution
of the overall length scale characterizing these objects and not the growth in size of a given source.) Thus, when considering
the angular sizes of these sources, those with smaller sizes will in general be a mixture of intrinsically smaller sources plus
larger sources viewed in projection. Moreover, many radio sources exhibit a core-jet structure that, if not well-resolved, can
easily be mistaken for a small double-lobed morphology, and many small, double-lobed sources may not be sufficiently
resolved for an accurate classiÐcation. To avoid potential confusion, it is necessary to determine, for a given set of radio
observations, the angular scale above which morphological classiÐcations can be accurately determined. This scale will
generally be signiÐcantly greater than the survey resolution limit. However, previous h-z studies include angular sizes down to
the survey resolution limits & Miley Singal et al. et al. and are thus(Barthel 1988 ; 1988, 1993 ; Nilsson 1993 ; Neeser 1995)
mixing true double-lobed sources of various sizes together with objects that may in fact be a di†erent class of sources, and by
using multiple surveys, are doing so in a highly nonuniform fashion. The resulting admixture of objects is not likely to yield a
good approximation to a standard rod, and while interesting from the viewpoint of AGN evolution, is not valid for
cosmological studies. Since the morphologies of objects with large angular sizes are less likely to be misclassiÐed, this problem
also becomes more severe at higher redshifts, where there is a greater fraction of smaller, less well-resolved sources. The
wrongful inclusion of more smaller sources at higher redshifts would signiÐcantly decrease the mean angular size at these
redshifts, again making the universe appear more Euclidean.

4. Another important consequence of Ðnite survey resolution is that a constant angular resolution limit does not corre-
spond to a constant minimum linear size, but rather one that varies with redshift (cf. and Thus, if all the h-z dataeq. [1] Fig. 1).
down to some limiting resolution are used, the resulting sample not only will mix sources with di†erent intrinsic sizes (due to
the spread in the intrinsic size distribution) but will span di†erent ranges of intrinsic sizes at di†erent redshifts. This redshift
dependence of the intrinsic size distribution again undermines the consistency needed to deÐne a cosmological population of
standard rods.

The VLA FIRST Survey White, & Helfand is the most sensitive survey of its kind, and represents a valuable(Becker, 1995)
new tool for studying the h-z relation. To date, the project has mapped D3000 deg2 of the north Galactic cap at 1.4 GHz to a
sensitivity of D1 mJy with a FWHM Gaussian beam and has cataloged roughly 270,000 sources with subarcsecond5A.4
positional accuracy. In this paper we investigate the h-z relation for double-lobed quasars in the FIRST survey. We construct
a sample optimally suited for studying the h-z relation, addressing the various problems and selection e†ects that may be
present, and devise analytic methods to account for these In we explore the relationships among the intrinsic(° 2). ° 3,
properties of the sources, using both parametric and nonparametric methods, and Ðnd evidence, regardless of the chosen
cosmological parameters, for a negative correlation between power and size, with b B[0.13^ 0.06, which, coupled with the
observed power-redshift correlation, gives rise to apparent size evolution with cB [0.8^ 0.4 ; intrinsic size evolution is
consistent with zero. We also Ðnd that a subsample can be deÐned for which c is consistent with zero, implying that any
observed h-z relation would be entirely due to cosmological e†ects. We Ðnd these results to be independent of orientation
e†ects, although other evidence conÐrms that orientation e†ects are present and consistent with the predictions of the uniÐed
scheme for radio-loud AGNs. In we investigate the constraints that can be placed on cosmological parameters from the° 4,
h-z data and Ðnd that, contrary to past work, the observed data are less consistent with a Euclidean model than with standard
Friedmann models. Both underdense models yield with 1 p intervals ranging from D0.25 to 1.0, and the cB 0)0B 0.35,



No. 2, 1998 CONSTRAINING )0 WITH h-z RELATION 507

subsample favors values near unity in these models. Model 1, with provides a comparably good Ðt and even appears)04 1,
slightly favored by the cB 0 subsample, although these results are likely due to the reduced number of free parameters in this
model. Although all three Friedmann models yield consistent values of the data at present cannot distinguish between)0,di†erent cosmological models with reasonable signiÐcance. As a consistency check on our analysis, we also investigate the
values of implied by the data, based on assumptions about the intrinsic sizes of the sources, and Ðnd the results to beH0consistent with the range spanned by current estimates. In we present our conclusions and discuss future prospects for° 5
such work.

2. THE SAMPLE

2.1. Selection Criteria
In the interest of maintaining a maximally homogeneous population of objects, we restrict our study of double-lobed

sources to those identiÐed as quasars, excluding objects classiÐed as radio galaxies. We thus bypass the issue of whether the
potentially di†erent characteristics of these two kinds of objects, such as di†erent mean orientations or power-size corre-
lations, produce noncosmological e†ects in the h-z plane. Moreover, since all Friedmann models approach a Euclidean
universe as z] 0 (see the low-redshift population (dominated by radio galaxies) carries less information about theFig. 1),
cosmology. Conversely, since many quasars are found at higher redshifts where the predictions of di†erent models(zZ 1),
exhibit di†erent minima and begin to diverge signiÐcantly, their h-z distribution is more sensitive to and In addition,)0 )".
we further restricted our sample to sources with z[ 0.3, since, as mentioned in past work indicates that the properties of° 1,
low-z and high-z radio sources exhibit di†erent behaviors, with the cuto† occurring roughly at z\ 0.3, beyond which quasars
begin to dominate et al. et al.(Heckman 1992 ; Hes 1995).

Using the & Burbidge & Veron and FIRST Bright QSO Survey et al. R. H.Hewitt (1993), Veron-Cetty (1996), (Gregg 1996 ;
Becker et al. 1997, private communication) catalogs, we selected all z[ 0.3 quasars whose positions fell within the currently
mapped area of the FIRST survey. Each of these was then inspected separately by A. B. and C. T. on the FIRST radioW.9
maps to determine the radio morphology. We included in our sample only those sources where the quasar position fell near
(i.e., within a few arcseconds of) the center of an edge-brightened, double-lobed radio source. Restricting the study to
edge-brightened, FR-II objects o†ers two main advantages. First, since the lobes have radio-bright hot spots, the measured
peak-to-peak angular sizes are less sensitive to instrumental e†ects and cosmological surface brightness dimming et(Neeser
al. than are FR-I sources, whose lobe components fade gradually toward the edges. Second, since the underlying1995)
mechanism that distinguishes FR-I and FR-II sources is not well understood, restricting the analysis to a single type of object
assures us that the h-z data are not altered by noncosmological e†ects that may arise from intrinsic di†erences between these
objects. Determining the radio morphology (i.e., FR-I, FR-II, core-jet, etc.) is relatively easy for sources signiÐcantly larger
than the beam but can be problematic for smaller sources, either because of the limited survey resolution or because
uncertainties in the optical positions of the quasars make it difficult to determine whether the radio peak corresponds to a
core or a lobe. It is unlikely that FR-I sources would be misclassiÐed as FR-IIs ; cosmological surface brightness dimming
would select against very faint FR-Is with z[ 0.3, and recent studies have shown that there is a real decline in the incidence of
powerful FR-Is with redshift (with few having z[ 0.3), while the number of FR-IIs increases with redshift (Zirbel 1996).
Following et al. we classify smaller sources as FR-II only if the quasar position is at the center of twoNeeser (1995),
comparable edge-brightened lobes, excluding sources that suggested a core-jet morphology, such as those where the quasar
position falls much closer to one of the components or those where one component is much brighter than the other. Sources
too small for an accurate morphological classiÐcation were omitted, thus introducing an e†ective size cuto† in the data, the
signiÐcance of which is described in We excluded from our sample any sources with highly distorted or bent morphol-° 2.3.
ogies, whose apparent sizes have been severely inÑuenced by asymmetric interaction with the IGM.

2.2. Properties of the Sample
A total of 103 objects satisÐed our selection criteria. For each object we measured the peak-to-peak angular size, hereafter

denoted simply by h, directly from the FIRST radio maps, so as to avoid any systematic underestimation of the sizes that
could arise from using the peaks of the Gaussian model Ðts. We also recorded the FIRST Ñux density for each source
component ; for components that are well resolved, such as the compact core components or sufficiently small lobe com-
ponents, the measured FIRST Ñuxes are reliable. However, because of its high resolution, the FIRST survey is prone to
resolving out Ñux from extended sources, such as the radio lobes of larger FR-IIs. Thus we also measured, where possible, the
1.4 GHz Ñux densities for our sources from the NRAO VLA Sky Survey (NVSS) radio survey et al. which is(Condon 1996),
currently mapping 82% of the celestial sphere at 1.4 GHz to a sensitivity of 2.5 mJy with 45A FWHM resolution. Any
di†erence between the FIRST and NVSS Ñuxes for a given source was ascribed to the extended lobe components, so that the
total Ñux density, corresponds to the value measured by the NVSS survey (if available), while the core Ñux density, if any, isS

t
,

determined by the FIRST measurement. Many sources do not have a core component in the FIRST catalog, either because
none was detected or, in the case of smaller sources, because the Gaussian Ðtting algorithm did not generate a separate
component for the core. The data for our sample are listed in For comparative purposes, we also measured (notTable 1. hsmshown) for each source using both the FIRST and NVSS radio data.

shows a scatter plot of the h-z data. The errors in the measured values of h are typically D1A, far less than theFigure 2
scatter in the angular sizes at any redshift. For graphical purposes, we bin the data in redshift, both in equal intervals of

9 We thank Chelsea T. Wald for her work in analyzing the radio images.



TABLE 1

DOUBLE-LOBED RADIO QUASAR DATA

a d h S
t

S
l(J2000) (J2000) z (arcsec) (mJy) (mJy) R Reference

00 22 44.3 . . . . . . [01 45 51 0.691 85.7 242.2 232.7 0.04 1
00 41 25.9 . . . . . . [01 43 15 1.679 19.3 1042.1 1042.1 0.00 1
01 03 29.4 . . . . . . ]00 40 54 1.436 26.3 114.7 114.7 0.00 1
01 19 10.0 . . . . . . ]01 31 28 0.520 84.2 60.3 58.1 0.04 4
01 33 52.7 . . . . . . ]01 13 46 1.370 100.5 109.9 93.2 0.18 1
02 10 08.5 . . . . . . ]01 18 39 0.870 154.4 33.6 27.0 0.24 4
02 25 07.9 . . . . . . [00 35 32 0.687 12.5 1141.4 1141.4 0.00 1
02 39 13.6 . . . . . . [01 18 16 1.794 15.1 237.5 237.5 0.00 1
02 45 34.0 . . . . . . ]01 08 13 1.520 52.5 330.1 318.4 0.04 1
02 50 48.6 . . . . . . ]00 02 08 0.766 16.5 111.1 91.3 0.22 1
03 15 42.4 . . . . . . [01 51 23 1.480 27.9 278.2F 156.7 0.78 4
07 43 45.0 . . . . . . ]23 28 39 0.770 23.6 335.1 181.1 0.85 1
07 45 41.6 . . . . . . ]31 42 56 0.461 115.1 1454.7 840.0 0.73 1
07 52 28.7 . . . . . . ]37 50 52 1.200 28.2 395.7 365.9 0.08 1
07 53 28.3 . . . . . . ]33 50 52 2.070 27.3 150.3 87.2 0.72 1
08 02 20.5 . . . . . . ]30 35 43 1.640 53.2 67.5 39.7 0.70 3
08 09 06.2 . . . . . . ]29 12 35 1.470 131.4 312.9 291.4 0.07 3
08 11 36.9 . . . . . . ]28 45 03 1.910 58.6 102.2 62.8 0.63 1
08 14 09.3 . . . . . . ]32 37 31 0.842 24.2 514.5 387.6 0.33 1
08 14 30.6 . . . . . . ]38 58 35 2.621 24.7 72.3 72.3 0.00 1
08 17 35.1 . . . . . . ]22 37 17 0.980 23.6 1315.3 1150.5 0.14 1
08 17 40.2 . . . . . . ]34 54 52 1.348 52.8 26.2 19.9 0.32 2
08 28 06.8 . . . . . . ]39 35 40 0.762 64.6 86.7 81.6 0.06 1
08 32 36.7 . . . . . . ]33 32 05 1.100 30.1 354.2 354.2 0.00 1
08 32 48.4 . . . . . . ]42 24 59 1.051 16.1 456.1 168.7 1.70 1
08 46 59.3 . . . . . . ]34 48 25 1.575 30.5 101.6 62.1 0.64 2
08 47 56.4 . . . . . . ]31 47 58 1.834 161.1 1589.7 1568.0 0.01 1
08 52 34.2 . . . . . . ]42 15 28 0.978 20.0 459.6 459.6 0.00 1
09 04 29.6 . . . . . . ]28 19 33 1.121 22.5 130.1 90.9 0.43 1
09 07 45.5 . . . . . . ]38 27 39 1.740 15.2 156.8 112.6 0.39 1
09 13 45.5 . . . . . . ]40 56 27 0.442 20.6 16.4 8.1 1.02 1
09 13 52.4 . . . . . . ]39 02 12 0.638 53.0 145.2 145.2 0.00 1
09 21 46.6 . . . . . . ]37 54 10 1.108 51.9 825.0 547.0 0.51 1
09 25 54.7 . . . . . . ]40 04 14 0.470 262.4 77.4 68.2 0.13 4
09 31 52.8 . . . . . . ]34 39 20 2.304 12.8 26.6 18.8 0.42 2
09 37 04.0 . . . . . . ]29 37 04 0.450 157.4 29.4 26.8 0.10 3
09 41 04.1 . . . . . . ]38 53 51 0.618 51.1 668.6 443.8 0.51 1
09 52 31.9 . . . . . . ]35 12 53 1.875 25.7 339.0 34.3 8.88 1
09 55 48.1 . . . . . . ]35 33 23 1.241 18.8 522.7 522.7 0.00 1
09 58 02.8 . . . . . . ]38 29 58 1.394 18.9 432.8 432.8 0.00 1
10 00 21.8 . . . . . . ]22 33 19 0.419 34.1 1117.2 1117.2 0.00 1
10 04 45.8 . . . . . . ]22 25 19 0.974 66.4 578.9F 545.0 0.06 1
10 10 27.5 . . . . . . ]41 32 38 0.612 31.8 1734.8 1394.5 0.24 1
10 14 35.8 . . . . . . ]27 49 03 0.899 13.1 514.8 514.8 0.00 1
10 17 49.3 . . . . . . ]27 32 05 0.469 21.1 1318.7 1318.7 0.00 1
10 18 25.5 . . . . . . ]38 05 33 0.380 48.4 275.2 242.5 0.14 1
10 20 41.1 . . . . . . ]39 58 11 0.830 159.9 9.6F 9.6 0.00 4
10 21 17.5 . . . . . . ]34 37 23 1.400 18.3 457.5 144.2 2.17 1
10 51 29.4 . . . . . . ]23 48 02 1.274 15.4 485.2 485.2 0.00 1
10 52 50.1 . . . . . . ]33 55 05 1.405 32.7 21.5 8.7 1.47 4
11 03 13.3 . . . . . . ]30 14 43 0.380 73.1 167.5 59.8 1.80 1
11 07 26.8 . . . . . . ]36 16 12 0.393 20.4 611.9F 611.9 0.00 1
11 08 37.7 . . . . . . ]38 58 41 0.781 67.1 877.7 867.8 0.01 1
11 10 40.2 . . . . . . ]30 19 09 1.520 42.3 91.0 68.2 0.33 3
11 14 38.6 . . . . . . ]40 37 20 0.734 13.3 3037.2 3037.2 0.00 1
11 19 03.2 . . . . . . ]38 58 52 0.733 90.0 141.1 129.3 0.09 1
11 34 54.5 . . . . . . ]30 05 26 0.614 15.1 1147.4 1147.4 0.00 1
11 48 18.8 . . . . . . ]31 54 11 0.549 20.7 94.0 45.8 1.05 1
12 06 17.3 . . . . . . ]38 12 35 0.838 35.1 241.0 241.0 0.00 1
12 10 37.7 . . . . . . ]31 57 07 0.388 80.2 276.3 254.3 0.09 1
12 23 11.2 . . . . . . ]37 07 02 0.489 36.0 477.3 430.1 0.11 1
12 30 52.5 . . . . . . ]39 30 00 2.217 51.9 223.9 219.6 0.02 1
12 33 28.3 . . . . . . ]34 39 42 0.847 31.0 41.8 33.9 0.23 2
12 36 31.3 . . . . . . ]26 35 09 2.100 21.6 557.3 557.3 0.00 1
12 36 51.4 . . . . . . ]25 07 48 0.546 83.8 270.6 254.4 0.06 1
12 37 04.0 . . . . . . ]33 14 23 1.280 18.2 218.5 52.9 3.13 1
12 40 21.2 . . . . . . ]35 02 59 1.194 16.8 222.1 222.1 0.00 1
12 47 20.7 . . . . . . ]32 09 01 0.949 22.9 470.1 338.0 0.39 1
12 50 25.5 . . . . . . ]30 16 40 1.061 28.6 430.6 430.6 0.00 1
12 54 10.5 . . . . . . ]39 33 23 2.104 32.4 56.9 56.9 0.00 1
12 59 02.1 . . . . . . ]39 00 13 0.978 20.9 297.1F 258.1 0.15 1
13 00 33.4 . . . . . . ]40 09 07 1.659 19.8 1287.2F 1287.2 0.00 1
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TABLE 1ÈContinued

a d h S
t

S
l(J2000) (J2000) z (arcsec) (mJy) (mJy) R Reference

13 08 56.8 . . . . . . ]27 08 12 1.537 15.2 334.6 180.2 0.86 1
13 41 08.2 . . . . . . ]39 14 49 0.580 12.6 84.2 84.2 0.00 1
13 42 10.9 . . . . . . ]28 28 47 0.330 94.6 224.2 222.7 0.01 1
13 42 54.5 . . . . . . ]28 28 05 1.037 33.1 184.1 118.5 0.55 1
13 44 25.5 . . . . . . ]38 41 29 1.533 18.8 286.9 286.9 0.00 1
13 50 15.0 . . . . . . ]38 12 05 1.390 16.8 180.3 180.3 0.00 1
13 53 36.0 . . . . . . ]26 31 48 0.310 173.2 244.5 222.2 0.10 1
14 11 55.3 . . . . . . ]34 15 11 1.820 20.2 201.1 98.4 1.04 1
14 16 58.3 . . . . . . ]34 28 53 0.750 14.8 151.1 151.1 0.00 1
14 25 50.8 . . . . . . ]24 04 03 0.649 20.4 1479.5F 1158.6 0.28 1
14 27 35.7 . . . . . . ]26 32 14 0.366 228.4 368.5 314.4 0.17 1
14 37 56.5 . . . . . . ]35 19 37 0.540 14.3 89.4 89.4 0.00 1
14 46 26.8 . . . . . . ]41 33 18 0.675 102.9 534.1 531.1 0.01 1
15 14 43.0 . . . . . . ]36 50 50 0.370 54.8 1001.2 930.2 0.08 1
15 57 30.0 . . . . . . ]33 04 46 0.942 33.6 168.2 82.2 1.05 1
16 08 11.2 . . . . . . ]28 49 02 1.989 30.3 589.5 570.5 0.03 1
16 13 51.4 . . . . . . ]37 42 59 1.630 16.3 283.6 283.6 0.00 1
16 22 29.9 . . . . . . ]35 31 26 1.473 21.9 381.6F 351.2 0.09 1
16 24 22.1 . . . . . . ]39 24 42 1.120 21.3 254.2 121.9 1.09 1
16 24 39.3 . . . . . . ]23 45 12 0.927 22.7 2587.9F 2171.9 0.19 1
16 25 30.8 . . . . . . ]27 05 47 0.525 23.1 532.0 299.1 0.00 1
16 30 46.2 . . . . . . ]36 13 07 1.256 15.2 543.3 434.4 0.25 1
16 33 02.2 . . . . . . ]39 24 27 1.023 17.3 69.6 69.6 0.00 1
16 36 36.4 . . . . . . ]26 48 09 0.561 40.1 1337.9F 1337.9 0.00 1
17 03 07.7 . . . . . . ]37 51 25 2.450 19.1 111.1 111.1 0.00 1
17 06 48.1 . . . . . . ]32 14 22 1.070 53.0 136.2 99.9 0.36 4
21 35 13.1 . . . . . . [00 52 43 2.660 58.4 324.4F 323.1 0.00 4
22 14 10.0 . . . . . . ]00 52 28 0.910 39.6 121.9F 91.8 0.33 1
23 36 24.1 . . . . . . ]00 02 46 1.100 59.8 227.1F 209.4 0.08 4
23 44 40.0 . . . . . . [00 32 31 0.500 168.0 36.4F 18.0 1.02 4
23 47 24.5 . . . . . . ]00 52 44 0.400 19.1 94.8F 94.8 0.00 2

NOTE.ÈData for our sample of 103 FR-II quasars found within the currently available region of the
FIRST survey. Units of right ascension are hours, minutes, and seconds, and units of declination are
degrees, arcminutes, and arcseconds. The peak-to-peak angular sizes, h, are measured directly from the
FIRST data. The total 1.4 GHz Ñux densities, are taken from the NVSS survey, with a superscriptedS

t
,

F indicating that only FIRST Ñuxes were available for that source. The lobe Ñux densities, areS
l
,

obtained by subtracting the FIRST Ñux of the core component (if any) from The core-to-lobe ÑuxS
t
.

density ratio is given by R.
REFERENCES.ÈThe coordinates and redshifts of the quasars are taken from the (1) &Veron-Cetty

Veron (2) & Burbidge and FIRST Bright QSO SurveyÈ(3) et al. and1996, Hewitt 1993, Gregg 1996
(4) R. H. Becker et al. 1997, private communicationÈcatalogs, respectively.

(1 ] z)~3@2 (which corresponds to equal time per bin in an EinsteinÈde Sitter universe) and with roughly equal numbers per
bin, and calculate both the mean values, ShT, and median values, together with the standard errors of the mean values,hmed,and median absolute respectively, for each bin. The results are shown in Figures along with the curvesdeviations,10 3aÈ3d,
from whose amplitudes (corresponding to the mean or median intrinsic sizes) have been scaled to provide a roughFigure 1,
visual Ðt. Before turning to a formal discussion of the results, we describe several important features of the data and address in
detail the aforementioned issues associated with properly deÐning and analyzing such a sample.

1. The most striking feature of the data is that, regardless of the binning details, the observed data seem to be more
consistent with Friedmann models than with a Euclidean model. The Friedmann curves shown are not the best-Ðt results but
are merely intended for qualitative reference. We defer the discussion of the best-Ðt values until after we have addressed(° 4)
the properties and analysis of the sample, including potential problems. It can immediately be seen, however, that while the
data are generally consistent with curvature models, it is unlikely, given the uncertainties, that the current sample can
distinguish with high signiÐcance between the di†erent models. Note that in each case, the data point of the Ðrst bin appears
anomalously high.

2. Since the radio data are derived entirely from one consistent data set (with a single Ñux limit, beamwidth, and frequency),
our sample does not su†er from the potential problems, described in associated with the mixing of di†erent samples.° 1,

3. As expected, we Ðnd that for cases where the FIRST and NVSS Ñux measurements agree, the second moments derived
from both survey maps generally agree to within the second moment errors (provided that the source was larger about the13NVSS beam, so that structure could be resolved) ; for cases where the source registered little or no core Ñux and comparable
lobe Ñuxes, the measured second moments agreed well with the peak-to-peak sizes listed in However, in cases whereTable 1.
an appreciable core Ñux is detected and/or the lobe-to-lobe Ñux ratio di†ers substantially from unity, the second moments
tend to be systematically smaller than the peak-to-peak sizes, conÐrming that the peak-to-peak distance is indeed a more
robust measure of sizeÈusing the second moments would have the undesirable e†ect of introducing or strengthening a

10 The median is the value about which the sum of the absolute deviations is minimized, just as the mean deÐnes the value about which the rms deviation
is minimized.
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FIG. 2.ÈScatter plot of the peak-to-peak angular sizes, h, vs. redshift. The dashed line represents the e†ective resolution limit at 12A, below which accurate
morphological classiÐcations could not be determined.

power-size anti-correlation in the data. For sources larger than D20A, the measured peak-to-peak sizes agreed closely with
those obtained using the model Gaussian Ðts, as expected.

4. In any Ñux-limited survey there is the possibility that large, low surface brightness objects could be resolved out. The
FIRST survey is sensitive to structure out to B100A, and it may be asked whether larger double-lobed sources, whose lobes
might equal or exceed this angular size, might be missing from our sample. Since the hot spots of FR-II objects are, by
deÐnition, high surface brightness features, and the FIRST survey measures peak Ñuxes down to D1 mJy, it is highly unlikely
that these sources would be missed altogether ; only very large, low surface brightness objects can remain undetected, and
such sources would not correspond to FR-IIs in our chosen redshift range. If such objects did exist, they would presumably,
because of their large sizes and integrated Ñuxes, be known radio quasars detected by previous surveys and should certainly
be detected by the NVSS survey. Thus, to explore this issue in a complete fashion, we individually compared the NVSS and
FIRST radio maps for every previously known radio-active quasar in the & Veron catalog falling withinVeron-Cetty (1996)
the FIRST survey, searching for double-lobed radio sources with sizes up to 1000A that might have been missed by FIRST. As
expected, we Ðnd not a single instance of a large, double-lobed quasar, with z[ 0.3, detected by NVSS and not by FIRST,
indicating that there is no instrumental cuto† at the upper end of the observed angular sizes in our sample. This is conÐrmed
by the fact that, within our chosen redshift range, the upper limit of our h-z data agrees closely with that of other samples
drawn from less sensitive surveys, such as the Third and Fourth Cambridge Catalogs et al. et al.(Hooley 1978 ; Nilsson 1993).

5. To conÐrm that our selected sample is not contaminated by FR-I sources, we calculate the intrinsic 1.4 GHz power,

P\ 4nS1.4 D
A
2(1 ] z)3`a , (2)

of each double-lobed quasar, where is the 1.4 GHz Ñux density and a is the radio spectral index We assumeS1.4 (SlP l~a).
standard values of a \ 0.5 for any core components, a \ 0.8 for lobe components (e.g., & KulkarniGopal-Krishna 1992 ;

Stocke, & Ellingson and take P to be the total core ] lobe power. For and we Ðnd a lowerRector, 1995), h0\ 0.5 )0\ 1.0,
limit of P\ 1.45] 1025 W Hz~1 for our sample, near the observed break which separates FR-IIs from the lower-power
FR-Is for this choice of cosmological parameters & Riley et al. Stocke, & Ellingson(Fanaro† 1974, Neeser 1995 ; Rector,

All but nine sources have intrinsic powers in the range 1026 W Hz~1\ P\ 1029 W Hz~1, indicating that our sample is1995).
indeed composed of FR-IIs.

6. Another advantage of the Ñux sensitivity of the FIRST survey is that our sample includes sources out to a redshift of 2.7,
signiÐcantly higher than the redshifts at which the minima in the h-z curves typically occur for di†erent Friedmann models.
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FIG. 3.ÈCentral values of h vs. redshift using di†erent analytical techniques. In all plots, the short-dashed, long-dashed, and dot-dashed curves are the
respective predictions of Friedmann models 1, 2, and 3, assuming the density parameter values listed in and the thin, solid lines represent EuclideanFig. 1,
curves (h P z~1). The curves shown are not the best-Ðt results but merely visual estimates intended to provide a template for comparison. Note that in all
cases, the observed data are generally consistent with curvature and not with Euclidean models. (a) Mean angular size ShT, binned in redshift with roughly
equal numbers per bin. The error bars represent the standard errors in the mean values. (b) Median angular sizes, binned in redshift with roughly equalhmed,numbers per bin. The error bars represent the median absolute deviation in each bin. (c) ShT binned in equal intervals of (1] z)~3@2, which corresponds to
equal time per bin in an EinsteinÈde Sitter universe. The error bars represent the standard errors in the mean values. (d) binned in equal intervals ofhmed(1 ] z)~3@2. The error bars represent the median absolute deviation in each bin.

This is in contrast to some previous work, which used samples containing signiÐcant numbers of sources only to z[ 1 (Oort
et al. where roughly Euclidean behavior is expected (see1987 ; Kapahi 1989), Fig. 1).

7. Like all previous such samples, ours is a subset of the double-lobed radio sources that have measured redshifts and may
su†er from the associated selection e†ects described in To examine this possibility, we performed a Kolmogorov-Smirno†° 1.
(K-S) test to compare the sizes of the double-lobed objects in our sample with those in the FIRST survey as a whole. However,
since h and z are obviously correlated in our sample, with an expected upper limit to the correlation, and we lack complete
redshift information for sources in the FIRST survey, we must restrict the test to the range in h (h \ 60A) below which sources
in our sample appear roughly uniformly at every redshift, in order to perform a fair comparison. In the range 12A \ h \ 60A
(the origin of the lower limit is discussed below) there are currently 13,664 objects in the FIRST survey that are classiÐed as
true double-lobed sources at the 95% conÐdence level, based on morphology, positional and Ñux information et al.(Buchalter

and two-point correlation analysis et al. A K-S test shows that the null hypothesisÈthat our size-1998), (Cress 1996).
restricted subsample is drawn from this larger setÈcan only be rejected only at the 51% level ; i.e., it fails to discriminate
between the two distributions at the 1 p level. In addition, since 47% of the extended ([2A) sources in the FIRST survey have
measured Ñuxes below 3 mJy, but only Ðve of our 103 sources have either lobe Ñux in this range, we further restrict the K-S
test to sources whose individual lobe Ñuxes are greater than 3 mJy. In this case we Ðnd that the null hypothesis that our
remaining subsample is drawn from the 10,521 such sources in the survey can only be rejected only at the 30% level.
Furthermore, it is estimated that the median redshift of the FIRST survey is D1.0 & Kamionkowski while the(Cress 1997),
median redshift of our sample is 0.98. This evidence, taken together, indicates that the two populations have similar
distributions, and therefore that our optically selected sample (i.e., FR-II quasars with measured redshifts) is fairly representa-
tive of double-lobed radio sources as a whole. This suggests that no serious selection e†ects arise from measuring the radio
sizes of a largely optically selected subset of double-lobed quasars.

8. Since our sample excludes objects classiÐed as radio galaxies, we avoid the possibility that di†erent mean orientations
between quasars and radio galaxies, in the context of the uniÐed scheme, can be introducing noncosmological e†ects into the
h-z plane. However, the FR-II quasars in our sample do span a range of core-to-lobe Ñux density ratios, R, suggesting that
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they are composed of both CDQs and LDQs. If the redshift distributions of these two populations are di†erent, such e†ects
may still arise. For example, if the fraction of CDQs increases with redshift then the angular sizes of our sources at higher
redshifts would be depressed relative to the cosmological predictions, since the CDQs are projected more closely to the line of
sight. To investigate this issue, we perform a K-S test to compare the redshift distributions of these two classes of quasars in
our sample. Since the observed median values of R for these objects are and weRCDQD 10 RLDQD 0.1 (Ubachukwu 1996),
classify our sources using the geometric mean of R\ 1 for the critical value. This yields 12 CDQs and 91 LDQs in our sample,
whose redshift distributions can be distinguished at only the 2% conÐdence level ; i.e., the probability that they are drawn from
the same distribution is 98%. Since many of the objects in our sample do not register a core component in the FIRST survey,
we also perform a K-S test using a critical value of R\ 0.1, which divides the sample more evenly into 47 ““ CDQs ÏÏ and 56
““ LDQs.ÏÏ In this case, the null hypothesis that the two redshift distributions are drawn from di†erent populations can only be
rejected at the 38% level (i.e., they cannot be distinguished at the 1 p level). Since CDQs and LDQs in our sample do not
exhibit signiÐcantly di†erent redshift distributions, the expected di†erences in their mean orientations should not alter the h-z
results. More speciÐcally, since

R\R
T

2
[(1 ] b cos /)~2] (1 [ b cos /)~2] (3)

where is the value of R when /\ 90¡ and b \ v/c is the Ñow speed in units of the speed of light (related(Ubachukwu 1996), R
Tto the Lorentz factor), the apparent lack of a correlation between R and z suggests that / and z are uncorrelated, and thus that

we are looking at a similar distribution of projection angles at every redshift.
9. With a FWHM beam, the FIRST survey can detect extended structure down to 2A et al. However, due5A.4 (White 1997).

to the survey resolution limit, uncertainties in the quasar optical positions, and variations in the morphologies of double-
lobed objects, sources with could not be assigned an accurate morphological classiÐcation. Thus, based on inspectionh [ 10A
of numerous FIRST radio maps, we have introduced an e†ective cuto† in the data at 12A, illustrated by the thin dashed line in

In terms of deÐning a population of standard rods, it is, in fact, desirable to have such a cuto†, in order to eliminateFigure 2.
the possibility of including so-called core-jet, di†use, cometary, and other types of extended radio sources that may be
mistaken for double-lobed objects at low resolution (cf. We now outline a self-consistent method for incorporating this° 1).
cuto† into the analysis.

2.3. Optimizing the Analysis
Consider the parameter space deÐned by the comoving intrinsic sizes, l, and projection angles, /, of FR-II quasars, as

illustrated in In general, the intrinsic sizes will range up to some maximum value, deÐned by the upper envelopeFigure 4. lmax,to the observed angular sizes, and above which there simply are no objects (see Determining the exact value ofFig. 2). lmaxfrom a given h-z data set would require assumptions about the cosmology (see but the actual value is irrelevant foreq. [1]),
the purposes of this discussion and no such assumptions need be made. The projection angles will range between 0 and some
upper limit which for a randomly distributed population would correspond to 90¡, but in the context of the uniÐed scheme/

u
,

would correspond to a value of roughly 45¡ et al. The accessible portion of the parameter space is(Barthel 1989 ; Lister 1994).
then deÐned by the largest heavy rectangle in There will also in general be some probability density along each axis,Figure 4.
given by P(l) and P(/) (assumed to be independent), which will determine the forms of the distributions. For a distribution of
randomly oriented rods, it can be seen from simple geometric arguments that P(/) \ sin / p. 111) ; P(l) is still a(Harwit 1988,
matter of theoretical and observational debate.

Since we are interested in deÐning a uniform population of objects with true double-lobed structure, it makes sense to
impose an e†ective resolution cuto† at the angular scale for which morphologies are well determined. However, since a
constant minimum resolvable angular size does not translate into a constant minimum intrinsic linear size, the e†ect of this
cuto† (or simply of the survey resolution limit in general) will be to introduce a redshift dependence to the intrinsic size
distribution. It is desirable therefore to impose a minimum intrinsic size, such that, for a given survey resolution,lmin,restricting a sample to sizes both avoids potential contamination by misclassiÐed sources and preserves the samel [ lminrange of observed sizes at every redshift. It may be expected that the average size of this more homogeneous population (true
double-lobed objects with is a more suitable measure of a standard rod than that of a distribution whichlmin\ l \ lmax)includes objects with structure down to the resolution limits of various surveys, probing di†erent intrinsic length scales, and
possibly mixing di†erent classes of sources.

Since the h-z relation always exhibits a minimum in Friedmann models, when Ðtting a given cosmological model to the
data, one can deÐne a subsample in which all objects have by aligning the minimum of the h-z curve for that particularl [ lminmodel with the smallest observable angular size at which morphologies can be accurately determined and including only
points above this curve. The choice of is, then, determined by whatever value achieves this alignment for the given model,lminthough the actual value is immaterial. The value of can be determined by Ðnding the highest amplitude h-z curve for thelmaxgiven model that still passes through a data point in the sample and thus deÐnes an upper envelope to the angular sizes. The
sample so deÐned will include maximally deprojected objects of intrinsic size and larger objects viewed down to somelmin,projection angle given by the heavy, dot-dashed curve in (for example, objects with size can be seen projectedFigure 4 lmaxdown to an angle of /@). For the purposes of this analysis, however, one is free to examine only those sources with lmin\ l\ l

u
,

where can assume any value between and i.e., the discussion presented here is valid for any choice of an upperl
u

lmin lmax ;envelope to the data that is lower than the h-z curve corresponding to and above that corresponding to for thelmax lmin,assumed model. For an arbitrary choice of which we denote by the sample will include maximally deprojected objects ofl
u
, l

*
,

intrinsic size objects with viewed from down to some projection angle given by the heavy, dot-dashedlmin, lmin\ l \ l
*

/
u
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FIG. 4.ÈThe parameter space deÐned by the intrinsic sizes, l (ordinate), and projection angles with respect to the line of sight, / (abscissa), of FR-II
quasars. The values of l can range from 0 to an arbitrary while / ranges from 0 to some upper limit, which would correspond to 90¡ for randomlylmax, /

u
,

oriented quasars, or D45¡ according to uniÐcation models, so that the largest heavy rectangle represents the accessible portion of the space. For a survey
with a given resolution limit, we deÐne an intrinsic size, so that maximally deprojected sources with this size correspond to the smallest angular scale atlmin ,which morphologies can be accurately determined. Any objects intrinsically larger than can then be accurately classiÐed if their projection angles exceedlminsome critical value, given by the dot-dashed line (e.g., objects with can be accurately classiÐed with / ranging down to /@). Thus, the combined areasl \ lmaxof regions B and C deÐne the subspace of an accurately classiÐed sample of sources with from a single radio survey. In general, one canlmin \ l \ lmaxintroduce an upper limit which will exclude objects larger than if their projection angles lie to the right of the heavy, dashed line, thusl

u
\ l

*
\ lmax , l

*limiting the sample to region B.

curve, and objects with with projection angles between the dashed and dot-dashed heavy curves. The objects inl
*

\ l \ lmaxthe sample will thus be located either in the combined area of regions B and C (hereafter denoted by BC) in (for anFigure 4
upper envelope corresponding to or simply in region B (for an upper envelope corresponding to andl

u
\ lmax), l

u
\ l

*
\ lmax),the observed angular sizes, h, for a given Friedmann model correspond to the distribution of in these regions.(l sin /)/D

ABecause of projection e†ects, some fraction of the objects with intrinsic sizes larger than will be missed (corresponding tolminregion A the Ðgure). If P(l) and P(/) were known, it would be a simple matter to calculate the fraction of objects in region A, as
well as the l sin / distribution in this region. However, if P(l) and P(/) are independent of redshift, then for a given data set,
the best-Ðt values of and for a particular model can be uniquely determined by the observed h distribution in any given)0 )"region and are independent of P(l), P(/), and the intrinsic size limits given by and In other words, as long as thelmin, lmax, /

u
.

distribution of intrinsic projected sizes, l sin /, is not sensitive to redshift, the actual values of and can onlylmin, lmax, /
uchange the amplitude of the best-Ðt curve to the h-z data (cf. not its shape. In contrast, a determination of wouldeq. [1]), H0require speciÐc assumptions about these quantities and about P(l). Moreover, even if the l sin / distribution does vary with

redshift (e.g., because of some combination of size evolution, a power-size correlation, or orientation e†ects), and can)0 )"still be determined to the extent that this variation can be modeled and corrected for in the data.
The question of whether or not l sin / is independent of redshift is addressed quantitatively in the following section. Note,

however, that e†ectively demonstrates that any relation between l sin / and z cannot be strong ; these graphs includeFigure 3
all the observed data, without incorporating any of the above size considerations, and are already seen to be fairly consistent
with the conventional curvature models, without invoking any redshift evolution of the apparent sizes. We will hereafter use
the term ““ intrinsic size evolution ÏÏ to denote the case where the intrinsic projected sizes, s \ l sin /, have a direct correlation
with redshift [e.g., if lP (1 ] z)n with or if / and z are directly correlated] and ““ apparent size evolution ÏÏ to denote then D 0,
case where s and z are directly and/or indirectly correlated. Thus, apparent size evolution can arise from intrinsic size
evolution but also from other e†ects, such as an l-P correlation coupled with a P-z correlation. In general, various possible
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correlations may exist between l, /, P, and z, and we investigate these in detail in However, only those that give rise to° 3.
apparent size evolutionÈan observed correlation between s and zÈcan a†ect the determination of cosmological parameters
from a given data set.

In the scenario we have presented, the best-Ðt cosmological parameters to a given data set can be found by exploring
parameter space in the following fashion : (1) Assume a particular cosmological model (we use the word ““model ÏÏ as in to° 1
refer to the overall geometry and not the particular values chosen for and (2) Adopt trial values for the relevant)0 )").
density parameters in that model. (3) Find the h-z curve arising from these values (as in and align the minimum value ofFig. 1),
this curve with the constant value of the e†ective angular size cuto† determined for the survey in question. Denote this curve
by This then Ðxes the minimum intrinsic size for which accurately determined morphologies in the sample are assured. Inh

l
(z).

a similar manner, adjust the amplitude of the trial h-z curve so that it lies at some desired level above and denote thish
l
(z),

curve by For example, to include all the data above one would choose so that it deÐnes the upper envelope toh
u
(z). h

l
(z), h

u
(z)

the observed angular sizes (corresponding to (4) Beginning with all the data above the e†ective cuto†, eliminate anyl
u
\ lmax).data in the h-z plane with or thus ensuring that the remaining sources all have intrinsic sizes betweenh \h

l
(z) h [h

u
(z), lminand This step assures that the intrinsic size limits have been imposed in a self-consistent manner. (5) Using the remainingl

u
.

data, perform a s2 goodness-of-Ðt test to determine the best-Ðt values of the remaining free parameters in the test model (e.g.,
amplitude and size evolution parameter), and assess how well the output parameters for the assumed model Ðt the resulting
h-z data. The entire procedure can then repeated so as to span the range of density parameters appropriate to the assumed
model, as well as to explore di†erent models. Conducting the analysis in this fashion both deÐnes a sample whose mean size is
more akin to a standard rod and accounts for the limited survey resolution in a self-consistent manner.

3. CORRELATIONS BETWEEN POWER, SIZE, AND REDSHIFT

3.1. Parametric Analysis
Correlations among the properties of FR-II quasars have important implications for understanding the characteristics of

the host active galactic nuclei and the evolution of the intergalactic medium, as well as for determining the best-Ðt cosmo-
logical parameters from classical cosmological tests such as the h-z relation. These correlations must be considered in detail if
these objects are to be used as probes of the geometry of the universe. Thus, before addressing cosmological issues, we explore
the relationships between the intrinsic properties of the sources in our sample, by spanning the entire assumed range of
cosmological parameter values and testing for correlations among the intrinsic properties in each case. For a given set of
cosmological parameters, one can calculate respectively the intrinsic power and projected linear size,

P\ 4nS1.4 D
A
2(1] z)3`a , s \ l sin /\ hD

A
, (4)

of each double-lobed quasar, where we again assume a spectral index of a \ 0.5 for any core components, a \ 0.8 for lobe
components, and take P to be the total core ] lobe power.

If we assume relationships between P, l, and z of the form

lP (1 ] z)n , (5)

PP (1 ] z)x , (6)

l P Pb , (7)

as in we can then determine the best-Ðt values of n, x, and b. In practice, it is straightforward to Ðt for the P-z and l-P° 1,
correlations, since these are expected to operate independently of the third variable ; a P-z correlation should arise from the
Ñux-limited nature of the survey, and an l-P correlation should operate over the lifetime of the sources, which is far less than
the cosmological timescales spanned by the z-distribution. Any observed l-z correlation, however, may be due to the separate
correlations of l and z with P and not to intrinsic size evolution. To address this possibility, previous authors have
investigated the l-z correlation for sources within relatively narrow ranges of intrinsic power, so as to minimize the e†ect of
any dependence on P et al. Singal & Miley et al.(Hooley 1978 ; Kapahi 1985 ; 1988, 1993 ; Barthel 1988 ; Nilsson 1993).
However, according to relations (5)È(7), the combined e†ects of intrinsic size evolution and a power-size correlation will result
in an overall apparent l-z correlation of the form h P lP (1] z)c, where c\ bx ] n. Thus, the value of c for a given model
follows directly from the data, and, together with the derived values of b and x, one can arrive at a value for n.

We explore models 1 2, and 3, adopting values of from 0.01 to 0.99 inclusive, in intervals of 0.01, for models 2()04 1), )0and 3 merely Ðxes the constants of proportionality in relations [5]È[7] and has no e†ect on b, x, or n, and all three models(h0obviously yield the same results for for a total of 199 possible scenarios. For each scenario, we align the correspond-)0\ 1),
ing h-z curve with the e†ective cuto† at 12A and include only data above this curve [denoted by and below some upperh

l
(z)]

curve [denoted by which may correspond to the true upper envelope to the data, but we can in general assume anyh
u
(z)],

lower amplitude still above that of as outlined above. For the remaining data, we compute, using Ðve roughly equallyh
l
(z),

populated bins, the mean intrinsic projected sizes, SsT, in bins of P, SsT in bins of z, and SPT in bins of z, together with the
standard errors in these quantities, and use a s2 minimization routine to determine b, c, and x, respectively. We bin the data
since we do not have a priori knowledge, independent of cosmological parameter values, of the inherent scatters associated
with the various intrinsic properties of these sources and by which the s2 values must be weighted ; a binned analysis allows us
to obtain unbiased estimates for these scatters in each bin. Note that while the intrinsic sizes l appear in relations (5) and (7),
we can obtain only the intrinsic projected sizes, s \ l sin /. Using the mean values, Sl sin /T, in each bin properly accounts
for the presence of projection e†ects only if the objects in each bin have similar distributions of /. Otherwise, the derived
values of b, c, and n could reÑect variations of P and z with respect to / as well as l, and some explicit / dependence would
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need to be added to relations (5)È(7) to break this degeneracy. Since we cannot directly test for / correlations parametrically
without knowledge of the distributions of and v/c in we explicitly use SsT rather than SlT, with theR

T
equation (3),

understanding that these are interchangeable only if the / distributions are consistent in each bin. However, we have already
concluded, from the K-S tests of the R values in di†erent redshift bins that / does not vary signiÐcantly with redshift ;(° 2.2),
we discuss further the / distribution below.

The derived values of c, b, and x, as well as the inferred values of n, together with the 1 p errors in each quantity, are listed in
the fourth through seventh columns in the top half of for a representative seven of the 199 scenarios. These resultsTable 2
are obtained using all the data above (i.e., ranging to the upper envelope deÐned by some value and are thush

l
(z) l

u
\ lmax)denoted by an upper limit of in the table. All 1 p errors quoted in this section correspond to the square roots of thelmaxappropriate diagonal elements of the covariance matrix for that s2 Ðt (i.e., they are the errors obtained with Ðxed at its trial)0value and the corresponding constant of proportionality from relations [5]È[7] Ðxed at its best-Ðt value). For all scenarios, we

Ðnd a strong p) correlation between SPT and z, which is expected because of the Ñux-limited nature of the survey. We(Z10
also Ðnd an inverse correlation, at the 2È3 p level between SsT and P, which can be understood in terms of the gradual fading
of these sources as the lobes expand over timescales (D108 yr) much shorter than which is indeed the case for quasars inD

A
/c,

our sample. Previous studies have found b B 0.3^ 0.1 for double-lobed quasars assuming an EinsteinÈde Sitter universe
et al. & Kulkarni & et al.(Oort 1987 ; Kapahi 1989 ; Gopal-Krishna 1992 ; Chyz5 y Zi”ba 1993 ; Nilsson 1993 ; Singal 1993),

which is consistent with our result for model 1. also shows that the observed data ranging up to exhibit mildTable 2 lmaxapparent size evolution at the D2 p level, with all scenarios yielding cB [0.8^ 0.4. Interestingly, however, the data imply
little or no intrinsic size evolution ; all cases yield a slightly negative SsT-z correlation with [0.4\ n \ 0.0 but are consistent
with n \ 0 well within the 1 p level. The anticorrelation between intrinsic projected size and redshift (given by c) seems to arise
mainly from the separate correlations of these quantities with intrinsic power. The lack of intrinsic size evolution in double-
lobed quasar samples has been seen by other authors as well et al.(Masson 1980 ; Singal 1993 ; Nilsson 1993).

There is also the possibility that the Sl sin /TÈP anticorrelation arises not from intrinsically smaller objects having larger
lobe powers but rather from objects projected close to the line of sight (CDQs) having relativistically boosted core power
contributing signiÐcantly to the total power. In other words, the correlation could arise from di†erent / distributions in
di†erent power bins rather than a true power-size correlation. To explore this possibility, we re-solve for b, x, and n using only
the lobe power, which, unlike the total power, is not expected to vary with /. The resulting quantities, denoted byP

l
, b

l
, x

l
,

and (c remains unchanged) are listed in the eight through tenth columns in the top half of Though di†eringn
l

Table 2.
slightly, the values of are all within 1 p of the corresponding values for b and still yield an inverse correlation between SsTb

land at the 2È3 p level in all cases, indicating that, while orientation e†ects may be present, they are not primarilyP
l
,

responsible for producing the observed anticorrelation between intrinsic projected size and power. Similarly, the values for n
ldi†er slightly from those of n, in some cases having a di†erent sign, but still agree to well within the 1 p level, implying that the

Sl sin /TÈz correlation does not arise primarily from a /-z correlation. As expected, the values of are not signiÐcantlyx
ldi†erent from x, since cosmological surface brightness dimming a†ects P and in a similar fashion.P

lWe have shown that the Sl sin /TÈP correlation is not the result of orientation e†ects but rather is due to a negative
correlation between l and P and, furthermore, that this correlation, coupled with the P-z relationship, appears largely to
account for the apparent size evolution in the data. Inspection of various scatter plots of the data for the di†erent scenarios
supports these conclusions, suggesting that the negative SsT-P correlation arises mainly from the fact that the D20 largest
projected sources in the sample have low values of P and lie preferentially at lower redshifts. We have already seen, however,
that one need not choose the amplitude of to trace the upper envelope to the h-z data (i.e., to but one can, inh

u
(z) lmax),principle, choose any value between this and without loss of generality or the introduction of sample bias. Thus, in lighth
l
(z)

of the above conclusions, we rederive the values of c, b, x, and n, Ðxing the curve in each scenario to have a minimum ath
u
(z)

65A (corresponding to some intrinsic size which eliminates roughly 20 of the largest sources in each scenario. Thel
u
\ l

*
),

TABLE 2

SELECTED RESULTS OF PARAMETRIC FITS FOR c, b, x, AND n

Model )0 Limit c b x n b
l

x
l

n
l

1 . . . . . . 1.00 lmax [0.828^ 0.379 [0.168^ 0.067 3.672^ 0.376 [0.211^ 0.456 [0.150^ 0.066 3.793^ 0.404 [0.260^ 0.457
2 . . . . . . 0.10 lmax [0.827^ 0.423 [0.102^ 0.061 4.513^ 0.352 [0.366^ 0.507 [0.182^ 0.059 4.644^ 0.380 0.017^ 0.509
2 . . . . . . 0.30 lmax [0.694^ 0.362 [0.117^ 0.061 3.993^ 0.350 [0.227^ 0.439 [0.197^ 0.067 4.094^ 0.376 0.114^ 0.459
2 . . . . . . 0.90 lmax [0.808^ 0.378 [0.166^ 0.067 3.712^ 0.375 [0.193^ 0.457 [0.148^ 0.065 3.835^ 0.403 [0.242^ 0.458
3 . . . . . . 0.10 lmax [0.853^ 0.427 [0.121^ 0.061 4.280^ 0.364 [0.335^ 0.502 [0.182^ 0.062 4.399^ 0.392 [0.054^ 0.512
3 . . . . . . 0.30 lmax [0.678^ 0.366 [0.113^ 0.063 4.087^ 0.357 [0.217^ 0.449 [0.167^ 0.062 4.198^ 0.382 0.024^ 0.454
3 . . . . . . 0.90 lmax [0.800^ 0.379 [0.164^ 0.067 3.725^ 0.376 [0.187^ 0.457 [0.147^ 0.065 3.847^ 0.404 [0.236^ 0.458
1 . . . . . . 1.00 l

*
[0.142^ 0.225 [0.098^ 0.044 2.843^ 0.445 0.137^ 0.262 [0.090^ 0.041 2.884^ 0.496 0.117^ 0.258

2 . . . . . . 0.10 l
*

[0.141^ 0.221 [0.064^ 0.042 3.462^ 0.442 0.082^ 0.266 [0.067^ 0.039 3.424^ 0.484 0.090^ 0.260
2 . . . . . . 0.30 l

*
[0.108^ 0.232 [0.062^ 0.044 3.204^ 0.433 0.092^ 0.272 [0.063^ 0.041 3.231^ 0.477 0.094^ 0.268

2 . . . . . . 0.90 l
*

[0.122^ 0.225 [0.095^ 0.044 2.878^ 0.444 0.152^ 0.261 [0.088^ 0.041 2.921^ 0.495 0.134^ 0.258
3 . . . . . . 0.10 l

*
[0.168^ 0.232 [0.068^ 0.043 3.332^ 0.449 0.058^ 0.274 [0.071^ 0.039 3.351^ 0.492 0.070^ 0.269

3 . . . . . . 0.30 l
*

[0.153^ 0.230 [0.065^ 0.042 3.679^ 0.389 0.084^ 0.277 [0.066^ 0.040 3.650^ 0.450 0.088^ 0.273
3 . . . . . . 0.90 l

*
[0.114^ 0.225 [0.094^ 0.044 2.895^ 0.445 0.159^ 0.262 [0.087^ 0.041 2.938^ 0.496 0.141^ 0.259

NOTE.ÈThe values for b, x, and n are obtained using the total power, P, while those for and are obtained using only the lobe power, Note thatb
l
, x

l
, n

l
P
l
.

these two sets of values agree to within the 1 p errors listed. A limit of means that all data points above the h-z curve corresponding to for the givenlmax lminmodel were used, while a limit of means that points lying above the h-z curve with a minimum at 65A for that choice of were rejected, corresponding tol
*

)0the subsample with cB0.
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removal of these sources reduces the seemingly anomalously high values in the Ðrst redshift bins of Figures and also3aÈ3d
eliminates the few exceptionally large sources at z[ 1 (see The results obtained from the remaining samples for theFig. 2).
same seven scenarios are presented in the lower half of where they are denoted by an upper limit of We indeed ÐndTable 2, l

*
.

that, in all trial cases, the magnitude of the SsT-P correlation diminishes signiÐcantly, with [0.11\ b \ 0.0 in all cases, and is
generally consistent with zero at the p level. The SPT-z correlation remains highly signiÐcant, as expected. The derived[2
values for n become positive, rather than negative, in all cases but are generally much smaller in magnitude than those
obtained using an upper limit of and are certainly consistent with n \ 0 well within the 1 p range. Most important, welmaxÐnd, as expected for the samples, that there is no signiÐcant apparent size evolution, with c consistent with zero well withinl

*the 1 p level for all scenarios. These results conÐrm that large, fainter sources (which can be seen only at lower redshifts) were
largely responsible for the power-size correlation and resulting apparent size evolution observed previously and suggest that
we can deÐne a sample whose h-z variation should primarily be due to cosmological e†ects alone. Unlike the case for the
samples obtained using an upper limit corresponding to the values of and obtained using are virtuallylmax, b

l
, x

l
, n

l
l
*
,

identical to those for b, x, and n, indicating that for these samples, orientation e†ects play no role in the SsT-z and SsT-P
correlations.

3.2. Nonparametric Analysis
The analysis of assumes speciÐc functional forms for the relationships between P, l, and z and is valid only insofar as° 3.1

these parameterizations accurately reÑect the underlying physics. If this is not the case, the resulting Ðtted values are merely
artifacts of the model, not parameters truly descriptive of the data. For example, the relation PP (1 ] z)x, though a good
approximation, does not properly account for the implicit dependence of on z (see eqs. and Thus, a betterD

A
[1] [4]).

approach to searching for correlations in the data is to employ nonparametric tests that are independent of an assumed
functional form. In addition, nonparametric statistics o†er another advantage in that they are readily applied to unbinned
distributions and thus incorporate information that is lost when the distributions are binned. In particular, the Spearman
rank correlation coefficient, tests, in a nonparametric fashion, the degree to which the quantities a and b are correlated in ar

ab
,

given data set, varying from [1 (for strong negative correlation) to ]1 (for strong positive correlation), with 0 indicating no
correlation. The Spearman partial-rank statistic,

r
ab,c \ (r

ab
[ r

ac
r
bc

)/J(1 [ r
ac
2 )(1[ r

bc
2 ) ,

has the same range and tests whether there is a signiÐcant correlation between a and b that does not arise from both being
separately correlated with a third quantity, c ; i.e., it e†ectively tests for a correlation between a and b if c is held constant. For
data sets with º30 data points, the distribution of where is a Spearman statistic, is well approximated by a[(n [ 1)]1@2r

s
, r

snormal distribution with unit variance Thus, for a given data set with an observed Spearman statistic,(Conover 1980). robs,one can easily compute the (two sided) probability, p, that a random, uncorrelated data set, with could exhibit this degreerran,of correlation (positive or negative) or higher (i.e., the probability that and thus obtain the signiÐcance of theo rran oº o robs o)result. For the correlation coefficient, this is simply the probability of seeing occur by chance if there is no intrinsicr
ab

, r
abcorrelation between a and b. For the partial rank statistic, it is the probability of seeing occur by chance if there is nor

ab,c, r
ab,ccorrelation between a and b other than that caused by their being separately correlated to c.

The upper half of shows the results of the rank analysis, listing the Spearman statistics for the various combinationsTable 3
of z, s, and P, and the corresponding values of p (given in parentheses), for the same seven of the 199 trial scenarios from ° 3.1
using an upper limit corresponding to In all cases investigated, we Ðnd evidence for a negative correlation between s andlmax.z at the 90%È95% conÐdence level (given by 1[ p), a signiÐcant inverse correlation between s and P, near the 3 p level (i.e.,
1 [ p [ 99%), and a highly signiÐcant P-z correlation. Moreover, the partial rank correlation coefficient, indicates thatr

sz,Pthe s-z correlation arises entirely from the s-P and P-z correlations, so that s and z are intrinsically uncorrelated, with p [ 0.36
in all cases. Intrinsic size evolution is consistent with zero well within 1 p for all cases and does not account for the mild degree
of apparent size evolution. These results all agree closely with our results from the parametric analysis.

TABLE 3

SELECTED RESULTS OF NONPARAMETRIC ANALYSIS BETWEEN s, P, AND z

Model )0 Limit r
sz

r
sP

r
sPl

r
Pz

r
sz,P

1 . . . . . . 1.00 lmax [0.196 (0.051) [0.343 (0.001) [0.318 (0.002) 0.693 (\10~11) 0.062 (0.536)
2 . . . . . . 0.10 lmax [0.199 (0.057) [0.329 (0.002) [0.302 (0.004) 0.749 (\10~12) 0.076 (0.462)
2 . . . . . . 0.30 lmax [0.157 (0.120) [0.277 (0.006) [0.258 (0.011) 0.726 (\10~12) 0.067 (0.507)
2 . . . . . . 0.90 lmax [0.188 (0.062) [0.337 (0.001) [0.312 (0.002) 0.697 (\10~11) 0.069 (0.488)
3 . . . . . . 0.10 lmax [0.205 (0.048) [0.314 (0.002) [0.284 (0.006) 0.746 (\10~12) 0.048 (0.645)
3 . . . . . . 0.30 lmax [0.176 (0.084) [0.271 (0.008) [0.243 (0.017) 0.739 (\10~12) 0.036 (0.721)
3 . . . . . . 0.90 lmax [0.183 (0.069) [0.335 (0.001) [0.311 (0.002) 0.697 (\10~11) 0.074 (0.458)
1 . . . . . . 1.00 l

*
[0.017 (0.874) [0.211 (0.056) . . . 0.634 (\10~8) . . .

2 . . . . . . 0.10 l
*

[0.059 (0.600) [0.203 (0.072) . . . 0.701 (\10~9) . . .
2 . . . . . . 0.30 l

*
[0.017 (0.876) [0.144 (0.186) . . . 0.683 (\10~9) . . .

2 . . . . . . 0.90 l
*

[0.006 (0.957) [0.200 (0.070) . . . 0.637 (\10~8) . . .
3 . . . . . . 0.10 l

*
[0.073 (0.514) [0.194 (0.082) . . . 0.704 (\10~9) . . .

3 . . . . . . 0.30 l
*

[0.038 (0.729) [0.133 (0.228) . . . 0.699 (\10~9) . . .
3 . . . . . . 0.90 l

*
0.001 (0.993) [0.197 (0.074) . . . 0.638 (\10~8) . . .

NOTE.ÈThe quantities and respectively connote the Spearman rank correlation and partial rank correlationr
ab

r
ab,ccoefficients between quantities a, b, and c. In each case, the number in parenthesis denotes the two-sided probability that a

random data set could achieve the associated value of o r o and thus gives the signiÐcance of the result.
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TABLE 4

SELECTED RESULTS OF NONPARAMETRIC CORRELATIONS WITH R

Model )0 Limit r
Rs

r
RP

r
RPc

1 . . . . . . 1.00 lmax [0.501 (\10~4) [0.052 (0.671) 0.580 (\10~5)
2 . . . . . . 0.10 lmax [0.474 (\10~3) [0.006 (0.964) 0.588 (\10~5)
2 . . . . . . 0.30 lmax [0.503 (\10~4) [0.046 (0.705) 0.567 (\10~5)
2 . . . . . . 0.90 lmax [0.506 (\10~4) [0.053 (0.669) 0.580 (\10~5)
3 . . . . . . 0.10 lmax [0.503 (\10~4) [0.038 (0.759) 0.547 (\10~5)
3 . . . . . . 0.30 lmax [0.505 (\10~4) [0.042 (0.732) 0.558 (\10~5)
3 . . . . . . 0.90 lmax [0.507 (\10~4) [0.053 (0.669) 0.580 (\10~5)
1 . . . . . . 1.00 l

*
[0.419 (0.003) [0.125 (0.377) 0.558 (\10~4)

2 . . . . . . 0.10 l
*

[0.463 (0.001) 0.004 (0.979) 0.631 (\10~5)
2 . . . . . . 0.30 l

*
[0.484 (\10~3) [0.067 (0.623) 0.581 (\10~4)

2 . . . . . . 0.90 l
*

[0.427 (0.003) [0.123 (0.386) 0.562 (\10~4)
3 . . . . . . 0.10 l

*
[0.506 (\10~3) [0.038 (0.776) 0.573 (\10~4)

3 . . . . . . 0.30 l
*

[0.486 (\10~3) [0.062 (0.647) 0.571 (\10~4)
3 . . . . . . 0.90 l

*
[0.428 (0.002) [0.123 (0.386) 0.562 (\10~4)

We also tested s separately against to see whether the s-P correlation was truly due to a power-size correlation (to whichP
lis sensitive) and not due to beaming e†ects (to which is not sensitive). We indeed Ðnd that values of are close to thoseP

l
P

l
r
sPlfor with the signiÐcance level remaining near or above 98% in all cases. We do not directly test for a correlation withr

sP
, P

c
,

since not all sources registered a FIRST core component, but we do eliminate CDQs, using both criteria of R[ 1.0 and also
R[ 0.5, re-solve for and in both cases Ðnd similar values to those in indicating again that a true power-sizer

sz
, Table 3,

correlation, and not beaming e†ects, are responsible for producing the observed apparent size evolution. Also, since some
sources listed as having may in truth have some core Ñux that was not separately represented in the FIRST catalog,P

c
\ 0

we reperform the analysis including only those sources with and again Ðnd virtually identical results to those inP
c
D 0

Table 3.
In the lower half of are the results obtained using an upper limit corresponding to as deÐned above. Again,Table 3 l

u
\ l

*we conÐrm the results of the parametric tests, Ðnding that while the P-z correlation remains highly signiÐcant, the s-P
correlation is reduced in magnitude, with signiÐcance typically below the 2 p level in the various scenarios, and the s-z
correlation e†ectively vanishes in all cases, consistent with zero apparent size evolution. As expected, these results agree with
the parametric analysis but are more robust in the sense that they are independent of the assumed model governing the
characteristics of the sources.

The nonparametric analysis also allows us to probe the / distributions more directly and examine issues related to
uniÐcation schemes for radio-loud AGNs. Since R is expected to be correlated with / via we can, unlike in theequation (3),
parametric case, test for correlations between some quantity q and / through without invoking assumptions about ther

Rqdistributions of or v/c. We have already seen that the / distribution is not sensitive to redshift and that it does notR
Taccount for the observed s-P correlation. However, if the uniÐed scheme is correct, in the sense that sources projected near the

line of sight have relativistically boosted core Ñuxes, then there should be a negative correlation between R and intrinsic
projected size, s, and, obviously, a positive correlation between R and the intrinsic core power, since SomeP

c
, RPP

c
/P

l
.

sources in the sample may have registered R\ 0 not because they truly lacked a signiÐcant core but, rather, in the case of
smaller sources, because the FIRST Ðtting algorithm did not assign that source a core component. Assigning the Ñux in such
sources to the lobes had no signiÐcant e†ect on the results above, as seen when we omitted sources lacking a measured core
component, but could seriously a†ect apparent correlations with R. Thus we include here only those sources with RD 0.

shows the results of the rank tests between various quantities and R for these sources, with the upper and lowerTable 4
sections again corresponding to limits of and for the same seven of the 199 scenarios. For all cases, we indeed Ðnd almax l

*
,

signiÐcant ([99.7%) inverse correlation between R and s, as predicted by the uniÐed model. Moreover, while R and the total
power P show no statistically signiÐcant relationship, R and exhibit a positive correlation with high signiÐcance (p \ 10~4)P

cin all cases, as would be expected. Though only suggestive, these results indicate that the behavior of these radio-loud quasars
is consistent with the expectations of uniÐcation schemes.

4. COSMOLOGICAL PARAMETERS

Having explored the intrinsic properties of the sources over the assumed range of cosmological density parameter
values, we now turn to a discussion of the best-Ðt cosmological results. The cosmological models we consider are models 1,
2, and 3 from along with a Euclidean model for comparison. Since the results of the nonparametric analysis corroborate° 1,
those of the parametric analysis, we allow for apparent size evolution in the data of the form l P (1 ] z)c so that l sin /\

where a zero subscript denotes the present-day (z\ 0) value. To determine the best-Ðt values for the free(l sin /)0(1 ] z)c,
parameters in each model, we follow the prescription in and minimize the quantity° 2.3

s2 \ ;
i/1

N G[Sh
p
T(a, c, )0 ; z

i
)[ h

i
]2

p
i
2] ph2

H
, Sh

p
T \ a(1 ] z)c

f ()0 ; z)
, (8)

where is the mean angular size predicted by the model at given a, c, and the are the errors associated with the NSh
p
T z

i
, )0 ; p

iindividual measurements (measured in Mpc throughout) Ðxes the overall amplitude of the h-z curve ; andh
i
; a \ h0Sl sin /T0is given by The quantity is the observed root variance in the distribution of h,f ()0 ; z) \ h0D

A
equation (1). ph\ p

l sin Õ/DAwhich in general arises from the spread in the intrinsic projected sizes, given by as well as from curvature e†ects.p
l sin Õ,
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TABLE 5

BEST-FIT PARAMETERS TO THE h-z DATA

Model Limit s2 (N, l, 1 [ p) a c )0
1 . . . . . . . . . . . . . . . . lmax 1.776 (100, 3, 0.620) 0.32 (0.19, 0.55) [0.83 ([1.64, [0.12) 1.00
2 . . . . . . . . . . . . . . . . lmax 0.822 (98, 2, 0.663) 0.35 (0.21, 0.57) [0.64 ([1.36, [0.12) 0.38 (0.28, 1.00)
3 . . . . . . . . . . . . . . . . lmax 1.021 (97, 2, 0.600) 0.32 (0.21, 0.50) [0.61 ([1.37, [0.05) 0.35 (0.25, 1.00)
Euclidean . . . . . . . . . 6.959 (103, 4, 0.138) 0.57 (0.52, 0.62) . . . . . .
1 . . . . . . . . . . . . . . . . l

*
0.408 (83, 3, 0.939) 0.15 (0.10, 0.21) [0.25 ([0.73, [0.29) 1.00

2 . . . . . . . . . . . . . . . . l
*

0.362 (83, 2, 0.834) 0.15 (0.10, 0.35) [0.19 ([0.67, [0.31) 0.84 (0.03, 1.00)
3 . . . . . . . . . . . . . . . . l

*
0.408 (83, 2, 0.816) 0.15 (0.10, 0.29) [0.23 ([0.66, [0.29) 0.93 (0.00, 1.00)

NOTE.ÈN denotes the number of points falling within the angular size cuto†s in each case, which is then divided into
Ðve bins. For normally distributed data (which ours are not) the value of 1 [ p would give the signiÐcance of the result,
where p is the cumulative distribution function for the s2 probability function with l degrees of freedom. Each best-Ðt
parameter value is accompanied by the 1 p conÐdence limits in parentheses.

Without knowledge of P(l), and we cannot a priori determine which Ðxes the scatter in h at a givenlmin, lmax, /
u
, p

l sin Õ, D
A
.

Therefore, one must resort to a binned analysis to estimate from the scatter in h in di†erent bins. Furthermore, it is clearphthat the (typically B1A) are much smaller than the scatter in h at any given redshift and, thus, that so that we canp
i

p
i
2> ph2,ignore the We thus seek to minimizep

i
.

s2 \ ;
j/1

M G[Sh
p
T(a, c, )0 ; z

j
) [ Sh

j
T]2

p
WhjX2

H
, (9)

where now the are the predicted mean angular sizes in M bins centered at with observed mean sizes andSh
p
T z

j
Sh

j
T

corresponding standard errors p
WhjX.Using Ðve roughly equally populated bins, we follow the method outlined in and calculate s2 with respect to the free° 2.3

parameters in each model. Model 1, with a Ðxed value of has only two free parameters, (with a [ 0) and)0, a \ h0Sl sin /T0c. The quantity Sl sin /T appears because it is, by deÐnition, the mean value of h around which s2 will be minimized (cf. eq.
Models 2 and 3 each have three free parameters, a, c, and (with The Euclidean model simply has one free[1]). )0 0 \)0¹ 1).

parameter corresponding to the amplitude. For each trial value of in the Friedmann models in model 1, and trial)0 ()04 1
values in intervals of 0.01 from 0 to 1 for models 2 and 3), we use the resulting and curves to ensure a uniform rangeh

l
(z) h

u
(z)

of intrinsic sizes and then determine the best-Ðt values of a and c for the remaining data, as well as the value of s2 for this set of
parameters. In practice, aligning the minimum intrinsic size cuto† of the various Friedmann models with the survey
resolution limit, which is vital in terms of producing a self-consistent result, removes three to 17 data points depending on the
trial value of but typically fewer than Ðve for This prescription is meaningless for the Euclidean case, which does)0, )0[ 0.3.
not exhibit a minimum in the angular size ; for this case we simply follow the approach of past workers and use all the data
above the cuto† at 12A.

The results of our analysis for each of the four models, using M \ 5 bins containing the various N data points between h
land given by are shown in the upper part of which lists the values of N and s2 for each best Ðt, togetherh

u
l
u
\ lmax, Table 5,

with the number of degrees of freedom, l, in the model, and resulting signiÐcance level, 1[ p, as well as the best-Ðt values of
the free parameters, and the 1 p conÐdence limits on these values. It should be noted that the values of p are computed under
the assumption of normally distributed data. Although the unbinned intrinsic projected sizes, l sin /, and thus the angular
sizes, h, given by are not expected to follow a normal distribution, or even to be symmetric about their meanequation (1),
values (see the central limit theorem ensures that, for binned data with a sufficiently large number of points, theFig. 2),
distribution of the mean value in each bin (which is, in fact, our dependent variable) will be close to a Gaussian, independent
of the underlying distribution. Insofar as we have points in each bin, the probabilities derived from our s2 values might[20
be slightly in error due to any residual non-Gaussianity. Moreover, the lower (and for cases with upper) tails of thel

u
\ l

*
,

observed h distribution have been removed by the cuts in our analysis method, thereby enhancing the non-Gaussianity. Thus,
while it is straightforward to compute the mean values and calculate the value of s2 for each trial model, the formal
signiÐcance of the result cannot be obtained in a simple, analytic fashion (nor can it be computed numerically without
knowing the intrinsic size distribution) ; the listed values of 1 [ p for the various models are intended to be qualitatively
illustrative of the relative signiÐcance levels and not rigorously accurate. Since we have no a priori knowledge of the actual
values of the free parameters, all parameter errors quoted here correspond not to the diagonal elements of the covariance
matrix of the Ðt (i.e., to the error obtained with the other parameters held Ðxed at their best-Ðt values) but rather to the much
larger error range subtended by the joint variation in all free parameters, given conservatively by the various one-dimensional
projections of the 1 p conÐdence region in the parameter space. provides a graphical representation of our results.Figure 5

It is clear that the observed data are entirely consistent with Friedmann models with reasonable values of The)0.underdense models 2 and 3 both yield with a 1 p range including values from D0.25 to 1.00 and exhibit a fairly Ñat)0B 0.35
s2 surface in this range of parameter space, so that they are truly consistent with the value required by model The)0\ 1 1.11
constraints implied by model 2 on the energy density associated with the cosmological constant are with 1 p limits)" \ 0.62
ranging from 0 to 0.72. All three Friedmann models are seen to yield roughly equal values of 1[ p, indicating, as expected,

11 Since in models 2 and 3 was constrained to lie between 0 and 1, the conÐdence limits explored were similarly restricted to this interval. Fits to closed)0Friedmann models, with calculated using &(x) \ sin x in invariably yielded values of s2 signiÐcantly larger than the minimum value inSh
p
T eq. (1),

corresponding nonclosed model. Thus, while values of in these models did fall within the 1 p range of the best-Ðt value, we do not consider the results)0[ 1
of closed models in the present treatment.
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FIG. 5.ÈBest-Ðt curves to the h-z data with for the various models explored. (a) Model 1 with a \ 0.32, c\ [0.83, and (b) Model 2 withl
u
\ lmax )0\ 1.

a \ 0.35, c\ [0.64, and (c) Model 3 with a \ 0.32, c\ [0.61, and (d) Euclidean model with a \ 0.57. Note that the Friedmann)0\ 0.38. )0\ 0.35.
models appear to Ðt the data equally well, while the Euclidean model constitutes a relatively poor Ðt.

that the present data cannot e†ectively discriminate between the various Friedmann models, although interesting constraints
on the free parameters within a given model are It should be pointed out, however, that model 1, which is merely aobtained.12
particular case of models 2 and 3, yields a comparable value of 1[ p only because is assumed to be known a priori, thus)0allowing for an additional degree of freedom in the Ðt. Any presumed value of within the 1 p range of the best-Ðt values)0would similarly yield a Ðt on par with that of models 2 and 3. To the extent that is not predetermined, there is no particular)0signiÐcance to the results of model 1 ; it is included primarily because it is the canonical standard among current theoretical
models. Note that the best-Ðt Euclidean model (which uses all the data points) is the only one that yields a reduced s2 value,
s2/l, greater than unity and is actually a comparatively poor Ðt to the data. For comparison, we also performed a semi-
unbinned analysis, using the individual values as in rather the mean of the binned values, but still assign eachh

i
equation (8),

source a corresponding to the standard deviation of the angular sizes in the bin corresponding to that source (i.e., we usephthe binned values of but not of and obtain roughly identical results for the best-Ðt parameters in each model.ph, h
i
),

As expected from the results of the data appear to require mild apparent size evolution with cB [0.8 for model 1 and° 3,
cB [0.6 for both models 2 and 3. We have seen that this trend arises primarily from a power-size correlation, rather than
from intrinsic size evolution or orientation e†ects between CDQs and LDQs (orientation di†erences between radio galaxies
and quasars are ruled out since we have included only the latter in our sample). The values obtained here for c agree closely
with the corresponding results from but di†er slightly because we have here assigned each source the value of° 3 D

Acorresponding to its bin, so that over the j bins, rather than taking for each of the i sources, andSh
j
TD

Aj
P (1 ] z)c Sh

i
TD

Aithen binning the projected sizes, as in The error ranges also di†er since, as described above, we have here taken the errors° 3.
to arise from the joint variation of all free parameters. An inspection of the variation of s2 with respect to the free parameters
reveals that s2 in a given model is signiÐcantly more sensitive to changes in c than in i.e., Therefore,)0 ; o ds2/dc o[ o ds2/d)0 o.
since the e†ect of c\ 0 is to decrease the apparent sizes of sources at higher redshifts, mimicking a decrease in we may infer)0,that, for models 2 and 3, the best-Ðt values for obtained using an upper limit corresponding to are likely lower limits to)0 lmaxthe actual values. We have already seen, however, that we can deÐne a sample for which apparent size evolution is minimal,
and for which the derived values of should therefore correspond more closely to the actual values. The lower part of)0 Table

shows the results obtained using an upper limit corresponding to In this case, we see that all models yield5 l
u
\ l

*
.

cB [0.2^ 0.5 and do indeed Ðnd higher best-Ðt values of 0.84 and 0.93, respectively, for in models 2 and 3, appearing to)0

looking at the sizes of compact sources on milliarcsecond scales, found the h-z relation to be consistent with an EinsteinÈde Sitter12 Kellerman 1993,
universe, but did not consider other possible models ; & SchrammKrauss 1993.
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favor a Ñat universe. The lower amplitude of the curve, however, removes D20% of the data, and the resulting sampleh
u
(z)

yields larger errors on in models 2 and 3, e†ectively spanning the range from 0 to 1. In this case, model 2 yields)0 )" \ 0.16
with 1 p limits of 0.0 and 0.97. We also Ðnd that while all three models again Ðt the data with high signiÐcance, that model 1,
with appears to be slightly favored, subject to the qualiÐcation discussed above. Since all three models yield similar)0\ 1,
values for as well as a and c, in the case, they each pick out the same 83 data points and are thus all plotted on the)0, l

u
\ l

*same graph in where they are seen to virtually overlap.Figure 6,
In principle, we could test the robustness of the zero apparent size evolution feature of the data and of our analyticl

u
\ l

*methods by raising the amplitude of the curve, e†ectively mimicking a survey with poorer angular resolution. If apparenth
l
(z)

size evolution was not truly absent, then performing our analysis with a higher survey cuto† would selectively eliminate
di†erent fractions of sources in di†erent redshift bins, changing the value of Sl sin /T in each bin by di†erent amounts and
thus producing a di†erent value for On the other hand, if the angular size distributions truly are redshift independent,)0.raising the resolution cuto† in our analysis would remove the same fraction of sources in each bin (those with sizes below the
new value of changing the amplitude of the best-Ðt curve but not its shape. We would thus expect to Ðnd a di†erent,lmin),higher value for a, but the same value for In practice, we cannot meaningfully conduct this test with the current data set,)0.since it would further remove data from the sample, which already yields formal errors on that span the allowedl

u
\ l

*
)0range, but do employ a similar technique below.

So far we have only discussed measurements of and c. Each curve, however, is also parameterized by an amplitude)0If we assume functional forms for P(l) and P(/), as well as values for and we can compute thea \ h0Sl sin /T0. lmin, l
*
, /

u
,

theoretical value of in regions B and BC of given respectively bySl sin /T0 Figure 3,

Sl sin /T0 inB\ /Õ{Õ_ [/
l1
lmax P(l)(l sin /)dl]P(/)d/] /Õ_Õu [/

l1
l2 P(l)(l sin /)dl]P(/)d/

/Õ{Õ_ [/
l1
lmax P(l)dl]P(/)d/] /Õ_Õu [/

l1
l2 P(l)dl]P(/)d/

, (10)

Sl sin /T0 in BC\ /Õ{Õu [/
l1
lmax P(l)(l sin /)dl]P(/)d/

/Õ{Õu [/
l1
lmax P(l)dl]P(/)d/

, (11)

where is the minimum angle to the line of sight atl1\ lmin sin /
u
/ sin /, l2\ l

*
sin /

u
/ sin /, /@\ arcsin (lmin sin /

u
/lmax)which objects with intrinsic size can be seen by the survey, and similarly, The denominators inlmax /A \ arcsin (l

*
sin /

u
/lmax).equations and assure proper normalization. The best-Ðt values of for and can thus(10) (11) a \ h0Sl sin /T0 l

u
\ lmax l

u
\ l

*
,

be compared with the theoretical value of in regions BC and B, respectively, to arrive at values for in eachSl sin /T0 h0

FIG. 6.ÈBest-Ðt results obtained with for models 1, 2, and 3. These Friedmann models all yield nearly identical values for a, c, and so that theirl
u
\ l

*
)0,h-z curves, traced by the di†erent point styles in the Ðgure, virtually overlap.
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TABLE 6

RESULTS FOR IN km s~1 Mpc~1 WITH 1 pH0CONFIDENCE LIMITS

H0 H0Model Limit (/
u
\ 45¡) (/

u
\ 90¡)

1 . . . . . . lmax 99 (59, 170) 62 (37, 107)
2 . . . . . . lmax 107 (64, 174) 68 (41, 110)
3 . . . . . . lmax 98 (64, 152) 62 (40, 96)
1 . . . . . . l

*
55 (36, 77) 39 (26, 54)

2 . . . . . . l
*

49 (33, 114) 35 (23, 81)
3 . . . . . . l

*
48 (32, 93) 34 (23, 66)

Friedmann model. Though not a valid determination of this does o†er a consistency check on our analysis, in the senseH0,that we expect reasonable input assumptions to yield plausible values for H0.If the lobe sizes grow as l \ vt with some expansion velocity v, and then fade, with an overall lifetime of about 107È108 yr
et al. et al. et al. a population of such objects observed over cosmological(Nilsson 1993 ; Neeser 1995 ; Gopal-Krishna 1996),

timescales ?108 yr will yield an observed distribution of sizes roughly constant between and In this case, thelmin lmax.normalized probability density between and is given by For a spherically symmetric distributionlmin lmax P(l) \ 1/(lmax[ lmin).of randomly oriented rods, P(/) \ sin / for p. 111). If quasars are viewed at arbitrary projection0 \ /\ /
u
(Harwit 1988,

angles, then In the uniÐed model, however, the jet axes of quasars tend to lie nearer to the line of sight, so that/
u
\ 90¡.

We consider both values for The theoretical value of in region B also depends on and/
u
B 45¡. /

u
. Sl sin /T0 lmin, lmax, l

*
,

while that in region BC depends only on and The ratios between these quantities, however, are determined by thelmin lmax.data ; points lying near for a given model (from step 3 in our analysis method) were assumed to correspond to theh
l
(z)

maximally deprojected minimum intrinsic size, while the uppermost points in the h-z plane are taken tolmin sin /
u
/D

A
,

correspond to so that the values of are uniquely determined from the output data sets used to Ðt ourlmax sin /
u
/D

A
, lmin/lmaxFriedmann models. The ratio is also Ðxed from our requirement that the minimum in the h-z curve arising from belmin/l* l

*Ðxed at 65A. To complete the theoretical calculation, it remains only to assume a value for the present-day maximumlmax,intrinsic linear size. The largest known double-lobed radio sources have estimated intrinsic linear sizes of order 1 Mpc
(A. Schoenmakers 1997, private communication). We thus take Mpc, which yields values of kpc forlmax\ 1.2 lminB 70
the various Friedmann models.

Our inferred results for under these assumptions, using all the observed data above the 12A survey limit, are shown inH0the top half of along with the 1 p error ranges. The derived values for vary simply as Though the error barsTable 6, H0 1/lmax.are considerable, the plausible assumptions we have made yield results for that agree generally with the range spanned byH0current measurements & Tammann et al. et al. et al. et al.(Sandage 1996 ; Kim 1997 ; Falco 1997 ; Holzapfel 1997 ; Giovanelli
et al. with the uniÐed model giving higher values. This in turn suggests that our model and input1997 ; Schechter 1997),

assumptions are in fact reasonable. It is also interesting to examine the derived values for using an upper limit to the dataH0corresponding to Although the best-Ðt values of and c are di†erent in this case, and the predicted theoretical value ofl
*
. )0in region B di†ers from that in region BC, the best-Ðt value of a in each model, as determined by the data, shouldSl sin /T0 l

*compensate so as to yield values for in agreement with the results, if the input assumptions are valid. The lower half ofH0, lmaxshows that while the values are systematically lower, they are consistent to within the 1 p errors with those obtainedTable 6 l
*using In particular, the range of values (in km s~1 Mpc~1) for which the 1 p limits from identical models using limits oflmax.and overlap are 59È77, 64È114, and 64È93, respectively, for models 1, 2, and 3, assuming and 37È54, 41È81,lmax l

*
/
u
\ 45¡,

and 40È66, assuming /
u
\ 90¡.

5. CONCLUSION

Using the FIRST radio survey and available redshift information, we have constructed a carefully deÐned set of double-
lobed quasars whose observed h-z relation, unlike those of many previous studies, appears to show evidence for curvature. We
attribute this result to the precise sample deÐnition, to the increased depth and sensitivity of the survey data, and to our
self-consistent method of analysis, which addresses many of the problems associated with previous work in this area. We have
explored the correlations between the intrinsic properties of these sources and Ðnd evidence, regardless of cosmological
parameter values, for apparent size evolution arising from an inverse power-size correlation and evidence against intrinsic size
evolution, both of which agree with the results of some previous authors. We Ðnd that while the present data can place
interesting constraints on within a given cosmological model, in particular, suggesting, for models with values in)0 )0¹ 1,
the range from 0.25 to 1.0 inclusive, with some evidence favoring values of (or near) unity, they cannot distinguish between
various models with reasonable signiÐcance.

A larger data sample (e.g., from additional redshift information on the thousands of radio doubles in the FIRST survey),
however, would place stronger constraints on the parameters within each model and may be able to distinguish among
models. To investigate this, we have performed a Monte-Carlo simulation using P(/) \ sin /, P(l) \ 1/(lmax [ lmin), lmax \ 1
Mpc, km s~1 Mpc~1, and an e†ective resolution cuto† at 12A, to generate mock h-z data for double-lobed/

u
\ 45¡, H0\ 50

sources assuming di†erent cosmological models and choices of We Ðnd that, if apparent size evolution is negligible, a data)0.sample with D500 points can recover the input value of to within ^0.2, but, in the case of underdense models, still cannot)0e†ectively distinguish between models with and without a cosmological constant (see If apparent size evolution withFig. 1).
c\ [1 is included, at least twice as much data is required to achieve comparable results, because of the sensitivity of s2 to c.



522 BUCHALTER ET AL.

Our sample, like all other h-z studies to date, consists of double-lobed sources whose sizes are measured in the radio but
whose redshifts were typically obtained in an optically selected fashion. Although we o†er evidence, in as to why no° 2,
serious selection e†ects are believed to be introduced by this mixing of optical and radio properties, a more desirable
approach, in principle, would be to obtain redshift information for a complete and homogeneous sample of radio-selected
double-lobed sources. One can further reÐne the sample by including only radio sources with symmetric and colinear triple
structure (i.e., core] two lobes), thereby minimizing asymmetrical e†ects that might distort the apparent angular size, such as
relative motion with respect to the IGM, and simplifying the problem of optical identiÐcation, since the positions of the
central engines are well-determined a priori. We have selected a sample of such objects from the FIRST database et(Buchalter
al. and matched these with the Automatic Plate Machine scans of the POSS plates & McMahon1998) (Irwin 1992 ; Irwin,
Maddox, & McMahon to produce a subset of radio triples having optical counterparts to the central source. This1994)
sample constitutes a set of several hundred radio-selected double-lobed sources complete to roughly V \ 20. About 5% of
these objects have been previously identiÐed as radio galaxies or quasars, and fewer than 1% of these sources have known
redshifts (NED), although many are expected to be substantially beyond z\ 1, the estimated median redshift of the FIRST
survey & Kamionkowski If complete redshift information were acquired for such a sample, the resulting data set(Cress 1997).
would, more reliably than data with mixed optical and radio information, further our understanding of the intrinsic proper-
ties and evolution of double-lobed radio sources, the behavior of the IGM density as a function of redshift, and the
quasar-radio galaxy uniÐcation issue, and, perhaps most important, be instrumental in determining the potential impact of
angular sizeÈredshift studies in cosmology.
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Schminovich, Catherine Cress, Jacqueline Van Gorkom, and Kevin H. Prendergast for their numerous insightful comments
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Microsystems. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet
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istration.
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