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ABSTRACT
A fully relativistic numerical study of nonspherical Bondi-Hoyle accretion onto a Schwarzschild black

hole is presented. The simulations are performed in axisymmetry with a high-resolution shock-capturing
numerical scheme that makes use of a linearized Riemann solver as a key ingredient to handle shock
waves. A broad family of initial Ñow parameters is considered. The main di†erences among the accretion
patterns of the di†erent models is discussed. A detailed comparative study with a previous relativistic
simulation is performed. The results of this study reveal a qualitative agreement in the morphology and
dynamics of the Ñow. However, there are important discrepancies concerning quantitative results as the
mass accretion rates. All models evolved numerically in this paper relax to a Ðnal steady state accretion
pattern, and, as the simulations are performed in axisymmetry, no evidence of any kind of instabilities
(e.g., Ñip-Ñop) is present.
Subject headings : accretion, accretion disks È black hole physics È hydrodynamics È

methods : numerical È relativity

1. INTRODUCTION

The canonical astrophysical scenario in which matter is
accreted in a nonspherical way by a compact object is the
one suggested originally by & Hoyle UsingBondi (1944).
Newtonian gravity, they studied the accretion onto a gravi-
tating point mass moving with constant velocity through a
nonrelativistic gas that is at rest and has a uniform density
at inÐnity. Since then, this pioneering analytic work has
been numerically investigated, for a Ðnite-size accretor, by a
great number of authors over the years (see, e.g., Hunt 1971,

et al. et al.1979 ; Shima 1985 ; Petrich 1989 ; Matsuda,
Inoue, & Sawada Matsuda et al. see also1987 ; 1991, 1992 ;

& Arnett and Ru†ert forRu†ert 1994 1994a, 1994b, 1997,
an up-to-date reference list).

Apart from the et al. hereafter simu-Petrich (1989, PSST)
lations, all authors employed Newtonian hydrodynamics
assuming negligible relativistic e†ects. However, if the acc-
retor is a black hole, a Newtonian treatment is inadequate.
Newtonian hydrodynamics can be a valid approximation
far from the hole, but it no longer holds when studying the
Ñow evolution close to the inner boundary placed at the
event horizon. Near that boundary, the problem is intrinsi-
cally relativistic or even ultrarelativistic both because of the
velocities involved (approaching the speed of light) and
because of the strong gravitational Ðeld. Fortunately, a sim-
plifying assumption valid in many realistic situations is to
neglect the self-gravity of the Ñow. By doing this, one is not
forced to solve the Einstein Ðeld equations, and the problem
reduces to study the dynamics of the Ñow in a Ðxed back-
ground gravitational Ðeld.

The almost total absence of simulations in the relativistic
regime has to be found in the difficulties of an accurate
numerical integration of the relativistic hydrodynamics
system of equations in the extreme conditions of large
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Lorentz factors and strong gravitational Ðelds. The tradi-
tional approach of integrating the system with a Ðnite-
di†erence scheme with artiÐcial viscosity fails at Lorentz
factors typically greater than 2 & Winkler(Norman 1986).
However, a better theoretical understanding of the hyper-
bolic character of the relativistic hydrodynamics system of
equations (see et al. and references therein) isBanyuls 1997
to allow the use of modern numerical methods well devel-
oped in classical Ñuid dynamics. These schemes make use of
exact or approximate Riemann solvers to capture discontin-
uities (shock waves) and are known as high-resolution shock-
capturing schemes.

Focusing for now on pure Newtonian hydrodynamic
Bondi-Hoyle accretion, let us start by reviewing the current
status of the Ðeld. The results in the subsonic regime
(asymptotic Mach number at inÐnity less than one) are in
very good agreement among all authors. The Ñow patterns
resemble those of spherical accretion with a global velocity
component added. The matter Ñows toward the hole in a
steady state manner, and after crossing the sonic point it
free falls onto the hole.

However, this agreement is not so good in the supersonic
regime, although a general standard picture has been
emerging over the years. The discrepancies arise not only in
the morphology of the Ñow in long-term simulations but
also in some quantitative results such as the accretion rate
estimates. This is related to the di†erent numerical tech-
niques employed and to the di†erent ways of handling
shock waves that appear only in the supersonic regime.
Early low-resolution axisymmetric simulations found that
the long-term Ñow pattern was in steady state (e.g., etShima
al. Borner, & Monaghan These studies1985 ; Anzer, 1987).
also found that the analytic Hoyle-Lyttleton accretion rate
estimate & Lyttleton(Hoyle 1939),

M0 HL\ nr
a
2 o= v= , (1)

was rather good despite its simplifying assumptions (a
point-mass accretor and pressure e†ects neglected). In the
above expression and are the asymptotic values ofo= v=

297



298 FONT & IBAŠ N3 EZ Vol. 494

the density and velocity of the medium, respectively, and r
ais the accretion radius, deÐned by

r
a
\ 2GM

v=2
, (2)

where M is the mass of the accreting object and G is the
gravitational constant. Later on, high-resolution two-
dimensional nonaxisymmetric hydrodynamical computa-
tions in planar symmetry found that the Ñow did not
approach a steady state in some cases et al.(Matsuda 1987 ;

& Taam & Fryxell Instead, itFryxell 1988 ; Taam 1989).
exhibited a Ñip-Ñop behavior in which the shock cone oscil-
lated from side to side accompanied by periods of disk for-
mation. This kind of behavior not only appeared assuming
ad hoc local density and velocity gradients in the vicinity of
the accretor & Taam & Fryxell(Fryxell 1988 ; Taam 1989),
which helps the development of unsteady Ñows, but also
appeared in a natural way even considering accretion of
uniform Ñows at inÐnity et al.(Matsuda 1991).

The Ðrst comparisons of two-dimensional and three-
dimensional Newtonian computations were performed by

et al. More recently, & ArnettSawada (1989). Ru†ert (1994)
and Ru†ert have extended the(1994a, 1994b, 1995, 1996)
Bondi-Hoyle accretion problem to full three-dimensional
numerical simulations using high-resolution methods and
Ðner grids. In the case of supersonic accretion, important
di†erences with previous work (notably, Matsuda et al.

Fu, & Fryxell have been found.1991, 1992 ; Taam, 1991)
These mainly concern the stability of the accretion cone and
the total absence of the Ñip-Ñop instability in the wake of
the accretor. In & Arnett results the ÑowRu†ert (1994),
remains stable, and there is only a slight deÑection of the
wake from side to side in the downwind direction. They
found no Ñip-Ñop instability but only a turbulent wake.

The general picture that has emerged for Newtonian
Bondi-Hoyle supersonic accretion has, as a key ingredient,
a shock wave that can be attached or detached to the acc-
reting object depending on the value of c, the adiabatic
exponent of the gas. For large values of c (4/3, 5/3), the
shock is placed mainly in the front part of the accretor, but
as c] 1 (isothermal Ñow), the shock moves from the front
part of the object (5/3 ¹ c¹ 4/3) and gets attached to its
rear part Moreover, as the asymptotic Mach(Ru†ert 1996).
number of the Ñow increases, this shock cone resembles the
cylindrical accretion column of & Hoyle Con-Bondi (1944).
cerning the behavior of the wake, there is a correlation
between its stability and the size of the accretor and the
asymptotic Mach number for a Ðxed value of c (Ru†ert

Lamb, & Taam As the size of the1996 ; Benensohn, 1997).
central object decreases and the Mach number increases,
the wake is more turbulent and a steady state solution
cannot be achieved. This morphological classiÐcation
remains to be extended to the relativistic regime.

The extension of the nonspherical Bondi-Hoyle accretion
to the Einsteinian theory of gravity was Ðrst achieved by

These authors calculated the steady state accretionPSST.
of matter onto a Schwarzschild black hole that is moving
with a constant velocity through a uniform medium. Their
simulations were axisymmetric, and they used standard
Ðnite-di†erence techniques with artiÐcial viscosity. For their
pioneering study, they considered a variety of Ñow veloci-
ties, sound speeds, and adiabatic indices, obtaining, for the
Ðrst time, a broad picture for the wind accretion of material

moving near a black hole within a fully relativistic frame-
work. Although their computations in the Newtonian limit
reveal some qualitative agreement with previous numerical
studies, especially for subsonic accretion, the discrepancies
found in the supersonic regime are important. It is thus
worthwhile to reinvestigate the problem to see if these
uncertainties also propagate to the relativistic case.

On the other hand, in all Newtonian wind accretion com-
putations performed over the years, it has been demon-
strated that the original Bondi-Hoyle accretion picture,
though qualitatively correct (and, in some cases quantitat-
ively as well), was far too simple, especially for high Mach
number Ñows. As computer power and resources were
increasing, high-resolution nonaxisymmetric two-
dimensional and mid-resolution three-dimensional compu-
tations started to reveal that the accretion process is highly
nonsteady. This unsteady patterns were not obtained in
unresolved earlier calculations, as et al.Benensohn (1997)
have recently pointed out. In their Newtonian numerical
studies, they have found that the problem is not fully resolv-
ed with fewer than 200 angular zones. The necessity of
having an adequate angular resolution to account for the
appearance of the wake instability has also implications on
the amplitudes of the Ñuctuating accretion rates, which are
smaller for large central objects As men-(Ru†ert 1994b).
tioned previously, the general trend is that large objects and
low Mach number Ñows may lead to steady state solutions,
while smaller objects and higher Mach number Ñows may
lead to a much more turbulent Ñow pattern. A low angular
resolution could be valid in the former case but would be
totally inadequate in the latter. It is extremely interesting to
see how this extends to the relativistic case, which will be
the scope of a subsequent paper. In this work we only look
for steady state solutions, so the resolution employed is not
so important. Let us also mention that found alwaysPSST
steady state solutions, but they used an extremely coarse
grid of only 20 zones in the angular direction.

The aim of the present paper is to revisit some of the
computations and perform a detailed comparativePSST

study of the di†erent accretion patterns that develop in the
fully relativistic hydrodynamic accretion onto a moving
black hole. In contrast to the approach, this is donePSST
by using high-resolution shock-capturing schemes without
artiÐcial viscosity and making explicit use of the knowledge
of the characteristic Ðelds for the equations of general rela-
tivistic hydrodynamics. Let us mention that some prelimi-
nary results were presented in et al.Banyuls (1997).

The paper is organized as follows : in next section we(° 2)
present the system of equations of general relativistic hydro-
dynamics written as a hyperbolic system of conservation
laws and describe the numerical procedure we use to solve
them. The results of the simulations are presented and
analyzed in Finally, summarizes the main conclu-° 3. ° 4
sions of this work.

2. EQUATIONS AND NUMERICAL PROCEDURE

The equations describing the evolution of a relativistic
Ñuid are local conservation laws : the local conservation of
baryon number,

(ouk)
‰k\ 0 , (3)

and the local conservation of energy-momentum,

(T kl)
‰l \ 0 , (4)
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where o is the rest-mass density of the Ñuid, uk is its 4-
velocity, and the subscript ““ ; ÏÏ stands for the covariant
derivative. We choose units in which G\ c\ 1 and Greek
(Latin) indices run from 0 to 3 (1 to 3). The stress-energy
tensor is that of a perfect Ñuid, given by

Tkl \ ohuk ul ] pgkl , (5)

where h stands for the speciÐc enthalpy, deÐned by
h \ 1 ] v] p/o, with v being the speciÐc internal energy
and p the pressure.

By choosing the appropriate set of variables, these equa-
tions can be explicitly written as a hyperbolic system of
conservation laws. As described in et al. thisBanyuls (1997),
is done by deÐning quantities that are directly measured by
Eulerian observers i.e., the rest-mass density(York 1983),
(D), the momentum density in the j-direction and the(S

j
),

total energy density (E) :

D\ oW , (6)

S
j
\ ohW 2v

j
, (7)

E\ ohW 2[ p . (8)

Here, W stands for the Lorentz factor, which satisÐes
W \ (1 [ v2)~1@2 with where vi is the 3-velocityv2\ c

ij
vivj,

of the Ñuid, deÐned, for the case of a zero-shift vector,
according to

vi\ ui

W
, (9)

and are the spatial components of the spacetime metricc
ijwhere the Ñuid evolves. We chose this metric to be the

Schwarzschild one :

ds2 \ [
A
1 [ 2M

r
B
dt2]

A
1 [ 2M

r
B~1

] dr2] r2(dh2] sin2 h d/2) (10)

where M is the mass of the hole.
With the above deÐnitions, and expressed in Schwarzs-

child coordinates, the equations of general relativistic
hydrodynamics can be written in a compact way as

1

J[g

CLJcU(w)
Lt

] LJ[gF r(w)
Lr

] LJ[gF h(w)
Lh

D
\ S(w) ,

(11)

where no / derivatives appear as we are considering
axisymmetry. In addition, is such thatg 4det (gkl)

J[g \ aJc, c4 det (c
ij
) ,

where a \ [1[(2M/r)]1@2 and ““ det ÏÏ stands for the determi-
nant of the corresponding matrix.

In the vector of primitive variables isequation (11),

w \ (o, v
r
, vh, v) , (12)

and the vector of unknowns (conserved quantities) is

U(w) \ (D, S
r
, Sh, q) . (13)

The corresponding Ñuxes in the radial and azimuthal direc-
tions are, respectively,

F r(w) \ [Dvr, S
r
vr ] p, Sh vr, (q] p)vr] , (14)

F h(w) \ [Dvh, S
r
vh, Sh vh] p, (q] p)vh] , (15)

and the corresponding vector of sources S(w) is

S(w) \
C
0, [ M

a2r2 (S
r
vr ] q] p ] D) ] 1

r

] (Sh vh] 2p), p cot h, [ M
a2r2 Sr

D
(16)

In the above expressions, q4 E[D, the total energy
density subtracting the rest-mass density.

We solve system (11) on a discrete numerical grid with a
high-resolution shock-capturing numerical scheme that
incorporates, as main ingredients, an approximate Riemann
solver and a monotonic linear reconstruction of(Roe 1981)
cell-centered quantities to cell interfaces Leer(van 1979).
This code is the general-relativistic extension of the special-
relativistic one described in et al.Font (1994).

The vector of conserved quantities, isequation (13),
updated from level tn to tn`1 according to the following
algorithm:

U
i, jn`1\ U

i, jn [ *t
*V

[r
i`1@22 FŒ

i`1@2, jr [ r
i~1@22 FŒ

i~1@2, jr ]

] * cos h [ *t
*V

[sin h
j`1@2 FŒ

i,j`1@2h [ sin h
j~1@2 FŒ

i,j~1@2h ]

]
*r3
3

] *t
*V

*r3
3

* cos hS
i,j (17)

where *t \ tn`1[ tn, * cos h \ cos h
j~1@2[ cos h

j`1@2,and indices i and j label the radial and*r3\ r
i`1@23 [ r

i~1@23
angular zones, respectively. The volume element, *V is given
by

*V \
P
ri~1@2

ri`1@2 P
hj~1@2

hj`1@2
Jc dr dh \ * cos h

C1
3

ar3] 5
6

Mar2

] 5
2

M2ar ] 5
2

M3 log
a [ 1
a ] 1

D
ri~1@2

ri`1@2
. (18)

In and are the mean values of theequation (17), U
i,j S

i,jstate and source vector in the corresponding two-
dimensional cell, while and are the numeri-FŒ

i`1@2,jr FŒ
i,j`1@2h

cal Ñuxes that have to be computed at the interfaces of
neighbor numerical cells. These Ñuxes are calculated with
an approximate Riemann solver, which uses the complete
characteristic information contained in the Riemann prob-
lems between adjacent cells. It is based on the spectral
decomposition of the Jacobian matrices of the general rela-
tivistic system of equations derived in et al.Banyuls (1997).
The explicit expression is

FŒ i\ 1
2
C

F i(w
R
)]F i(w

L
)[ ;

n/1

4
o j8

n
o*u8

n
r8
n

D
, (19)

where and represent the values of the primitive vari-w
L

w
Rables at the left and right sides of a given cell interface and

are obtained by means of a monotonic linear reconstruction
of their cell-centered values Leer This procedure(van 1979).
provides, in the absence of shocks, second-order accuracy in
space. In represent the eigen-equation (19), Mj8

n
, r8

n
N
n/1,...,4values and eigenvectors of the Jacobian matrices of system

(11), and are evaluated at the cell-interface by using the
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arithmetic mean of and Quantities thew
L

w
R
. M*u8

n
N
n/1,..,4,jumps of the characteristic variables across each character-

istic Ðeld, are obtained from

U(w
R
) [ U(w

L
) \ ;

n/1

4 *u8
n

r8
n
. (20)

In order to gain accuracy in time, the code makes use of a
third-order TVD (total variation diminishing) Runge-Kutta
scheme & Osher to perform the time integration(Shu 1988)
algorithm of which is done simultaneously inequation (17),
both spatial directions. Finally, a one-dimensional Newton-
Raphson iteration is used to compute in each time step the
primitive variables from the conserved ones (see &Mart•�
Mu� ller for details). Tests of the code, both in one-1996
dimensional and two-dimensional special and general rela-
tivistic hydrodynamics can be found in et al.Font (1994)
and et al. We refer the interested reader toBanyuls (1997).
these references for full details on the numerical code.

It maybe worthwhile to mention that, in its present
version, the code is axisymmetric but employs the Ðve
hydrodynamics equations, i.e., it accounts for the
/-component of the velocity, too. Besides, it is explicitly
written in terms of the Boyer-Lindquist coordinates for the
Kerr spacetime metric, the reason being the possibility of
computing the /-component of the proper velocity when
dealing with the Kerr metric. The results presented here are
for zero Kerr angular momentum parameter.

3. SIMULATIONS

All simulations presented in this paper are in axisym-
metry. With this conÐguration we can study Ñows evolving
in the background Ðeld of nonrotating holes, as well as that
of rotating holes whose motion throughout the external
medium is aligned with the direction of the rotation axis.
We only consider here nonrotating holes. Results for Kerr
black holes will be reported in a future paper. We will also
extend this analysis to more general nonaxisymmetric con-
Ðgurations.

3.1. Initial Setup
To completely specify the Ñow it is only necessary to

consider the following set of asymptotic initial parameters :
which is the hole/medium relative velocity, which isv=, c

s=
,

the sound speed of the ambient gas, and c, which is the
constant adiabatic index of the medium. The Ðrst two
parameters Ðx the asymptotic Mach number, TheM=.
external medium obeys a perfect Ñuid equation of state :

p \ (c[1)ov . (21)

The covariant components of the initial velocity are given in
terms of its asymptotic value :

v
r
\ 1

Jcrr
v= cos h , (22)

vh \ [ 1

Jchh
v= sin h . (23)

Initially, the whole grid is Ðlled with these asymptotic initial
values. We let the Ñow evolve toward a steady state accre-
tion pattern.

The spatial numerical domain, (r, h), is covered by
200 ] 40 numerical cells. The radial and angular dis-
cretizations lie, respectively, in the interval rmin¹ r ¹ rmaxand 0 ¹ h ¹ n, where and depend on the particularrmin rmaxmodel (see below). For the angular direction we have used
an equally spaced grid, while in the radial direction we have
employed the Schwarzschild tortoise coordinate deÐned by

This permits a high resolutionr
*

\ r ] 2M ln [(r/2M) [ 1].
at the innermost radial zones where the hydrodynamical
variables show their more extreme values. We are using a
Ðner resolution, in both r and h directions, than whoPSST,
show results only with a very coarse grid of 40 radial and 20
angular zones. It is interesting to mention that in spite of
that poor resolution, they are able to simulate Ñows evolv-
ing in a ultrarelativistic regime (from the thermodynamical
point of view). For comparison purposes we have also run
some of our models with this coarser grid.

We have checked the convergence properties of our
numerical solution by running some of the models with four
di†erent angular resolutions, namely, 20, 40, 80, and 160
zones. We have found that the choice of 40 angular zones
suffices to Ðnd a converged solution, and, in consequence,
all models have been computed with this canonical angular
resolution. It is worth mentioning that the possibility of
using such a low angular resolution is motivated by the fact
that we are considering axisymmetric Ñows that evolve
toward a Ðnal steady state regime.

As mentioned at the introduction, the natural length
scale in this astrophysical scenario is the accretion radius
given by For comparison purposes, we employequation (2).
the same deÐnition as namely,PSST,

r
a
\ M

(v=2 ] c
s=
2 )

. (24)

Except by a factor of 2, both expressions are equivalent in
the Newtonian regime, where The position of thec

s=
] 0.

inner and outer zones for the di†erent models in units of the
accretion radius is listed in Table 1.

The boundary conditions in the radial direction are as
follow: we impose outÑow boundary conditions at the inte-
rior. This is the right condition considering that the matter
will always Ñow supersonically onto the hole at that dis-
tance. In practice, we just copy the values of all quantities,
except the radial velocity, in the Ðrst zone to the boundary
zones. For the radial velocity we perform a linear extrapo-
lation. In the outer radius we distinguish being in the
upwind or downwind hemispheres. In the latter case we
impose outÑow boundary conditions as all gradients should
vanish. On the contrary, in the upwind hemisphere, we
always consider the initial asymptotic values of all variables
at In the angular direction, as we are using an axisym-rmax.metric code, reÑecting boundary conditions are chosen at
the poles (h \ 0, n).

The set of models that has been considered is listed in
These models are equivalent to some of the onesTable 1.

considered by The Ðrst six models in corre-PSST. Table 1
spond to mildly relativistic models. They are mildly rela-
tivistic from the thermodynamical point of view. All of them
have an asymptotic sound speed However, theyc

s=
\ 0.1.

are not so from the kinematical point of view, because, as
the evolution proceeds, the infalling velocity at the inner-
most zones can reach values very close to one. In addition,
the last Ðve models in correspond to ultrarelativisticTable 1
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TABLE 1

INITIAL MODELS

Model c
s=

c M= v= r
a
(M) rmin(ra) rmax(ra) t

f
(M)

MA1 . . . . . . 0.1 1.1 1.5 0.15 30.8 0.125 10.0 4000
MA2 . . . . . . 0.1 1.1 5.0 0.5 3.8 0.57 10.0 750
MB1 . . . . . . 0.1 4/3 1.5 0.15 30.8 0.125 10.0 4000
MB2 . . . . . . 0.1 4/3 5.0 0.5 3.8 0.57 10.0 750
MC1 . . . . . . 0.1 5/3 1.5 0.15 30.8 0.125 10.0 2000
MC2 . . . . . . 0.1 5/3 5.0 0.5 3.8 0.44 10.0 750
UA1 . . . . . . 0.31 1.1 1.5 0.47 3.2 0.69 9.38 200
UA2 . . . . . . 0.31 1.1 3.0 0.93 1.04 2.12 28.85 110
UB0 . . . . . . 0.57 4/3 0.6 0.34 2.2 1.0 13.64 200
UB1 . . . . . . 0.57 4/3 1.5 0.86 0.92 2.39 32.61 200
UC0 . . . . . . 0.81 5/3 0.6 0.49 1.1 2.0 27.27 200

is the asymptotic sound speed, c is the adiabatic exponent, is the asymp-NOTE.Èc
s=

M=totic Mach number, is the asymptotic Ñow velocity, is the accretion radius, andv= r
a

rminare the minimum and maximum radial values of the computational domain, and isrmax t
fthe Ðnal time at which the simulation is stopped.

models, where the asymptotic value of the sound speed is
equal to its maximum permitted value,

c
smax

\ Jc[ 1 . (25)

Let us point out that in our set of ultrarelativistic initial
models there are two extreme cases that were not previously
evolved by These are models UA2 and UB1, forPSST.

which the sound speed is very close to its maximum permit-
ted value and the asymptotic Ñow velocity is close to c.

3.2. Mildly Relativistic Models
In Figures and we show the transition to steady state1 2

for model MB1. This model has an asymptotic velocity
and Mach number The adiabaticv=\ 0.15 M= \ 1.5.

FIG. 1.ÈEvolution of the logarithm of the density normalized to the asymptotic value for model MB1. From top left to bottom right the corresponding
time, in units of M, is 400, 1000, 2000, and 4000. Last snapshot corresponds to the steady state. The dotted-line circle represents the accretion radius.
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FIG. 2.ÈEvolution of the total velocity normalized to the asymptotic value for model MB1. From top left to bottom right the corresponding time, in units
of M, is 400, 1000, 2000, and 4000. Last snapshot corresponds to the steady state. The dotted-line circle represents the accretion radius.

exponent is c\ 1.1. We plot only an evolutionary sequence
for this model. For the remaining models we show only a
snapshot of their evolution once steady state, if any, has
been reached. To describe the morphology and dynamics of
the Ñow, we chose to represent isocontours of the logarithm
of the density and velocity. Both variables are always nor-
malized to the corresponding asymptotic values.

Soon after the evolution starts, the material is focused on
the rear part of the hole by the gravitational attraction of
the hole. For a pressureless gas, the density at this sym-
metry line could reach an inÐnite value and matter would
Ñow onto the hole along this accretion line. However, as
internal energy and pressure increase, a cylindrical shock
forms around this line. The high-density postshock region
resembles the accretion column theoretically predicted by

& Hoyle This can be clearly seen from theBondi (1944).
evolutionary sequence of Figures and As the evolution1 2.
proceeds, this cylindrical shock rapidly gets disturbed and
begins to open to increasingly wide angles. At this part of
the evolution, the Ñow of material toward the hole occurs
mainly inside the accretion cone. The solution relaxes to a
steady state accretion pattern, where the accretion cone
remains Ðxed and stable. The part of the shock closer to the
inner radius moves, during the evolution, from the rear part
of the hole toward its front, accommodating Ðnally at an
angular position slightly bigger than n/2 (Figs. and1 2,

bottom left, t \ 2000M ; bottom right, t \ 4000M). The Ðnal
position of the shock depends on the speciÐc values of c and

models with large values of c (º5/3) and moderateM= :
Mach numbers present a detached shock wave in front of
the accretor (see model MC1 below), in agreement with
classical simulations.

On the other hand, far from the hole, the transition to
steady state occurs much more slowly. Here, the changes
happen in a timescale on the order of which for thisrmax/v=,
model is roughly 2000M. This makes these computations
very CPU time consuming. A good way to see if the simula-
tion relaxes to a steady state is to analyze the mass accre-
tion rate at di†erent radii from the hole (see below for° 3.4
deÐnitions). For model MB1, a time evolution of the inte-
grated mass accretion rate as a function of the radial coordi-
nate is presented in As can be clearly seen fromFigure 3.
this plot, the transition to steady state in the interior zones
happens faster than in the exterior. At the Ðnal time of the
evolution of this model (t \ 4000M), the radial proÐle is
almost constant, indicating that the solution is close enough
to the steady state in the whole grid. This is the best indica-
tor to see if the Ðnal solution is stationary as, in the absence
of sources and sinks in the domain, the mass accretion rate
has to be independent of the radial distance at which is
computed. The high Mach number mildly relativistic
models (MA2, MB2, and MC2) and the whole subset of
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FIG. 3.ÈTime evolution of the mass accretion rate at di†erent radii from the hole for model MB1. Note how long it takes to the exterior to reach a Ñat
proÐle.

ultrarelativistic models show more clearly constant accre-
tion rate values in the whole domain at earlier times than
models MA1, MB1, and MC1.

We have run model MB1 with four di†erent angular
resolutions in order to check the convergence properties of
the code, as well as the possible appearance of instabilities
in the shock cone. We found that the overall morphology
was completely similar with 20, 40, 80, and 160 angular
zones. The shock was placed exactly at the same location by
the end of the simulation (t \ 4000M), and the same hap-
pened to the stagnation point at the rear part of the hole. In
addition, the computed mass accretion rates showed(° 3.4)
not only identical values at the last snapshot but also the
same transition proÐle toward steady state. showsFigure 4
the logarithm of the rest-mass density for the four di†erent
angular resolutions at the Ðnal time of the evolution of
model MB1. Notice that the coarser angular grid has the
same resolution as computations.PSST

Figures show isocontours of the logarithm of the5È9
density and velocity for the rest of mildly relativistic models.
The top panels of these Ðgures always show a closer view of
the innermost region, and the contours appear labeled and
normalized to their initial asymptotic values. In addition,
the bottom panels show the complete numerical domain.
Let us draw your attention to the fact that scales are di†er-
ent in both sets of panels. One can see that the shock wave
clearly extends from the surroundings of the hole all the
way up to the outer boundary. We point out that although
an expected amount of di†usion appears at large distances,
the shock can be easily tracked up to this region. We also
point out the goodness of our outer boundary condition,
which shows no signs of being a†ecting the Ðnal solution.
This is particularly true for most of the models, as they have

a supersonic asymptotic Mach number. It is worth indicat-
ing, however, that for subsonic Ñows at inÐnity, as is the
case of the ultrarelativistic models UB0 and UC0 (see
below), this boundary condition could be a†ecting
somehow the results, as information could eventually pro-
pagate back upstream the outer zones. We have not investi-
gated this issue in the present paper.

Qualitatively, these Ðgures show the same morphological
features as their counterparts. They are also identicalPSST
to what has been previously found in supersonic Newtonian
simulations (see, e.g., Ru†ert and refer-1994b, 1995, 1996,
ences therein). All mildly relativistic models considered here
have a supersonic asymptotic Mach number, and, hence, a
shock wave and an accretion cone are always present.
Despite this general morphological agreement, important
di†erences concerning the stability and position of the
shock, as well as the mass accretion rates, appear. Figures

can be directly compared with the ones presented by4È8
Unfortunately, in work, there is no indicationPSST. PSST

of the exact time at which the simulation is stopped, making
a direct comparison impossible. Hence, we will assume that,
in all cases, their solution has relaxed to the steady state.

The main conclusion that emerges from these Ðgures is
that all models show a remarkable stable accretion cone.
This is especially true for low Mach number models. For
high Mach number models, the shock moves slightly
around a central equilibrium position. We have checked
this by performing an animation of the di†erent snapshots
every 50M up to 750M for models MB2 and MC2. Once
the shock settles down to its equilibrium value, we can
notice some perturbations traveling along the shock up to
short radial distances, the outermost parts being totally
una†ected by this process. In addition, there is also, in the
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FIG. 4.ÈIsocontours of the logarithm of the rest-mass density for model MB1 with four di†erent number of angular zones : 20 (top left), 40 (top right), 80
(bottom left), and 160 (bottom right). Note that the morphology is identical in the four cases, indicating that a resolution of only 20 angular zones is enough to
display all features. Obviously, the shock appears less di†use as the resolution increases. The top left-hand panel corresponds to the same angular resolution
as computations.PSST

high-resolution runs, a small indication of vortex shedding
in the rear part of the hole, which could give rise to a
turbulent wake. More resolution maybe needed to properly
account for this vortex emission. We have also found that
the equilibrium position of the shock cone does not depend
on the angular resolution we employ. The small Ñuctuations
of the shock cone, especially in model MB2, cause the com-
puted accretion rate to oscillate around a central value, as
can be seen in below. The amplitude of theFigure 17b
oscillations is again independent of the angular resolution.
We do not Ðnd any sign of Ñip-Ñop instability, in complete
agreement with all previous worksÈNewtonian and
relativisticÈthat considered axisymmetric conÐgurations
(Hunt et al. As mentioned1971, 1979 ; Shima 1985 ; PSST).
at the introduction, this kind of behavior has appeared only
in two-dimensional nonaxisymmetric classical calculations

et al. & Taam &(Matsuda 1987 ; Fryxell 1988 ; Taam
Fryxell et al. It is worth pointing1989 ; Benensohn 1997).
out again the total absence for this kind of instability in
three-dimensional classical simulations & Arnett(Ru†ert

In three-dimensions, this instability only appears1994).
assuming initial transverse velocity gradients (Ru†ert 1997).

A direct inspection of Figures show that the shock5È9
cone is closer to the rear part of the hole for large Mach

number models (MA2, MB2, and MC2; all M=\ 5).
Figures also reveal that this position greatly depends on5È9
the adiabatic index c. For c¹ 4/3 we do not Ðnd detached
shocks for the speciÐc values of that we have con-M=sidered. Model MB1 is almost on the limit : the shock is
attached to the hole but almost succeeds in cleaning its
whole surface. For c\ 5/3 the shock is detached, but only
for model MC1 with This morphological trendM=\ 1.5.
also applies to classical computations (e.g., & ArnettRu†ert

Ru†ert and was also found1994 ; 1994a, 1994b, 1995, 1996)
by although some discrepancies arise again. ThesePSST,
mainly concern the angle of the shock with the symmetry
axis (see below). Moreover, the stand-o† position of the
detached shock in model MC1 is quite di†erent : we Ðnd
that the shock is placed at while foundr B 0.5r

a
, PSST

We have also noticed that the position of ther B 3 [ 4r
a
.

detached shock does not depend on the resolution we
employ. With their coarser grid of 40 radial zones and 20
angular zones, we obtain that the shock is located at
roughly the same distance. As expected, the scaled mass
accretion rate with both di†erent resolutions is very similar.
On the other hand, model MC2 also shows an important
di†erence in the position of the attached tail shock in the
surface of the hole, as can be seen comparing withFigure 9
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FIG. 5.ÈTop: Close-up view of the logarithm of density (left) and velocity for model MA1 at t \ 4000M. Bottom: Full computational domain view. Note
that despite an small amount of di†usion the shock can be clearly followed up to the outer boundary, which is deÐned by the outer solid circle. The dashed
circle represents the accretion radius.

Figures 17 and 18 of PSST.
All models present a point of zero velocity at the axis on

the downwind direction, the so-called stagnation point. The
position of this point, determines the accretion rates ofrsp,mass and momentum: all material inside is ultimatelyrsp

captured by the hole, while material outside escapesrspaway. We have summarized the position of the stagnation
point for the di†erent models in where we alsoTable 2,
write, whenever possible, the values by for compari-PSST
son. A time evolution of for the mildly relativistic modelsrsp

TABLE 2

SUMMARY OF RESULTS

Model h
a

h
c

hPSST r6 sp rspPSST vmaxu vmaxd Mmaxu Mmaxd

MA1 . . . . . . 41.8 44 75 2.37 . . . 0.72 0.67 7.04 5.28
MB1 . . . . . . 41.8 42 75 2.19 . . . 0.72 0.65 6.66 3.22
MC1 . . . . . . 41.8 38 80 1.50 [ 3 0.48 0.60 1.20 1.84
MA2 . . . . . . 11.5 22 30 7.29 1.7 0.96 0.94 9.89 5.67
MB2 . . . . . . 11.5 21 22.5 5.46 . . . 0.96 0.93 10.92 2.93
MC2 . . . . . . 11.5 27 35 3.42 1.9 0.96 0.90 14.52 1.79
UA1 . . . . . . 41.8 47 95 3.24 . . . 0.96 0.91 3.10 2.93
UA2 . . . . . . 19.5 15 . . . 7.35 . . . 0.99 0.91 3.29 2.89
UB0 . . . . . . . . . . . . . . . 2.70 . . . 0.91 0.86 1.59 1.51
UB1 . . . . . . 41.8 35 . . . 5.22 . . . 0.99 0.85 1.74 1.48
UC0 . . . . . . . . . . . . . . . 3.88 . . . 0.89 0.81 1.10 1.00

is the analytical value for the shock opening angle at large distances according toNOTE.Èh
a is our numerical result, is the result by is the mean value of thesin ~1 1/M=, h

c
hPSST PSST, r6 spstagnation point position, is the value by is the maximum value of the velocityrspPSST PSST, vmaxu

in the upwind direction along the line h \ n, is the maximum velocity value in the down-vmaxd
wind direction (h \ 0), is the maximum value of the upwind Mach number, and isMmaxu Mmaxd
its corresponding maximum value in the downwind direction.
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FIG. 6.ÈTop: Close-up view of the logarithm of density (left) and velocity for model MA2 at t \ 750M, once the steady state has been reached. Bottom:
Full computational domain view.

appear in Figures and below. Note that the low16a 16b
Mach number models show more stable positions of the
stagnation point, while high Mach number models reveal
more abrupt changes. However, the history of the stagna-
tion point position becomes much more smooth when the
resolution is increased, the Ðnal value being, in general
terms, independent of the resolution. It is worthwhile to
point out the large discrepancies found with results,PSST
at least for the three models where the comparison is pos-
sible (MA2, MC1, and MC2). As one could expect, for
larger values of we get larger values of They seem tov=, rsp.get the opposite trend. This disagreement could explain the
discrepancies found in the computed mass accretion rates
(see below).

We have also compared the shock opening angle with the
value predicted analytically for large distances from the
object, Let us mention the uncertaintiesh

a
\ sin~1 (1/M=).

in measuring the right shock angle at large distances, the
reason being the weakness of the shock at that part of the
computational domain. We have always computed this
angle with the higher resolution available for the particular
model considered in order to reduce this uncertainty. The
results appear in together with the values. WeTable 2 PSST
Ðnd that our results disagree with those of especiallyPSST,
for low Mach number models. In all simulations, thePSST

calculated shock angle tends always to be larger than inh
a
,

some cases by a factor of 2. A similar result was pointed out
by & Arnett in their Newtonian computa-Ru†ert (1994)
tions, the discrepancies, however, being smaller. We have
found also that to be the case for high Mach number Ñows,
where we obtain di†erences up to roughly a factor of 2 with
the predicted values. However, for low Mach number
models, the agreement between and is quite good. Weh

a
h
chave plotted our results in together with the ana-Figure 15

lytical expectation. We can clearly see that we get qualit-
atively the right behavior.

There are other interesting results that can be read from
Our Ñow patterns always reach the horizon super-Table 2.

sonically as theoretically predicted (see, e.g., & Teu-Shapiro
kolsky and in agreement with results. This1983) PSST
happens for all models, even for those with asymptotic sub-
sonic Mach numbers (ultrarelativistic models UB0 and
UC0). Model UC0 is almost in the limit, but its inner
boundary is not placed at the horizon but at r \ 2.2M. All
models show their maximum Mach number values at the
innermost zone, the upwind values being always larger than
the downwind ones (except for model MC1 due to its
detached bow shock). The reason for this is that the upwind
and downwind velocities have similar values, while the
downwind local sound speed is always larger than the
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FIG. 7.ÈTop: Close-up view of the logarithm of density (left) and velocity for model MB2 at t \ 750M. Bottom: Full computational domain view.

upwind one. This is due to the piling-up of material in the
wake of the accretor as the evolution proceeds, which
makes the density and pressure to increase considerably
there.

We have obtained a very good agreement with analytical
one-dimensional estimates by analyzing the Ñow velocity
along the line h \ n in the upwind direction. The Ñow veloc-
ity has to approach the free-fall speed as it gets closer to the
horizon :

vB vff\
A2GM

r
B1@2

(26)

assuming that r is much smaller than the transonic radius
& Teukolsky(Shapiro 1983) :

r
s
\ 5 [ 3c

4
GM
c
s=
2 1 ¹ c\

5
3

. (27)

This is a valid assumption for all mildly relativistic models.
We have computed at for the di†erentequation (26) rminmodels. For the subset of low Mach number mildly rela-
tivistic models (MA1, MB1, and MC1), we have rmin\
3.85M, which gives, at that distance, This is inv

ff
\ 0.72.

perfect agreement with the numerical computed values. For
the high Mach number mildly relativistic models (MA2,

MB2, and MC2), we have which givesrmin\ 2.16M, vff \0.96. Again, the agreement is complete. Let us notice that
model MC1 is a special case : the presence of the detached
bow shock in front of the hole in the upwind direction
decelerates the material. This makes it impossible for the
Ñuid to reach the hole at the free-fall speed. In this case, the
Ñuid falls onto the hole at a lesser speed of 0.48c. The
maximum velocity in the downwind direction, at the rear
part of the hole, is in this model even larger than at the front
part.

A morphological feature common to all models once
steady state is reached is the small deviation, in the upwind
direction, of the Ðnal solution from the spherical one. This
can be noticed by looking at the velocity contours of the
di†erent models. In the supersonic models, one can see that
these lines are totally spherical around the central object, in
the upwind domain bounded by the shock cone. In particu-
lar, in it is clearly visible how these contoursFigure 2,
become gradually more spherical as the solution
approaches to steady state. This feature is also true for
model MC1. Although in this case the shock is detached,
the isolines are spherical around the hole.

3.3. Ultrarelativistic Models
Figures show the results of our simulations for the10È14

subset of ultrarelativistic models of As before, weTable 1.
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FIG. 8.ÈTop: Close-up view of the logarithm of density (left) and velocity for model MC1 at t \ 2000M. Bottom: Full computational domain view. Note
the presence of a detached bow shock, which is a feature unique to this model.

plot isocontours of the logarithm of the density and velocity
in both the whole domain (bottom panels) and a smaller
region surrounding the hole. As mentioned earlier, these
models are ultrarelativistic from the thermodynamical
point of view as the initial sound speed is almost as large as
its maximum permitted value given by Inequation (25).
addition, two of these models have a large initial Ñow veloc-
ity (UA2 and UB1) and have not been previously computed.
We cannot perform a direct comparison of these Ðgures
with those of as they did not plot them. A compari-PSST,
son can be performed in the computed mass accretion rate
only.

The morphology of these ultrarelativistic Ñows is com-
pletely equivalent to what we found previously for mildly
relativistic Ñows. We obtain a completely stable accretion
cone attached to the accretor in models UA1, UA2, and
UB1, while models UB0 and UC0 do not present shocks as
they are subsonic at inÐnity. These two models present a
very small deviation from spherical symmetry at small dis-
tances from the hole, as can be seen in the top panels of
Figures and10 14.

The dynamical timescales at which these models reach
the Ðnal stationary state is much smaller than in the pre-
vious mildly relativistic models. All of them show stable
conÐgurations and constant mass accretion rates after

about 50M (see below).
We have also computed the shock opening angles for

models UA1, UA2, and UB1. Again, we Ðnd good qualit-
ative agreement with the predicted values, especially for low
Mach number Ñows (see and The di†er-Table 2 Fig. 15).
ences are never larger than a factor of 1.3 (the worst case is
model UA2). However, we get half the value of forPSST
model UA1, the only one we can compare, which they
clearly overestimated.

It is remarkable the stability of the position of the stagna-
tion point in the ultrarelativistic models compared with the
mildly relativistic ones. This is particularly true for our two
subsonic models, UB0 and UC0, for which after 20M its
value no longer changes in time, as can be seen in Figure

The comparison between mildly and ultrarelativistic16c.
models with the same c and (MA1-UA1, MB1-UB1)M=reveals that the latter ones always have larger values of rsp.This is not surprising, as their asymptotic velocity is always
larger.

In we see that the maximum upwind velocitiesTable 2
are always larger than 0.9 and in some cases reaches well
into the ultrarelativistic regime. This is the case of models
UA2 and UB1, which reach values larger than 0.99 (note
that the initial velocities of these two models are already
quite large). Notice that here we can not apply equation (26)
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FIG. 9.ÈTop: Close-up view of the logarithm of density (left) and velocity for model MC2 at t \ 750M. Bottom: Full computational domain view.

to compare the one-dimensional free-fall velocity with our
predicted numerical values as the sonic radius is similar to

and, in some cases, even smaller.rmin

3.4. Accretion Rates
We can deÐne a gauge-invariant mass by considering the

volume integral of the relativistic density in a given proper
volume as

m\
P
V
JcDdV . (28)

Then, using the continuity equation and making use of
Gauss theorem, one can compute the time evolution of the
mass as a surface integral over some spherical surface sur-
rounding the hole. In the Schwarzschild geometry the mass
accretion rate then reads

m5 \ [ 2n
P

Dvrr2 sin h dh . (29)

At the steady state, this quantity should be independent of
the radial distance at which it is evaluated. Therefore, it is a
perfect indicator to see if the numerical solution has relaxed
or not to a steady state conÐguration. The results of our

numerical simulations are plotted in Figures and17a, 17b,
which display the normalized mass accretion rates for17c,

our subsets of low Mach number mildly relativistic models,
high Mach number mildly relativistic models, and ultrarela-
tivistic models, respectively. In addition, sum-Table 3
marizes our mass rate computations and shows a

TABLE 3

MASS ACCRETION RATES

Model tmax(M) m5 /m5 can mQ/m5 can PSST Results

MA1 . . . . . . 4000 2.1 1.8 5.0
MB1 . . . . . . 4000 2.4 2.1 6.1
MC1 . . . . . . 2000 4.5 3.7 6.4
MA2 . . . . . . 750 4.1 3.9 1.5
MB2 . . . . . . 750 4.3 4.2 2.6
MC2 . . . . . . 750 10.0 10.2 5.2
UA1 . . . . . . 200 3.7 3.3 9.9
UA2 . . . . . . 120 25.0 24.1 . . .
UB0 . . . . . . 200 4.6 4.6 6.7
UB1 . . . . . . 200 27.0 26.8 . . .
UC0 . . . . . . 200 21.0 21.0 4.9

is the time maximum time of the simulation,NOTE.Ètmaxis the scaled value of the mass accretion rate at the end ofm5 /m5 canthe simulation, and is the mean value of the normalizedmQ/m5 canmass accretion rate. Last column shows results.PSST
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FIG. 10.ÈTop: Close-up view of the logarithm of density (left) and velocity for model UA1 at t \ 200M. Bottom: Full computational domain view.

comparison with previous results. The rates have been
always normalized to the canonical value proposed by
PSST:

m5 can\ 4njM2o=
(v=2 ] c

s=
2 )3@2 , (30)

where M is the mass of the hole and j is a dimensionless
parameter given by & Teukolsky(Shapiro 1983) :

j \
A1
2
B(c`1)@*2(c~1)+A5 [ 3c

4
B(5~3c)@*2(c~1)+

. (31)

In practice we have computed at two di†er-equation (29)
ent locations depending on the model considered. For the
mildly relativistic models we have always considered a
surface deÐned by the accretion radius. However, this was
not always possible for the ultrarelativistic models as, in
some cases, it was smaller than as in models UA2, UB1,rminand UC0. Therefore, we decided to measure the mass accre-
tion rate for all ultrarelativistic models at r \ 5M.

The main conclusion that emerges from Figures 17aÈ17c
is that all models considered in this work settled down to a
Ðnal steady state accretion pattern. No evidence for any
kind of instability (e.g., Ñip-Ñop) is present. All models show
a remarkable stable accretion rate during the evolution.

Only model MB2 presents small amplitude oscillations in
its way toward the Ðnal steady state conÐguration. Notice
that all models have been evolved long enough to account
for possible late time wake instabilities that could have
a†ected the accretion rate. From these Ðgures one can see
that the subset of ultrarelativistic models shows the fastest
transition to steady state, which can be considered accom-
plished around 50MÈ100M. On the other hand, the subset
of mildly relativistic models shows a quite slower transition,
and, among them, the low Mach number models are the
slowest. For this reason the complete evolution of these
models demands a lot of CPU time.

From one can see that in results, for a ÐxedTable 3 PSST
value of the normalized mass accretion rate increasesM=,
as c increases from 1.1 to 5/3. We obtain the same kind of
behavior for all models. However, the numbers disagree.
For the mildly relativistic models we obtain systematically
smaller values for low Mach number values and(M=\ 1.5)
bigger values for high Mach numbers In the(M=\ 5).
ultrarelativistic regime we cannot compare values as they
do not present enough results. On the other hand, we Ðnd
that for a Ðxed value of c all models show that the mass
accretion rate grows as increases, the ratio beingM=roughly 2 for the three values of c considered. This is in
disagreement with computations, where they foundPSST
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FIG. 11.ÈTop: Close-up view of the logarithm of density (left) and velocity for model UA2 at t \ 110. Bottom: Full computational domain view. Note the
deceleration of the Ñow at the shock. The asymptotic velocity of this model is 0.93. The dashed circle, which shows the position of the accretion radius, lies in
this model inside the horizon.

precisely the opposite trend, although it is not too clear for
large values of c. Our result is also in contrast with previous
calculations in the Newtonian regime (e.g., Ru†ert 1994b),
where the maximum value of the mass accretion rate corre-
sponds to spherical accretion Let us notice,(M= \ 0).
however, that this was not either the case in the Newtonian
simulations of with Their results, bothPSST c

s=
\ 10~3.

with and 0.1, show a peculiar maximum value ofc
s=

\ 10~3
for independently of the value of c.M0 /M0 can M= \ 1.5

We also obtain that, for a Ðxed value of c and theM=,
mass accretion rate increases as the sound speed gets closer
to its maximum permitted value (compare models
MA1-UA1 and models MB1-UB1). In general, the com-
puted mass accretion rates for the ultrarelativistic models
have the largest values.

4. CONCLUSIONS

We have performed a detailed comparative study, over a
wide range of initial parameters, of the morphology and
dynamics of the relativistic Bondi-Hoyle nonspherical acc-
retion onto a moving Schwarzschild black hole. We have
used a high-resolution shock-capturing scheme that
employs a linearized Riemann solver as the basic tool for
the correct modeling of shock waves. The high performance

of our numerical technique allows for treating the shocks
with a high resolution and, consequently, leads to a great
accuracy in the morphology and dynamics of the accreting
gas. We have found that, in our axisymmetric computa-
tions, the accretion Ñow always proceeds in a steady state
fashion showing no signs of instabilities that could have
modiÐed in some manner the dynamical accretion rates. We
have tested the convergence properties of our scheme by
running some models with increasingly higher angular
resolutions. In none of the runs the instabilities arose, even
with the Ðner grids.

Generally speaking, our results are qualitatively similar
to previous relativistic calculations. The broad Ñow mor-
phology can be considered identical to that found in PSST
calculations, despite the di†erent numerical techniques
employed. However, this can be the only reason to explain
the important quantitative di†erences found in some indica-
tors such as the shock opening angles, positions of the stag-
nation point, or, very speciÐcally, the mass accretion rates.

We have been able to simulate Ñows well inside the
ultrarelativistic regime. Some models of our sample have
very high initial asymptotic velocities and, at the same time,
asymptotic sound speeds very close to its maximum permit-
ted value.
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FIG. 12.ÈTop: Close-up view of the logarithm of density (left) and velocity for model UB0 at t \ 200M. Bottom: Full computational domain view. This is
a subsonic model, and hence no shocks are present. Note in the top plot the small deviation from spherical symmetry near the Schwarzschild radius. The
position of the stagnation point is very well deÐned.

The results presented in this paper, as well as the com-
parisons performed, have served to calibrate the code as a
Ðrst and necessary step to extend the computations to more
complicated conÐgurations. In this sense this paper has to
be considered as the Ðrst of a series. As the next step, we
plan to perform the evolution of the same sample of models
in an axisymmetric Kerr background. The code will not
need any important modiÐcation for this purpose as it is
already, in its current version, written in Boyer-Lindquist
coordinates for a Kerr spacetime. The results presented here
have been obtained by setting to zero the Kerr angular
momentum per unit mass parameter. In the long term we
plan to extend the code to more general two-dimensional
nonaxisymmetric and three-dimensional conÐgurations and
perform the same set of simulations. This will permit us to
search for the appearance of instabilities that could have
been damped in the present axisymmetric computations. It
will also allow for the study of more realistic conÐgurations
where transverse gradients of velocity and density can be

imposed at the outer boundary to simulate mass transfer in
a binary system scenario.

We are also currently working in the more ambitious
project of coupling the existing hydro code to an axisym-
metric code that solves the Einstein Ðeld equations, in the
framework of the ADM formalism, for distorted, rotating
black hole conÐgurations developed by Brandt & Seidel

Preliminary results can be found in(1995a, 1995b). Brandt
& Font The results presented here will serve as an(1997).
excellent database to compare with our future fully rela-
tivistic approach.

We would like to thank Ed Seidel for carefully reading
and improving the manuscript. We also acknowledge the
suggestions and comments of an anonymous referee. This
work has been Ðnancially supported by the Max-Planck-
Gesellschaft and the Spanish DGICYT (grant PB 94-0973).
All calculations have been performed at the AEI in
Potsdam.



FIG. 13.ÈTop: Close-up view of the logarithm of density (left) and velocity for model UB1 at t \ 200M. Bottom: Full computational domain view.



FIG. 14.ÈTop: Close-up view of the logarithm of density (left) and velocity for model UC0 at t \ 200M. Bottom: Full computational domain view. As in
model UB0 no shocks are present as the asymptotic Mach number is less than 1, and the innermost contours are slightly deviated from spherical symmetry.

FIG. 15.ÈShock opening angle vs. asymptotic Ñow Mach number. The solid line represents the analytic values at large distances from the hole as given by
sin~1 The symbols indicate the numerical estimations for the di†erent models and are explained at the top right-hand corner of the plot. The1/M=.
numerical values present the right behavior, and this agreement is better for low Mach number models.
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FIG. 16a FIG. 16b

FIG. 16c

FIG. 16.È(a) Evolution of the stagnation point for low Mach number mildly relativistic models (MA1, MB1, and MC1). All of them approach
monotonically to a stable Ðxed position. (b) Evolution of the stagnation point for high Mach number mildly relativistic models (MA2, MB2, and MC2). They
present a more unstable transition to a Ðxed position, if any, than their low Mach number counterparts. Let us mention that with higher angular resolutions
(80 and 160 zones ; not shown), the transition is much smoother. (c) Evolution of the stagnation point for the ultrarelativistic models (UA1, UA2, UB0, UB1,
and UC0). All of them show a remarkable constant value, specially the two asymptotically subsonic models UB0 and UC0.

FIG. 17a FIG. 17b

FIG. 17c

FIG. 17.È(a) Normalized mass accretion rate evolution for low Mach number mildly relativistic models (MA1, MB1, and MC1). All models approach
steady state, but in a remarkable long amount of time. (b) Normalized mass accretion rate evolution for high Mach number mildly relativistic models (MA2,
MB2, and MC2). All models approach steady state in a much shorter timescale than their low Mach number counterparts. Note the tiny oscillations present
on model MB1. (c) Normalized mass accretion rate evolution for the ultrarelativistic models (UA1, UA2, UB0, UB1, and UC0). These models show the fastest
transition to steady state, quite independently of their initial values of c and M=.
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