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ABSTRACT

The contributions of correlation effects in the electron-positron plasma in the early universe to the
thermodynamic quantities are calculated. These are found to be of the same order of magnitude as the
plasmon contributions calculated in Paper I. Their contributions are of the order of 0.1% of the contri-
butions of blackbody photons. Therefore, plasma effects in the electron-positron plasma in the early uni-
verse will not drastically alter the standard model of the evolution of the early universe. For the sake of
future applications, we give detailed numerical results for the calculation of various thermodynamic
quantities of the cosmic fluid in the early universe. The enhancement factor of thermonuclear reaction
rates due to Debye screening is also calculated. This factor is again of the order of 0.1%.

Subject headings: early universe — nuclear reactions, nucleosynthesis, abundances — plasmas

1. INTRODUCTION

Recently, we have calculated the contributions of plasmons to the energy density and pressure of the cosmic fluid in the
early universe (Itoh et al. 1997, hereafter Paper I). We have found that plasmon effects make contributions to the energy
density and pressure of the order of 0.1% of the contributions of blackbody photons. Our work in Paper I has verified the
assumption hitherto made that the plasmon effects are even smaller in the cosmic fluid in the early universe. In Paper I, we
calculated the number density, energy density, and pressure of the plasmons. Entropy is also an important physical quantity
in the evolution of the early universe (Dicus et al. 1982; Krauss & Romanelli 1990; Kernan & Krauss 1994; Krauss & Kernan
1994). Therefore, in this paper we will calculate plasmon contributions to the entropy of the cosmic fluid in the early universe.

In Paper I we estimated the correlation energy of the electron-positron plasma in the early universe, and we found that it is
of the same order of magnitude as the plasmon contribution. Therefore, in this paper we will also calculate the correlation
energy density and its contribution to the pressure and the entropy of the electron-positron plasma in the early universe.
Although these quantities turn out to be rather small, we present detailed numerical results of our calculations for the sake of
future applications of the present results. We also calculate the enhancement factor of the thermonuclear reaction rates due to
Debye screening in the electron-positron plasma in the early universe. This factor again turns out to be rather small, of the
order of 0.1%.

The present paper is organized as follows. In § 2 we calculate plasmon contributions to entropy. In § 3 we calculate the
contributions of the correlation energy of the electron-positron plasma to the thermodynamic quantities of the plasma. The
enhancement factor of the thermonuclear reaction rates due to Debye screening is calculated in § 4. Numerical results of the
calculations are given in § 5. Concluding remarks are given in § 6.

2. PLASMON CONTRIBUTION TO ENTROPY

In this section we use a method developed in Paper I; for the sake of completeness it is also described fully here. Our
method is based on the works of Silin (1960), Tsytovich (1961), Beaudet, Petrosian, & Salpeter (1967), Braaten & Segel (1993),
and Itoh et al. (1996). For the calculation of pressure, we employ a different method from that presented in Paper I, one that
includes correction terms.

In the electron-positron plasma of the early universe, there exist two kinds of plasmon modes: the transverse plasmon and
the longitudinal plasmon. The former corresponds to the photon in the plasma, and the latter corresponds to the longitudinal
wave of the electric field in the plasma. In vacuum, the photon dispersion relation is @ = ck, where w is the angular frequency,
c is the velocity of light, and k is the wavenumber. In the plasma, the dispersion relations for the transverse and longitudinal
plasmons w,(k) and w,(k) both approach in the long-wavelength limit the plasma frequency w,, given by Beaudet et al. (1967)

as
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where « is the fine-structure constant, m is the electron mass, p and E are the momentum and energy of the electrons or
positrons, and dn_ and dn , are related to the number density of the electrons and positrons defined by

_ 2 a3p
"= Jd'“ = @by’ Jexp (EfkyT Fv) +1° @

E = (p*c* + m*c%)'> . (3

In equation (2), v = u/ky T is the chemical potential for an electron, including its rest-mass energy, expressed in units of k; T
Since we consider electron-positron pairs in equilibrium with blackbody radiation photons (zero potential), the chemical
potential for a positron is —v. We further define the functions
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We also define
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We then obtain the following expressions (Beaudet et al. 1967):
ho \*  4a _ _
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ho,\2 4o _ _ _
<m_ci> = g (2Gi1/2 + 2G_1/2 + Gt3/2 + G_3/2 - 3Gt5/2 - 3G_5/2) . (8)

As the wavenumber k increases, the dispersion relation for the longitudinal plasmon w,(k) in the Braaten-Segel approximation
crosses the light cone w = ck at a point k_, given by
k2_47rochJ'mc2 <E1 E + pc

c

n
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E

This satisfies the condition w,/c < k, < oo, and represents the maximum wavenumber for which an undamped longitudinal
plasmon can propagate. In the relativistic electron-positron plasma of the early universe, we can set the chemical potential of
the electron v = 0, assuming that

mc

- 1>(dn_ +dn,). 9)

n_=n,>»n,, (10

n, being the number density of the protons. Hereafter we will use this approximation.
Following Braaten & Segel (1993), we define a parameter v, by

U* @y
Vs _ 01 11
iy (1)

It lies in the range 0 < v,/c < 1, and can be intuitively interpreted as a typical velocity of electrons in the plasma. Values of
v,/c as a function of log;, 4 are given in Table 1. The graph is shown in Figure 1 of Paper 1. The dispersion relations for the
undamped plasmons (k) and w,(k) in the Braaten-Segel approximation are obtained by solving the following equations,
which depend on v, :

3w? 0> —v:k? o o, +v,k
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The maximum wavenumber for the undamped longitudinal plasmon is

3 2 1/2
kc{iz (L n S0 1>] o (14)
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Here we evaluate the damping of the longitudinal plasmon for k > k.. Tsytovich (1961) has calculated the damping of the
longitudinal plasmon due to absorption by electrons and positrons. Following his discussion, we calculate the imaginary part
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TABLE 1
VARIOUS THERMODYNAMIC QUANTITIES AS FUNCTIONS OF log,, 4

log,, 4 v /e hK[(mc) hk]/(mc) K B, x 10> B, x 10> B..x 10> 9, x10° 3, x 103 y, . x10® § x 10> §, x 10* 4, x 103

—15...... 0.3677  0.0000  0.0000 0.0000  0.001 0.000 0.000 0.005 0.000 0.000 0.002 0.000 0.000
—14...... 04053  0.0000  0.0000 0.0000 0.001 0.000 0.000 0.005 0.000 0.000 0.002 0.000 0.000
—13...... 0.4451  0.0000  0.0000 0.0004  0.001 0.000 0.000 0.005 0.000 0.000 0.002 0.000 0.000
—12...... 0.4869  0.0000  0.0000 0.0027  0.001 0.000 0.000 0.005 0.000 0.000 0.002 0.000 0.000
—11...... 0.5302  0.0001  0.0001 0.0116 0.001 0.000 0.000 0.005 0.000 0.000 0.002 0.000 0.000
—1.0...... 0.5745  0.0004  0.0004 0.0362  0.001 0.000 0.000 0.006 0.000 0.000 0.002 0.000 0.000
—09...... 0.6192  0.0012  0.0011 0.0869  0.004 0.000 0.000 0.014 0.000 0.000 0.006 0.000 0.000
—-08...... 0.6636  0.0031  0.0029 0.1700  0.015 0.000 0.002 0.046 0.002 0.000 0.023 0.001 0.001
—-0.7...... 0.7070  0.0069  0.0065 0.2822  0.047 0.001 0.007 0.142 0.010 0.001 0.071 0.003 0.006
—06...... 0.7490  0.0134  0.0128 04120 0.118 0.003 0.023 0.348 0.034 0.004 0.176 0.011 0.018
—05...... 0.7889  0.0237  0.0230 0.5436  0.241 0.010 0.053 0.700 0.087 0.010 0.356 0.029 0.042
—04...... 0.8261  0.0388  0.0380 0.6629  0.414 0.021 0.096 1.193 0.178 0.021 0.609 0.061 0.077
—-03...... 0.8601  0.0605 0.0596 0.7615  0.624 0.041 0.147 1.781 0.317 0.038 0.913 0.110 0.120
—-02...... 0.8901  0.0900  0.0891 0.8369  0.847 0.068 0.198 2.397 0.495 0.057 1.234 0.175 0.163
—0.1...... 09158  0.1299  0.1299 0.8913  1.062 0.105 0.242 2.983 0.722 0.077 1.542 0.260 0.201
00 ........ 09370  0.1827  0.1818 09289  1.253 0.144 0.276 3.498 0.944 0.095 1.814 0.344 0.231
01 ........ 09539 02521  0.2521 09540 1414 0.190 0.302 3.924 1.207 0.111 2.041 0.445 0.254
02 ........ 09670  0.3449  0.3449 09706  1.542 0.243 0.320 4.262 1.491 0.123 2222 0.555 0.271
03 ........ 09768  0.4637 04637 09812  1.642 0.294 0.332 4.520 1.761 0.133 2.362 0.661 0.282
04 ........ 09839  0.6225 0.6225 0.9881  1.717 0.354 0.340 4.712 2.072 0.139 2.466 0.784 0.290
05 ........ 09891  0.8263  0.8263 09925 1.773 0.413 0.345 4.851 2.368 0.144 2.542 0.902 0.295
06 ........ 0.9926 1.0911  1.0911 009952  1.813 0.475 0.348 4.950 2.670 0.147 2.597 1.023 0.298
0.7 ........ 0.9951  1.4400  1.4400 09970 1.341 0.544 0.351 5.019 3.006 0.150 2.636 1.160 0.300
08 ........ 0.9967 1.8879  1.8879 09981  1.861 0.612 0.352 5.066 3.327 0.151 2.662 1.291 0.302
09 ........ 0.9979 24612 24612 09988  1.875 0.677 0.353 5.099 3.630 0.152 2.681 1.415 0.303
10........ 0.9986 32130  3.2130 0.9992  1.884 0.751 0.353 5.120 3.973 0.153 2.693 1.557 0.303
11........ 0.9991 41877  4.1877 09995  1.890 0.830 0.354 5.135 4.330 0.153 2.701 1.705 0.304
12 ... 0.9994 54345 54345 09997 1.894 0.906 0.354 5.144 4.667 0.153 2.707 1.846 0.304
13 ........ 0.9996  7.0452  7.0452 0.9998  1.897 0.985 0.354 5.150 5.016 0.154 2.710 1.993 0.304
14 ........ 0.9997 9.1246  9.1246 0.9999  1.899 1.069 0.354 5.154 5.377 0.154 2.713 2.146 0.304
15........ 0.9998 117759 11.7759 0.9999  1.900 1.148 0.354 5.157 5.713 0.154 2.714 2.289 0.304

of the frequency, y, defined by

Im ¢

~ d(Re €)/00’

where ¢, is the longitudinal dielectric function. Tsytovich (1961) has calculated Im ¢, for the Boltzmann distribution of
electrons. Here we calculate Im ¢, for the Fermi-Dirac distribution with chemical potential u = 0 as

y (15)

Baky T & .1 . nho (mc?)? 2 2 nk,
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(m02)2 (hck)z 1/2
= ) 1
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In order to evaluate Re €, we use the longitudinal dielectric function of Tsytovich (1961), written in the present case as
40 [, pc 1 Ehw — E* — h®K?/4 . | Ehw — h*K?/2 + hc*pk
Reeg=1——— — <=2 1
¢ k> L P'E M7 { Pt hek " Eho — #2K?/2 — hepk
N Eho + E* + h*K?/4 n Eho + h2K?/2 + hc?pk a8)
hck Ehw + h?K?/2 — he?pk| |’
where
K? = w? — ?k*. (19)

We compute Re €; numerically for given values of A and k. We then seek a solution w that satisfies Re €,(k, w) = 0. This
procedure gives the longitudinal plasmon dispersion relation w, = w,(k). We confirm that for k < k_, the dispersion relation in
equation (13) of Braaten & Segel is a good approximation. However, as k(> k_) increases, we encounter such a critical value
k. that for k > k, there no longer exists a solution w to the equation Re €,(k, w) = 0. This is the definite endpoint of the
longitudinal plasmon dispersion curve. At this point [Re €,(k, w)]/0w|;—,. = 0, and thus the imaginary part of the frequency
given by equation (15) becomes infinitely large. We shall impose a stronger condition for the existence of the longitudinal
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plasmon,

y 1

P < 0 (20
The choice of the factor 1/10 is of course not unique. However, the value y/w is a rapidly varying function of k near the critical
value k.. Thus we can with reasonable accuracy determine the endpoint of the well-defined longitudinal plasmon dispersion
curve k? that satisfies the condition of equation (20). This point can be readily seen from Table 1. For log;, 4 > —1.0 where
the contributions of the longitudinal plasmons are of any significance, k, practically coincides with k,, thereby showing the
essential independence of the thermodynamic quantities from the exact choice of the critical wavenumber k,, or k7. In Figures
2-3 of Paper I we have shown the dispersion curves for the transverse and longitudinal plasmons corresponding to the
conditions v = 0 and 4 = 1.0, 10. The endpoints of the longitudinal plasmon dispersion curves correspond to the condition of
equation (20).

The number densities of the transverse and longitudinal plasmons are given by

o I Ank? dk Q1)
" @n)? ), exp (ho/kgT)—1"

1 (% Ank? dk
i =(2n)3L exp (ho/kgT) — 1 (22)

Since the chemical potential of the plasmons is zero, the free energy of the transverse plasmons is calculated (see Lifshitz &
Pitaevskii 1980) as

_ 2V | *® ho, \ | )
F,=kgT —(271)3 J; In [1 exp ( ks T>_47'Ck dk . (23)
The free energy of the longitudinal plasmons is similarly calculated as
v (& ho\ |, .,
F,=kgT 2nF L In |:1 — exp <— kBT)_4nk dk . (24)

We note that the k integral extends to infinity in the case of transverse plasmons, whereas it is limited by the cutoff
wavenumber k. in the case of longitudinal plasmons. The entropy is calculated from the free energy by the relationship
S = —0F/0T, the energy is calculated by the relationship E = F + TS, and the pressure is calculated by the relationship
P = —0F/0V. Thus, for the energy density W = E/V, pressure P, and entropy density s = S/V of the transverse and
longitudinal plasmons we obtain the expressions

2 (*  ho,dnk? dk
W‘_(zn)3L exp (hw,/kyT) —1° 25)
1 (%  hodnk®dk
W= (2n)3L exp (hw/kyT) —1° (26)
2 1 [* hk(dw,/dk)dnk? dk
=3 , (27
(2n)° 3 J, exp (ho,/kyT) — 1
1 1 (% hk(do/dkydnk?dk  kyT . feo (k)
Pi=Gne EL exp ofky T) — 1 62 & Ml —exp | =0 (> (28)
G 2 L[ hodnkdk L2 1 hik(deo,/dk)Ank? dk )
" @n)T ), exp (ho/kzgT)—1  (2n)°3T J, exp (hw/kyT)—1"

1 1 (%  hod<k?dk 1 1 (% hk(dw/dk)dnk?dk 1 . hoy(K?)
Sl_(2n)37’L exp (hw,/kBT)—1+(2n)3ﬁfO exp ok T) — 1 622 K¢ myl —exp| == 7= |- (0)

We rewrite these equations as

TG (T L, [* (kmodgme  _  [20) (kT

""[ = <hc>}2m)1 f oxp [ (haogme] —1 O “‘)[ = <hc>]’ D)
CT20) (kTN 1, [ (ko dkime)  [200) (ks T}

""[ 2 <W> ]F@)l J exp [rl(hw,/mczn—l:“’[ 2 (hc ) } ¢2)

W = |:7C_2 (kBT)4:| 15 -4 © (hw,/mc*)(hk/mc)* d(hk/mc) (1- ﬂt)[n_z (kg T)* :| , 33)

15 (he)®* | =* b exp [A ‘(how/mc¥] —1 15 (he)®



No. 2, 1997 PLASMONS IN THE EARLY UNIVERSE. IL 511

2P kD] 15, (M (heoy/me?)ik/me)? d(hkjme) _ [ 7? (kyT)*
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We note that a correction term is added to the expression for P, from the corresponding expression in Paper 1. In equation
(31), {(3) designates Riemann’s zeta function, {(3) = 1.202057. Since the timescale needed to establish equilibrium between
electrons and positrons is shorter than the expansion timescale of the universe for 4 > 10715, this condition has also been
imposed.

3. CORRELATION EFFECTS

As discussed in Paper I, we expect that the average interaction energy of the electron-positron plasma is of the same order
of magnitude as the plasmon contributions. In this section, therefore, we will calculate the contributions of the correlation
effects in the electron-positron plasma to the thermodynamic quantities.

We start from the expression for the correlation energy of the electron-positron plasma (Lifshitz & Pitaevskii 1980),

Ecorr = _%(n"’ + n_)Vthczx s (39)
where kp, is the Debye wavenumber for the electron-positron plasma, given by (Tsytovich 1961)
2 dn, dn;
2 _ _pr , P
ky = —4nhco @y Jd (dE + dE)’ (40)
1
- (41)

- exp (E/kgT Fv)+1°

In the above formula, we set v = 0, considering the case n_ = n, > n,. We then obtain the Debye wavenumber for the
electron-positron plasma with v = 0 as

8 (kyT\? [~ dx
kg =— o =— 2xr — A7H(xF— A7) —— 42
> na<hc)_£_1(x B Ve “2)
From the general thermodynamic relationship
E o (F
— == 4
T? oT <T> ’ “3)
we calculate the free energy due to correlation effects (Debye screening) as

1 T ar’
F.,. = 2 hcaVT L (ny + n_)kp 7"

In deriving equation (44), we have chosen an integration constant such that the conditions F,,, = 0 and S,,,, = 0 are satisfied
for T = 0.In equation (44), n, and n_ are given by

(44)

1 3
ne = (@> G5 (%, 0), (45)
n* \ h
GZ(A, v) being defined by equation (4).
The correlation energy density, W,,,,, is given by

ECOI‘I‘
V

2 (k T)4 30f 032)73G> * 2 —2\(12 -2\—1/2 dx 12 - _ n_z(kBT)4
|:15 (hc)3:| 9/2 /’1 GO(L O)[L—l (2x — 4 )(x — 4 ) / ex+1:| = ﬂcorr|:15 (hc)s :| (46)

I}Vcorr =
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From the relationship P = —(0F/0V)r, the pressure due to correlation effects is calculated as
2 (ks T)*] 90,/2 A w dx V2 ax 7 (kg T)*
P — 3/2}‘ 3 G=(). 0 2 2_1/—2 — ) 2\—1/2 _ % Z = o BB .
corr |:45 (hc)3 } 9/2 o 0 ( > ) 1/—1( X )(x ) e + 1 /1/ ycorr 45 (hc)3
(47)
From the relationship § = —(0F/0T)y, the entropy density due to the correlation effects is calculated as
o Sem
corr V
_ 3ﬂcorr + Yeorr k kB
B 4 he
an?  (kgT\?
= _écorrI:E kB(h_C> :| . (48)

Thus the total radiation energy density, including the correlation energy of the electron-positron pairs, is written as
W =W+ W+ Weorr

2 4
(ks T)
=(1- . 49
( ﬁt + ﬂl ﬂcorr)|:15 (hC)3 ( )
The corresponding pressure and entropy density are written as
P=Pt+Pl+Pcorr

n? (ks T)*
=(1- — — , 50
( 12’ + Y 'ycorr)|:45 (hc)3 ( )

S =8+ 8+ Scorr

=8+ 0 s 2 BT)']. 61

4. ENHANCEMENT OF THERMONUCLEAR REACTION RATES

The enhancement factor of thermonuclear reaction rates is calculated by Salpeter & Van Horn (1969) and also by Itoh and
his collaborators (Itoh, Totsuji, & Ichimaru 1977; Itoh et al. 1979; Itoh, Kuwashima, & Munakata 1990). However, the
enhancement factor of thermonuclear reaction rates in the early universe is not calculated in their papers. In this section we
will address ourselves to this problem.

As we have discussed in the previous sections, the number density of charged particles in the early universe is dominated by
electron-positron pairs. Therefore, the screening of the Coulomb interaction in the early universe is due exclusively to
electron-positron pairs. Thus, in the following discussion we take into account the contributions of the electron-positron pairs
only. Let us consider thermonuclear reactions of two species of nuclei, with charges Z, e and Z, e. Since the electron-positron
plasma in the early universe is a weakly interacting plasma (the Debye screening length being much greater than the mean
separation of the electrons and positrons), the present condition corresponds to the weak-screening regime considered by
Salpeter & Van Horn (1969). In this regime, the enhancement factor f of the thermonuclear reaction rate is given by

7= oup (L 22kole), 52
B

where kp, is the Debye wavenumber as given in equation (42). From this we obtain

8\!/? o dx 2
f=exp {21 Zz(‘) 0€3/2|: 2x2 — A7 Y)(x*— A"~ 12 —] }
n -1 e+ 1

=exp (128 x 1073Z,Z, %), (53)
— 6 “ 2 -2 2 —-2\—1/2 dx 12
K= |:7r2 Ll(zx T e T IR (54)

In the high-temperature limit A~ ! — 0, we obtain k = 1, and thereby f — exp (0.00128Z, Z,). Thus we find that the enhance-
ment of thermonuclear reaction rates due to Debye screening in the electron-positron plasma in the early universe is of the
order of 0.1%.

5. RESULTS AND IMPLICATIONS

The results of the numerical computation of the terms f,, B, Beores Vo> V15 Veorrs Oss 015 Ocorr, a1 k are shown in Table 1. They
are also shown in Figures 1, 2, 3, and 4 as functions oflog; , 4. The thermodynamic quantities of the longitudinal plasmons are
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F1G. 1.—Terms g,, B,, and B, as functions of log,, 4

calculated using the dispersion relations of Braaten & Segel (1993), with a termination at k. This procedure is considered to
be reasonably accurate.

We find that the plasma effects make contributions of the order of 0.1% of blackbody photons to the thermodynamic
quantities of the cosmic fluid in the early universe. Therefore, plasma effects will not drastically alter the standard model of the
evolution of the early universe. The results of the calculations of the thermodynamic quantities presented in this paper can be
readily applied to calculations of the evolution of the early universe that include the plasma effects.

The enhancement factor of thermonuclear reaction rates due to Debye screening in the electron-positron plasma in the
early universe is found to be of the order of 0.1%. Thus, the enhancement of the thermonuclear reaction rates can be
legitimately neglected in calculations of the primordial nucleosynthesis.

6. CONCLUDING REMARKS

We have calculated the contributions of plasma effects to the thermodynamic quantities of the cosmic fluid in the early
universe. We have found that plasma effects make contributions of the order of 0.1% of the blackbody photons. This finding
consolidates the soundness of the assumption made by standard calculations of the evolution of the early universe that neglect
plasma effects. The detailed numerical results calculated in this paper for the thermodynamic quantities of the cosmic fluid in
the early universe that include plasma effects will be readily applied to calculations of the evolution of the early universe that
take plasma effects into account.

L €L e e e L B s s B s B B S B
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FiG. 2—Termsy,, y,, and y,, as functions of log {, 4
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It has also been found that the enhancement of thermonuclear reaction rates due to Debye screening in the electron-
positron plasma in the early universe makes a negligible contribution, of the order of 0.1%. Thus in this case as well, the
plasma effects are safely neglected. All these facts are derived from the factor «*/? that enters into the plasma effects.
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