
THE ASTROPHYSICAL JOURNAL, 488 :1È13, 1997 October 10
1997. The American Astronomical Society. All rights reserved. Printed in U.S.A.(

MICROWAVE BACKGROUND CONSTRAINTS ON COSMOLOGICAL PARAMETERS

MATIAS ZALDARRIAGA

Department of Physics, MIT, Cambridge, MA 02139 ; matiasz=arcturus.mit.edu

DAVID N. SPERGEL

Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 ; dns=astro.princeton.edu

AND

UROS—S ELJAK

Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 ; useljak=cfa.harvard.edu
Received 1997 February 19 ; accepted 1997 May 23

ABSTRACT
We use a high-accuracy computational code to investigate the precision with which cosmological

parameters could be reconstructed by future cosmic microwave background experiments. We focus on
the two planned satellite missions : MAP and Planck. We identify several parameter combinations that
could be determined with a few percent accuracy with the two missions, as well as some degeneracies
among the parameters that cannot be accurately resolved with the temperature data alone. These degen-
eracies can be broken by other astronomical measurements. Polarization measurements can signiÐcantly
enhance the science return of both missions by allowing a more accurate determination of some cosmo-
logical parameters, by enabling the detection of gravity waves and by probing the ionization history of
the universe. We also address the question of how Gaussian the likelihood function is around the
maximum and whether gravitational lensing changes the constraints.
Subject headings : cosmic microwave background È cosmology : theory È gravitational lensing È

polarization

1. INTRODUCTION

Measurements of cosmic microwave background (CMB)
anisotropies have already revolutionized cosmology by pro-
viding insight into the physical conditions of the universe
only three hundred thousand years after the Big Bang. The
Ðrst year COBE data et al. determined the(Smoot 1992)
amplitude of the large angular scale CMB power spectrum
with an accuracy of 10% and the spectral slope with an
accuracy of 0.3. With the 4 year COBE data et al.(Bennett

these constraints became the tightest cosmological1996),
constraints available. Recent results from over a dozen
balloon- and ground-based experiments are beginning to
explore the anisotropies on smaller angular scales, which
will help to constrain other cosmological parameters as
well. The future looks even more promising : there are now
two planned satellite missions, and BothMAP1 Planck.2
missions will provide a map of the whole sky with a fraction
of a degree angular resolution and sufficient signal to noise
to reconstruct the underlying power spectrum with an
unprecedented accuracy.

A wonderful synergy is taking place in the study of the
cosmic background radiation : theorists are able to make
very accurate predictions of CMB anisotropies &(Bond
Efstathiou et al. & Zal-1987 ; Hu 1995 ; Bond 1996 ; Seljak
darriaga while experimentalists are rapidly improv-1996),
ing our ability to measure these anisotropies. If the results
are consistent with structure formation from adiabatic cur-
vature Ñuctuations (as predicted by inÑation), then they can
be used to accurately determine a number of cosmological
parameters. If the measurements are not consistent with any

1 See the MAP homepage at http ://map.gsfc.nasa.gov.
2 See Planck homepage at

http ://astro.estec.esa.nl/SA-general/Projects/Cobras/cobras.html.

of the standard models, cosmologists will need to rethink
ideas about the origin of structure formation in the uni-
verse. In either case, CMB will provide information about
fundamental properties of our universe.

It has long been recognized that the microwave sky is
sensitive to many cosmological parameters, so that a high-
resolution map may lead to their accurate determination

et al. et al.(Bond 1994 ; Spergel 1994 ; Knox 1995 ; Jungman
The properties of the microwave background Ñuctua-1996).

tions are sensitive to the geometry of the universe, the
baryon-to-photon ratio, the matter-to-photon ratio, the
Hubble constant, the cosmological constant, and the optical
depth due to reionization in the universe. A stochastic back-
ground of gravitational waves also leaves an imprint on the
CMB and their amplitude and slope may be extracted from
the observations. In addition, massive neutrinos and a
change in the slope of the primordial spectrum also lead to
potentially observable features.

Previous calculations trying to determine how well the
various parameters could be constrained were based on
approximate methods for computing the CMB spectra

et al. These approximations have an accu-(Jungman 1996).
racy of several percent, which suffices for the analysis of the
present-day data. However, the precision of the future mis-
sions will be so high that the use of such approximations
will not be sufficient for an accurate determination of the
parameters. Although high accuracy calculations are not
needed at present to analyze the observations, they are
needed to determine how accurately cosmological param-
eters can be extracted from a given experiment. This is
important not only for illustrative purposes but may also
help to guide the experimentalists in the design of the detec-
tors. One may for example address the question of how
much improvement one can expect by increasing the
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angular resolution of an experiment (and by doing so
increasing the risk of systematic errors) to decide whether
this improvement is worth the additional risk. Another
question of current interest is whether it is worth sacriÐcing
some sensitivity in the temperature maps to gain additional
information from the polarization of the microwave back-
ground. When addressing these questions, the shortcomings
of approximations become particularly problematic. The
sensitivity to a certain parameter depends on the shape of
the likelihood function around the maximum, which in the
simplest approach used so far is calculated by di†erentiat-
ing the spectrum with respect to the relevant parameter.
This di†erentiation strongly ampliÐes any numerical inac-
curacies : this almost always leads to an unphysical break-
ing of degeneracies among parameters and misleadingly
optimistic results.

Previous analysis of CMB sensitivity to cosmological
parameters used only temperature information. However,
CMB experiments can measure not just the temperature
Ñuctuations, but also even weaker variations in the polar-
ization of the microwave sky. Instead of one power spec-
trum, one can measure up to four and so increase the
amount of information in the two-point correlators (Seljak

& Seljak1996b ; Zaldarriaga 1997 ; Kamionkowski,
Kosowsky, & Stebbins Polarization can provide par-1997).
ticularly useful information regarding the ionization history
of the universe and the presence of a(Zaldarriaga 1996)
tensor contribution & Zaldarriaga(Seljak 1997 ;

et al. Because these parameters areKamionkowski 1997).
partially degenerate with others, any improvement in their
determination leads to a better reconstruction of other
parameters as well. The two proposed satellite missions are
currently investigating the possibility of adding or improv-
ing their ability to measure polarization, so it is particularly
interesting to address the question of improvement in the
parameter estimation that results from polarization.

The purpose of this paper is to reexamine the determi-
nation of cosmological parameters by CMB experiments in
light of the issues raised above. It is particularly timely to
perform such an analysis now, when the satellite mission
parameters are roughly deÐned. We use the best current
mission parameters in the calculations and hope that our
study provides a useful guide for mission optimization. As
in previous work et al. we use the Fisher(Jungman 1996),
information matrix to answer the question of how accu-
rately parameters can be extracted from the CMB data.
This approach requires a fast and accurate method for cal-
culating the spectra and we use the CMBFAST package

& Zaldarriaga with an accuracy of about 1%.(Seljak 1996)
We test the Fisher information method by performing a
more general exploration of the shape of the likelihood
function around its maximum and Ðnd that this method is
sufficiently accurate for the present purpose.

The outline of this paper is the following : in we° 2,
present the methods used, reviewing the calculation of theo-
retical spectra and the statistical methods to address the
question of sensitivity to cosmological parameters. In we° 3
investigate the parameter sensitivity that could be obtained
using temperature information only, and in we repeat° 4
this analysis using both temperature and polarization infor-
mation. In we explore the accuracy of the Fisher method° 5,
by performing a more general type of analysis and investi-
gate the e†ects of prior information in the accuracy of the
reconstruction. We present our conclusions in ° 6.

2. METHODS

In this section, we review the methods used to calculate
the constraints on di†erent cosmological parameters that
could be obtained by the future CMB satellite experiments.
We start by reviewing the statistics of CMB anisotropies in

where we also present the equations that need to be° 2.1,
solved to compute the theoretical prediction for the spectra
in the integral approach developed by & ZaldarriagaSeljak

In we discuss the Fisher information matrix(1996). ° 2.2,
approach, as well as the more general method of exploring
the shape of the likelihood function around the minimum.

2.1. Statistics of the Microwave Background
The CMB radiation Ðeld is characterized by a 2] 2

intensity tensor The Stokes parameters Q and U areI
ij
.

deÐned as and while the tem-Q\ (I11 [ I22)/4 U \ I12/2,
perature anisotropy is given by In prin-T \ (I11] I22)/4.
ciple the fourth Stokes parameter V that describes circular
polarization would also be needed, but in standard cosmo-
logical models it can be ignored because it cannot be gener-
ated through the process of Thomson scattering, the only
relevant interaction process. While the temperature is a
scalar quantity that can naturally be expanded in spherical
harmonics, (Q^ iU) should be expanded using spin weight
^2 harmonics & Seljak et al.(Zaldarriaga 1997 ; Goldberg

et al. see also et al.1967 ; Gelfand 1963 ; Kamionkowski
for an alternative expansion)1997
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The expansion coefficients satisfy anda~2,lm* \ a2,l~mInstead of and it is convenient toa
T,lm* \ a

T,l~m
. a2,lm a~2,lmintroduce their even and odd parity linear combinations

& Penrose(Newman 1966)

a
E,lm\ [(a2,lm ] a~2,lm)/2 ,

a
B,lm\ i(a2,lm[ a~2,lm)/2 . (2)

These two combinations behave di†erently under parity
transformation : while E remains unchanged B changes sign,
in analogy with electric and magnetic Ðelds.

The statistics of the CMB are characterized by the power
spectra of these variables together with their cross-
correlations. Only the cross-correlation between E and T is
expected to be nonzero, as B has the opposite parity to both
E and T . The power spectra are deÐned as the rotationally
invariant quantities

C
Tl

\ 1
2l ] 1

;
m

Sa
T,lm* a

T,lmT ,

C
El

\ 1
2l ] 1

;
m

Sa
E,lm* a

E,lmT ,

C
Bl

\ 1
2l ] 1

;
m

Sa
B,lm* a

B,lmT ,

C
Cl

\ 1
2l ] 1

;
m

Sa
T,lm* a

E,lmT . (3)



No. 1, 1997 CONSTRAINTS ON COSMOLOGICAL PARAMETERS 3

The four spectra above contain all the information on a
given theoretical model, at least for the class of models
described by Gaussian random Ðelds. To test the sensitivity
of the microwave background to a certain cosmological
parameter, we have to compute the theoretical predictions
for these spectra. This can be achieved by evolving the
system of Einstein, Ñuid, and Boltzmann equations from an
early epoch to the present. The solution for the spectra
above can be written as a line-of-sight integral over sources
generated by these initial perturbations & Zaldar-(Seljak
riaga For density perturbations (scalar modes), the1996).
power spectra for T and E and their cross-correlation are
given by (the odd parity mode B being zero in this case)

C
T,El(S) \ (4n)2

P
k2 dkPÕ(k)[*

T,El(S) (k)]2 ,

C
Cl
(S)\ (4n)2

P
k2 dkPÕ(k)*

Tl
(S)(k)*

El
(S)(k) . (4)

The source terms can be written as an integral over confor-
mal time & Zaldarriaga & Seljak(Seljak 1996 ; Zaldarriaga
1997) :
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where is the present time and a \x \ k(q0[ q), q0The derivatives are taken with respect to the(h5 ] 6g5 )/2k2.
conformal time q. The di†erential optical depth for
Thomson scattering is denoted as where a(q)i5 \ an

e
x
e
pT,is the expansion factor normalized to unity today, is then

eelectron density, is the ionization fraction, and is thex
e

pTThomson cross section. The total optical depth at time q is
obtained by integrating We also intro-i5 , i(q) \ /qq0 i5 (q)dq.
duced the visibility function Its peakg(q) \ i5 exp ([i).
deÐnes the epoch of recombination, which gives the domi-
nant contribution to the CMB anisotropies. The sources in
these equations involve the multipole moments of tem-
perature and polarization, which are deÐned as *(k, k) \

where is the Legendre poly-;
l
(2l ] 1)([i)l*

l
(k)P

l
(k), P

l
(k)

nomial of order l. Temperature anisotropies have additional
sources in the metric perturbations h and g and in the
baryon velocity term et al. & Efsta-v

b
(Bond 1994 ; Bond

thiou & Bertschinger The expressions1987 ; Ma 1995).
above are only valid in the Ñat space limit ; see Zaldarriaga
& Seljak for the appropriate generalization to open(1997)
geometries.

The solution for gravity waves can be similarly written as
& Seljak(Zaldarriaga 1997)
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where the power spectra are obtained by integrating the
contributions over all the wavevectors as in equation (4).
Note that in the case of tensor polarization perturbations
both E and B are present and can be measured separately.
InÑationary models predict no vector component, and we
do not include a vector component in our analysis.

2.2. T he Fisher Information Matrix
The Fisher information matrix is a measure of the width

and shape of the likelihood function around its maximum.
Its elements are deÐned as expectation values of the second
derivative of a logarithm of the likelihood function with
respect to the corresponding pair of parameters. It can be
used to estimate the accuracy with which the parameters in
the cosmological model could be reconstructed using the
CMB data et al. Taylor, &(Jungman 1996 ; Tegmark,
Heavens If only temperature information is given1997).
then for each l a derivative of the temperature spectrum C

Tlwith respect to the parameter under consideration is com-
puted and this information is then summed over all l
weighted by In the more general case imple-Cov~1 (CŒ

Tl
2 ).

mented here, we have a vector of four derivatives and the
weighting is given by the inverse of the covariance matrix,

a
ij
\ ;

l
;
X,Y

LC
Xl

Ls
i

Cov~1 (CŒ
Xl

, CŒ
Yl
)
LC

Yl
Ls

j
. (7)

Here is the Fisher information matrix, Cov~1 is thea
ijinverse of the covariance matrix, are the cosmologicals

iparameters one would like to estimate, and X, Y stands for
T , E, B, C. For each l, one has to invert the covariance
matrix and sum over X and Y . The derivatives were calcu-
lated by Ðnite di†erences, and the step was usually taken to
be about 5% of the value of each parameter. We explored
the dependence of our results on this choice and found that
the e†ect is less than 10%. This indicates that the likelihood
surface is approximately Gaussian. Further tests of this
assumption are discussed in ° 5.

The full covariance matrix between the power spectra
estimators was presented in &Seljak (1996b), Zaldarriaga
Seljak and et al. The diagonal(1997), Kamionkowski (1997).
terms are given by
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while the nonzero o† diagonal terms are
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We have deÐned where and arew(T,P)~1 \ 4np(T,P)2 /Npix, p
T

p
Pnoise per pixel in the temperature and either Q or U polar-

ization measurements (they are assumed equal) and isNpixthe number of pixels. We will also assume that noise is
uncorrelated between di†erent pixels and between di†erent
polarization components Q and U. This is only the simplest
possible choice and more complicated noise correlations
arise if all the components are obtained from a single set of
observations. If both temperature and polarization are
obtained from the same experiment by adding and di†eren-
tiating the two polarization states, then and noisep

T
2 \p

P
2/2

in temperature is uncorrelated with noise in polarization
components. The window function accounts for theB

l
~2

beam smearing and in the Gaussian approximation is given
by with measuring the width of the beam.B

l
~2 \ el2pb2, p

bWe introduced as the fraction of the sky that can befskyused in the analysis. In this paper we assume Itfsky\ 0.8.
should be noted that equations and are valid in the(8) (9)
limit of uniform sky coverage.

Both satellite missions will measure in several frequency
channels with di†erent angular resolutions : we combine
them using where subscript c refers tow(T,P) \; w(T,P)c ,
each channel component. For MAP mission we adopt a
noise level kK)2 and kK)2 for thew

T
~1\ (0.11 w

P
~1 \ (0.15

combined noise of the three highest frequency channels with
conservatively updated MAP beam sizes : and0¡.53, 0¡.35

These beam sizes are smaller than those in the MAP0¡.25.
proposal and represent improved estimates of MAPÏs
resolution. The most recent estimates of MAPÏs beam sizes
are even and For Planck, wesmaller3 : 0¡.47, 0¡.35 0¡.21
assume kK)2 and kK)2, andw

T
~1\ (0.011 w

P
~1\ (0.025

combine the 140 and 210 GHz bolometer channels. For
PlanckÏs polarization sensitivity, we assume a proposed
design in which 8 out of 12 receivers in each channel have
polarizers The angular resolution at these(Efstathiou 1996).
frequencies is and FWHM. We also explore the0¡.16 0¡.12
possible science return from an enhanced bolometer system
that achieves polarization sensitivity of kK)2.w

P
~1 \ (0.015

3 See the MAP homepage at http ://map.gsfc.nasa.gov.

In our analysis, we are assuming that foregrounds can be
subtracted from the data to the required accuracy. Previous
studies of temperature anisotropies have shown that this is
not an overly optimistic assumption at least on large
angular scales (e.g., & Efstathiou OnTegmark 1996).
smaller scales, point source removal as well as secondary
processes may make extracting the signal more problem-
atic. This would mostly a†ect our results on Planck, which
has enough angular resolution to measure features in the
spectrum to l D 3000. For this reason, we compared the
results by changing the maximum l from 3000 to 1500. We
Ðnd that they change by less than 30%, so that the conclu-
sions we Ðnd should be quite robust. Foregrounds for
polarization have not been studied in detail yet. Given that
there are fewer foreground sources of polarization and that
polarization fractions in CMB and foregrounds are compa-
rable, we will make the optimistic assumption that the fore-
grounds can be subtracted from the polarization data with
sufficient accuracy as well. However, as we will show, most
of the additional information from polarization comes from
very large angular scales, where the predicted signal is very
small. Thus, one should take our results on polarization as
preliminary until a careful analysis of foreground subtrac-
tion in polarization shows at what level can polarization
signal be extracted.

The inverse of the Fisher matrix, a~1, is an estimate of the
covariance matrix between parameters and (a~1)

ii
1@2

approximates the standard error in the estimate of the
parameter This is the lower limit because Crame� r-Raos

i
.

inequality guarantees that for an unbiased estimator the
variance on ith parameter has to be equal to or larger than

In addition to the diagonal elements of a~1, we will(a~1)
ii
1@2.

also use 2 ] 2 submatrices of a~1 to analyze the covariance
between various pairs of parameters. T he Fisher matrix
depends not only on the experiment under consideration, but
also on the assumed family of models and on the number of
parameters that are being extracted from the data. To high-
light this dependence and to assess how the errors on the
parameters depend on these choices we will vary their
number and consider several di†erent underlying models.

2.3. Minimization
The Fisher information matrix approach assumes that

the shape of the likelihood function around the maximum
can be approximated by a Gaussian. In this section, we
drop this assumption and explore directly the shape of the
likelihood function. We use the PORT optimization rou-
tines to explore one direction in parameter space(Gay 1990)
at a time by Ðxing one parameter to a given value and
allowing the minimization routine to explore the rest of
parameter space to Ðnd the minimum of s2\ ;

l
;

X,YCov~1 where denotes(C
Xl

[ C
Xl
* ) (CŒ

Xl
CŒ

Yl
)(C

Yl
[ C

Yl
* ), C

Xl
*

the underlying spectrum. The value of s2 as a function of
this parameter can be compared directly with the Fisher
matrix prediction, where is the*s2\ (s

i
[ s

i
*)2/(a~1)

ii
, s

i
*

value of the parameter in the underlying model. This com-
parison tests not only the shape of the likelihood function
around the maximum but also the numerical inaccuracies
resulting from di†erentiating the spectrum with respect to
the relevant parameter. The minimization method is also
useful for Ðnding explicit examples of degenerate models,
models with di†erent underlying parameters but almost
indistinguishable spectra.

The additional advantage of the minimization approach
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is that one can easily impose various prior information on
the data in the form of constraints or inequalities. Some of
these priors may reÑect theoretical prejudice on the part of
the person performing the analysis, while others are likely
to be less controversial : for example, the requirement that
matter density, baryon density, and optical depth are all
positive. One might also be interested in incorporating
priors into the estimation to take other astrophysical infor-
mation into account, e.g., the limits on the Hubble constant
or from the local measurements. Such additional infor-)

mmation can help to break some of the degeneracies present
in the CMB data, as discussed in Note that prior infor-° 3.
mation on the parameters can also be incorporated into the
Fisher matrix analysis, but in its simplest formulation only
in the form of Gaussian constraints and not in the form of
inequalities.

The main disadvantage of this more general analysis is
the computational cost. At each step the minimization
routine has to compute derivatives with respect to all the
parameters to Ðnd the direction in parameter space toward
the minimum. If the initial model is sufficiently close to the
minimum, then the code typically requires 5È10 steps to
Ðnd it and to sample the likelihood shape this has to be
repeated for several values of the parameter in question
(and also for several parameters). This computational cost is
signiÐcantly higher than in the Fisher matrix approach,
where the derivatives with respect to each parameter need
to be computed only once.

3. CONSTRAINTS FROM TEMPERATURE DATA

In this section, we investigate how measurements of the
CMB temperature anisotropies alone can constrain di†er-
ent cosmological parameters. The models studied here are
approximately normalized to COBE, which sets the level of
signal to noise for a given experiment.

We will start with models in a six-dimensional parameter
space h, where the parameters ares6\ (C2(S), )", )

b
, qri, ns

),
respectively, the amplitude of the power spectrum for scalar
perturbations at l \ 2 in units of kK2, the Hubble constant
in units of 100 km s~1 Mpc~1, the cosmological constant
and baryon density in units of critical density, the reioniza-
tion optical depth and the slope of primordial density spec-
trum. In models with a nonzero optical depth, we assume
that the universe is instantaneously and fully reionized, so
that the ionization fraction is 0 before redshift of reioniza-
tion and 1 afterward. We limit to this simple case becausezrionly the total optical depth can be usefully constrainedqriwithout polarization information. We discuss the more
general case when we discuss polarization below.

The underlying model is standard CDM (sCDM) s6\
(796, 0.5, 0.0, 0.05, 0.05, 1.0). Our base model has an optical
depth of 0.05, corresponding to the epoch of reionization at

Models include gravity waves, Ðxing the tensorzriB 13.
amplitude using the consistency relation predicted by inÑa-
tion and assuming a relation between theT /S \ [ 7n

Tscalar and tensor spectral slopes for andn
T

\ n
s
[ 1 n

s
\ 1

otherwise, which is predicted by the simplest modelsn
T

\ 0
of inÑation. The results for MAP are summarized in Table

It is important to keep in mind that the parameters are1.
highly correlated. By investigating conÐdence contour plots
in planes across the parameter space, one can identify com-
binations of parameters that can be more accurately deter-
mined. Previous analytical work &(Seljak 1994 ; Hu
Sugiyama showed that the physics of the acoustic1995)
oscillations is mainly determined by two parameters, )

b
h2

and where is the density of matter in units of)
m

h2, )
mcritical density. There is an approximately Ñat direction in

the three-dimensional space of h, and for example,)
b
, )

m
:

one can change and adjust h and to keep h2 and)
m

)
b

)
bh2 constant, which will not change the pattern of acous-)

mtic oscillations. This degeneracy can be broken in two ways.
On large scales, the decay of the gravitational potential at
late times in models (the so-called late time inte-)

m
D 1

grated Sachs-Wolfe or ISW term) produces an additional
component in the microwave anisotropy power spectrum,
which depends only on & Starobinsky)" (Kofman 1985).
Because the cosmic variance (Ðnite number of independent
multipole moments) is large for small l, this e†ect cannot
completely break the degeneracy. The second way is
through the change in the angular size of the acoustic
horizon at recombination, which shifts all the features in the
spectrum by a multiplicative factor. Around this)

m
\ 1,

shift is a rather weak function of and scales approx-)
mimately as leading to almost no e†ect at low l, but is)

m
~0.1,

increasingly more important toward higher l. MAP is sensi-
tive to multipole moments up to l D 800, where this e†ect is
small. Consequently, MAPÏs ability to determine the
cosmological constant will mostly come from large scales
and thus will be limited by the large cosmic variance.
Planck has a higher angular resolution and signiÐcantly
lower noise, so it is sensitive to the change in the angular
size of the horizon. Because of this Planck can break the
parameter degeneracy and determine the cosmological con-
stant to a high precision, as shown in Table 2.

shows the conÐdence contours in the andFigure 1a )
m
-h

planes. The error ellipses are signiÐcantly elongated)
b
-h

along the lines and*)
b
/)

b
] 2.1*h/h \ 0 *)

m
/)

m] 3.0*h/h \ 0. The combinations and are)
b
h2.1 )

m
h3

TABLE 1

FISHER MATRIX 1 p ERROR BARS FOR DIFFERENT COSMOLOGICAL PARAMETERS WHEN ONLY TEMPERATURE IS INCLUDED

Parameter sCDM sCDM` T /S \ 0.28` T /S \ 0.1` T /S \ 0.1C )" \ 0.7` Open` OpenC

* ln C2(S) . . . . . . 2.1 ] 10~1 4.2] 10~1 4.8] 10~1 4.7] 10~1 7.4] 10~2 4.1] 10~1 1.2] 10~1 4.7] 10~2
*h . . . . . . . . . . . . 1.7 ] 10~2 9.2] 10~2 1.1] 10~1 1.0] 10~1 5.1] 10~3 4.1] 10~2 2.0] 10~2 1.1] 10~3
*)" . . . . . . . . . . 9.8] 10~2 5.3] 10~1 6.1] 10~1 5.8] 10~1 2.9] 10~2 5.0] 10~2 . . . . . .
*)

b
h2 . . . . . . . 3.0] 10~4 1.0] 10~3 9.8] 10~4 1.2] 10~3 1.2] 10~4 9.7] 10~4 1.1] 10~3 1.3] 10~4

*qri . . . . . . . . . . 1.2] 10~1 1.3] 10~1 1.4] 10~1 1.1] 10~1 8.2] 10~2 1.9] 10~1 7.2] 10~2 3.3] 10~2
*n

s
. . . . . . . . . . . 9.8] 10~3 5.9] 10~2 6.7] 10~2 6.4] 10~2 5.9] 10~3 2.9] 10~2 2.4] 10~2 3.3] 10~3

*T /S . . . . . . . . . . . 3.9 ] 10~1 6.8] 10~1 5.3] 10~1 2.5] 10~1 3.2] 10~1 . . . . . .
*n

T
. . . . . . . . . . . . . . . . 3.9 ] 10~1 9.1] 10~1 9.4] 10~1 9.9] 10~1 . . . . . .

*) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.6 ] 10~3 5.2] 10~4

gives the cosmological parameters for each of the models. Columns with ““] ÏÏ correspond to MAP, and those with ““] ÏÏNOTES.ÈTable 3
correspond to Planck.
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TABLE 2

FISHER MATRIX 1 p ERROR BARS FOR DIFFERENT COSMOLOGICAL PARAMETERS WHEN BOTH TEMPERATURE AND POLARIZATION ARE INCLUDED

Parameter sCDM` sCDM` T /S \ 0.28` T /S \ 0.1` T /S \ 0.1C )" \ 0.7` Open` OpenC

* ln C2(S) . . . . . . 4.8 ] 10~2 2.4] 10~1 2.8] 10~1 2.4] 10~1 1.0] 10~2 8.3] 10~2 6.5] 10~2 1.2] 10~2
*h . . . . . . . . . . . . 1.6 ] 10~2 5.1] 10~2 5.8] 10~2 5.0] 10~2 3.0] 10~3 3.8] 10~2 1.9] 10~2 1.0] 10~3
*)" . . . . . . . . . . 9.3] 10~2 2.9] 10~1 3.3] 10~1 2.9] 10~1 1.7] 10~2 4.6] 10~2 . . . . . .
*)

b
h2 . . . . . . . 2.8] 10~4 6.1] 10~4 7.1] 10~4 6.2] 10~4 5.7] 10~5 8.9] 10~4 9.5] 10~4 1.1] 10~4

*qri . . . . . . . . . . 2.1] 10~2 2.1] 10~2 2.0] 10~2 2.0] 10~2 5.5] 10~3 2.0] 10~2 3.2] 10~2 3.5] 10~3
*n

s
. . . . . . . . . . . 4.8] 10~3 3.1] 10~2 3.5] 10~1 3.0] 10~2 3.0] 10~3 2.6] 10~2 1.7] 10~2 2.6] 10~3

*T /S . . . . . . . . . . . 2.2 ] 10~1 4.3] 10~1 3.0] 10~1 4.5] 10~2 2.1] 10~1 . . . . . .
*n

T
. . . . . . . . . . . . . . . . 3.9 ] 10~1 8.1] 10~1 1.7] 10~1 7.8] 10~1 . . . . . .

*x
e

. . . . . . . . . . . . . . . . . . . . . . 1.4 ] 10~1 . . . . . . . . .
*) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1 ] 10~3 4.1] 10~4

gives the cosmological parameters for each of the models. Columns with ““] ÏÏ correspond to MAP, and those with ““] ÏÏNOTES.ÈTable 3
correspond to Planck.

thus better determined than the parameters and h)
m
, )

bthemselves, both to about 3% for MAP. It is interesting to
note that it is h3 rather than h2 that is most accu-)

m
)

mrately determined, which reÑects the fact that ISW tends to
break the degeneracy discussed above. However, because
the ISW e†ect itself can be mimicked by a tilt in the spectral
index the degeneracy remains but is shifted to a di†erent
combination of parameters. One sigma standard errors on
the two physically motivated parameters are *()

b
h2)/)

bh2B 3% and The fact that there is a*()
m

h2)/)
m

h2B 5%.
certain degree of degeneracy between the parameters has
already been noted in previous work (e.g., et al.Bond 1994).

Another approximate degeneracy present in the tem-
perature spectra is between the reionization optical depth

and amplitude Reionization uniformly suppressesqri C2(S).the anisotropies from recombination by Onexp ([qri).large angular scales, new anisotropies are generated during
reionization by the modes that have not yet entered the
horizon. The new anisotropies compensate the exp ([qri)suppression, so that there is no suppression of anisotropies
on COBE scales. On small scales, the modes that have
entered the horizon have wavelengths small compared to
the width of the new visibility function and so are sup-
pressed because of cancellations between positive and nega-

FIG. 1.ÈMAP conÐdence contours (68% and 95%) for models in the
six-parameter space (a) and seven-parameter space with T /S added as a
free parameter (b). Parameters are normalized to their value in the under-
lying model denoted with an asterisk (\).

tive contributions along the line of sight and become
negligible. The net result is that on small scales the spec-
trum is suppressed by compared to the largeexp ([2qri)scales. To break the degeneracy between and one hasC2(S) qrito be able to measure the amplitude of the anisotropies on
both large and small scales and this is again limited on large
scales by cosmic variance. Hence, one cannot accurately
determine the two parameters separately, while their com-
bination is much better constrained.C2 exp ([2qri) Figure

shows that indeed the error ellipsoid is very elongated in2
the direction which corresponds*C2/C2[ 0.1*qri/qri\ 0,
to the above combination for qri\ 0.05.

We now allow for one more free parameter, the ratio of
the tensor to scalar quadrupole anisotropy T /S, Ðxing the
tensor spectral index using the consistency relation pre-n

Tdicted by inÑation but not assuming a relationT /S \[7n
Tbetween and The variances for MAP are again sum-n

T
n
s
.

marized in A comparison with the previous caseTable 1.
shows that most variances have increased. Variances for h
and are approximately 5 times larger than before while)"that for has increased by a factor of 6 and that forn

s
)

b
h2

by almost 4. On the other hand, the error bar for remainsqriunchanged. It is instructive to look again at the contour
plots in the and planes shown in The)

m
-h )

b
-h Figure 1b.

degeneracy on individual parameters is signiÐcantly worse
because the large angular scale amplitude can now be
adjusted freely with the new extra degree of freedom, the
tensor-to-scalar ratio T /S. This can therefore compensate
any large-scale ISW term and so the degeneracy between h,

and cannot be broken as easily. However, a com-)", )
bbination of the two parameters is still well constrained as

shown in The degenerate lines are now given byFigure 1.
and with*)

b
/)

b
] 1.66*h/h \ 0 *)

m
/)

m
] 3.0*h/h \ 0,

relative errors and*()
b
h1.66)/)

b
h1.66B 4% *()

m
h3)/

almost unchanged from the six-parameter)
m

h3B 4%,

FIG. 2.ÈConÐdence contours (68% and 95%) in the plane forC2(S)-qrimodels in the six-parameter space described in the text with (dotted lines)
or without (solid lines) polarization information.
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case. On the other hand, for the physically relevant param-
eters and we now have)

b
h2 )

m
h2 *()

b
h2)/)

b
h2B 10%

and which is worse than before. This*()
m

h2)/)
m

h2B 25%,
example indicates how the errors on individual parameters
can change dramatically as we add more parameters, while
certain combinations of them remain almost una†ected.

The output of a minimization run trying to Ðt sCDM
temperature power spectra with models constrained to have

shows how di†erent parameters can be adjusted in)" \ 0.6
order to keep the power spectrum nearly the same. The
minimization program found the model 0.67, 0.6,s7\ (610,
0.03, 0.09, 1.1, 0.68), where the last number now corresponds
to the T /S ratio, as a model almost indistinguishable from
the underlying one. The two models di†er by *s2\ 1.8 and
are shown in It is interesting to analyze how di†er-Figure 3.
ent parameters are adjusted to reproduce the underlying
model. By adding gravity waves and increasing both the
spectral index and the optical depth, the ISW e†ect from the
cosmological constant can be compensated so that it is only
noticeable for the Ðrst couple of The relatively highC

l
Ïs.

amount of tensors (T /S D 0.7) lowers the scalar normal-
ization and thus the height of the Doppler peaks, which is
compensated by the increase in the spectral index to n

s
\

1.1 and the decrease of from 0.25 to 0.18. The latter)
m

h2
moves the matter radiation equality closer to recombi-
nation increasing the height of the peaks. This is the reason
why the degeneracy line is not that of constant as)

m
h2

shows. Changes in change the structure ofFigure 1 )
m

h2
the peaks and this can be compensated by changing other
parameters like the optical depth or the slope of the primor-
dial spectrum. This cannot be achieved across all the spec-
trum so one can expect that the degeneracy will be lifted as
one increases the angular resolution, which is what happens
if Planck speciÐcations are used Note that the(Table 1).
amount of gravity waves introduced to Ðnd the best Ðt does
not follow the relation between and predicted by then

T
n
ssimplest inÑationary models discussed previously : for n

s
\

1.1 no gravity waves are predicted. This explains why the
addition of T /S as a free parameter increases the sizes of

FIG. 3.ÈPower spectra of (a) temperature and (b) polarization for two
models that will be degenerate for MAP if only temperature information is
used. The model with is the result of the minimization relative to)" \ 0.6
the sCDM for models constrained to have Polarization helps to)" \ 0.6.
break this degeneracy.

FIG. 4.ÈHubble diagram for Type Ia supernovae (a) and CDM linear
power spectra (b) for sCDM and the model described in the text.)" \ 0.6

most error bars compared to the six-parameter case.
While the two models shown in have veryFigure 3

similar temperature anisotropy spectra, they make very dif-
ferent astronomical predictions. shows the matterFigure 4
power spectra of the two models. An interesting e†ect is that
the two models are nearly identical on the scale of k \ 0.1 h
Mpc~1, which corresponds to the l rangel D kq0 D 600,
where MAP is very sensitive and gravity waves are unim-
portant. However, the two models di†er signiÐcantly on the
0.01 h Mpc~1 scale, and the e†ective power spectrum shape
parameter ! (e.g., et al. is very di†erent forBardeen 1986)
the two models : 0.42 for the matter-dominated model and
0.25 for the vacuum-dominated model. The current obser-
vational situation is still controversial (e.g., Peacock 1996),
but measurements of the spectrum by the Sloan Digital Sky
Survey (SDSS) should signiÐcantly improve the power spec-
trum determination. The models also make di†erent predic-
tions for cluster abundances : the matter-dominated model
has while the vacuum-dominated model hasp8)

m
0.6 \ 1.2,

Analysis of cluster X-ray temperature andp8)
m
0.6 \ 0.8.

luminosity functions suggests et al.p8 )
m
0.6 \ 0.5 ^ 0.1 (Eke

inconsistent with both of the models in the Ðgure.1996),
These kind of measurements can break some of the degener-
acies in the CMB data.

Observations of Type Ia supernovae at redshifts zD 0.3È
0.6 is another very promising way of measuring cosmo-
logical parameters. This test complements the CMB
constraints because the combination of and that)

m
)"leaves the luminosity distance to a redshift zD 0.3È0.6

unchanged di†ers from the one that leaves the position of
the Doppler peaks unchanged. Roughly speaking, the SN
observations are sensitive to while theq0^ )

m
/2 [ )",

CMB observations are sensitive to the luminosity distance,
which depends on a roughly orthogonal combination,

shows the apparent magnitude vs. red-)
m

] )". Figure 4a
shift plot for supernovae in the two models of TheFigure 3.
analysis in et al. of the Ðrst seven super-Perlmutter (1996)
novae already excludes the model with a high)" \ 0.6
conÐdence. It remains to be seen, however, whether this test
will be free of systematics such as evolutionary e†ects that
have plagued other classical cosmological tests based on the
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luminosity-redshift relation.
Finally, we may also relax the relation between tensor

spectral index and its amplitude, thereby testing the consis-
tency relation of inÑation. For MAP, we studied two sCDM
models, one with T /S \ 0.28 and one with T /S \ 0.1, but
with for Planck we only used the latter model.qri \ 0.1,

summarizes the obtained 1 p limits. A comparisonTable 1
between the T /S \ 0.28 model and previous results for
sCDM with seven parameters shows that the addition of n

Tas a new parameter does not signiÐcantly change the
expected sensitivities to most parameters. The largest
change, as expected, is for the tensor-to-scalar ratio. We
now Ðnd *T /S D 0.7, which means that the consistency
relation will only be poorly tested from the temperature
measurements. If T /S \ 0.1, most error bars areqri \ 0.1
smaller than if T /S \ 0.28, The reason for this isqri\ 0.05.
that the higher value of the optical depth in the underlying
model makes its detection easier and this translates to
smaller error bars on the other parameters. The only excep-
tion is which has signiÐcantly higher error if T /S \ 0.1n

T
,

than if T /S \ 0.28, as expected on the basis of the smaller
contribution of tensor modes to the total anisotropies. A
comparison between the expected MAP and Planck per-
formances for the T /S \ 0.1 model shows that Planck error
bars are signiÐcantly smaller. For h, and the)

b
h2 )"improvement is by a factor of 10È20, while for T /S and C2(S)the improvement is by a factor of 2È3. The limits on andqriremain nearly unchanged, reÑecting the fact that thesen

Tparameters are mostly constrained on large angular scales
that are cosmic variance limited and not noise/resolution
limited. It is for these parameters that polarization informa-
tion helps signiÐcantly, as discussed in the next section.

The accuracy with which certain parameters can be
determined depends not only on the number of parameters
but also on their ““ true ÏÏ value. We tested the sensitivity of
the results by repeating the analysis around a cosmological
constant model 0.65, 0.7, 0.06, 0.1, 1.0, 0.1, 0.0),s8\ (922,
where the last number corresponds to the tensor spectral
index Results for MAP speciÐcations are given inn

T
. Table

The most dramatic change is for the cosmological con-1.
stant, which is a factor of 10 better constrained in this case.
This is because the underlying model has a large ISW e†ect,
which increases the anisotropies at small l. This cannot be
mimicked by adjusting the tensors, optical depth and scalar
slope as can be done if the slope of the underlying model is
Ñat, such as for sCDM model in Because of theFigure 3.
degeneracy between and h, a better constraint on the)"former will also improve the latter, as shown in Table 1.
Similarly, because a change in a†ects T /S, and on)" qri n

slarge scales, the limits on these parameters will also change.
On the other hand, errors on and do not)

b
h2, C2(S) n

TsigniÐcantly change. This example clearly shows that the
e†ects of the underlying model can be rather signiÐcant for
certain parameters, so one has to be careful in quoting the
numbers without specifying the ““ true ÏÏ parameters of the
underlying model as well.

So far we have only discussed Ñat cosmological models.
CMBFAST can compute open cosmological models as well,
and we will now address the question of how well curvature
can be determined using temperature data. We consider
models in a six-parameter space h, ),s6\ (C2(S), )

b
, qri, n

s
)

with no gravity waves and where so that)" \ 0, )\)
m
.

We will consider as the underlying model 0.65,s6\ (1122,
0.4, 0.06, 0.05, 1.0). Fisher matrix results are displayed in

Within this family of models ) can be determinedTable 1.
very precisely by both MAP and Planck due to its e†ect on
the position of the Doppler peaks. This conclusion changes
drastically if we also allow cosmological constant, in which
case Both ) and change the angular size)\)

m
] )". )"of the sound horizon at recombination so it is possible to

change the two parameters without changing the angular
size, hence the two parameters will be nearly degenerate in
general & Dave We will discuss this degener-(Huey 1997).
acy in greater detail in the next section, but we can already
say that including both parameters in the analysis increases
the error bar on the curvature dramatically.

To summarize our results so far, keeping in mind that the
precise numbers depend on the underlying model and the
number of parameters being extracted, we may reasonably
expect that using temperature information only MAP
(Planck) will be able to achieve accuracies of *C2(S)/C2(S)D0.5(0.1), *h D 0.1(0.006), *)" D 0.6(0.03), *()

b
h2)/

)
b
h2D 0.1(0.008), *qriD 0.1(0.1), *n

s
D 0.07(0.006),

*(T /S) D 0.7(0.3) and It is also worth empha-*n
T

D 1(1).
sizing that there are combinations of the parameters that
are very well constrained, e.g., and*()

m
h3)/)

m
h3D 0.04

For the family of models with*(C2(S))/C2(S)[ 2*qriD 0.05.
curvature but no cosmological constant, MAP (Planck) will
be able to achieve *)D 0.007 (0.0006), determining the
curvature of the universe with an impressive accuracy.

These results agree qualitatively, but not quantitatively,
with those in et al. The discrepancy is mostJungman (1996).
signiÐcant for h and for which the error barsC2(S), )",
obtained here are signiÐcantly larger. The limit we obtain
for is several times smaller than that in et al.)

b
h2 Jungman
while for the rest of the parameters the results agree.(1996),

The use of di†erent codes for computing model predictions
is probably the main cause of discrepancies and emphasizes
the need to use high accuracy computational codes when
performing this type of analysis.

4. CONSTRAINTS FROM TEMPERATURE AND

POLARIZATION DATA

In this section, we consider the constraints on cosmo-
logical parameters that could be obtained when both tem-
perature and polarization data are used. To generate
polarization, two conditions have to be satisÐed : photons
need to scatter (Thomson scattering has a polarization-
dependent scattering cross section), and the angular dis-
tribution of the photon temperature must have a nonzero
quadrupole moment. Tight coupling between photons and
electrons prior to recombination makes the photon tem-
perature distribution nearly isotropic and the generated
polarization very small, especially on scales larger than the
width of the last scattering surface. For this reason polariza-
tion has not been considered previously as being important
for the determination of cosmological parameters.
However, early reionization increases the polarization
amplitude on large angular scales in a way that cannot be
mimicked with variations in other parameters (Zaldarriaga

The reason for this is that after recombination the1996).
quadrupole moment starts to grow due to the photon free
streaming. If there is an early reionization with sufficient
optical depth, then the new scatterings can transform this
angular anisotropy into polarization. This e†ect dominates
on the angular scale of the horizon when reionization
occurs. It will produce a peak in the polarization power
spectrum with an amplitude proportional to the optical
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depth, and a position, where is the redshiftqri, lD 2zri1@2, zriof reionization.
We Ðrst consider the six-parameter space described in the

previous section. contains the 1 p errors on theTable 2
parameters for MAP speciÐcations. Compared to the tem-
perature case, the errors improve particularly on the ampli-
tude, the reionization optical depth and the spectral index

shows the conÐdence contours for andn
s
. Figure 2 C2(S) qriwith and without polarization. One can see from this Ðgure

how the information in the polarization breaks the degener-
acy between the two parameters by reducing the error on

but it does not really improve their nondegenerate com-qri,bination, which is well determined from the temperature
data alone.

We now allow for one more parameter, T /S. Again,
polarization improves the errors on most of the parameters
by a factor of 2 compared to the no-polarization case, as
summarized in The optical depth and the ampli-Table 2.
tude are better constrained for the same reason as for the
six-parameter model discussed above. Without polariza-
tion, the extra freedom allowed by the gravity waves made
it possible to compensate the changes on large angular
scales caused by the ISW, while the amplitude of small-scale
Ñuctuations could be adjusted by changing the optical
depth and the spectral index. Changing also changes then

s
,

slope on large angular scales compensating the change
caused by the ISW. When polarization is included, a change
in the optical depth produces a large e†ect in the spectrum:
see the model with in which has)" \ 0.6 Figure 2, qri\ 0.1.
The di†erence in s2 between the two models in Figure 2
becomes 10 instead of 1.8.

shows how the conÐdence contours in theFigure 5 )
m
-h

and planes are improved by including polarization.)
b
-h

The 95% conÐdence contour corresponds roughly to the
68% conÐdence contour that could be obtained from tem-
perature information alone, while the orientation of the
error ellipsoids does not change. As before the well-
determined combination is constrained from the tem-
perature data alone. The constraints on tensor parameters
also improve when polarization is included. Again, this

FIG. 5.ÈConÐdence contours (68% and 95%) in the (a) plane and)
b
-h

(b) plane for models in the seven-parameter space described in the)
m
-h

text with or without using polarization information.

results from the better sensitivity to the ionization history,
which is partially degenerate with the tensor contribution,
as discussed in the previous section. The B channel to which
only gravity waves contribute is not providing additional
information in the model with T /S \ 0.28 for MAP noise
levels. Even in a model with T /S \ 1 the B channel does not
provide additional information in the case of MAP.

With its very sensitive bolometers, Planck has the poten-
tial to detect the B channel polarization produced by tensor
modes : the B channel provides a signature free of scalar
mode contribution & Zaldarriaga(Seljak 1997 ;

et al. However, it is important toKamionkowski 1997).
realize that even though for a model with T /S \ 1 only 20%
of the sensitivity of Planck to tensor modes is coming from
the B channel. Planck can detected primordial gravity
waves in models with T /S D 0.3 in the B channel alone. If
the bolometer sensitivities are improved so that w

P
~1 \

(0.015 kK)2, then Planck can detect gravity waves in the B
channel even if T /S D 0.1. We also analyzed the eight-
parameter models presented in gives theTable 2. Table 3
cosmological parameters for each of the models. For the
models with T /S \ 0.28 and T /S \ 0.1, MAP will not have
sufficient sensitivity to test the inÑationary consistency rela-
tion : Planck should have sufficient sensitivityT /S \[7n

T
.

to determine with an error of 0.2 if T /S D 0.1, whichn
Twould allow a reasonable test of the consistency relation.

Polarization is helping to constrain most of the param-
eters mainly by better constraining and thus removingqrisome of its degeneracies with other parameters. Planck will
be able to determine not only the total optical depth
through the amplitude of the reionization peak but also the
ionization fraction, through its position. To investigatex

e
,

this, we assumed that the universe reionized instantane-
ously at and that remains constant but di†erent from 1zri x

efor The results given in indicate that canz\ zri). Table 2 x
ebe determined with an accuracy of 15%. This together with

the optical depth will be an important test of galaxy forma-
tion models, which at the moment are consistent with wildly
di†erent ionization histories and cannot be probed other-
wise & Loeb & Ostriker We(Haiman 1996 ; Gnedin 1996).
also investigated the modiÐed Planck design, where both
polarization states in bolometers are measured. An
improved polarization noise of kK)2 forw

P
~1 \ (0.015

Planck will shrink the error bars presented in by anTable 2
additional 6%È20%. Error bars on and are)" )

b
h2

reduced by 20%, those in h, and 10%È15% and forqri, x
eT /S, and the improvement is approximately 6%.n

T
, n

sWe can examine in more detail how polarization helps to
constrain di†erent cosmological parameters by investigat-
ing the angular scales in the polarization power spectra that

TABLE 3

COSMOLOGICAL PARAMETERS FOR EACH OF THE MODELS

Parameter sCDM T /S \ 0.28 T /S \ 0.1 )" \ 0.7 Open

h . . . . . . . . . . 0.5 0.5 0.5 0.65 0.65
)" . . . . . . . . 0.0 0.0 0.0 0.7 0.0
)

b
. . . . . . . . . 0.05 0.05 0.05 0.06 0.06

qri . . . . . . . . . 0.05 0.05 0.1 0.1 0.05
n
s

. . . . . . . . . 1.0 0.96 0.99 1.0 1.0
T /S . . . . . . . 0.0 0.28 0.1 0.0 0.0
n
T

. . . . . . . . . . . . 0.04 0.01 . . . . . .
) . . . . . . . . . . 1.0 1.0 1.0 1.0 0.4

NOTE.ÈCosmological parameters for the models we studied. All
models were normalized to COBE.
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FIG. 6.ÈRelative improvement in the parameter estimation as a func-
tion of the maximum l up to which polarization information is used for the
MAP mission.

contribute the most information. To do so, we will consider
the T /S \ 0.1 model and perform a Fisher matrix analysis
that includes all the temperature information, but polariza-
tion information only up to maximum l. Figures (MAP)6
and (Planck) show the increase in accuracy as a function7
of maximum l for various parameters. In the case of Planck,
we added the ionization fraction after reionization as
another parameter. Most of the increase in information is
coming from the low l portion of polarization spectrum,
primarily from the peak produced by reionization around
lD 10. The Ðrst Doppler peak in the polarization spectra at
lD 100 explains the second increase in information in the
MAP case. The better noise properties and resolution of
Planck help to reach the higher l polarization Doppler
peaks, which add additional information for constraining h,

and For Planck, on the other hand, some of the)
b
h2 )".

degeneracies will already be lifted in the temperature data

FIG. 7.ÈSame as but for Planck mission parametersFig. 6

alone and so less is gained when polarization data is used to
constrain the ionization history.

An interesting question that we can address with the
methods developed here is to what extent is one willing to
sacriÐce the sensitivity in temperature to gain sensitivity in
polarization. A speciÐc example is the 140 GHz channel in
Planck, where the current proposal is to have four bolom-
eters with no polarization sensitivity and eight bolometers,
which are polarization sensitive so that they transmit only
one polarization state while the other is being thrown away.
One can compare the results of the Fisher information
matrix analysis for this case with the one in which all 12
detectors have only temperature sensitivity, but with better
overall noise because no photons are being thrown away.
The results in this case for the eight-parameter model with
T /S \ 0.1 are 10%È20% better than the results given in the
Ðfth column of These results should be comparedTable 1.
to the same case with polarization in The latterTable 2.
case is clearly better for all the parameters, especially for
those that are degenerate with reionization parameters,
where the improvement can be quite dramatic. Based on
this example it seems clear that it is worth including polar-
ization sensitivity in the bolometer detectors, even at the
expense of some sensitivity in the temperature. However, it
remains to be seen whether such small levels of polarization
can be separated from the foregrounds.

The Fisher matrix results for the six-parameter open
models are presented in As expected polarizationTable 2.
improved the constraints on and the most. So far weC2(S) qrihave explicitly left out of the analysis ; as discussed in)" ° 3
the positions of the peaks depends on both ) and and it)"is possible to change the two parameters without changing
the spectrum. For any given value of we may adjust h)

mand to keep and constant, so that acoustic)
b

)
b
h2 )

m
h2

oscillations will not change. If we then in addition adjust
also to match the angular size of the acoustic features,)"then the power spectra for two models with di†erent under-
lying parameters remain almost unchanged. As mentioned
in the previous section the e†ect of on the positions of)"the peaks is rather weak around and the peak posi-)

m
\ 1,

tions are mostly sensitive to the curvature ). The lines of
constant the inverse of the angular size of acousticlpeak,horizon, roughly coincide with those of constant ) near Ñat
models, making it possible to weigh the universe using the
position of the peaks. In the more general case, it is not )
that can be determined from the CMB observations. but a
particular combination of and that leaves)

m
)" lpeakunchanged. shows conÐdence contours in theFigure 8 )

m
-

plane. The contours approximately agree with the con-)"stant (dotted) line, which around coincides withlpeak )
m

\ 1
the constant ) (dashed) line but not around The)

m
\ 0.4.

squares and triangles correspond to the minima found by
the minimization routine when constrained to move in sub-
spaces of constant ) and agree with the ellipsoids from the
Fisher matrix approach.

shows the temperature and polarization spectraFigure 9
for the basis model and one found by the minimization
routine with 0.87, 0.6, 0.033, 0.051, 1.0, 0.39),s0 \ (1495,
where the last number is now This model di†ers from)".
the basis model by a s2\ 2 and so is practically indistin-
guishable from it. Only on large angular scales do the two
models di†er somewhat, but cosmic variance prevents an
accurate separation between the two. In this case, polariza-
tion does not help to break the degeneracy. The agreement
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FIG. 8.ÈConÐdence contours (68% and 95%) in the plane for)"-)
mopen models in the seven-parameter space described in the text. The dots

show the positions of the s2 minima found by the minimization routine
when constrained to a subspace of constant ).

on the large angular scales is better for polarization than for
temperature because the former does not have a contribu-
tion from the ISW e†ect, which is the only e†ect that can
break this degeneracy. When both ) and are included in)"the analysis the 1 p error bars for both MAP and Planck
increase. The greatest change is for the error bars on the
curvature that now becomes *)\ 0.1 for both MAP and
Planck. Note that improving the angular resolution does
not help to break the degeneracy, which is why MAP and
Planck results are similar. If one is willing to allow for both
cosmological constant and curvature, then there is a
genuine degeneracy present in the microwave data and con-

FIG. 9.ÈPower spectra for (a) temperature and (b) polarization. The
model with )\ 0.6, is the output of the minimization code when)" \ 0.4
made to Ðt the )\ 0.4, model. Temperature and polarization data)" \ 0
were used for this Ðt. the two models di†er in s2 by 2.

straints from other cosmological probes will be needed to
break this degeneracy.

5. SHAPE OF THE LIKELIHOOD FUNCTION, PRIORS, AND

GRAVITATIONAL LENSING

As mentioned in the Fisher information matrix° 2,
approach used so far assumes that the likelihood function is
Gaussian around the maximum. In previous work

et al. this assumption was tested by calcu-(Jungman 1996),
lating the likelihood along several directions in parameter
space. This approach could miss potential problems in
other directions, particularly when there are degeneracies
between parameters. We will further test the Gaussian
assumption by investigating the shape of the likelihood
function varying one parameter at a time but marginalizing
over the others. We Ðx the relevant parameter and let the
minimization routine vary all the others in its search for the
smallest s2. We then repeat the procedure for a di†erent
value of this parameter, mapping the shape of the likelihood
function around the minimum. The minimization routine is
exploring parameter space in all but one direction. These
results may be compared with the prediction of the Fisher
matrix, which follows a parabola in the parameter versus
log-likelihood plot. This comparison tests the Gaussianity
of the likelihood function in one direction of parameter
space.

The panels in show two examples of the resultsFigure 10
of this procedure. In most cases, the agreement between the
Fisher matrix results and those of the minimization code is
very good, especially very near the minimum (i.e., *s2[ 2).
As illustrated in the panel, there are cases when s2)

bincreased more rapidly than predicted by the Fisher matrix.
This is caused by the requirements that ), andqri, )", )

bare all positive, which can be enforced easily in the mini-

FIG. 10.ÈComparison between the Fisher matrix expansion of the
likelihood around the minimum (solid lines) and direct minimization for
two di†erent cosmological parameters. In most cases the agreement near
the minimum is good. In the upper panel full triangles (crosses) correspond
to Ðts of sCDM within the six-parameter family described in the text,
including (not including) the e†ects of gravitational lensing. The lower
curve belongs to the T /S \ 0.28 model in the eight-parameter space. In the
lower panel, the prior is reached for sCDM when which)" [ 0 )

b
[ 0.05,

is why the minimization results di†er from the Fisher matrix results.
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mization code. Of course, such priors are most relevant if
the underlying model is very close to the boundary enforced
by the prior and are only important on one side of the
parameter space. The importance of this e†ect therefore
depends on the underlying model. If the amount of informa-
tion in the CMB data on a given parameter is sufficiently
high, then the prior will have only a small e†ect near the
maximum of the likelihood function.

We also investigated the e†ect of gravitational lensing on
the parameter reconstruction. As shown in Seljak (1996a),
gravitational lensing smears somewhat the acoustic oscil-
lations but leaves the overall shape of the power spectrum
unchanged. The amplitude of the e†ect depends on the
power spectrum of density Ñuctuations. Because the
CMBFAST output consists of both CMB and density
power spectra one can use them as an input for the calcu-
lation of the weak lensing e†ect following the method in

The gravitational lensing e†ect is treatedSeljak (1996a).
self-consistently by normalizing the power spectrum for
each model to COBE. We Ðnd that the addition of gravita-
tional lensing to the calculation does not appreciably
change the expected sensitivity to di†erent parameters that
will be attained with the future CMB experiments. This
conclusion again depends somewhat on the underlying
model, but even for sCDM where COBE normalization pre-
dicts 2 times larger small-scale normalization than required
by the cluster abundance data, the lensing e†ect is barely
noticeable in the error contours for various parameters.

6. CONCLUSIONS

In this paper, we have analyzed how accurately cosmo-
logical parameters can be extracted from the CMB mea-
surements by two future satellite missions. Our work di†ers
from previous studies on this subject in that we use a more
accurate computational code for calculating the theoretical
spectra and we include the additional information that is
present in the polarization of the microwave background.
We also investigate how the results change if we vary the
number of parameters to be modeled or the underlying
model around which the parameters are estimated. Both of
these variations can have a large e†ect on the claimed accu-
racies of certain parameters, so the numbers presented here
should not be used as Ðrm numbers but more as typical
values. Of course, once the underlying model is revealed to
us by the observations then these estimates can be made
more accurate. The issue of variation of the errors on the
number of parameters, however, remains, and results will
always depend to some extent on the prior belief. If, for
example, one believes that gravity waves are not generated
in inÑationary models (e.g., or that they areLyth 1997)
related to the scalar perturbations through a simple relation
(e.g., then the MAP errors on most param-Turner 1993),
eters shrink by a factor of 2. Similarly, one may decide that
models with both curvature and cosmological constant are
not likely, which removes the only inherent degeneracy
present in the CMB data.

Using temperature data alone, MAP should be able to
make accurate determinations (better than 10%) of the
scalar amplitude the baryon/photon ratio the(p8), ()

b
h2),

matter content the power spectrum slope and()
m

h2), (n
s
)

the angular diameter distance to the surface of last scat-
tering (a combination of ) and If we restrict ourselves)").
to models with no gravity wave content, then MAP should
also be able to make accurate determinations of the)",

Hubble constant and the optical depth, However, inqri.more general models that include gravity wave amplitude
and slope as additional parameters, the degeneracies
between these parameters are large and they cannot be
accurately determined. Several other measurements of the
CMB anisotropies from the ground and from balloons are
now in progress and very accurate results are likely to be
available by the time MAP Ñies. This additional informa-
tion will help constrain the models further, especially deter-
minations of the power spectrum at the smaller angular
scales. Astronomical data can signiÐcantly reduce these
degeneracies. The two nearly degenerate models, sCDM
and a tilted vacuum-dominated model shown in()" \ 0.6)

can be distinguished already by current determi-Figure 2
nations of or by measurements of the shape param-p8)0.6,
eter ! in the galaxy power spectrum, or by measurements of
the distance-magnitude relationship with Type Ia super-
novae.

MAPÏs measurements of polarization will signiÐcantly
enhance its scientiÐc return. These measurements will accu-
rately determine the optical depth between the present and
the surface of last scatter. This will not only probe star
formation during the ““ dark ages ÏÏ (5 \ z\ 1300) but will
also enable accurate determination of the Hubble constant
and help place interesting constraints on in models with)"tensor slope and amplitude as free parameters.

PlanckÏs higher sensitivity and smaller angular resolution
will enable further improvements in the parameter determi-
nation. Particularly noteworthy is its ability to constrain )"to better than 5% and the Hubble constant to better than
1% even in the most general model considered here. The
proposed addition of polarization sensitive bolometer chan-
nels to Planck signiÐcantly enhances its science return.
Planck should be able to measure the ionization history of
the early universe, thus studying primordial star formation.
Sensitive polarization measurements should enable Planck
to determine the amplitude and slope of the gravity wave
spectrum. This is particularly exciting as it directly tests the
predicted tensor/scalar relations in the inÑationary theory
and is a probe of Planck scale physics. The primordial
gravity wave contribution can at present only be measured
through the CMB observations. One may therefore ask
how well Planck can determine T /S assuming that other
cosmological parameters are perfectly known by combining
CMB and other astronomical data. The answer sensitively
depends on reionization optical depth. Without reioniza-
tion, T /S D 0.1 can be detected, while with thisqri\ 0.1
number drops down to T /S D 0.02. The equivalent number
without polarization information is 0.2, regardless of optical
depth. Improvements in sensitivity will further improve
these numbers, particularly in the B polarization channel,
which is not cosmic variance limited in the sense that
tensors cannot be confused with scalars. A detection of a B
component would mean a model-independent detection of
a stochastic background of gravitational waves or vector
modes & Zaldarriaga(Seljak 1997).

The most exciting science return from polarization mea-
surements come from measurements at large angular scales
(see Figs. and These measurements can only be made6 7).
from satellites, since systematic e†ects will swamp balloons
and ground-based experiments on these scales. The low l
measurements enable determinations of the optical depth
and the ionization history of the universe and may lead to
the detection of gravity waves from the early universe. Both
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foregrounds and systematic e†ects may swamp the weak
polarization signal, even in space missions, thus it is impor-
tant that the satellite experiment teams adopt scan stra-
tegies and frequency coverages that can minimize
systematics and foregrounds at large angles.

We explored the question of how priors such as positivity
of certain parameters or constraints from other cosmo-
logical probes help reduce the uncertainties from the CMB
data alone. For this purpose, we compared the predictions
from the Fisher information matrix with those of the brute-
force minimization, which allows the easy incorporation of
inequality priors. As expected, we Ðnd that positivity
changes the error estimates only on the parameters that are
not well constrained by the CMB data. On the other hand,
using some additional constraints such as the limits on the
Hubble constant, age of the universe, dark matter power
spectrum or measurements from Type Ia supernovae canq0signiÐcantly reduce the error estimates because the degener-
acies present in these cosmological tests are typically di†er-
ent from those present in the CMB data. The minimization
approach also allows testing the assumption that the log-
likelihood is well described by a quadratic around the
minimum, which is implicit in the Fisher matrix approach.
We Ðnd that this is a good approximation close to the
minimum, with no nearby secondary minima that could be

confused with the global one. Finally, we also tested the
e†ect of gravitational lensing on the reconstruction of
parameters and found that its e†ect on the shape of the
likelihood function can be neglected.

In summary, future CMB data will provide us with an
unprecedented amount of information in the form of tem-
perature and polarization power spectra. Provided that the
true cosmological model belongs to the class of models
studied here these data will enable us to constrain several
combinations of cosmological parameters with an exquisite
accuracy. While some degeneracies between the cosmo-
logical parameters do exist, and in principle do not allow
some of them to be accurately determined individually,
these can be removed by including other cosmological con-
straints. Some of these degeneracies belong to contrived
cosmological models, which may not survive when other
considerations are included. The microwave background is
at present our best hope for an accurate determination of
classical cosmological parameters.

We would like to thank C. Bennett, M. Kamionkowski
and M. Tegmark for helpful comments. M. Z. would like to
thank the hospitality of the Institute for Advance Study,
where the Ðnal part of this work was performed.
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