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ABSTRACT
We describe a simple, kinematic model for a dynamo operating in the vicinity of the interface between

the convective and radiative portions of the solar interior. The model dynamo resides within a Cartesian
domain, partioned into an upper, convective half and lower, radiative half, with the magnetic di†usivity
g of the former region assumed to exceed that of the latter The Ñuid motions that constitute the(g2) (g1).a-e†ect are conÐned to a thin, horizontal layer located entirely within the convective half of the domain ;
the vertical shear is nonzero only within a second, nonoverlapping layer contained inside the radiative
half of the domain. We derive and solve a dispersion relation that describes horizontally propagating
dynamo waves. For sufficiently large values of a parameter analogous to the dynamo number of conven-
tional models, growing modes can be found for any ratio of the upper and lower magnetic di†usivities.
However, unlike kinematic models in which the shear and a-e†ect are uniformly distributed throughout
the same volume, the present model has wavelike solutions that grow in time only for a Ðnite range of
horizontal wavenumbers.

An additional consequence of the assumed dynamo spatial structure is that the strength of the azi-
muthal magnetic Ðeld at the location of the a-e†ect layer is reduced relative to the azimuthal Ðeld
strength at the shear layer. When the jump in g occurs close to the a-e†ect layer, it is found that over
one period of the dynamoÏs operation, the ratio of the maximum strengths of the azimuthal Ðelds at
these two positions can vary as the ratio of the magnetic di†usivities.(g1/g2)
Subject headings : MHD È methods : analytical È Sun: interior È Sun: magnetic Ðelds

1. INTRODUCTION

One of the principal goals of solar physics is to obtain a
quantitative understanding of the origin and nature of the
activity which is observed to occur throughout the SunÏs
surface layers and atmosphere. A notable achievement of
solar physics during the past two decades has been the
recognition of the fact that there is a close relationship
between such activity and magnetism. The SunÏs magnetic
Ðeld not only structures emitting regions within the atmo-
sphere but also apparently contributes to their energy
balance. It does so by guiding and/or storing mechanical
energy from deeper atmospheric layers, and by direct
heating through the rapid dissipation of magnetic energy at
sites of Ðeld line reconnection (see, e.g., andParker 1994a,
references therein).

The time-dependent magnetic Ðeld of the Sun is presum-
ably the product of a hydromagnetic dynamo. According to
the description provided by mean-Ðeld electrodynamics (see

below), rotation is of crucial importance to the oper-° 2
ation of the solar dynamo. The shear Ñow Ðeld that results
from the internal di†erential rotation of the Sun allows for
the inductive conversion of poloidal magnetic Ðelds to
toroidal magnetic Ðelds. Through the action of the Coriolis
force, the overall solar rotation endows the near-radial Ñuid
motions associated with convection and convective over-
shoot with the helicity required to regenerate poloidal Ðelds
from toroidal Ðelds (the so-called a-e†ect). Together these
complementary magnetohydrodynamical (MHD) processes
comprise the dynamo mechanism thought to be responsible
for the observed behavior of the SunÏs magnetic Ðeld over
the course of the 22 yr solar magnetic activity cycle.

1 The National Center for Atmospheric Research is sponsored by the
National Science Foundation.

Although the precise position of the dynamo domain
within the Sun is uncertain, several independent lines of
evidence now point to a location immediately below the
interface between the convective and radiative portions of
the solar interior (r B 0.70 Some of the support for thisR

_
).

hypothesis comes from the interpretation of helio-
seismological observations that pertain to the rotational
state of the outer 25%È30% of the SunÏs radius (see, e.g.,

et al. and references therein).Brown 1989 ; Gough 1991
Among other things, measurements and analyses of p-mode
frequency splittings indicate that the pattern of di†erential
rotation with latitude deduced from observations of the
solar surface persists along radii to the bottom of the con-
vection zone. Just beneath the base of the convective
envelope, the angular velocity of material at polar latitudes
increases slightly with depth, while that of equatorial
material undergoes a decrease of similar magnitude. At still
greater depths, the angular velocities of the poles and
equator approach a common value ; by the time a depth
r B 0.65 has been attained, uniform rotation at a rateR

_intermediate between the surface rotation of these regions
prevails Schou, & Thompson Hence, it(Tomczyk, 1995).
would appear that only within a narrow layer (thickness

in the vicinity of the interface does the radial[0.1 R
_

)
gradient of the angular velocity ) have a value di†erent
from zero (see, e.g., Morrow, & DeLucaGillman, 1989).
Since the shearing motions implied by this quantity contrib-
ute to the production of toroidal Ðeld from poloidal Ðeld, it
must be concluded that at least some portion of the dynamo
domain lies within the shell-like volume having L)/Lr \/ 0.

An additional indication that the dynamo might be situ-
ated in the stable, overshoot region underlying the convec-
tion zone is derived from studies of bipolar magnetic
regions (BMRs) in the photospheric layers of the Sun. It is
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generaly believed that such features represent looplike
upwellings through the visible solar surface of otherwise
submerged, primarily azimuthally directed magnetic Ðelds
(see, e.g., If the origin of these Ñux tubes isParker 1994b).
the shearing layer located near the bottom of the convection
zone, then their principal means of transport to the photo-
sphere is magnetic buoyancy. In this regard, recent work

Fisher, & DeLuca &(Fan, 1993 ; DÏSilva 1993 ; DÏSilva
Choudhuri & Howard1993 ; DÏSilva 1994 ; Caligari,
Moreno-Insertis, & Schu� ssler & Fisher has1995 ; Fan 1996)
shown that the observed behaviors of BMR emergence lati-
tudes and tilts (i.e., the angle between the line joining the
magnetic footpoints of the bipole and the latitude of
emergence), when interpreted in light of models for buoy-
antly rising Ñux tubes, provide tight constraints on the
strength of azimuthal Ðelds in the vicinity of the dynamo
region. For Ðelds smaller than about 6 ] 104 G, the
dynamical state of a buoyant Ñux bundle is dominated by
the Coriolis force, leading to tube motion which is prefer-
entially parallel to the SunÏs rotation axis, and eruption at
high latitudes with tilts that are not in agreement with
observations. Alternatively, if the Ðeld is stronger than
about 1.6 ] 105 G, the dominance of the magnetic bouy-
ancy force leads to Ñux tube motion in the radial direction,
but permits only Coriolis-produced tilts that are smaller in
magnitude than observed values. Taken together, then,
these results suggest that reasonable accord with observ-
ations can be achieved if the strength of the azimuthal Ðeld
at the convection zone base is of the order of 105 G.

The retention and ampliÐcation of such strong Ðelds is
problematical if the solar dynamo functions entirely within
the nearly adiabatically stratiÐed convection zone. It is well
known (see, e.g., that a Ñux tube immersed inParker 1975)
this environment would be brought to the surface of the Sun
by magnetic buoyancy in a time that is far shorter than the
duration of the solar cycle. However, detailed investigations
of the dynamical stability of toroidal Ñux distributions
inside the Sun indicate that Ðelds with strengths as high as
105 G can be stored within the subadiabatic overshoot layer
for periods of time much longer than the length of the solar
cycle et al. In view of this, it might be(Schu� ssler 1994).
anticipated that a physically consistent, thin-layer dynamo
model could be developed in which the small-scale e†ects
required to regenerate the mean magnetic Ðeld are supplied
by the helical Ñuid motions associated with overshooting
convective elements. Yet a fundamental obstacle which
must be surmounted in pursuit of this objective is the fact
that the inferred azimuthal Ðeld strengths of 105 G are more
than an order of magnitude greater than equipartition
values based on the kinetic energy of the turbulent convec-
tive Ñuid motions As a result, they must(Parker 1993).
impede the turbulent Ñows that give rise to the a-e†ect and
enhanced resistive di†usion, and thereby hinder the oper-
ation of the dynamo.

These difficulties have their origin in the presumption
that the generation of strong toroidal Ðelds by Ñuid shear
and the creation of new poloidal Ðelds by the a-e†ect take
place within the same region. As noted by Parker (1993),
this situation can be circumvented by considering an inter-
face dynamo in which the large-scale shear and a-e†ect
occupy separate and distinct portions of the domain. The
evidence summarized in the preceding paragraphs lends
credibility to such a representation, suggesting that the site
of azimuthal Ðeld production is below the core-envelope

interface while the a-e†ect is conÐned to the region above.
For a dynamo conÐgured in this way, showedParker (1993)
that the ratio of the maximum values of the azimuthal Ðelds
in the two regions varies inversely as the square root of the
ratio of their respective magnetic di†usivities. Since the dif-
fusivity of material located above the interface is likely to be
greater than that of the material below, the magnitude of
the azimuthal Ðeld in the upper region is reduced relative to
that of the Ðeld in the lower region. Because of this behav-
ior, for suitably chosen di†usivity ratios, it is possible to
construct solutions with strong azimuthal Ðelds below the
interface and subequipartition azimuthal Ðelds above.

In the present paper, we study the properties of another
such dynamo model, one in which the component physical
processes are relegated to respective halves of a Cartesian
domain that is partitioned by a surface the location of
which coincides with the convection zone bottom. Beneath
this surface, the assumed presence of a shear Ñow in the
stably stratiÐed material leads to the existence of a signiÐ-
cant azimuthal Ðeld (i.e., a magnetic Ðeld component in the
Ñow direction), along with a commensurably reduced mag-
netic di†usivity and a strongly inhibited a-e†ect. Above the
surface, the absence of a shear in the convectively unstable
Ñuid medium implies normal operation of the a-e†ect, a
substantial turbulent contribution to the di†usivity, and a
weak azimuthal magnetic Ðeld component. The theoretical
and computational aspects of the model are described in

as are the speciÐc parameterizations adopted for the° 2,
distributions of shear, a-e†ect, and magnetic di†usivity
within the dynamo region. Our model di†ers from that of

in that the Ðrst two of these quantities are notParker (1993)
uniform inside their respective halves of the domain, but
instead are strongly concentrated in the neighborhood of
the interface. Such a modiÐcation of ParkerÏs model is moti-
vated by recent analyses of helioseismic observations indi-
cating that the radial gradient of the internal solar angular
velocity is nonzero only within a thin layer located below
the bottom of the convection zone (Kosovichev 1996 ;

et al. This result suggests that the pro-Charbonneau 1997).
duction of a toroidal Ðeld component by the action of a
shear Ñow occurs in a location that is separated from the
site of poloidal Ðeld regeneration by the a-e†ect. The
dynamo dispersion relation is presented and solved in ° 3,
and the physical properties of propagating wave modes cor-
responding to a wide range of input parameter values are
discussed. In we describe the temporal and spatial evol-° 4,
ution of the Ðeld amplitudes of oscillatory dynamo wave
solutions, obtained for a case in which the upper and lower
portions of the dynamo domain are characterized by mag-
netic di†usivities with very di†erent magnitudes. In the con-
cluding section of the paper we discuss the application(° 5),
of these results to the interpretation of the inferred proper-
ties of the solar dynamo.

2. MODEL

As discussed in the preceding section, we seek a quanti-
tative description of a hydromagnetic dynamo, operating in
the vicinity of the interface between the bottom of the solar
convective envelope and the underlying radiative interior.
For simplicity, we assume that such a description can be
formulated within the framework of mean-Ðeld electro-
dynamics and restrict our attention to a kinematic dynamo
of the au-type (see, e.g., andMo†att 1978 ; Parker 1979,
references therein ; Because of turbulent contri-Stix 1989).
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butions to the transport properties of the material in con-
vectively unstable regions, we anticipate that the Ñuid layers
located above and below the interfacial surface will be char-
acterized by magnetic di†usivities with quite di†erent mag-
nitudes. Moreover, for the reasons presented in we do° 1,
not consider a dynamo in which the a-e†ect and Ñuid veloc-
ity shear are co-spatial and uniformly distributed through-
out the domain. Instead, we suppose that the generation of
toroidal Ðeld by di†erential rotation and the generation of
poloidal Ðeld by the a-e†ect take place in separate, distinct
portions of the domain. In view of these considerations, and
in an e†ort to keep the subsequent analysis tractable while
retaining as much of the essential physics as possible, we
adopt the model depicted schematically in Figure 1.

The task of determining the operating modes of the
dynamo is simpliÐed considerably if a two-dimensional,
retangular slab is the appropriate geometrical description of
the dynamo domain. In the Sun, such an approximation is
justiÐed if the processes contributing to the functioning of
the dynamo are spatially conÐned to a thin layer the radial
extent of which about the interface is small compared to the
radius of the interface itself. We assume this to be the case,
and erect a local Cartesian coordinate system (x, y, z) with
axes oriented in such a way that the directions of increasing
x, y, and z coincide with the directions in which the spher-
ical polar coordinates h, /, and r, respectively, increase (see

The mean, large-scale magnetic Ðeld is taken to beFig. 1).
independent of the coordinate y (i.e., axisymmetric), and is
conveniently represented as the sum of a poloidal com-
ponent

B
P
\ B

x
(x, z, t)e

x
] B

z
(x, z, t)e

z
, (1)

and a toroidal component

B
T

\ B(x, z, t)e
y

. (2)

In equations and the time (t) dependence of the Ðeld(1) (2),
components has been explicitly noted, and the quantities e

x
,

and are unit vectors that point along the x-, y-, ande
y
, e

zz-axes. The poloidal magnetic Ðeld component is further
derivable from a vector potential

A \ A(x, z, t)e
y

, (3)

by taking the curl,

B
P
\ $ Â A \ [ LA(x, z, t)

Lz
e
x
] LA(x, z, t)

Lx
e
z
. (4)

The prescriptions given in equations and ensure that(2) (4)
the condition is fulÐlled everywhere$ Æ (B

P
] B

T
) \ 0

within the domain.
In the Sun, internal di†erential rotation is thought to be

the primary means for converting poloidal Ðelds into toroi-
dal Ðelds. Hence, among the additional quantities which
must be supplied in order to complete the model is the
large-scale Ñuid velocity Ðeld u within the dynamo region.
Given the kinematic nature of the model considered herein,
this Ñow Ðeld is a speciÐed quantity. In the present applica-
tion, we presume that u is independent of both time and
latitude (i.e., the coordinate x), and so can be written in the
form

u \ u(z)e
y

. (5)

Using equations and the mean-Ðeld induction(2), (4), (5),
equation (see can be separated into poloidalMo†att 1978)

and toroidal components, a procedure which yields two
equations governing the temporal and spatial evolution of
the vector potential (A) and the y-component of the mag-
netic Ðeld (B). These dynamo equations are

LA
Lt

\ g
A L2
Lx2 ] L2

Lz2
B
A] aB , (6)

and

LB
Lt

\ g
A L2
Lx2] L2

Lz2
B
B] Lu

Lz
LA
Lx

] Lg
Lz

LB
Lz

, (7)

where the magnetic di†usivity g (in cm2 s~1) is related to the
electrical conductivity of the plasma according to g \peland includes contributions from both micro-c2/(4npel),scopic collisional processes and turbulent transport. In
addition, the quantity a (in cm s~1) appearing in equation

describes the way in which the large-scale poloidal Ðeld(6)
is regenerated from toroidal Ðeld by the helical Ñuid
motions associated with turbulent convection in the rotat-
ing Sun (the a-e†ect). We regard a, g, and the velocity shear
Lu/Lz as quantities whose magnitudes and functional forms
can be freely speciÐed. For the computations to be reported
on in the present paper, we chose the particular representa-
tions

g \ g1] (g2 [ g1)h(z[ h) , (8)

a \ c0 d(z[ d) , (9)

Lu
Lz

\ u0 d(z) , (10)

where h(z) and d(z) are, respectively, the unit step function
and delta function, and (in cm2 s~1), and (in cmg1, g2, c0 u0s~1) are constants. Note that due to the presence of delta
functions in equations and and di†er dimen-(9) (10), c0 u0sionally from the corresponding a-e†ect and shear coeffi-
cients of conventional mean-Ðeld dynamo equations.

With the coordinate system positioned as indicated in
the transition between the radiative and convec-Figure 1,

tive portions of the interior occurs at z\ h (0¹ h ¹ d), at
which location the magnetic di†usivity is assumed to
increase from the collisional value to the enhanced, turb-g1ulent value Furthermore, the respective processes of pol-g2.oidal and toroidal magnetic Ðeld generation (i.e., the a-e†ect
and velocity shear) are taken to be concentrated in two
distinct layers, the former at z\ d in the convective portion
of the domain and the latter at z\ 0 in the radiative region.
The velocity distribution u(z) corresponding to the shear
given in is one in which the regions z\ 0 andequation (10)
z[ 0 each move rigidly in the y-direction but with di†erent
speeds. Similar dynamo model have been considered by

and & Ruzmaikin in Carte-Mo†att (1978) Kleeorin (1981)
sian geometry, and by & Stix in sphericalDeinzer (1971)
geometry, although both for the case of a spatially uniform
magnetic di†usivity.

The speciÐc choices for a, g, and Lu/Lz given in equations
imply that except at the locations z\ 0, z\ h, and(8)È(10)

z\ d, the dynamo equations and reduce to ordinary(6) (7)
di†usion equations. Solutions to this system are uniquely
determined through the imposition of boundary and con-
tinuity conditions. As will be described in more detail in °° 3
and we seek solutions A and B that have the form of4,
propagating waves in the x-direction, and whose structure
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FIG. 1.ÈSchematic representation of the dynamo model described in of the text. The magnetic di†usivity has the constant values in the region z¹ h° 2 g1and for z[ h. The vertical shear and a-e†ect each vanish everywhere except in the two xy-planes that intercept the z-axis at z\ 0 and z\ d, respectively.g2

in the z-direction reÑects the vertical structure of the
sources of poloidal and toroidal Ðelds. Because these
sources are conÐned to a Ðnite layer (0¹ z¹ d) embedded
within material having we require that both A and Bg \/ 0,
approach zero as z approaches ^O. In addition, we must
ensure that as any source surface is crossed, the Ðelds A and
B obey physically reasonable continuity conditions and
satisfy the complete dynamo equations and At z\ 0,(6) (7).
these considerations lead to the constraining relations

[A]\ [B]\ 0 , (11a)

CLA
Lz
D

\ 0 , (11b)

and

g1
CLB

Lz
D

\ [u0
LA(x, 0, t)

Lx
, (11c)

when h [ 0, or

C
g

LB
Lz
D

\ [u0
LA(x, 0, t)

Lx
, (11d)

when h \ 0. For a quantity Q(x, z, t), the bracket notation
appearing in equations and subsequently represents the(11)
limit

[Q]\ lim
v?0

[Q(x, f] v, t) [ Q(x, f[ v, t)] , (12)

where z\ f can be any of the locations z\ 0, h, or d. Rela-
tions and guarantee that the normal and tangen-(11a) (11b)
tial components of the magnetic Ðeld are continuous across
the shear layer at z\ 0 (see, e.g., Stratton 1941 ; Roberts

Expression or relates the Ñux of y-directed1967). (11c) (11d)

Ðeld at z\ 0 to the rate at which z-directed Ðeld is sheared
there. It is obtained by integrating over theequation (7)
interval [v¹ z¹ v, taking the limit prescribed in equation

and using relations and(12), (11a) (11b).
Continuity conditions analogous to those given in

can also be derived to accommodateequations (11a)È(11d)
the discontinuities at z\ h and d indicated by the forms
adopted for g and a. At z\ h or d), the absence of a(D0
surface current implies that the normal and tangential mag-
netic Ðeld components are continuous, so that conditions
identical to and apply at that location.equations (11a) (11b)
Similarly, integration of over the intervalequation (7)
(h [ v) ¹ z¹ (h ] v) yields the relation

C
g

LB
Lz
D

\ 0 , (13)

expressing the fact that the di†usive Ñux of toroidal Ðeld
across the surface at z\ h is constant despite the di†erent
values of g that prevail on either side. At z\ d, the concen-
tration of the a-e†ect and its role in the production of poloi-
dal Ðeld means that not all Ðeld components are continuous
there. In particular, although the y- and z-components of
the magnetic Ðeld are continuous across the a-e†ect layer,
the x-component is not. As a result, equation holds at(11a)
z\ d, while equation is replaced by either(11b)

g2
CLA

Lz
D

\ [c0B(x, d, t) , (14a)

for h \ d, or

1
2

(g1] g2)
CLA

Lz
D

\ [c0 B(x, d, t) , (14b)
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for h \ d, obtained by integrating over theequation (6)
interval (d [ v)¹ z¹ (d ] v). Likewise, integration of

over the same interval leads to the conditionequation (7)

CLB
Lz
D

\ 0 , (15)

when h \ d, or to for the case h \ d. It isequation (13)
readily veriÐed that solutions for A and B obeying the con-
straints given by expressions identically satisfy the(11)È(15)
dynamo equations and at the singular locations(6) (7)
z\ 0, h, and d.

3. DISPERSION RELATION AND DYNAMO MODES

In the present section, the properties of the dynamo
model presented in are studied by deriving solutions to° 1
equations and that have the physical character of(6) (7)
plane waves traveling in the x-direction. To accomplish this
goal, we suppose that within any subdomain (i.e., any of the
regions z\ 0, 0 \ z\ h, h \ z\ d, or z[ d, each with
[O \ x \ O), the Ðelds A and B can be written in the
form

CA(x, z, t)
B(x, z, t)

D
\
Ca

j
(z)

b
j
(z)
D

exp [pt ] i(kx ] u)] , (16)

where the growth rate p, wave vector k ([0), and angular
frequency u are all real constants. The subscript j (\1, 2)
appearing on the right-hand side of accountsequation (16)
for the fact that the solutions must depend upon the mag-
netic di†usivity, a quantity whose value is for z\ h andg1for z[ h (see and Substituting theseg2 Fig. 1 eq. [8]).
assumed solutions into the dynamo equations leads to two
ordinary di†erential equations for the unknown functions

and Because of their linearity, these equations area
j
(z) b

j
(z).

easily solved, yielding

Ca
j
(z)

b
j
(z)
D

P exp (^q
j
z) , (17)

where is the complex quantity deÐned byq
j

q
j
2\ k2] (p ] iu)

g
j

. (18)

Complete solutions for A and B are assembled by joining
together the component solutions applicable in individual
subdomains, and enforcing appropriate boundary condi-
tions at z\ ^O. In view of equations and the(16)È(18)
discussion of the latter requirement is fulÐlled by ensur-° 2,
ing that the sign of the real part of is such that theq

jsolutions decay as z tends toward ^O. The former task is
carried out by using the continuity conditions of to° 2
connect the component solutions at the locations z\ 0, h,
and d. As a result of imposing these constraints, a system of
linear relations among the complex constant amplitudes
characterizing the solutions is obtained. The dynamo dis-
persion relation is then derived in the course of solving for
the individual amplitudes. The details of this straightfor-
ward (but tedious) procedure are given in here,Appendix A;
we simply present the Ðnal result of the calculation, speciÐ-
cally

g2(q1 ] q2)(g1q1] g2 q2)
] exp [2q1h ] 2q2(d [ h)]\ iku0 c0 , (19a)

when 0¹ h \ d, or

12(g1] g2)(q1] q2)(g1q1] g2 q2) exp (2q1d) \ iku0 c0 ,

(19b)

when h \ d. The dispersion relations of equations and(19a)
reduce to that given by when the limit(19b) Mo†att (1978)

is taken.g1] g2, q1] q2Either of the dispersion relations given above is a
complex, transcendental equation which, for speciÐed
values of h, d, and k, can be solved to deter-g1, g2, u0, c0,mine the growth rate p and frequency u of the dynamo.
Toward this end, it is convenient to deÐne the dimensionless
quantities

n 4 g1/g2 , i 4 2kd , *4 h/d ,

l4 u0 c0/(g22 k) for h \ d ,

l4 2u0 c0/[g2(g1] g2)k] for h \ d , (20)

and to rewrite and (see eq. [18]) asq12 q22

q12\ k2(1 ] s) , q22\ k2(1 ] ns) , (21)

with

s \ s
r
] is

i
4
A p
g1k2

B
] i
A u
g1k2

B
. (22)

Using these deÐnitions, equations and both(19a) (19b)
assume the general form

1 ] n(1 ] 2s) ] (n ] 1)J(1 ] s)(1] ns)

[il exp M[i[*J(1 ] s) ] (1[ *)J(1] ns)]N\ 0 ,

(23)

where positive square roots have been taken throughout.
Note that if 0 ¹ *\ 1, the quantity l appearing in equation

is given by the Ðrst such deÐnition among the relations(23)
while for *\ 1, the second deÐnition applies ; the deÐ-(20),

nitions are identical for the case in which n \ 1.
The left-hand side of when considered as aequation (23),

function of the complex variable s, is multivalued because of
the three square roots present therein. To uniquely deÐne
each of these functions (and therefore as a whole), iteq. [23]
is necessary to cut the s-plane and thereby remove any
potential for ambiguity. Consider a dynamo or other linear
problem whose mathematical formulation is similar to the
one described above, except that it is to be solved as an
initial value problem for t [ 0 using Laplace transform
techniques. An appropriate contour in the complex plane
for calculating the inversion integral could be constructed
by joining the ends of a semicircular arc in the left-half
plane with a vertical line having a constant, positive real
part (see, e.g., & Walker In the event thatMathews 1970).
the integrand contained a branch point or points, such sin-
gularities could be treated by introducing a branch cut
along the negative real axis and deforming the contour as
required in its vicinity. In the present application, we
proceed by analogy with this hypothetical example and cut
the s-plane along the negative More speciÐcally, fors

r
-axis.

each of the square roots appearing in in turn,equation (23)
we deÐne branch cuts along extending (1) between thes

r
\ 0

two branch points at s \ [1 and s \ [1/n, (2) from
s \ [1 to s \ [O, and from s \ [1/n to s \ [O.
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Having adopted these conventions, the analysis proceeds
by separating the dispersion relation given by equation (23)
into real and imaginary parts. The two equations that result
from this operation can then be solved simultaneously to
obtain the roots and Because of their complexity, theses

r
s
i
.

equations must be solved by numerical means. The results
described in this and subsequent sections were derived
using a standard Newton-Raphson method for reÐning an
initial guess at the solution to a system of nonlinear equa-
tions. An alternative approach to solving the dynamo dis-
persion is to apply the Newton-Raphson method directly to

alone rather than to the two equations corre-equation (23)
sponding to its real and imaginary parts. In this case,
FORTRAN-supplied utilities for performing arithmetic
operations on complex numbers and evaluating functions of
complex variables can be used to compute the complex-
valued functions represented by and its deriv-equation (23)
ative. We have compared the performance of these two
techniques by using them to solve the dispersion relation

for the case n \ 1. Although the latter method was(23)
found to be somewhat faster and more efficient computa-
tionally, both solution strategies yielded identical numerical
results.

In we show the quantities (dashedFigure 2, s
r
4 (p/g1k2)

lines) and (solid lines) as functions of i 4 2kds
i
4 (u/g1k2)

for a dynamo model with uniform magnetic di†usivity [n 4
Along each of the curves in the(g1/g2) \ 1]. Figure 2,

parameter l has a constant value ; for the curves labeled a, b,
c, and d, l\ 10, 20, 30, and 40, respectively, while for those
labeled a@, b@, c@, and d@, l\ [10, [20, [30, and [40. In
interpreting the computational results depicted Figures 2È4,
we choose to regard the values of d, and as Ðxed.u0, g1 g2Consequently, the respective variations of and as func-s

r
s
itions of i reÑect the dependence of those quantities on the

wave vector k. Likewise, the assumed constancy of l along
curves spanning a range of i values requires that the k-
dependence of this quantity (see be compensatedeq. [20])
for by a corresponding variation in the magnitude of (i.e.,c0in the strength of the a-e†ect). The dimensionless number l
assumes a role analogous to that played by the dynamo
number in conventional kinematic au-dynamo models (see

in that it provides a measure ofMo†att 1978 ; Parker 1979),
the extent to which the combined e†orts of the a-e†ect and

FIG. 2.ÈReal and imaginary parts, and ofs
r
\p/(g1k2) s

i
\u/(g1k2),

roots to the dispersion relation as functions of i \ 2kd for a(eq. [23])
dynamo with The parameter l is constant along eachn \ (g1/g2) \ 1.
curve, having the values 10, 20, 30, and 40 for those labeled a, b, c, and d,
and the values [10, [20, [30, and [40 for those labeled a@, b@, c@, and d@.

large-scale shear are successful in maintaining the Ðeld
against resistive decay.

As is evident from for Ðxed i : (1) the magni-Figure 2,
tudes of the imaginary parts of the roots of the disper-o s

i
o

sion relation depend on the magnitude of l but not on the
sign ; (2) the sign of is the same as the sign of l ; and (3), thes

imagnitudes and signs of the real parts of the solutionss
rcorresponding to l and [l are identical. Since it has been

assumed that k [ 0 throughout (see and discussioneq. [16]
thereof), solutions with represent plane dynamos

i
[ 0

waves propagating in the direction while solutions[e
x
,

having represent waves propagating in the directions
i
\ 0

In view of the fact that the only distinction between]e
x
.

the two sets of modes is their direction of propagation, we
henceforth (for simplicity) restrict our attention to just those
waves for which both l and are [0. Note that for i > 1,s

i
s
iexhibits little (if any) dependence on i, and varies nearly

linearly with l. In units of the di†usion time between(d2/g1)the two layers in which a and Lu/Lz are, respectively,
nonzero, the period of the dynamo wave is For the8n/(i2s

i
).

solutions shown in this number is D106È107 forFigure 2,
i B 10~3, indicating that dynamo action is extremely weak
for modes having very long wavelengths j[\(2n/k) ? d].
Indeed, in this regime, the magnitude of is insufficient toc0sustain the Ðeld through the regenerative a-e†ect. Conse-
quently, for the entire range of l values used to construct the
graph, the waves have and are damped in a time (ins

r
B [1

units of d2/g1) D 4/i2.
These results can be validated by comparison with analy-

tic solutions for and obtained by considering severals
r

s
i
,

approximate representations of the dynamo dispersion rela-
tion that apply when certain parameters have suitably small
values. For example, when i is sufficiently small that the
exponential appearing in can be replaced byequation (23)
unity, the dispersion relation becomes (after some
manipulation)

CA 2n
n ] 1

B2[ n
D
s2[

CA 4n
n ] 1

BA il
n ] 1

[ 1
B

] n ] 1
D
s

]
CA il

n ] 1
[ 1
B2[ 1

D
\ 0 . (24)

For the case in which the dynamo domain is characterized
by a single value of the magnetic di†usivity (i.e., n \ 1), it is
easily seen that further reduces to the linearequation (24)
relation

s \ [1 ] i
l
4

, (25)

in agreement with the numerical results presented above.
Note that for Ðnite values of k, describes theequation (25)
behavior of an n \ 1 dynamo in which the shear and a-
e†ect layers are coincident (i.e., d \ 0). Clearly in such a
situation no growing mode can exist, a behavior(s

r
[ 0)

already observed by & Stix in their sphericalDeinzer (1971)
solutions.

For somewhat larger values of i, the dispersion relation
canot be so simply approximated. Retention of the Ðrst two
terms in the series expansion for the exponential function in

leads toequation (23)

1 ] s [ i
l
4
\ [i

il
4

J1 ] s , (26)
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FIG. 3.ÈQuantities and depicted in the complex s-plane for a dynamo model with n \ 10~3 and *\ 1, as described in the text. The triangles marks
r

s
ithe small-i end of each solution locus. The curves labeled a, b, c, and d, were obtained for l\ 9, 10, 11, and 12. (b) and for the same model but withs

r
s
il\ 15.16 (a), 20 (b), 25 (c), and 30 (d). (c) and for the same model but with l\ 40 (a), 50 (b), 60 (c), and 70 (d).s

r
s
i

where we have again assumed that n \ 1. Unlike both
and the numerically determined values ofequation (25) s

rand for i > 1 (see an explicit dependence on i iss
i

Fig. 2a),
now apparent in The physically relevant rootequation (26).

FIG. 4.ÈQuantities and as functions of i for a dynamo model withs
r

s
in \ 10~4 and l\ 60. The curves labeled aÈe were obtained for *\ 1.0,

0.8, 0.6, 0.4, and 0.2, respectively.

of this quadratic equation is given approximately by

s B [
A
1 [ il3@2

8J2

B
] i
Al
4

[ il3@2
8J2

B
, (27)

from which it is evident that for a prescribed value of l, s
rcan be [0 for A proviso to this conclusioni [ 8J2l~3@2.

is that l must be large enough that for i suffi-il3@2 [ 8J2
ciently small that the approximations made in deriving

are valid. If this condition is fulÐlled, theequation (26)
modes change from decaying to growing as i increases, a
transition that can be observed in the numerical results
depicted in This behavior is a manifestation of theFigure 2.
increasingly efficient operation of the dynamo for larger i, a
consequence of the growth of implied by the assumedc0constancy of l. It is analogous to the change in the nature of
the dynamo action that occurs for increasing a in kinematic
models with uniform, constant values for g, a, and Lu/Lz
(see, e.g., Note also that accordingParker 1979 ; Stix 1989).
to the change in the signature of is accom-equation (27), s

rpanied by a steady decrease in the magnitude of a varia-s
i
,

tion which is likewise visible in Figure 2.
Unlike most kinematic, mean-Ðeld, au-dynamos, in the

model presently under consideration, the two inductive
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components of the dynamo process are concentrated in two
distinct, spatially separated layers. As a result of the
assumed segregation of these physical e†ects, the mode of
operation of the dynamo depends sensitively on the resistive
di†usion of the Ðelds between the adjacent source surfaces.
SpeciÐcally, the y-directed Ðeld B produced by the shear
layer at z\ 0 must di†use to the layer located at z\ d
before the a-e†ect can contribute to the time and space
evolution of the vector potential A. Similarly, the Ðeld A,
once generated at z\ d, can only act as the source of addi-
tional y-directed Ðeld B after di†using to the site of the
shear at z\ 0. For larger values of i, the Ðnite time
required for these Ðelds to di†use between the surfaces at
z\ 0 and d leads to the existence of modes with properties
that are distinctly di†erent from those associated with
uniform, noninterfacial dynamos. This is apparent in Figure

where it can be seen that after increasing for i B 0.01È2 s
r
,

0.1, decreases for In particular, solutions with l largei Z 1.
enough that positive growth occurs for intermediate values
of i are damped as the wave vector becomes large.

The origin of this behavior can be understood in the
following way. Note that as the magnitude of i increases,
the horizontal wavelength of the corresponding dynamo
wave decreases. Consequently, the x-components of the
gradients of A and B increase, leading to a continuous
decline in the time required for resistive decay of a(g1k2)~1
given mode. For a sufficiently small value of the horizontal
wavelength, this dissipation timescale becomes equal to the
di†usion time between the layers at z\ 0, d. All(d2/g1)waves with shorter wavelengths damp faster than they can
di†use between the two source surfaces, each of which con-
tains just one of the two inductive processes required to
maintain the Ðeld. Hence, dynamo waves with kd Z 1
decay, regardless of the magnitudes of the a-e†ect and
velocity shear. Such an inability to regenerate the Ðeld for
large i is a direct result of the assumed spatial separation of
a and Lu/Lz.

When n has a value that di†ers from unity, many charac-
teristics of the dynamo wave solutions are qualitatively
similar to those noted in the preceding discussion. There
are, however, a few signiÐcant exceptions. These are illus-
trated in where we depict the locus of roots andFigure 3 s

rin the complex s-plane for a dynamo model withs
in \ 10~3 and *\ 1. In this representation, the value of i

increases continuously along each curve, from a starting
value much less than 1 (usually i \ 10~3) at the location
marked by a triangle to an ending value much greater than
1 (usually i \ 10 to 102) in the vicinity of the branch point
(indicated by a star) at s \ [1. In so far as region (1) is
intended to represent the stable, radiative layers just
beneath the convection zone, we consider only models
having n \ 1 in order to simulate the turbulent enhance-
ment of the di†usivity in region (2). As in Figure 2, the value
of l is constant along each curve, with l\ 9, 10, 11, 12 for
cuves aÈd in Figure 3a, l\ 15.16, 20, 25, 30 in Figure 3b,
and l\ 40, 50, 60, 70 in Figure 3c. Unlike the results
obtained when n \ 1, for some values of l and n \ 1, there
exists a value of i (º10~3) below which there are no solu-
tions to the dynamo dispersion relation. The reason for this
is evident in wherein it can be seen that theFigure 3a,
long-wavelength end of the solution locus for each l value
terminates in the branch cut along the negative real axis in
the complex s-plane. For the results shown in the Ðgure, the
triangles that label the small-i ends of the curves aÈd corre-

spond to solutions with i \ 0.0099, 0.0074, 0.0056, and
0.0042, respectively. Hence, along each locus, solutions for
smaller i values are contained on a di†erent Riemann sheet,
and are inaccessible to the present analysis. For l[ 15.16,
solutions exist for the entire i range depicted (see Fig.

and bear a qualitative resemblance to the results3bÈ3c),
shown in In particular, for l sufficiently large,Figure 2.
wave growth only for i in the Ðnite range 0.01 [i [ 1.
Dynamo waves with shorter wavelengths are damped ;
indeed, for the frequencies and growth rates shown in

and as i becomes large, in agree-Figure 3, s
r
][1 s

i
] 0

ment with the behavior displayed by the n \ 1 results in the
same limit.

Additional distinctions between dynamo solutions
obtained for n > 1 and those corresponding to n \ 1 can be
seen by comparing the properties of the long-wavelength
modes in Figures and Note that for i > 1, the absolute2 3.
magnitudes of and are signiÐcantly larger in the case ofs

r
s
ia dynamo with a nonuniform vertical distribution of mag-

netic di†usivity. As was true for the model having n \ 1,
approximate, analytic solutions to the dynamo dispersion
relation can assist in the interpretation of this characteristic.
When both i and n are vanishingly small, equation (23)
assumes the form

(1 ] ili)ns2] [(1] ili)2] 4inl]s
] (1 ] ili)2[ (1 [ il)2\ 0 . (28)

In the limit i \ 0, the quadratic has the par-equation (28)
ticular solution

s \ [ 1
2n

] 2il
GC

1 ] 1
4n

[ 1
(4nl)2

D1@2[ 1
H

, (29)

in which it has been assumed that l is large enough that the
expression in brackets is positive. For values of l corre-
sponding to the curves depicted in Figure 3c, equation (29)
yields mode growth rates and frequencies that are ins

r
s
igood agreement with computational results for i [ 10~3.

Approximate solutions to the dynamo dispersion relation
can also be obtained for the case in which n \ 0. In this
limit, the dispersion relation for i > 1 follows directly from

and has the rootequation (28),

s \ [1 ] (1[ il2)2[ l2(1 ] i)2
(1 ] i2l2)2 [ i

2l(1] i)(1[ il2)
(1 ] i2l2)2 .

(30)

As noted above, when n becomes small for i large, s
rapproaches the value [1, while tends toward zero. Ans

iapproximate dispersion relation for these short-wavelength
modes can be derived from with n \ 0, andequation (23)
has the solution

s \ [1 ] 1
i2
C
(ln l)2[ n2

4
D

] i
n
i2 ln l . (31)

Thus far, we have considered only dynamo models for
which the jump in the magnitude of the magnetic di†usivity
occurs at the location of layer in which the a-e†ect is con-
centrated. In Figures and we examine how the proper-4 5,
ties of dynamo modes change as the transition between
di†usivities is shifted within the interval 0 ¹ z¹ d. Because
di†usion between the two surfaces is important to the
overall operation of the dynamo, we anticipate that mode
periods and growth/decay rates will change as the di†usi-
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FIG. 5.È(a) Critical value of the dynamo number l as a function of the di†usivity ratio for *\ 1.0 (a), 0.5 (b), and 0.0 (c). When(eq. [20]) n~1(\g2/g1)the single wave with horizontal wavenumber has while all others have (b) Quantity corresponding to the values of panell\ vcrit, icrit s
r
\ 0, s

r
\ 0. icrit vcrit(a).

vity in this region varies between the values (*\ 1)g \ g1and (*\ 0). This expectation is conÐrmed by theg \ g2results shown in which were obtained forFigure 4,
n \ 10~4. Unlike previous results, the curves labeled aÈe in
the Ðgure all correspond to the same value of l ( \ 60), but
have di†erent * values (1.0, 0.8, 0.6, 0.4, and 0.2,
respectively). Note that the dynamo period decreases (that
is, increases) as * is made smaller with i held Ðxed. Nots

iapparent in the Ðgure is the fact that for the given values of
n and l, each of the curves bÈe terminates at a value of i
that decreases as * is made smaller. SpeciÐcally, solutions
for *\ 0.8, 0.6, 0.4, and 0.2 cease to exist for i greater than
20.42, 10.12, 6.61, and 4.73, respectively. As before, the
reason for this behavior stems from the disappearance of
each solution locus in the branch cut along the negative

in the complex s-plane. When *\ 0, dynamo solu-s
r
-axis

tions terminate at i \ 0.25 ; all solutions for smaller values
of i decay at about the rate given bys

r
B [1/(2n) equation

(29).
In Figures and we show the values of l and i5a 5b,

corresponding to the Ðrst nondecaying modes of interface
dynamo models with di†erent magnetic di†usivity ratios.
The results represented by the curves labeled a, b, and c
were derived for *\ 1.0, 0.5, and 0.0, respectively. For a
given model, the quantities and characterize thelcrit icritsingle mode having for solutions of thes

r
\ 0 ; l\ lcrit,dispersion relation for all other values of i have Fors

r
\ 0.

*[ 0, and are monotonic functions of n~1lcrit icritexhibiting a decrease for values of n~1 between(\g2/g1),about 1 and 10, and an increase as the ratio of magnetic
di†usivities becomes larger. For these quantitiesn~1Z 103,
become nearly independent of the di†usivity ratio, with
values and for *\ 1.0, andlcritB 11.6 icrit B 0.65 lcritB18.8 and for *\ 0.5. When *\ 0 (curve c), theicritB 0.75
dependences of l and on n~1 are somewhat di†erenticritfrom the results for *[ 0. For n~1 large, is strictlylcritincreasing (varying approximately as n~0.5) over the range
depicted, while becomes nearly constant with valueicriticritB 0.53.

4. DYNAMO FIELDS

We complete our survey of interface dynamo properties
by considering some of the physical characteristics of the
generated Ðelds. For this purpose, we choose a model with

n \ 10~2, *\ 1.0, l\ 11.14, and i \ 0.586. The dynamo
waves obtained for these choices of input parameter values
have and corresponding to as

r
\ 3.142] 10~3 s

i
\ 6.687,

period 2nu~1\ 10.95 and a growth time(d2/g1)p~1\ 3.707] 103 For this nearly steady solution(d2/g1).of the dynamo dispersion relation, and the real and imagin-
ary parts of the complex quantities andv1 ( 4 q1/k) v2(see eqs. and have the values(4q2/k) [21] [B6]) v1r \1.97042, andv1i\ 1.69688, v2r \ 1.00057, v2i\ 0.03342.
Using this information together with the expressions given
in the Ðelds, A, B, and can be evaluatedAppendix B, B

x
, B

zas functions of x, z, and t.
Some of the results of this procedure are given in Figures
and which show the dynamo Ðelds as functions of z at6 7,

x \ 0.0, for a number of di†erent times throughout the
course of one period. The Ðrst panel in each Ðgure depicts
the Ðelds at x \ 0.0 and z\ 0.5 d as functions of time ; the
solid dots therein denote the location in phase of the verti-
cal proÐles displayed in the subsequent panels. Figure 6
contains results pertaining to the time and space evolution
of the vector potential and azimuthal magnetic Ðeld. Recall
that the dynamoÏs operation depends, in part, upon the
di†usive transport of the A and B Ðelds between the source
surfaces at z\ 0 and z\ d. Because of this, a time lag
develops in the variation of A relative to that of B during
the dynamo period, as examination of the panels reveals. In
particular, note that the di†erence in phase between A and
B is such that for the cycle depicted, the maximum and
minimum values of B occur earlier in time (by an amount

than do the corresponding maximum and*t B d2/g1)minimum values of A. At any given time, the largest value of
either Ðeld is found at the location of the relevant source
surface, except during the time interval just before and after
a sign reversal. Similar behavior can be seen in Figure 7,
which shows an analogous time sequence of vertical proÐles
of the poloidal Ðeld components, and Inspection ofB

x
B
z
.

Figure 7a indicates that for the model presently under con-
sideration, the poloidal magnetic components both lead the
azimuthal Ðeld by a small amount in phase. Also evident in
the Ðgure is the discontinuity in at the location z\ d ofB

xthe a-e†ect, as dictated by equation (14b).
From it is further apparent that the magnitudeFigure 6

of the azimuthal magnetic Ðeld in the region having high
magnetic di†usivity (z[ d) is signiÐcantly reduced in com-
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FIG. 6.ÈFields A and B for x \ 0 and [10 ¹ (z/d) ¹ 10 at a number of di†erent times during the course of one period of a dynamo with n \ 10~2, *\ 1,
l\ 11.14, and i \ 0.486. The Ðrst panel of the Ðgure depicts the Ðelds at x \ 0 and (z/d) \ 0.5 as functions of time. The solid dots on the curve for A indicate
the relative positions in phase of the vertical proÐles shown in subsequent panels.

parison to that of the azimuthal Ðeld in the region with low
magnetic di†usivity (z\ d), where the BMRs are presumed
to originate. SpeciÐcally, for the n \ 10~2 model described
above, the maximum value of B in z[ d at any time during
the cycle shown in is only about 3% of the corre-Figure 6
sponding maximum B value in z\ d over the same time
interval. Such a disparity between the strengths of the azi-
muthal Ðelds in di†erent portions of the dynamo domain is
also a feature of the interface dynamo model developed by
Parker (1993).

This property is explored further in wherein weFigure 8,
show the ratio (the subscripts 1 and 2 denote(B2,max/B1,max)the regions z\ d and zº d, respectively) as a function of

(\n~1) for both critical and supercriticalg2/g1 (s
r
\ 0)

dynamo solutions. The steady solutions are those(s
r
[ 0)

whose dynamo numbers are depicted in while theFigure 5,
growing solutions have *\ 1 and l chosen in such a way
that for any n, the mode with the largest value has as

rgrowth time (4p~1) equal to the dynamo period. For com-
parison, we also show the n~1 dependence of the azimuthal
Ðeld strength ratio derived by solving for the one-
dimensional di†usion of a Ðeld in a composite medium,
assuming that the value of the Ðeld on one boundary of the
domain varies sinusoidally in time (see forAppendix C
details). Given the one-dimensionality of this solution, its
applicability as an interpretive tool is restricted to modes
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FIG. 7.ÈTime sequence of vertical proÐles of the poloidal Ðeld components and for the dynamo wave solution ofB
x

B
z

Fig. 8

having horizontal wavelengths that are sufficiently long
that the timescale for di†usion in this (i.e., the x-) direction is
longer than that for vertical (i.e., z-directed) di†usion.

As can be seen in and as the valueFigure 8 Appendix C,
of n becomes small, the ratio of maximum azimuthal Ðeld
strengths obtained from the di†usion solution varies like

This is similar to the dependence found(g2/g1)~1@2 \ n1@2.
by who studied the supercritical modes of aParker (1993),
dynamo model in which the a-e†ect and the vertical shear
are uniform within adjacent Ñuid layers having di†erent
magnetic di†usivities. In contrast, the ratio derived from
consideration of the near-critical modes (i.e., of thes

r
B 0)

present dynamo model, while similar to that of the di†usion
solution for exhibits a dependence on the di†usi-n~1[ 10,

vity ratio that is closer to for small values of n.(g2/g1)~1 \ n
The corresponding ratio in the case of the supercritical
modes behaves in much the same way, except that the onset
of an approximately linear dependence on n occurs for
somewhat smaller values of n. Hence, the ratio

can be smaller for a model in which the shear(B2,'/B1,')
and a-e†ect are spatially distinct yet individually localized
than for one in which these processes are separate but uni-
formly distributed within their respective halves of the
domain. We note that this conclusion has been arrived at by
examining solutions obtained assuming *\ 1. If, for a
given value of n > 1, * is made to approach zero, the mag-
nitude of the ratio of maximum azimuthal Ðeld strengths
increases. When *\ 0, the ratio becomes independent of n,
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FIG. 8.ÈAzimuthal Ðeld strength ratio as a function of(B2,'/B1,')
for critical and super-critical dynamo solutions, asg2/g1 (s

r
\ 0) (s

r
[ 0)

described in of the text. The solution to a problem describing the° 4
di†usion of a time-dependent Ðeld in a one-dimensional, composite
medium is also shown for comparison.

with a value identical to that obtained in the absence of a
discontinuity in the magnetic di†usivity (i.e., the case n \ 1).

5. CONCLUSIONS AND DISCUSSION

We have examined the behavior of a simple, linear, kine-
matic dynamo model in which each of the two inductive
components (i.e., the shear and a-e†ect) of the dynamo
process is assumed to function by itself within a single, hori-
zontal Ñuid layer. The dynamo is thus contained in two
vertically separated layers, a spatial conÐguration which
requires that the Ðelds produced by each e†ect be trans-
ported between the sources surfaces by di†usion in order to
complete one cycle of operation. It is this feature of the
presumed dynamo structure that is responsible for the
physical di†erences between the wavelike normal modes of
the present model and those corresponding to either con-
ventional au-type models or the interface dynamo
described by In light of recent helioseismicParker (1993).
results suggesting the existence of a thin rotational shear
layer located beneath the convection zone base, we feel that
the model considered herein is perhaps a somewhat more
realistic depiction of the actual environment of the solar
dynamo. In an e†ort to achieve a degree of correspondence
with the putative physical conditions that prevail at the
base of the SunÏs convection zone, the upper and lower
portions of the dynamo domain are further characterized by
di†erent values of the magnetic di†usivity, reÑecting the
varying extent to which turbulent, convective motions can
inÑuence the magnitudes of transport coefficients in
material located near the radiative-convective interface.

For any value of the di†usivity ratio n (\1), it is possible
to Ðnd growing wave solutions to the dynamo model
described above, provided a suitably large value is assigned
to the parameter l (see However, unlike conven-eq. [20]).
tional kinematic au-type dynamos or the interface dynamo
of for Ðxed values of n, l, and the sourceParker (1993),
surface separation d, growing modes are only obtained for a
Ðnite range of wavenumbers k. The existence of an upper
limit to the range of wavenumbers for which positive
growth of the wave amplitude can occur is a direct conse-
quence of the fact that in the present model, the vertical
shear and the a-e†ect are conÐned to distinct, non-
overlapping portions on the dynamo domain. An addi-

tional result of the assumed dynamo spatial structure is a
reduction in the strength of the azimuthal Ðeld as the inter-
face between low- and high-di†usivity regions is crossed.
For both critical and super-critical dynamo modes, the
magnitude of this reduction can be signiÐcant, varying
nearly as n when the di†usivity jump occurs at the a-a†ect
layer and the contrast between di†usivities is great. This
behavior di†ers from that of the model, inParker (1993)
which the ratio of the strengths of the azimuthal Ðelds on
either side of the interface varies as n1@2.

We conclude this section by attempting to ascertain how
the interface dynamo model of the present paper might
operate if it were to occupy the region immediately above
and below the base of the solar convective envelope. Such
an application is, of course, necessarily schematic, both
because of the geometrical and physical shortcomings of the
model itself and because of our ignorance concerning the
magnitudes of the input parameters required to specify a
solution. With these limitations in mind, we select input
parameter values that yield a solution with characteristics
that are similar to those of the example presented by Parker

SpeciÐcally, we adopt n \ 10~2, *\ 1, l\ 120, and(1993).
chose the particular dynamo solution having i \ 0.1349,

and To facilitate evaluation of furthers
r
\ 100.4, s

i
\ 139.0.

dynamo properties, we follow and assumeParker (1993)
that the horizontal wavelength 2nk~1 of the mode is equal
to the distance between the pole and the equator at the
convection zone base, so that k B 8 ] 10~11 cm~1. This
choice for k implies that the separation d between the source
surfaces is d B 0.012 Likewise, with cm2 s~1R

_
. g1\ 1010

and cm2 s~1, it follows that the wave frequency isg2\ 1012
s~1, corresponding to a dynamou\ g1k2s

i
B 8.90 ] 10~9

period 2nu~1B 22.42 yr. As in the case of the example
discussed by the dynamo wave is stronglyParker (1993),
supercritical, having an e-folding time p~1 \ (g1k2s

i
)~1 B

4.94 years.
For the solution presently under consideration, the quan-

tities and have the values 11.69 andv1r (\q1r/k) v2r (\q2r/k)
1.49, respectively, so that the vertical scales of dynamo Ðelds
below and above the base of the convection zone are q1r~1 B
1.07] 109 cm and cm. Furthermore, theq2r~1 B 8.39 ] 109
maximum value of the azimuthal magnetic Ðeld B at the
location of a-e†ect layer is about 0.105 times the maximum
value of B at the location of the shear layer. The relative
strengths of the processes that take place in these two layers
are calibrated by the magnitude of the dynamo number l
(see For the assumed values of l, k, and theeq. [20]). g1, g2,quantities and are related according tou0 c0 (u0 c0) \cm3 s~2. Note that because we have chosen to4.848] 1015
represent the vertical distributions of the a-e†ect and Ñuid
shear by d-functions, the parameters and di†er dimen-u0 c0sionally from the analogous quantities G and ! used in the
formulation of If we identify G with k)Parker (1993). (u0and ! with k), it follows that (G(c0 !) \ (u0 c0 k2) \ 3.103

cm s~2. Hence, for a vertical shear in the range] 10~5
10~6¹ G¹ 10~5 s~1, the constraint provided by the
dynamo number requires cm s~1. These31.0Z!Z 3.1
values are in reasonable agreement with the range of values
inferred for ! by applying conventional kinematic dynamo
models to the interpretation of the solar cycle (see, e.g.,
Parker 1979).

The estimates of dynamo properties derived in the pre-
ceding paragraphs must, for reasons discussed earlier in this
section, be regarded as an illustrative application of the
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model rather than as a quantitatively reliable representa-
tion of the mechanism by means of which the SunÏs mag-
netic Ðeld is generated. Subsequent papers in this series will
take further steps toward a more realistic description of an
interface dynamo, initially, through the inclusion of spher-
icity and solar-like internal di†erential rotation, and ulti-
mately, by extending the model to incorporate non-linear
e†ects.

We gratefully acknowledge discussions with Tom
Bogdan and Graham Barnes concerning many aspects of
the work described in this paper. We are also indebted to
Tom Bogdan for his thorough examination of the manu-
script, and to Jack Thomas and two anonymous referees for
further comments on the Ðrst submitted version.

APPENDIX A

DERIVATION OF THE DYNAMO DISPERSION RELATION

In this appendix, we provide a more detailed description of the procedure used to derive the dispersion relation given in
equation As is apparent from and the dynamo domain is partitioned into two regions (z\ h and(19a). Figure 1 equation (8),
z[ h), each characterized by a di†erent value of the di†usivity g. The placement of the layers in which a and Lu/Lz are nonzero
(see and eqs. and has the e†ect of further subdividing these regions into lower (l) and upper (u) halves, hereafterFig. 1 [9] [10])
denoted ““ 1l ÏÏ (z\ 0), ““ 1u ÏÏ (0 \ z\ h), ““ 2l ÏÏ (h \ z\ d), and ““ 2u ÏÏ (z[ d). Within each of these subdomains, the z-dependent
portions of the solutions for A and B (see eqs. assume the form:[16]È[18])

a1(z)\ a1l exp (q1z) , (A1)

b1(z)\ b1l exp (q1z) , (A2)

in z\ 0,

a1(z) \ a1u exp (q1z)] a1u@ exp ([q1z) , (A3)

b1(z) \ b1u exp (q1z)] b1u@ exp ([q1z) , (A4)

in 0\ z\ h,

a2(z) \ a2l exp (q2 z) ] a2l@ exp ([q2 z) , (A5)

b2(z) \ b2l exp (q2z)] b2l@ exp ([q2 z) , (A6)

in h \ z\ d, and

a2(z)\ a2u exp ([q2 z) , (A7)

b2(z)\ b2u exp ([q2 z) , (A8)

in z[ d.
The coefficients appearing on the right-hand side of equations are complex constants whose values are deter-(A1)È(A8)

mined by the requirement that the solutions satisfy the continuity conditions derived in At z\ 0, application of° 2.
conditions and yields(11a) (11b)

a1l \ a1u , (A9)

a1u@ \ 0 , (A10)

and

b1l\ b1u ] b1u@ , (A11)

while condition (together with the second of conditions implies that(11c) [11a])

a1u \ [ 2ig1q1
u0 k

b1u@ . (A12)

In a similar manner, continuity of A at z\ d leads to the result

a2u \ a2l exp (2q2 d) ] a2l@ , (A13)

while the conditions governing the continuity of both B and LB/Lz (see at that position provide the relationseq. [15])

b2l\ 0 , (A14)

and

b2l@ \ b2u . (A15)
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Finally, from the conditions [A]\ [LA/Lz]\ 0 at z\ h, it follows that

a2l \
Aq1] q2

2q2

B
exp [(q1[ q2)h]a1u , (A16)

and

a2l@ \
Aq2[ q1

2q2

B
exp [(q1] q2)h]a1u , (A17)

while imposition of the conditions [B]\ [gLB/Lz]\ 0 (see at the same location giveseq. [13])

b1u \
Ag1q1[ g2 q2
g1q1] g2 q2

B
exp ([2q1h)b1u@ , (A18)

and

b2u \
A 2g1q1
g1q1] g2 q2

B
exp [(q2[ q1)h]b1u@ . (A19)

Inspection of equations reveals that all nonvanishing coefficients are expressible in terms of the single amplitude(A9)È(A19)
Moreover, note that there is one continuity condition which has yet to be enforced, namely,b1u@ .

2g2 q2 a2l exp (2q2 d) \ c0 b2u , (A20)

which follows from the use of the constraint at z\ d. The dynamo dispersion relation given in is obtained(14a) equation (19)
directly from by substituting equations and for for and simplifying theequation (A20) (A16) (A12) a2l, equation (A19) b2u,result.

APPENDIX B

DERIVATION OF THE DYNAMO FIELDS

In this appendix, we brieÑy describe the procedure used to assemble complete solutions for the Ðelds A, B, and asB
x
, B

zfunctions of space and time. We also provide explicit expressions for these quantities, valid within each of the four subdomains
identiÐed in when 0\ h ¹ d.Appendix A

To begin, note that the z-dependence of the A and B Ðelds is given by equations (see and that their(A1)È(A8) Appendix A),
x- and t-dependene is furnished by the common multiplicative factor exp [pt ] i(kx ] ut)] (see eq. In addition, recall[16]).
that the complex coefficients (see eqs. appearing in the solutions for A and B are all expressible in terms of the[A9]È[A19])
single magnetic Ðeld amplitude say). Hence, expressions for the dimensionless quantitiesb1u@ (4B0,

AŒ 4
u0A
g1B0

and BŒ 4
B
B0

, (B1)

can be constructed by forming the solutions appropriate to each subdomain in the manner described above, and taking the
real parts of the results.

The poloidal magnetic Ðeld components, and are evaluated by combining with the deÐnitions toB
x

B
z
, equation (4) (B1)

obtain

BŒ
x
4

B
x

B0
\ [ 1

Ru

LAŒ
Lf

and BŒ
z
4

B
z

B0
\ 1

Ru

LAŒ
Lm

, (B2)

where m 4 x/d, f4 z/d, and is the magnetic Reynolds numberRu

Ru 4
u0 d
g1

. (B3)

Expressions for and then follow by performing the indicated di†erentiations of and taking the real parts of the results.BŒ
x

BŒ
z

AŒ
In order to assign a value to we deÐne a second magnetic Reynolds numberRu,

Ra4
c0
g2

, (B4)

and specify the magnitude of the ratio Then the product and the Reynolds number cank 4 Ra/Ru. Ra Ru \ kRu2 \ (il/2n), Rube expressed in terms of speciÐed parameters as

Ru \
A il
2kn
B1@2

. (B5)



498 MACGREGOR & CHARBONNEAU Vol. 486

The validity of mean-Ðeld electrodynamics that k be > 1 ; to obtain the results discussed in we assumed k \ 10~2.° 4,
In the remainder of this Appendix, we give complete expressions for the scaled Ðelds and throughout theAŒ , BŒ , BŒ

x
, BŒ

zdynamo domain. To facilitate the presentation of this material, we rewrite the complex quantities and (see eq. asq1 q2 [21])

q1\ k(1 ] s)1@2\ kv1 and q2\ k(1 ] ns)1@2 \ kv2 , (B6)

and deÐne the phase functions

'
m

\ '
mr

] i'
mi

\ (kl
mr

z] pt) ] i(kv
mi

z] kx ] ut) , (B7)

(
m

\ (
mr

] i(
mi

\ ([kv
mr

z] pt) ] i([kv
mi

z] kx ] ut) , (B8)

where the index m\ 1, 2. Then for z\ 0 the Ðelds are

AŒ \ 2 exp ('1r)[v1r sin ('1i)] v1i cos ('1i)] , (B9)

BŒ \ exp ('1r)[(1] c1r) cos ('1i) [ c1i sin ('1i)] , (B10)

BŒ
z
\ b exp ('1r)[v1r cos ('1i) [ v1i sin ('1i)] , (B11)

and

BŒ
x
\ b exp ('1r)[(v1r2 [ v1i2 ) cos ('1i) [ 2v1r v1i sin ('1i)] , (B12)

where The complex constant appearing in is given byb \i/Ru. c1\ c1r ] ic1i equation (B10)

c1r \ exp ([iv1r *)[u1r cos (iv1i*) ] u1i sin (iv1i *)] , (B13)

c1i \ exp ([iv1r *)[u1i cos (iv1i*) [ u1r sin (iv1i*)] , (B14)

with

u1r \
(nv1r [ v2r)(nv1r ] v2r) [ (nv1i [ v2i)(nv1i] v2i)

(nv1r ] v2r)2] (nv1i] v2i)2
, (B15)

and

u1i\
(nv1i[ v2i)(nv1r ] v2r)[ (nv1r [ v2r)(nv1i ] v2i)

(nv1r] v2r)2] (nv1i] v2i)2
, (B16)

In the region 0 \ z¹ h, and are still given by equations and respectively, while the expressionAŒ , BŒ
x
, BŒ

z
(B9), (B11), (B12),

for the azimuthal Ðeld becomes

BŒ \ exp ('1r)[c1r cos ('1i)[ c1i sin ('1i)]] exp ((1r) cos ((1i) , (B17)

where is evaluated using equationsc1 (B13)È(B16).
For positions within the interval h \ z¹ d, the dynamo Ðelds assume the forms

AŒ \ exp ('2r)[c2r cos ('2i) [ c2i sin ('2i)]] exp ((2r)[c3r cos ((2i) [ c3i sin ((2i)] , (B18)

BŒ \ exp ((2r)[c4r cos ((2i) [ c4i sin ((2i)] , (B19)

BŒ \ [ b
2

M(exp ('2r)[c2r sin ('2i) ] c2i cos ('2i)]] exp ((2r)[c3r sin ((2i) ] c3i cos ((2i)N , (B20)

and

BŒ
x
\ [ b

2
Mexp ('2r)[(v2r c2r [ v2i c2i) cos ('2i) [ (v2r c2i ] v2i c2r) sin ('2i)][ exp ((2r)

] [(v2r c3r[ v2i c3i) cos ((2i)[ (v2r c3i ] v2i c3r) sin ((2i)]N . (B21)

In equations the real and imaginary parts of the complex constants and are given by the following(B18)È(B21), c2, c3, c4formulae :

c2r \ exp
C
[ i

2
(v2r [ v1r)*

DG
u2r cos

Ci
2

(v2i [ v1i) *
D

] u2i sin
Ci
2

(v2i [ v1i) *
DH

, (B22)

c2r \ exp
C
[ i

2
(v2r [ v1r)*

DG
u2i cos

Ci
2

(v2i[ v1i) *
D

[ u2r sin
Ci
2

(v2i [ v1i) *
DH

, (B23)

with

u2r \
(v1r ] v2r)(v1i v2r [ v1r v2i) ] (v1i] v2i)(v1r v2r ] v1i v2i)

v2r2 ] v2i2
(B24)
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and

u2i\
(v1i] v2i)(v1i v2r [ v1ir v2i) [ (v1r ] v2r)(v1r v2r ] v1i v2i)

v2r2 ] v2i2
(B25)

c3r \ exp
Ci
2

(v1r [ v2r) *
DG

u3r cos
Ci
2

(v1i[ v2i) *
D

[ u3i sin
Ci
2

(v1i] v2i) *
DH

, (B26)

c3i\ exp
Ci
2

(v1r [ v2r) *
DG

u3i cos
Ci
2

(v1i [ v2i) *
D

] u3r sin
Ci
2

(v1i ] v2i)*
DH

, (B27)

with

u3r \
(v2r [ v1r)(v1i v2r [ v1r v2i) ] (v2i[ v1i)(v1r v2r ] v1i v2i)

v2r2 ] v2i2
(B28)

and

u3i\
(v2i[ v1i)(v1i v2r [ v1r v2i)[ (v2r ] v1r)(v1r v2r ] v1i v2i)

v2r2 ] v2i2
(B29)

c4r \ exp
Ci
2

(v2r [ v1r) *
DG

u4r cos
Ci
2

(v2i[ v1i) *
D

[ u4i sin
Ci
2

(v2i[ v1i) *
DH

, (B30)

c4i\ exp
Ci
2

(v2r [ v1r) *
DG

u4i cos
Ci
2

(v2i [ v1i) *
D

] u4r sin
Ci
2

(v2i [ v1i)*
DH

, (B31)

with

u4r \ 2n
Cv1r(nv1r ] v2r) ] v1i(nv1i] v2i)

(nv1r ] v2r)2] (nv1i] v2i)2
D

, (B32)

and

u4i \ 2n
Cv1i(nv1r ] v2r)[ v1r(nv1i ] v2i)

(nv1r] v2r)2] (nv1i] v2i)2
D

. (B33)

Finally, within the region z[ d, is still given by while the expressions for and becomeBŒ equation (B19), AŒ , BŒ
z
, BŒ

x
AŒ \ exp ((2r)[(c5r ] c3r) cos ((2i) [ (c5i] c3i) sin ((2i)] , (B34)

BŒ
z
\ [ b

2
exp ((2r)[(c5i ] c3i) cos ((2i) ] (c5r ] c3r) sin ((2i)] , (B35)

and

BŒ
x
\ b

2
exp ((2r)M[v2r(c5r ] c3r) [ v2i(c5i] c3i)] cos ((2i) [ [v2i(c5r] c3r) ] v2r(c5i ] c3i)] sin ((2i)N . (B36)

In these expressions, the constant is computed according to equations whilec3 (B26)È(B29),

c5r \ exp (iv2r)[c2r cos (iv2i)[ c2i sin (iv2i)] (B37)

and

c5i\ exp (iv2r)[c2i cos (iv2i) ] c2r sin (iv2i)] (B38)

with given by equationsc2 (B22)È(B25).

APPENDIX C

DIFFUSION OF OSCILLATING FIELDS

We treat the following idealized problem pertaining to the di†usion of a magnetic Ðeld in a semi-inÐnite, composite
medium. Consider the Cartesian domain zº 0 in which the region 0¹ z¹ h contains material with magnetic di†usivity g1,while the material in the region z[ h is characterized by the di†usivity At time t \ 0, the y-directed magnetic Ðeld B(z, 0) isg2.assumed to vanish throughout the domain. For times t [ 0, the Ðeld on the boundary at z\ 0 is taken to vary in time as B(0,

cos ut, where and u are speciÐed constants. For these boundary and initial conditions, we seek the solution B(z, t)t)\ B0 B0describing the di†usive transport of the Ðeld from z\ 0 to any position within the domain.
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At locations other than z\ h, the Ðeld B satisÐes the di†usion equation

LB
Lt

\ g
L2B
Lz2 , (C1)

where for 0¹ z¹ h and for z[ h. Because the desired solution of is subject to theg \ g1 g \ g2 g1\/ g2, equation (C1)
continuity conditions

[B]\ 0 \
C
g

LB
Lz
D

, (C2)

at z\ h as discussed in DeÐne the Laplace transform of B with respect to t according to° 2.

B3 (z, s)\
P
0

=
dt e~stB(z, t) , (C3)

where s is a complex number with a positive real part. As a function of s, satisÐes the Laplace transform ofB3 equation (C1)

d2B3
dz2 \ s

g
B3 , (C4)

and likewise obeys the transformed versions of the boundary and continuity conditions.
An acceptable solution to has the general formequation (C4)

B3 (z, s) \ c1 exp [J(s/g1)z]] c2 exp [[J(s/g1)z] , (C5)

for 0 ¹ z¹ h and

B3 (z, s) \ c3 exp [[J(s/g2)z] , (C6)

for z[ h, where we have imposed the requirement that tend toward zero as z becomes large. The values of the constantsB3 c1,and appearing in equations and follow from the application of the conditions and the boundary conditionc2, c3 (C5) (C6) (C2)
at z\ 0. By utilizing the Laplace transforms of these constraints, we obtain

c1\ [ vsB0
s2] u2

exp [[2J(s/g1)h]

1 [ v exp [[2J(s/g1)h]
, (C7)

c2\ sB0
s2] u2

1

1 [ v exp [[2J(s/g1)h
, (C8)

and

c3\ (1[ v)
sB0

s2 ]u2
exp M[[J(s/g1) [ J(s/g2)]hN

1 [ v exp [[2J(s/g1)h]
, (C9)

where

v\ 1 [ Jn

1 ] Jn
, (C10)

with From these results, it is readily shown that s) can be written asn \ (g1/g2). B3 (z,

B3 (z, s) \ sB0
s2] u2 ;

k/0

=
vk
G
exp

C
[
S s

g1
"1k(z)

D
[ a exp

C
[
S s

g1
"2k(z)

DH
, (C11)

for 0 ¹ z¹ h and

B3 (z, s)\ (1 [ v)
sB0

s2] u2 ;
k/0

=
vk exp

C
[
S s

g1
"3k(z)

D
, (C12)

for z[ h, where and"1k(z) \ (2kh ] z), "2k(z)\ [2(k] 1)h [ z], "3k(z) \ [(2k ] 1)h] (n)1@2(z [ h)].
The solution B(z, t) is obtained by inverting the transforms given in equations and Apart from a multiplicative(C11) (C12).

factor, the inversion of each term of the summations in expressions and for s) contributes a term of the form(C11) (C12) B3 (z,
(Erdelyi 1954)

exp [[Juq
jk
(z)] cos [ut [ Juq

jk
(z)][ 1

n
P
0

=
du

u exp ([ut)
u2] u2 sin [J2uq

jk
(z)] , (C13)

in the corresponding summation for B(z, t), where we have used the notation with j \ 1, 2, 3. We interpret theq
jk

\ "
jk
2 /(2g1)integral in as a transient arising from the impulsive turn-on of the system at t \ 0. In the spirit of the derivation and(C13)
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analysis of the dynamo dispersion relation given in preceding sections, we presume that its magnitude becomes small for times
t ? u~1 and discard it. With this assumption the solution becomes

B(z, t) \ B0 ;
k/0

= vkMexp [[Juq1k(z)] cos [ut [ Juq1k(z)][ v exp [[Juq2k(z)] cos [ut [ Juq2k(z)]N , (C14)

for 0 ¹ z¹ h and

B(z, t) \ (1 [ v)B0 ;
k/0

= vk exp [[Juq3k(z)] cos [ut [ Juq3k(z)] , (C15)

for z[ h. Note that as n becomes vanishingly small, v] 0 while (1[ v) ] 2(n)1@2. Hence, we expect that for n > 1, the ratio
t)], where the subscript denotes the maximum value over the course of one period, should vary with n[B'(h, t)/B'(0,

approximately like (n)1@2.
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