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ABSTRACT
Below the convection zone, where the stratiÐcation is radiatively controlled, large-scale motions should

be mainly horizontal, i.e., in spherical shells due to the stabilizing e†ect of negative buoyancy on radial
displacements. Watson showed that the observed surface solar di†erential rotation is at the threshold for
instability to horizontal disturbances. Therefore, since helioseismology tells us the latitudinal di†erential
rotation below the convection zone is less than the surface value, the proÐle should be stable too. We
show that in the presence of a broad, nonuniform toroidal Ðeld the solar di†erential rotation is unstable.
This is true for a wide range of kinetic and magnetic energies of the unperturbed state, from well below
equipartition to well above it. We Ðnd instability for essentially all values of di†erential rotation and
toroidal Ðelds for which we are able to Ðnd converged solutions. The instability appears to occur only
for longitudinal wave number 1. Disturbance symmetries about the equator and proÐles in latitude
depend on the amplitude of the toridal Ðeld. Peak e-folding times are a few months. The primary energy
source for the instability is di†erential rotation for low Ðeld strengths and the toroidal Ðeld for high Ðeld
strengths. The mechanism of energy release from the di†erential rotation is the poleward transport of
angular momentum, by the Maxwell stress rather than the Reynolds stress. For the proÐles studied, the
Reynolds stress is almost always trying to rebuild di†erential rotation, the exact opposite of the non-
magnetic case. Second-order perturbation theory predicts that the unstable modes produce zonal jets
and Ðne structure in the toroidal Ðeld, the latitude of which migrates toward the equator with increasing
magnetic Ðeld strength. The instability we have found may play a role in the solar dynamo, although
being two-dimensional, it cannot produce a dynamo by itself. Mixing of angular momentum caused by
the instability could allow achievement of equilibrium of the solar tachocline hypothesized by Spiegel &
Zahn.
Subject headings : hydrodynamics È instabilities È MHD È Sun: interior È Sun: magnetic Ðelds È

Sun: rotation

1. INTRODUCTION

Helioseismological measurements and inversions (Brown
et al. et al. Schou, & Thomp-1989 ; Goode 1991 ; Tomczyk,
son indicate that there is a layer at or near the base of1995)
the convection zone where the latitudinal di†erential rota-
tion of the photosphere and convection zone declines in
amplitude to solid rotation at a value intermediate between
that of the solar equator and pole at the surface. This layer
therefore must contain a substantial radial gradient of
angular velocity, of opposite signs in low and high latitudes.

It is widely suspected that the angular velocity gradients
of this layer are a principal driver of the solar dynamo
responsible for the solar magnetic cycle. E†ective dynamo
action from such gradients also requires a substantial
residence time for the magnetic Ðeld. This means that the
e†ects of magnetic buoyancy must be at least partially neu-
tralized. The convection zone, itself buoyantly unstable by
deÐnition, provides no real mechanism; however, the layers
immediately underneath, where the radial temperature gra-
dient is less than adiabatic, can store the Ðelds for extended
periods. This is particularly true below the convection zone
where the temperature gradient is determined by radiation
balance, i.e., below the depth of overshooting of convective
elements. It is this layer to which the theory that follows
here is best applied.

1 The National Center for Atmospheric Research is sponsored by the
National Science Foundation.

The most recent estimates from helioseismology
place about of the shear layer in the(Kosovichev 1996) 34radiative region below the solar convection zone. The total

thickness of the shear layer is estimated as 0.09 ^ 0.04 of the
solar radius with midpoint at 0.692^ 0.005 of the radius.
These estimates are of course subject to revision based on
more extensive helioseismological data that is now being
produced by the Global Oscillations Network Group
(GONG) program and the Solar and Heliospheric Obser-
vatory (SOHO) satellite, but it seems likely that a substantial
fraction of the shear layer will still be found to reside below
the convection zone.

In the presence of strong negative buoyancy, global Ñuid
motions will be largely conÐned to spherical shells. Di†er-
ential rotation itself is perhaps the simplest form of such a
motion, but other more complex Ñows could also exist, par-
ticularly Ñows with longitudinal dependence. A possible
origin of such Ñows is instability of the latitude gradient of
rotation, which grows by taking momentum from latitudes
where it is high to where it is low, thus extracting kinetic
energy. For the sun this would mean transporting angular
momentum from low latitudes to high.

The existence of a two-dimensional instability of di†eren-
tial rotation was Ðrst demonstrated in the context of the
global circulation of the EarthÏs atmosphere It(Kuo 1949).
required there be an extremum in the vorticity of the Ñow.

investigated this stability problem for solar-Watson (1981)
type di†erential rotation proÐles and showed that, for dif-
ferential rotation between equator and pole of about 29%
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or more, the proÐle is indeed unstable, particularly to longi-
tudinal wave number m\ 1. Below that limit, the proÐle is
stable to all wavenumbers. Watson concluded that this
instability might cause the photospheric di†erential rota-
tion of the Sun to be limited to about 30%.

Watson of course did not know about the shear layer at
the base of the convection zone where the theory is more
applicable because of the highly stable stratiÐcation there.
But since the latitudinal di†erential rotation is signiÐcantly
less than 30% at these depths, WatsonÏs result would imply
that the latitudinal gradient should be stable. &Spiegel
Zahn developed a theory for the radial gradient of(1992)
rotation beneath the convection zone (which they call the
solar tachocline) that requires highly anisotropic mixing of
angular momentum below the convection zone, with much
stronger latitudinal than radial exchange. (With isotropic
eddy mixing of momentum, the radial gradient would have
di†used all the way to the core in a time short compared to
the age of the Sun.) But such enhanced latitudinal mixing
can really only come from an instability of the di†erential
rotation proÐle, which, according to Watson, is stable. How
is this paradox to be resolved?

& did not consider the e†ect of magneticSpiegel Zahn
Ðelds. We show here that a toroidal magnetic Ðeld can
render the di†erential rotation unstable. This is true for a
very wide range of Ðeld strengths and for di†erential rota-
tions that are much less than the photospheric value. The
instability provides angular momentum mixing in latitude,
but through the Maxwell stress rather than the Reynolds
stress.

Coexisting shear Ñow and parallel magnetic Ðelds in Car-
tesian geometry, each separately stable, have previously
been found to be unstable by andStern (1962) Kent (1968).
The instability we have discussed here should be related to
that discussed by & Hawley except that ourBalbus (1994),
analysis is global while theirs is local, and some of the
physics is di†erent ; no detailed comparison has been made
yet. We do note that while the & instabilityBalbus Hawley
draws energy only from di†erential rotation, we will
demonstrate that ours takes it from both di†erential rota-
tion and the toroidal Ðeld.

We present in this paper the basic formulation of the
stability problem, as a hydromagnetic extension of the
analysis of and demonstrate the existence ofWatson (1981),
the instability with solutions for simple toroidal Ðeld pro-
Ðles. Later papers in the series will give results for more
complex proÐles, as well as for inclusion of additional
physics.

2. PHYSICAL ASSUMPTIONS AND GOVERNING EQUATIONS

In this initial study of the instability, we simplify the
physics as much as possible. We treat the problem as an
““ ideal MHD ÏÏ generalization of the analysis carried out by

for the nonmagnetic case. Nevertheless, weWatson (1981)
believe the physics retained still deÐnes a fairly realistic
problem for the shear layer at the base of the convection
zone of the sun.

Following Watson, we treat the problem as strictly two-
dimensional, with reference state and perturbations lying in
a spherical shell, with no radial variations. Viscous and
ohmic di†usion are ignored. This also should be a good
approximation for disturbances with substantial growth
rates. Compressibility is also ignored since the two-
dimensional assumption precludes radial displacements

and the relevant timescales for extraction of energy from the
di†erential rotation and/or toroidal Ðeld are very long com-
pared to any relevant sound travel time.

We use longitude (j) and latitude (/) coordinates, deÐne
and magnetic It is con-velocity\ ukü ] v/ü Ðeld\ akü ] b/ü .

venient to use a modiÐed pressure variable n \ p/o, in
which p and o are the ordinary pressure and density, respec-
tively. Then, we can write the nonlinear governing equa-
tions that have the density, shell radius, and factors of 4n in
the j Â B force scaled out, as continuity equations for veloc-
ity and magnetic Ðeld, two equations of motion, and two
induction equations :
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can be derived from equations and soEquation (2) (5) (6),
there are actually only Ðve independent equations for the
Ðve unknowns.

3. EXPANSION INTO REFERENCE STATE AND

PERTURBATION EQUATIONS

We separate the dependent variables into a reference
state, which is independent of longitude (denoted by an
overbar) and perturbations (denoted by primes). Thus,

n \ n6 ] n@, u \ u6 ] u@, v\ v@, a \ a6 ] a@, b \ b@ .

(7)

From equations and and vanish because of the(1) (2) v6 b6
assumptions of two-dimensionality. Then we expand the
governing equations into zeroth-, Ðrst-, and second-order
components. Zeroth order simply relates the reference state
““ pressure ÏÏ n6 to a speciÐed and according toa6 u6

L
L/

A
n6 ] a6 2

2
B

\ (a6 2[ u6 2) tan / , (8)

from equation (4).
The Ðrst-order system gives the perturbation equations :
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Subtracting the Ðrst-order perturbation equations and(11)
from the full equations and in expanded form and(13) (3) (5)

then averaging over j allow us to compute initial tendencies
for the change in the reference states and as second-a6 u6 ,
order quantities, resulting from the ““ stresses ÏÏ or corre-
lations among perturbation variables.

Lu6
Lt

\ 1
cos2 /

L
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The balance for the reference state pressure n6equation (8)
also changes to second order, but we omit the details since
we have no need to refer to it in this paper.

The correlation is the Reynolds stress, responsible foru@v@
extracting energy from the di†erential rotation in Watson

stability analysis ; the correlation is the Maxwell(1981) a@b@
stress, which is obviously capable of doing the same thing. A
key point, though, is that and appear with oppositeu@v@ a@b@
signs, so the same functional shape of velocity and magnetic
disturbances will transport momentum in opposite direc-
tions. We will see this compensating tendency at work in
our solutions. We will call the correlation theu@b@[ v@a@
““ mixed ÏÏ stress, which from provides the onlyequation (16)
mechanism in the two-dimensional ideal MHD case for
extracting energy from the reference state toroidal Ðeld.

4. REDUCTION OF PERTURBATION EQUATIONS TO A

SOLVABLE SYSTEM

Since the perturbations are two-dimensional, we can
satisfy the continuity equations and identically by(9) (10)
representing u@, v@, and a@, b@ by ““ stream functions ÏÏ t and s,
respectively :
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In addition, it is convenient to rewrite and in the form,u6 a6
u6 \ u0 cos / , a6 \ a0 cos / ,

so that is the total angular frequency and is a mag-u0 a0netic analog. Then, assuming perturbation variables t and
s are proportional to eim(j~ct), m an integer, and substituting
k \ sin /, the perturbation equations can be(9)È(14)
reduced to a pair of ordinary di†erential equations
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In equation (17)
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is the ““ Legendre operator ÏÏ as deÐned by Watson.
As in we assume t\ 0 at the poles, andWatson (1981),

therefore from s \ 0 there also. These condi-equation (18)
tions are necessary to avoid nonphysical singularities there.
Flow and Ðeld are still allowed across the poles, when
m\ 1.

Watson solved with by expanding inequation (17) a0\ 0
associated Legendre polynomials. We generalize this
approach to the hydromagnetic system (17)È(18).

5. INTEGRAL THEOREMS

Without solving equations and in detail, there(17) (18)
are certain statements that can be made about unstable
solutions from integrals of these equations. Watson (1981)
derived several of these for the nonmagnetic case, based on
an earlier extensive review by & Howard InDrazin (1966).
the MHD case, some of the integral constraints for unstable
modes contain many terms and are not particularly enlight-
ening. We brieÑy select results that will be of use in inter-
preting our solutions. In particular, if we introduce the
transformation multiply byt\ (u0[ c)H, equation (17)
H*, substitute for s from integrate from poleequation (18),
to pole, and integrate by parts, applying the pole condition
t\ 0, we obtain
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Separating out the imaginary part gives
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So for unstable modes to exist, the sum of integrals inside
the braces in must vanish. This places boundsequation (20)
on the phase velocity of unstable disturbances that are inde-
pendent of the magnitude and proÐle of the toroidal Ðeld ;
so the bounds are the same as stated by WeWatson (1981).
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can solve for in the formequation (20) c
r
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in which is a weighted average of the di†erential rota-Su0Ttion at all latitudes, given by
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Clearly falls between the maximum and minimumSu0Trotation of the shell. Furthermore, with u0\ r[ sk2,
which is what Watson chose and we will choose for our
model of the solar di†erential rotation, d/dk (ku0)\ r

so unless s [ r/3 (r \ 1, for the Sun), the[ 3sk3, s ^ 0.29
ratio of integrals must always reduce the phase velocity
further. Thus, for solar conditions the phase velocity of an
unstable disturbance cannot exceed the maximum rotation
rate of the system, regardless of the strength and proÐle of
the magnetic Ðeld. Therefore, the Alfve� n speed does not
predominate in determining the phase velocity of unstable
modes. Under certain conditions, from theequation (21)
phase velocity would be slightly lower than the minimum
rotation, but again by an amount that does not depend
explicitly on the magnetic Ðeld parameter There are, ofa0.course, many neutral, oscillating modes that are solutions of
equations and The Alfve� n speed does enter into(17) (18).
these modes, but we do not consider them further here.

Multiplication of by t*, integration overequation (17)
the shell and by parts also yields a necessary condition for
instability. In the nonmagnetic case discussed in Watson

this yields the classical and(1981) Rayleigh (1880) FjÔrtoft
conditions for instability. RayleighÏs condition(1950)

requires that for instability, must(d2/dk2)[u0(1 [ k2)]
change sign at some latitude. This condition is a conse-
quence of total vorticity being conserved in the system and
says that the latitude gradient of the reference-state vor-
ticity must change sign in the shell. In the MHD case, the
necessary condition contains several more terms, each inte-
grand of which is proportional to or product of deriv-a02atives of (the detailed formula is given in thea0 Appendix).
It is clear that with these extra terms (several of which have
the factor which from the discussion above cer-(u0[ c

r
),

tainly changes sign in the shell), RayleighÏs condition is
relaxed, meaning that instability can occur even if there is
no sign change in the vorticity gradient. And indeed, we do
Ðnd instability of the di†erential rotation under these condi-
tions. The reason this can occur is that the toroidal mag-
netic Ðeld breaks the constraint of conservation of vorticity.

However, the magnetic Ðeld is not always destabilizing
because it is also possible to show from the necessary condi-
tion that as m] O, the growth rates must approach zero.
This is the stabilizing e†ect of the j Â B force, which
increases like m2 as m increases.

Other integral theorems can be derived that place bounds
on growth rates of unstable disturbances as generalizations
of those found in but these bounds are quiteWatson (1981),

loose, i.e., much larger than the actual growth rates found
here, so we do not reproduce these bounds here.

6. SOLUTION BY LEGENDRE POLYNOMIAL SERIES

The separation of longitude from latitude dependence in
the equations means that solutions can be represented by
separate series of associated Legendre polynomials for each
longitudinal wave number m so t and s can be written as
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So the di†erential equation becomes the algebraic(17)
equation (23).

In order to carry the problem further, we must assume
speciÐc proÐles for and tooku0 a0. Watson (1981) u0\ r

which is a good representation of the solar di†eren-[ sk2,
tial rotation ; so we shall also. We choose a0\ ak] bk3,
which is the simplest proÐle that is antisymmetric about the
equator, the dominant symmetry on the sun, and which
allows both signs of toroidal Ðeld in each hemisphere.

Provided we avoid singularities, the eigensystems (23)
and can be solved by matrix inversion methods. This(24)
should be possible for unstable modes, for which c is
complex. Because of symmetry properties, there are actually
two matrix equations : one for t symmetric, s anti-
symmetric about the equator (k \ 0), and the other for t
antisymmetric, s symmetric. We will generally refer to the
Ðrst pair as the symmetric case, and the second as the anti-
symmetric case, according to the symmetry of t. Thus, the
symmetric perturbations have the same symmetries about
the equator as the reference state, and the same as the domi-
nant symmetries of the observed solar di†erential rotation,
and toroidal Ðeld as inferred from sunspot magnetic pol-
arities. Symmetric t and s have n \ m as the Ðrst term in
their series, while antisymmetric t and s have n \ m] 1 as
the Ðrst term. Subsequent terms in each series are spaced by
2 in n.

By collecting coefficients of like Legendre polynomials,
again following Watson, equations and each yield(23) (24)
seven term recursion relations deÐned in the Appendix.
These act as generators of series of diagonals in the matrix
equation for each symmetry, the eigenvalue of which is c,
and whose eigenvector is the sequence of coefficients (

n
m,

for all n values included in the particular truncationX
n
m,

level chosen. In the solutions that follow, we have taken
between 80 and 200 terms in the series. All calculations were
performed on a SUN SPARCStation 5.

In this Ðrst study, we Ðnd solutions for the case with
We have studied solutions with r \ 1 and sa0\ ak(b \ 0).
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between 0.01 and 0.45 and a between 0 and 2.0, to show the
full range of behavior. We have created a database of more
than 3600 solutions which we sample for the results shown
below. We focus on solutions with s \ 0.30, for which no
instability occurs in the nonmagnetic case.

Recall that impliesa0\ ak a6 \ ak(1 [ k2)1@2 \ a sin
/ cos /, probably the simplest possible toroidal Ðeld proÐle
that is antisymmetric about the equator and 0 at the poles
with the peak toroidal Ðeld at /\ 45¡. But even with this
simple proÐle, we show that the s, a space contains a rich
variety of unstable mode behavior. This is largely because in
the MHD case there are two sources of energy for growing
modes : kinetic energy of di†erential rotation and magnetic
energy of the toroidal Ðeld. So far in this study, we have
found that only m\ 1 is unstable. All higher mÏs give only
neutral oscillations, presumably because of the stabilizing
inÑuence of the j Â B force for higher m.

7. ENERGETICS AS SOLUTION DIAGNOSTICS

To interpret solutions and to understand the physics of
the system generally, it is useful to derive equations for the
energetics of the system from the combination of Ðrst- and
second-order equations. These equations are quite general :
they apply even for Ðnite amplitude perturbations, not nec-
essarily represented by solutions proportional to eim(j~ct),
and for all and not just the polynomial forms weu0 a0,have chosen. The equations describe the transfers of energy
between various pairs of four energy reservoirs, two kinetic,
two magnetic, two reference state, and two perturbation.

The reference state kinetic energy reservoir and mag-K1
netic energy reservoir are deÐned asM1

K1 4
P
~1

1 (u0 [ u
r
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2
(1[ k2)dk ,

M1 4
P
~1

1 a02
2

(1 [ k2)dk ,

in which is the rotation rate of an appropriate referenceu
rframe. In numerical comparisions, we will use the solar

rotation rate below the shear layer. The corresponding per-
turbation energy reservoirs are deÐned as

K@4
P
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2

dk , M@4
P
~1

1 a@2] b@2
2

dk .

Then we can show, by forming energy equations from
integrating over k, and integrating by parts, that(11)È(16),

the energetics of this system can be written in symbolic form
as

LK1
Lt

\ [(K1 , K@) [ (K1 , M@) , (25)

LM1
Lt

\ [(M1 , K@) , (26)

LK@
Lt

\ ](K1 , K@) ] (M1 , K@) [ (K@, M@) , (27)

LM@
Lt

\ ](K1 , M@) ] (K@, M@) . (28)

In the above (E, F) denotes an integral measuring the rate of
energy conversion from form E to form F. The speciÐc inte-

grals are deÐned as follows

(K1 , K@) \ [
P
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1
(1 [ k2)u@v@

Lu0
Lk

dk ,

work done by the Reynolds stress ;

(K1 , M@)\
P
~1
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(1[ k2)a@b@
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dk ,

work done by the Maxwell stress ;

(M1 , K@) \
P
~1

1
(u@b@[ v@a@)

L
Lk

(a0(1 [ k2))dk ,

work done by the ““ mixed ÏÏ stress ;

(K@, M@) \ [
P
~1

1 a0v@j@ dk ,

work done against the perturbation
latitudinal j Â B force ,

in which

j@\ Lb@
Lj

[ (1 [ k2)1@2 L
Lk

[a@(1 [ k2)1@2] .

Equations can be visualized with a diagram, seen(25)È(28)
in The arrowhead direction denotes energy con-Figure 1.
verted from the Ðrst form in the parentheses to the second.
The integrals in always appear twice, with(25)È(28)
opposite signs, in two equations, representing extraction
from one reservoir that must be deposited into another.
Thus, as we should expect to second-order, the total energy
of the system, is conserved.K1 ] M1 ] K@] M@, Figure 1
illustrates clearly that not all energy reservoirs are linked
directly. In particular, there is no direct link between andK1

or between and M@.M1 , M1
The missing link between and is a consequence ofK1 M1

the di†erential rotation and toroidal Ðeld being parallel, so
no energetic consequences are felt. If we included poloidal
Ðelds that are independent of longitude, there would be a
link, which represents the stretching of poloidal into toroi-
dal Ðeld by the di†erential rotation, commonly part of Ðeld
reversing dynamos. Inclusion of such a poloidal Ðeld would
prevent rigorous treatment of the stability problem in
general, because the reference state would not be a steady

FIG. 1.ÈSchematic of possible conversions of energy among the four
energy reservoirs in the system. DeÐnitions given in Overbars denote° 7.
reference state ; primes denote perturbations.
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solution of the governing equations, unless the poloidal
Ðeld were everywhere parallel to isorotation surfaces. The
missing link between and M@ is a consequence of theM1
requirement that to extract energy from a magnetic
reservoir requires a j Â B force component to do work on
the Ñuid, which in the Ðrst instance creates kinetic not mag-
netic energy. But then other components of the j Â B force
can be worked against by the Ñuid to create magnetic
energy, which is what a positive value of (K@, M@) represents.
It is of further interest to note from that while theFigure 1
Reynolds stress converts kinetic energy of di†erential rota-
tion to perturbation kinetic energy, the Maxwell stress,
which is always paired with the Reynolds stress (but of
opposite sign) converts it to perturbation magnetic energy.
So we should expect that the form of perturbation energy
that is largest in growing disturbances is determined by
which type of stress, Reynolds or Maxwell, is most e†ective
at extracting energy from the di†erential rotation. We shall
Ðnd that for b \ 0 toroidal Ðeld proÐles, the Maxwell stress
nearly always wins, so the perturbation magnetic energy is
always equal to or larger than the perturbation kinetic
energy. The Reynolds stress in this case is always trying to
rebuild the di†erential rotation, so the perturbation kinetic
energy has to be built up from perturbation magnetic
energy, through (K@, M@).

Some expectation for Maxwell stresses to predominate
can be seen by examining the reference state kinetic energy
equation, written in the form

LK1
Lt

\ [2s
P
~1

1
(1 [ k2)(u@v@[ a@b@)k dk , (29)

in which we have made use of From thisu0\ r [ sk2.
expression, we see that net poleward transport of angular
momentum by the Reynolds and/or Maxwell stresses, cor-
responding to in the northern hemisphere,(u@v@ [ a@b@) [ 0,
and \0 in the southern, causes or extraction ofLK1 /Lt \ 0,
energy from the di†erential rotation as we should expect.
Now by substituting in the assumed form of the pertur-
bations t and s before the Legendre polynomial(° 4)
expansion, and using relation to eliminate s, we can(18)
show that

(u@v@[ a@b@) \
A
1 [ a02

ou0[ c o2
B
u@v@] m

a02 c
i
ot o2

ou0[ c o4 sk ,

(30)

in which the Maxwell stress is represented by the terms
containing From the right-hand side of wea02. equation (30)
can see that for growing disturbances part of the(c

i
[ 0)

Maxwell stress (second term on the right-hand side in (30)
always transports momentum toward the poles at all lati-
tudes. It is particularly large where the disturbance ampli-
tude ot o peaks, and where is small. From the Ðrstou0 [ c o4
term, we can also see that another part of the Maxwell
stress always opposes the Reynolds stress and should domi-
nate more and more as increases. This opposition comesa0from the tendency for perturbation velocities and magnetic
Ðelds to have similar structures with latitude since there is
no di†usion present. The most likely scenario from is(30)
that the Maxwell stress dominates, except perhaps when a0is small, and that it transports momentum towards the
poles to extract energy from the di†erential rotation, while
the Reynolds stress transports a smaller amount of momen-

tum toward the equator. The detailed numerical solutions
verify this inference.

A second statement can be made concerning instability
from the reference magnetic energy equation Using the(26).
same methods as just described above, plus additional inte-
grations by parts, we Ðnd that

LM1
Lt

\ mc
i

2
P
~1

1 ot o2
ou0[ c o2

G
a0

d2
dk2 [(1 [ k2)a0]

H
dk .

(31)

From we can immediately argue that for aequation (31)
growing perturbation to be deriving its energy from(c

i
[ 0)

so that it is necessary thatM1 , LM1 /Lt \ 0, a0 d2/dk2[(1
somewhere, and it is sufficient if this quantity[ k2)a0]\ 0

is sufficiently negative. This criterion is of immediate inter-
est for the case i.e., b \ 0, for thena0\ ak,

LM1
Lt

\ [ 3mc
i

2
P
~1

1 ot o2
ou0[ c o2 a2k2 dk . (32)

Since the right-hand side of is always negativeequation (32)
for growing perturbations, such perturbations are getting at
least some of their energy from the toroidal Ðeld. Of course,

need not be the primary energy source, and, indeed, weM1
shall Ðnd that for the proÐle, the toroidal Ðeld doesa0\ ak
not become the primary source until a [ 0.3.

8. RESULTS

8.1. Growth Rates of Unstable Disturbances
found that in the nonmagnetic case forWatson (1981)

m\ 1, only the mode with t antisymmetric about the
equator was unstable. By contrast, we Ðnd that in the pres-
ence of a toroidal Ðeld, both symmetries are excited : t sym-
metric and s antisymmetric about the equator dominate
when the toroidal Ðeld parameter a is small (a ¹ 0.3), and t
antisymmetric, s symmetric prevail when the toroidal Ðeld
is larger. Figures and show the growth rates for these2 3
cases for various values of s. The growth rates are given in
dimensionless units, scaled by the equatorial rotation rate.
A growth rate of 0.01 corresponds, in dimensional terms, to
an e-folding growth time of about one year on the Sun.
Therefore, it is clear from Figures and that disturbance2 3
growth times range between a few months and several
years, depending on parameter values.

The uppermost curve in each Ðgure is for s \ 0.3
(approximately the photospheric di†erential rotation rate
relative to the equatorial rotation rate). Each successive
curve below that is decreased in s by 0.03, so the symmetric
case goes down to s \ 0.15 (50% of the photosphere), and
the antisymmetric case goes down to s \ 0.09 (30% of the
photosphere). These lower limits do not represent stability
boundaries but rather a more practical limit for this method
of calculation, based on convergence and closeness to singu-
larities in the complex plane. We cannot tell with this
method precisely where in parameter space the stability
boundary is because the smaller the growth rate, the more
nearly singular the matrix becomes. It is possible that the
instability disappears only in the limit of a going to zero.
The Ðne structure in the growth rate curves in the sym-
metric case below are caused by the near singularc

i
\ 0.005

matrix being inverted and may not represent accurately the
weak instability at these parameter values. The same is true
for the Ðne structure for the antisymmetric case for a D 0.3.



No. 1, 1997 JOINT INSTABILITY BELOW SOLAR CONVECTION ZONE 445

FIG. 2.ÈGrowth rate for symmetric modes (t symmetric, sc
iantisymmetric) as a function of toroidal Ðeld parameter a. Curves are for

di†erential rotation parameter values s \ 0.30È0.18 in decrements of 0.03,
with s \ 0.30 having the highest growth rate. To properly show detail, the
growth rate scale is expanded by a factor of 2 compared to the anti-
symmetric case shown in that follows.Fig. 3

But in both cases, the modes of opposite symmetry about
the equator are much more unstable, so this Ðne structure is
of limited physical signiÐcance.

Choosing a reasonable reference state density for the
layer we are considering below the solar convection zone, a

FIG. 3.ÈGrowth rate for antisymmetric modes (t antisymmetric, sc
isymmetric) as a function of toroidal Ðeld parameter a. Curves are for

di†erential rotation parameter values s \ 0.30È0.09 in decrements of 0.03,
with s \ 0.30 having the highest growth rate. Note that the growth rate
scale is contracted by a factor of 2 compared to the symmetric case in
Fig. 2.

dimensionless toroidal magnetic Ðeld parameter a \ 1 cor-
responds to peak toroidal magnetic Ðelds of about 105 G.
Therefore, we Ðnd instability of the system for toroidal
Ðelds as small as about 3000 G and with no apparent upper
limit in a to the instability. The peak instability for the
symmetric mode occurs in the neighborhood of a \ 0.15,
corresponding to a toroidal Ðeld strength of D15,000 G.
The antisymmetric mode has a very broad, Ñat peak in
growth rate for a [ 1.0, so this occurs for toroidal Ðelds in
excess of 105 G.

We can see that the antisymmetric mode is considerably
more unstable than the symmetric one for the same di†eren-
tial rotation, but this requires a considerably larger toroidal
Ðeld to be realized. Thus if dynamo action is responsible for
the buildup of toroidal Ðeld, then the symmetric mode of
instability should be provoked Ðrst in a new magnetic cycle.
It is not clear whether during such a buildup the anti-
symmetric mode can be realized since the reference state
would already be modiÐed during the build up phase. In the
nonmagnetic case, it is the antisymmetric mode that is
unstable for s [ 0.29. Thus, weak magnetic Ðelds excite the
opposite symmetry to the nonmagnetic case.

8.2. Phase Velocities of Unstable Disturbances
Figures and show the phase velocities for the same4 5

cases as shown in Figures and respectively, also scaled2 3,
with respect to the equatorial rotation rate. Here the s \ 0.3
curve is the bottom one in each Ðgure. We can see that all
phase velocities fall between the minimum and maximum
rotation rates for each di†erential rotation proÐle, even
when the magnetic Ðeld is quite large, as anticipated in ° 5
earlier. In general the higher the Ðeld strength, and the
smaller the di†erential rotation, the closer to the equatorial
rotation rate (]1.0) is the disturbance propagation speed. It
is tempting to relate these rates to those observed in persist-
ent global magnetic structures, e.g., et al.Gaizauskas (1981),
and to such conventions as the ““ Carrington rate.ÏÏ

FIG. 4.ÈPhase velocity for symmetric modes for same parameterc
rvalues as in For all a, s \ 0.18 has the highest phase velocity,Fig. 2.

s \ 0.30 the lowest.
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FIG. 5.ÈPhase velocity for antisymmetric modes for the samec
rparameter values as in For all a, s \ 0.09 has the highest phaseFig. 3.

velocity, s \ 0.30 the lowest.

8.3. Properties of a Typical Symmetric Case
We illustrate in Figures properties of an unstable6È11

solution for which t is symmetric and s antisymmetric
about the equator. We choose the case s \ 0.24, a \ 0.15,
about in the middle of the growth rate ridge seen in Figure

demonstrates the degree of convergence of this2. Figure 6
solution. Plotted here are the squared amplitudes of the
eigenvector coefficients of the associated Legendre poly-

FIG. 6.ÈSquare of eigenvector amplitude as a function of summation
index, for speciÐc symmetric mode solution with s \ 0.24 and a \ 0.15.
Solid curve represents ot o2 elements ; dashed curve o s o2 elements. Both are
normalized to the same factor, namely, the maximum of the absolute value
of the eigenfunction. For the symmetric mode, the summation index n \ 1
amplitude in t is zero, to the accuracy of our calculation, or at [O on the
log scale used, and so is omitted from the plot of the solid line.

nomials, as a function of the summation index n (this partic-
ular solution was truncated at n \ 150, a common choice).
The velocity stream function amplitude is represented by
the solid curve, the analogous magnetic function by the
dashed curve.

Several features are immediately evident. First, the t
amplitudes start with n \ 3 rather than n \ 1. This is
because is virtually zero. All symmetric solutions we(11have examined have this trait, indicating total suppression
of stream line patterns that have no node between equator
and pole. Second, the squared amplitude in the eigenvector
declines by about 10 orders of magnitude by n \ 150, rep-
resenting excellent convergence. Third, above n \ 10 or so,
the two squared amplitudes are virtually the same, indicat-
ing that the Ðner details of the perturbations in velocity and
magnetic Ðelds are in a state of equipartition of energy. This
is a common characteristic of symmetric modes, for which a
is not large. Finally, there is Ðne structure in the curves near
the truncation point, which represents a limitation of the
solution method. (Taking n \ 200 in this case moves the
Ðne structure further to the right and decreases its ampli-
tude further but at the expense of a considerably longer
computation.) In this particular case, this high frequency
““ noise ÏÏ has no practical e†ect on the solutions, even out to
second order in amplitudes and derivatives.

The complete perturbation patterns for and as func-t
s

s
ations of latitude and longitude are shown in TheFigure 7.

amplitude of the contour levels are the same for kinetic and
magnetic perturbations. We see that the disturbances in
velocity and magnetic Ðeld are truly global but with the
magnetic pattern for this case largely conÐned poleward of
25¡ latitude. The velocity stream function has two nodes
between equator and pole, consistent with the Ðrst eigen-
vector element being rather than One feature to(31 (11.note particularly in both these patterns are the ““ tilts ÏÏ in the

FIG. 7.ÈPlanform of eigenfunctions and (the symmetric mode),t
s

X
afor s \ 0.24, a \ 0.15 : contours have same units on both plots.
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contours, toward lower longitude with increasing latitude.
These are particularly pronounced in both streamlines and
Ðeld lines in the neighborhood of 30¡ latitude. These tilts
imply correlation between the perturbation velocities u@ and
v@, and between perturbation magnetic Ðelds a@ and b@, so
that both the Reynolds stress and the Maxwell stressu@v@

are nonzero. As discussed in this is what is requireda@b@ ° 7,
(with the right sign) to extract energy from the di†erential
rotation proÐle to drive the instability.

The sense of the tilt seen in is such that in theseFigure 7
solutions the Reynolds stress is transporting momentum
predominantly toward the equator, while the Maxwell
stress is transporting it toward the poles. This is veriÐed by

which plots separately these two stresses againstFigure 8,
sin (latitude). The sum of these two is shown in Figure 9,
which represents the total stress We see here thatu@v@[ a@b@.
the Reynolds and Maxwell stresses counterbalance in such
a way as to produce a broad smooth transport of momen-
tum toward the poles in each hemisphere, which is exactly
what is needed to extract energy from the di†erential rota-
tion to drive the instability. It is clearly the Maxwell stress
that dominates because the Reynolds stress by itself seen in

would transport momentum toward the equator,Figure 8
tending to build up the di†erential rotation. Thus the
Maxwell stress is key to making the di†erential rotation
unstable whereas without a toroidal Ðeld present, it would
be stable, as showed.Watson (1981)

indicates that the di†erential rotationEquation (15)
proÐle will change from the unperturbed state according to
the divergence or convergence in latitude of the total trans-
port of angular momentum by the two stresses. Given the
proÐle of this transport implied in we shouldFigure 9
expect particularly sharp changes in rotation at the equa-
torward edge of the sum of the stresses, i.e., where this sum
changes rapidly. The second order solution (equations [15],

for these changes is shown in and we see[16]) Figure 10,
that the dominant feature is a pair of retrograde jets right at

FIG. 8.ÈNegative of Maxwell stress (solid curve) and Reynolds stress
(dashed curve) for same solution as in Fig. 7.

FIG. 9.ÈSum of stresses shown individually in Fig. 8

this edge, with weaker prograde features both poleward and
equatorward of this jet. The dominant result is that angular
momentum is extracted from a narrow band of latitude near
30¡ latitude and deposited in latitudes above about 45¡.
Polar regions are seen to spin up signiÐcantly.

There is no way to predict from the second-order theory
for the initial tendency how large in amplitude such jets
might become, but it is tempting to speculate that they may
be related to the so-called torsional oscillations on the sun,
as well as to anomalous polar rotation rates, as seen for
example in rotation of certain magnetic features (Snodgrass

FIG. 10.ÈInitial change in di†erential rotation linear velocity due to
stresses shown in Fig. 9.
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We will return to this point when we have illustrated1992).
further characteristics of the solutions.

A second prominent feature of the perturbation plan-
forms seen in is the phase di†erence in longitudeFigure 7
between the Ñow and Ðeld streamlines. If the two patterns
coincided, with or without tilts with latitude, then the mixed
stress needed by to change the ref-u@b@[ v@a@. equation (16)
erence state toroidal Ðeld, would vanish, and no net trans-
port of magnetic Ñux in latitude could occur, so would nota6
change. In fact the phase shifts are largest and changing
most rapidly in the neighborhood of 30¡ latitude, as with
the tilts. This results in an initial tendency for the toroidal
Ðeld to change according to the pattern shown ina6 Figure

Given that in each hemisphere, the peak reference state11.
toroidal Ðeld is at 45¡ latitude, implies that toroi-Figure 11
dal Ñux is being increased where it is lower than average
and decreased where it is higher than average. This is
occurring principally near 30¡ latitude. Therefore, energy is
being extracted from the reference state toroidal Ðeld to
help drive the instability, as predicted for b \ 0 Ðeld proÐles
by In addition, the polar toroidal Ðeld isequation (32).
being decreased from its reference state value.

As with the di†erential rotation changes discussed earlier,
we cannot determine from these calculations the amplitude
of the change in toroidal Ðeld. But as with the rotation
changes, it is tempting to speculate that the sharp features
of if they occur in the sun, provide a preferredFigure 11,
location in an otherwise broad toroidal Ðeld for more con-
centrated Ñux to occur that might be more likely to spawn
rising loops that reach the photosphere as sunspots and
active regions. The polar changes may participate in the
process of polar Ðeld reversal since the initial tendency in
the toroidal Ðeld always opposes the reference state proÐle,
at a latitude where it is already weak compared to mid-
latitudes.

Figures and both show very small scale structure in10 11
the proÐles. These arise from the high n terms in the eigen-

FIG. 11.ÈInitial change in toroidal Ðeld for same case as shown in Figs.
8È10.

vector, that are noisy in when the discritizedFigure 6,
[typically 720 points in sin (lat)]-eigenfunction is di†eren-
tiated twice in latitude to compute the right-hand sides of
equations and For n \ 150 truncation, the ampliÐ-(15) (16).
cation factor is of order 2 ] 104 in amplitude since the
derivative of an associated Legendre polynomial of latitude
index n is of order n times the polynomial. From Figure 6,
the eigenvector amplitudes near n \ 150 are of order 105
smaller than for low n, so this ampliÐcation factor can
produce a visible e†ect.

The patterns of the growing perturbations seen in Figure
are typical of disturbances of this symmetry for moderate7

toroidal Ðeld parameter a. For the same di†erential rotation
parameter s, but a smaller than the a \ 0.15 case shown, the
patterns are similar. However, the smaller is a, the more the
tilted patterns are conÐned to higher latitudes. For
a \ 0.05, for example, there is no signiÐcant tilt equator-
ward of about 50¡ latitude. Consequently, the second-order
changes in rotation and toroidal Ðeld are found in higher
and higher latitudes also. Conversely, for a [ 0.15, the per-
turbation magnetic Ðelds in particular spread toward the
equator, and the stress proÐle seen in gets broaderFigure 9
still, so the changes to the reference state toroidal Ðeld and
di†erential rotation are found in still lower latitudes.

Disturbance planforms are less sensitive to changes in s
for a given a. Patterns for s \ 0.29 and 0.19 are fairly close
to those for 0.24, with some tendency to spread toward the
equator for higher s, and retreat toward the pole for lower s.

8.4. Energetics of Symmetric Cases
From Figures and symmetric modes dominate in the2 3,

instability from a D 0 to 0.3 or 0.4, depending on s. This
range of a implies a large change in the relative energies
stored in the reference state di†erential rotation and(K1 )
toroidal Ðeld This can be seen for s \ 0.24 in(M1 ). Figure 12,
which depicts the fractions of the total reference state
energy in each. The case a \ 0.15 we have studied in detail

FIG. 12.ÈRelative energies in reference state, as a function of toroidal
Ðeld parameter a, for s \ 0.24, that are acted upon by symmetric mode
perturbations.
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above is near the equipartition point between kinetic and
magnetic energies. By contrast, at a \ 0.05 about 90% of
the reference state energy is kinetic, and at a \ 0.4, 90% is
magnetic. From these di†erences we might expect that the
energy conversion rates deÐned and discussed in will° 7
vary substantially in relative importance, as may the rela-
tive energies in the kinetic and magnetic perturbations.

shows the relative energies in the kinetic (K@)Figure 13
and magnetic (M@) perturbations for symmetric modes with
s \ 0.24. We see that, as we might expect, at the high a end,
perturbation magnetic energy dominates over perturbation
kinetic energy. There is more magnetic energy in the refer-
ence state reservoir, which is released into the pertur-
bations. The mechanics of this are more subtle because,
from and associated discussion, reference stateFigure 1
magnetic energy cannot be transformed directly into pertur-
bation magnetic energy : it must Ðrst go through a kinetic
energy reservoir. Which reservoir depends on parameter
values, as we shall show shortly.

For small values of a, for which the kinetic energy
reservoir is much larger the behavior is di†erent.(Fig. 12),
Here, the perturbation kinetic and magnetic energies
approach equipartition rather than being dominated by
kinetic energy. If kinetic energy did dominate, then we
would essentially be back to an instability in which mag-
netic Ðelds played little roleÈbut then WatsonÏs results
should apply, and the di†erential rotation, even though it is
the large reservoir, would be stable. Equipartition is to be
expected because as a approaches 0, the growth rate gets
small since it must go to zero in the limit, given WatsonÏs
result. With equipartition, and both kinetic and magnetic
disturbance planforms shrinking toward the pole, the
Maxwell and Reynolds stresses cancel each other more and
more closely, reducing the ability of the disturbance to
extract energy from the di†erential rotation and grow.

The energy conversions deÐned in are shown in detail° 7
for the symmetric s \ 0.24 solutions in Here allFigure 14.

FIG. 13.ÈRelative energies in symmetric mode perturbations for same
cases as in Fig. 12.

FIG. 14.ÈRelative energy conservation rates for symmetric modes with
s \ 0.24 as a function of toroidal Ðeld parameter a. DeÐnitions in the text
of ° 4.

conversion rates have been normalized by the total rate at
which energy is extracted from the reference state. Positive
values then represent sources for the perturbations, negative
values are sinks. With this normalization, the sum of

K@), M@) and K@) curves (solid, short-dashed, and(K1 , (K1 , (M1 ,
dot-dashed curves) should always add up to ]1, and inspec-
tion shows that they do. veriÐes that at all a \ 0.3Figure 14
or so, work done by the Maxwell stress on the di†erential
rotation is the primary energy source for the instability,
with work done by the Reynolds stress always opposing it.
(That is, the short-dashed curve is the most positive, and the
solid curve is negative.) For very small a, both work terms
get large in amplitude, though opposite in sign because they
are normalized essentially by their sum, which is approach-
ing zero. For increasing a, we see also that the extraction of
energy from the toroidal Ðeld proÐle by mixed stress is
increasingly important. By a \ 0.4, almost two-thirds of the
energy for perturbation growth comes from this source.
Also, the Reynolds stress work term becomes slightly posi-
tive, so the Reynolds and Maxwell stresses no longer
oppose each other, although both are relatively weak.

The fourth curve in is the energy conversionFigure 14
between perturbation magnetic and kinetic energies, due to
the latitude component of the perturbation j Â B force. This
conversion process allows the kinetic and magnetic pertur-
bations to grow at the same rate even when the relative
amplitudes are quite di†erent. Accordingly, at low a, pertur-
bation magnetic energy created by the Maxwell stress is
converted into perturbation kinetic energy, while for higher
a, perturbation kinetic energy created by the mixed stress
acting on the reference state toroidal Ðeld is converted into
perturbation magnetic energy. The Ñuctuations in this con-
version rate between a \ 0.3 and 0.4 are another manifesta-
tion of the Ðne structure in the growth rates seen in Figure 2
and the high-frequency noise illustrated in ForFigure 6.
perturbations of this symmetry, convergence is increasingly
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difficult to achieve as a is increased through this range as
the growth rate gets small and Ñuctuates rapidly with a. The
second derivatives in this particular diagnostic of the solu-
tion are the most sensitive to this problem. The eigen-
function and its Ðrst derivative are much better behaved, as
illustrated by the smoothness of the other diagnostics.

8.5. Properties of a Typical Antisymmetric Case
As is evident from Figures and for a [ 0.4 the anti-2 3,

symmetric mode has the larger growth rate, which becomes
much larger than for any symmetric mode by a \ 0.8.

illustrates a typical antisymmetric case, again forFigure 15
s \ 0.24, with a \ 0.8. The important features are the
dominance of the magnetic perturbations, the completely
global extent of both kinetic and magnetic features, and the
substantial phase di†erences in longitude between the Ñow
and Ðeld streamlines. Even though the velocities are rela-
tively weak, they are essential for extracting energy from the
toroidal Ðeld through the mixed stress. The Reynolds and
Maxwell stress proÐles, seen in are qualitativelyFigure 16,
similar to the symmetric case for lower a but with the peaks
in both moved to quite low latitudes. The net stress proÐle,
shown in shows a very broad pattern of momen-Figure 17,
tum transport toward the poles, with a small reversal very
near the equator. This feature disappears for still higher a.
The second order changes in di†erential rotation that result
from this stress proÐle are seen in Figure 18, showing a jet
structure within a few degrees on both sides of the equator.
(Changes in di†erential rotation are symmetric about the
equator for both symmetry pairs of t and s.) The corre-
sponding toroidal Ðeld change is seen in Figure 19.
(Changes in toroidal Ðeld are antisymmetric about the
equator for both symmetry pairs of perturbations.)

FIG. 15.ÈPlanform of eigenfunctions (the antisymmetric mode),t
a
, s

sfor s \ 0.24 and a \ 0.80. Contours have the same units on both plots.

FIG. 16.ÈNegative of Maxwell stress (solid curve) and Reynolds stress
(dashed curve) for same solution as in Fig. 15.

Since s is symmetric about the equator the planform for
the magnetic perturbations seen in imply thatFigure 15
perturbation east-west Ðeld of opposite signs are being
brought together at the equator since a@D Ls/Lk. With the
addition of even a small amount of ohmic di†usion, this
pattern could be a site of magnetic reconnection that could
help destroy Ñux near the end of a magnetic cycle on the
sun.

8.6. Energetics of Antisymmetric Cases
The energetics for these unstable modes are considerably

simpler than for the symmetric modes with small a. Figure

FIG. 17.ÈSum of stresses shown in Fig. 16
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FIG. 18.ÈInitial change in di†erential rotation linear velocity due to
stresses shown in Fig. 17.

shows the relative kinetic and magnetic energies in the20
reference state for a values large enough for the anti-
symmetric mode to be the fastest growing. By a \ 0.8, 98%
or so of the energy is in magnetic form. A plot of relative
perturbation energies (not shown) for this a range looks
essentially the same. The relative energy conversion rates
among the various reservoirs, analogous to forFigure 14
symmetric modes, is shown in This shows theFigure 21.
growing dominance of energy extracted from the toroidal
Ðeld by the mixed stress as a increases, and the waning of

FIG. 19.ÈInitial change in toroidal Ðeld for same case as shown in Figs.
15È17.

FIG. 20.ÈRelative energies in reference state, as a function of toroidal
Ðeld parameter a, for s \ 0.24, that are acted upon by antisymmetric mode
perturbations.

both Reynolds and Maxwell stresses acting on the di†eren-
tial rotation. The near coincidence of K@) and (K@, M@)(M1 ,
approaching ]1 shows that virtually none of the energy
extracted from the toroidal Ðeld remains as perturbation
kinetic energy but is immediately converted to perturbation
magnetic energy by the perturbation j Â B force. Hence the
dominance of magnetic over velocity contours in Figure 15,
which is even more extreme for a [ 0.8, the case shown. The
plot for (K@, M@) is much smoother than in the symmetric

FIG. 21.ÈRelative energy conversion rates for antisymmetric modes
with s \ 0.24 as a function of toroidal Ðeld parameter a. See deÐnitions in
the text of ° 7.
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case shown in because the antisymmetric case isFigure 14
very well converged even at high values of a.

8.7. L atitudes of Initial Changes in Di†erential Rotation and
Toroidal Field

We have shown two detailed examples of the second-
order initial changes in di†erential rotation and toroidal
Ðeld that the stresses associated with growing modes would
induce. In we plot the latitude positions for theFigure 22
peaks in these changes for modes of both symmetries, for a
large number of cases computed for s \ 0.21 and 0.27,
bracketing the detailed examples we gave earlier in Figures

and We see that these latitudes span the full10, 11, 18, 19.
range of sunspot latitudes, and beyond. The important
feature is that as the magnetic Ðeld parameter increases, the
latitude decreases, so we can imagine that if the instability
we have demonstrated occurs in the sun, as the toroidal
Ðeld of a new cycle builds up, these disturbances appear and
migrate toward the equator, reminiscent of both the tor-
sional oscillations and the butterÑy diagram. Whether these
solution characteristics are really related to these solar phe-
nomena can only be determined by nonlinear dynamo-type
modeling that allows the instability to occur, coupled with
more sensitive inferences from helioseismology of the
dynamics and magnetic structure of the shear layer at the
base of the convection zone.

We also point out that the symmetries of the induced
changes in di†erential rotation and toroidal Ðeld about the
equator are the sameÈdi†erential rotation symmetric,
toroidal Ðeld antisymmetricÈfor both the symmetric case

and the antisymmetric case To produce at
s
, s

a
t
a
, s

s
.

departure from this symmetry pattern requires pertur-
bations of both symmetry pairs to be present, something
that can be produced only in a nonlinear model.

8.8. Dominant Energy Flows in Unstable Modes
We can summarize the energetics of unstable modes

rather simply, capturing the basic characteristics of many

FIG. 22.ÈSummary plot of latitudes at which peaks in changes in refer-
ence state di†erential rotation and toroidal Ðeld occur, for both symmetric

and antisymmetric modes, for di†erential rotation param-(t
s
, s

a
) (t

a
, s

s
)

eters s \ 0.27 and 0.21. Consistent with the growth rates shown in Figs. 2
and the symmetric mode leads to the pair of curves in the range3, 0 \ a [

the antisymmetric mode to curves for a [ 0.35. Peaks in induced0.35 ;
di†erential rotation and toroidal Ðeld shown in Figs. and for10, 11, 18, 19
a \ 0.15 and 0.8 with s \ 0.24 would fall neatly inbetween the pairs of
continuous curves shown.

solutions not shown in detail. In particular, for low a for
which symmetric modes grow fastest, the dominant energy
Ñow is

K1 ] M@] K@] K1 .

In words, the Maxwell stress converts di†erential rotation
energy into perturbation magnetic energy, some of which
the perturbation latitudinal j Â B force transforms into per-
turbation kinetic energy. Some of that Ðnally is put back
into the di†erential rotation by the Reynolds stress. The last
step is weakly reversed for a close to the upper limit for
symmetric growing modes that amplify faster than anti-
symmetric modes for the same parameter values.

For larger a, for which antisymmetric modes grow fastest,
the dominant energy path is

M1 ] K@] M@ .

In words, here the mixed stress converts toroidal Ðeld
energy into perturbation kinetic energy, almost all of which
is further converted by the latitudinal j Â B force into per-
turbation magnetic energy. The net result is a magnetically
dominated instability, from the original reservoir to the
growing perturbations.

9. COMMENTS AND CONCLUSIONS

The principal conclusion we draw from these calculations
is that solar-type di†erential rotation proÐles of virtually
any magnitude are unstable to two-dimensional pertur-
bations when a broad toroidal Ðeld is present. Instability
occurs for almost any magnitude of toroidal Ðeld, with the
Ðeld supplying the energy when it is large, and the di†eren-
tial rotation supplying the energy when the Ðeld is small.
What varies with di†erent strength di†erential rotation and
toroidal Ðelds is the disturbance growth rate and the domi-
nant symmetry about the equator. When di†erential rota-
tion is absent completely, there is no instability to
two-dimensional disturbances, regardless of the Ðeld
strength. Clearly at least a weak di†erential rotation is
needed to produce the tilts with latitude and the phase shifts
in longitude necessary for the creation of Reynolds,
Maxwell, and mixed stresses that extract energy from the
di†erential rotation and toroidal magnetic Ðeld.

The generality of this conclusion should be tested with
stability calculations for other toroidal Ðeld proÐles. We
will report in a later paper on calculations with the param-
eter b not equal to zero (for which we have also found
instability for virtually all b values studied), but it would
also be instructive to look for instability for much more
concentrated toroidal Ðeld proÐles. Nevertheless, we feel the
broad proÐles we have studied could plausibly be produced
by the di†erential rotation acting on a broad poloidal Ðeld
as part of the solar dynamo.

Since the unstable disturbances are strictly two-
dimensional, they cannot produce a dynamo, even in
concert with the di†erential rotation. They could contribute
signiÐcantly to a dynamo that has additional processes at
work, particularly those that produce radial magnetic Ñux.
While the fully three-dimensional problem is much more
difficult, there is an intermediate step that allows intro-
duction of enough three-dimensional features to, in prin-
ciple, sustain a dynamo, while still solving only
two-dimensional equations. This intermediate step involves
the hydromagnetic generalization of the so-called ““ shallow-
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water ÏÏ equations that have been used extensively for the
global Ñuid dynamics of the atmosphere and oceans. This
system will be developed in a later paper. Such a system
would allow for generation of a longitude-independent pol-
oidal Ðeld which could be sheared by the di†erential rota-
tion to change the toroidal Ðeld.

Even without the third dimension, it is of interest to cal-
culate how large the unstable disturbances become and how
much they modify the reference state. Without doing
detailed calculations, we estimate by analogy with other
nonlinear Ñuid systems that the nonlinearities could modify
the di†erential rotation by a few tens of percent, on time-
scales of months to years. If so, then helioseismology may
be able to detect the presence of this instability at the base
of the solar convection zone. We have found instability only
for longitudinal wavenumber 1, but in the nonlinear case we
should expect higher longitudinal wavenumbers to be
excited, through wave interactions.

The thickness of the layer at the convection zone base
that contains the toroidal Ðeld is not known from observ-
ations, but there are reasons to believe that it contains Ðelds
of strength perhaps 5 ] 104 G, with a thickness no greater
than several thousand kilometers. The high Ðeld strength is
needed to get the Ñux loops to overcome the e†ect of
coriolis forces and emerge at low latitudes where the

butterÑy diagram is formed & Gilman(Choudhuri 1987 ;
et al. and references therein). For Ðeld strengthsFisher 1994,

this high, if the layer of high Ðelds is as much as a few tens of
thousands of kilometers thick, then there would be too
much Ñux rising to the surface in a sunspot cycle since there
is no obvious mechanism for preventing it from rising. This
consideration leads to the presumption that not that much
is there & Weiss(Galloway 1981).

It is sometimes argued that dynamo action should be
suppressed when the induced Ðelds approach or exceed
equipartion of energy with the inducing motions. But it is
known that the so-called interface dynamos (Parker 1993 ;

& MacGregor can sustain toroidalCharbonneau 1996)
Ðelds that exceed equipartition in the low ohmic di†usion
part of the domain. Also, the instability we have demon-
strated is actually enhanced, not suppressed, by strong
toroidal Ðelds. In fact, the instability itself may disrupt the
build-up of toroidal Ðelds beyond some point that can only
be determined by nonlinear calculations.

The authors wish to thank Boon Chye Low for reviewing
the entire manuscript, and also Mausumi Dikpati and Paul
Charbonneau for their comments. Thanks also to Louise
Beierle for preparing the manuscript.

APPENDIX A

A.1. NECESSARY CONDITION FOR INSTABILITY

This condition was derived from by multiplying by t*, integrating from pole to pole, integrating by parts, andequation (17)
separating out the imaginary part of the result :
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where the primes denote di†erentiation with respect to k. This implies that for integral must vanish over the domain.c
i
D 0,

A.2. RECURSION RELATIONS FOR COEFFICIENTS IN LEGENDRE POLYNOMIAL EXPANSION

AND THEIR ASSOCIATED MATRICES

Assuming substitution into and requiring the coefficients of like Legendreu0\ r[ sk2, a0\ ak] bk3, equation (23)
polynomials to vanish yields the recursion relation
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Doing the same with yieldsequation (24)
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In the above, the coefficients of the (Ïs are

E
n
\ b

(n [ m[ 2)(n [ m[ 1)(n [ m)
(2n [ 5)(2n [ 3)(2n [ 1)

, R
n
\ s[(n [ 2)(n [ 1) [ 12](n [ m[ 1)(n [ m)

n(n ] 1)(2n [ 3)(2n [ 1)
,
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\ a(n [ m)
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] 3b(n [ m)[(n [ 1)(n ] 1)[ (m2 ] 1)]
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[2n(n ] 1) [ 1 [ 2m2]
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and the coefficients of the XÏs are
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Two separate matrices are formed from equations and for the two opposite symmetry pairs deÐned in In each(A1) (A2), ° 6.
case, the matrix form yields an eigenvalue equation :

[Q][PC]\ C[PC] ,

in which [PC] represents the eigenvector, the Ðrst half of the elements of which are the (Ïs, and the second half the XÏs, with
the series truncated at a number n \ KT . For t symmetric, and s antisymmetric, the matrix of [Q] is formed from as is,(A1)
and from with the index n increased by 1. For t antisymmetric, s symmetric, this matrix is formed from(A2) equation (A1)
with n increased by 1, and as is. Then both matrix equations are solved using a standard qr algorithm andequation (A2)
eigenvector routine in IDL. The elements of [Q] are real, but of course the eigenvalues and eigenvectors may be real,
corresponding to neutral oscillations that generally propagate in longitude, or complex, corresponding to complex conjugate
pairs of one growing and one decaying mode, that also propagate, but with phase velocities bounded according to the
formulas in ° 5.

In both matrices, the negatives of coefficients S and B comprise the major diagonals, with the other adjacent diagonals
occupied by the negatives of the other coefficients in equations and For polynomial series truncation at n \ KT ,(A1) (A2).
each matrix has dimensions 2KT ] 2KT , and the eigenvector is of length 2KT .
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