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ABSTRACT
We Ðnd the main families of simple periodic orbits in and around the bar of NGC 4314 and examine

their stability. In many ways, our results agree with those found for model barred galaxies, yet our rea-
listic potential allows us to go further in a comparison with the galaxy morphology. In particular, we
underline the importance of the families of periodic orbits that are asymmetric with respect to the bar
minor axis.

The family provides the building blocks for the bar. In the inner parts we Ðnd orbits that arex1roughly perpendicular to the bar, although their shape and orientation vary along the corresponding
families. As in previous studies, we Ðnd a symmetric unstable 3 :1 family, but we also Ðnd an asymmetric
and stable 3 :1 family. We also Ðnd asymmetric diamond-like orbits near corotation. We pay special
attention to the orbital behavior at the ultraharmonic resonance region, and we investigate all pos-
sibilities o†ered by our study in explaining the boxy structure at the end of the bar.
Subject headings : galaxies : individual (NGC 4314) È galaxies : kinematics and dynamics È

galaxies : structure

1. INTRODUCTION

The present paper is concerned with the orbital structure
in the barred galaxy NGC 4314, which is classiÐed as SBT1
by Vaucouleurs et al. The evaluation of its poten-de (1991).
tial from near-infrared observations by Frogel, &Quillen,
Gonza� lez hereafter o†ers the opportunity for(1994, QFG)
orbital calculations in an analytic model. This in turn
allows the comparison of results concerning the orbital
structure in this particular galaxy with that expected from
generic models of barred potentials.

Computations of orbits in barred potentials have been
described in the past in papers too numerous to mention
here. The reader, however, may consult the review by

& as well as the articles citedContopoulos GrosbÔl (1989),
throughout this paper and the references therein. In these
kinds of studies the calculation of the stability of the peri-
odic orbits is crucial. Stable periodic orbits, which are fol-
lowed by a large set of nonperiodic orbits, may account for
the presence of particular morphological features in their
neighborhood, since they provide the building blocks

et al. for the observed structures. The(Athanassoula 1983)
major aim of our work is to Ðnd the existing families of
periodic orbits in the potential and to estimate theirQFG
importance for the observed morphology of NGC 4314.

Recent near-infrared observations of barred galaxies
et al. Quillen et al.(Friedli 1996 ; QFG; 1995a, 1995b ;
Vogel, & Teuben et al. haveRegan, 1995 ; Shaw 1995)

shown that, at these wavelengths as well, nuclear bars, tri-
axial bulges, twisted isophotes, as well as boxy isophotes at
the end of the main bar, are typical morphological features.
Since cool giants and dwarfs are much better tracers of the
mass distribution in a galaxy than the hotter stars (Frogel

a potential based on near-infrared observations o†ers1988),
the most reliable estimate for the smoothed-out gravita-
tional Ðeld in which the orbits of stars should be calculated.
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The intrinsic shape also is more accurately shown in the
near-infrared because of the much smaller amount of
extinction at those wavelengths et al. One of(Block 1994).
our goals in this paper will be to Ðnd the connection
between the orbits and the intrinsic shape of the galaxy.

et al. using a sample of 12 galaxies,Athanassoula (1990),
showed that early-type, strongly barred galaxies have
rectangular-like isophotes, particularly near the ends of the
bar. NGC 4314 is one of the galaxies of the etAthanassoula
al. sample for which this e†ect was the clearest. It(1990)
is not, however, easy to Ðnd which orbits are responsible
for this shape, since the rectangular orbits found in the
ultraharmonic resonance (UHR) region initially by

et al. (see alsoAthanassoula (1983) Pfenniger 1984a ;
& are notContopoulos 1988 ; Contopoulos GrosbÔl 1989)

always stable in models representing barred galaxies like
NGC 4314. This, together with alternative solutions includ-
ing other types of orbits, was discussed by Athanassoula

Such alternative solutions include quasi-(1991, 1996).
periodic orbits wobbling around an orbit, superpositionx1of two 3 :1 orbits symmetric with respect to the bar major or
minor axes, or ergodic orbits trapped by cantori, i.e., staying
for relatively long times bound in parts of phase space
inside chaotic regions. Since the potential is the mostQFG
appropriate one among the potentials used so far to study
this problem, we will explicitly examine all these alternative
solutions. In particular, in this paper we will not restrict
ourselves to orbits starting perpendicular from the bar
minor axis, as is done in many orbital studies, thus obtain-
ing a more complete coverage of the families of periodic
orbits.

Another way to study the orbital structure of barred gal-
axies is through N-body simulations. Comparisons of orbits
taken straight from the self-gravitating simulations with
those found in analytic potentials strengthen the conclu-
sions about the type of orbits making the bar and those that
contribute to the density in the outer disk & Sell-(Sparke
wood & Friedli1987 ; Pfenniger 1991 ; Sundin 1993 ; Sundin
et al. & Contopoulos Such a com-1993 ; Kaufmann 1996).
parison is also among our motivations for carrying out the
present work.
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In the next section we present the potential we use and
our methods. In we discuss the axisymmetric model and° 3
in the orbital structure in a model having only the cosine° 4
terms of the potential. The results for the completeQFG
model, with both sine and cosine terms, are given in ° 5.
Finally, our results are summarized and discussed in ° 6.

2. POTENTIALS AND METHODS

2.1. T he Potentials
The small inclination angle of NGC 4314 (estimated at

23¡ by its small bulge size (Benedict et al.GrosbÔl 1985),
and the constant near-infrared colors across its1992, 1993),

bar, which indicate a constant mass-to-light ratio (QFG),
make it well suited for the evaluation of its potential from
observations. write the potential in the z\ 0 plane asQFG
a Fourier series,

'(r, h)\ '0(r) ] ;
m;0

['
mc

(r) cos mh ] '
ms

(r) sin mh] ,

(1)

and the coefficients of the various components in the form
Using the K surface brightness of the galaxy and;

n/08 a
n
rn.

assuming a sech2 law with a vertical scale height forh \ 7A4
the z distribution, they calculate the values of the m\ 0, 2,
4, and 6 coefficients (their numerical values can be founda

nin km2 s~2 in Table 1 of We will use this potentialQFG).
for our orbit calculations, keeping only the m\ 0, 2, and 4
terms, since the m\ 6 terms are of low amplitude and badly
deÐned because of the noise (cf. Fig. 4 of Further-QFG).
more, in order to assess the importance of asymmetries, we
will also calculate orbits in a potential including, besides the
axisymmetric part, the cos 2h and cos 4h terms. We will call
this latter model ““ model C ÏÏ (C for cosine), while we will
refer to the model with both the sine and the cosine terms as
““ model T ÏÏ (T for total). In both cases the calculations for
our standard models have been done in a frame rotating
with km s~1 kpc~1. This gives a corotation)

b
\ 44.96

radius of 3.57 kpc, which roughly corresponds to 70A, as
proposed by The bar is estimated to end at 60A,QFG.
or 0.86 i.e., toward the middle of the range given byr

c
,

Athanassoula for early-type, strongly barred(1992a, 1992b)
galaxies. The ratio varies between 0 and 0.1, while'2c/'0the absolute value of the corresponding ratio for the sine
terms is always less than 0.02. For the m\ 4 term the max-
imum of is B0.02, while the corresponding sine'4c/'0ratio varies roughly between 0 and [0.01. All the above
describe the relative strength of the various components of
the potential. The reader is referred to Table 1 and Figure 4
in for more information.QFG

2.2. Calculation of Periodic Orbits and of T heir Stability
The equations of motion are derived from the Hamilto-

nian,

H 4 12(x5 2] y5 2) ] '(x, y) [ 12)b
2(x2] y2) \ E

J
, (2)

where (x, y) are the coordinates in a Cartesian frame of
reference corotating with the bar with angular velocity )

b
,

'(x, y) is the potential in Cartesian coordinates, is theE
Jnumerical value of the Jacobian integral, and dots denote

time derivatives. Throughout this paper is given in (kmE
Js~1)2. We use a fourth-order Runge-Kutta integration

scheme with a variable step. We Ðnd the periodic orbits by

4 For the adopted distance D\ 10 Mpc, this corresponds to 350 pc.

using an iterative Newton method in two dimensions. The
families whose members are symmetric with respect to the
bar minor axis are best followed on an x) diagram,(E

J
,

known as the characteristic diagram. The characteristic of a
family of periodic orbits on this diagram is a curve giving
the initial position along the bar minor axis, x, as a function
of the Jacobi constant Orbits that are symmetric withE

J
.

respect to the minor axis are uniquely deÐned on such a
diagram. For asymmetric orbits one also needs the corre-
sponding initial velocity and the characteristic diagram(x5 ),
becomes three-dimensional x, In our study we give(E

J
, x5 ).

special emphasis to asymmetric orbits, since they have not
been extensively studied in the past and their role has not
been thoroughly examined. In most cases, however, we will
continue discussing orbits in terms of their position on the

x) diagram for reasons of continuity with previous(E
J
,

work. We will also use Poincare� surfaces of section for
studying in one go the complete orbital behavior for a given
value of the Jacobi constant.

The changes in the stability of a family of periodic orbits
as one of the parameters of the model varies (usually the
energy) are followed by means of the characteristic diagram
and the variation of He� nonÏs stability index (He� non 1965).
According to He� nonÏs method, after a periodic orbit is
found with initial conditions, e.g., a nonperiodic(x0, x5 0),orbit in its close neighborhood is integrated. Then one con-
siders the initial and Ðnal deviations of(dx0, dx5 0) (dx1, dx5 1)the nonperiodic orbit from the initial conditions of the
periodic one. This is done at two successive upward inter-
sections of the nonperiodic orbit by the axis y \ 0. This way
a g : transformation is established,(dx0, dx5 0) ] (dx1, dx5 1)the Jacobian of which can be written as

J \
Aa
c

b
d
B

,

and the corresponding characteristic equation is
j2[ (a ] d)j ] 1 \ 0. We used a deviation *\ 10~6 from
the periodic orbit to calculate the a, b, c, d values. He� nonÏs
stability index a characterizes the stability of the periodic
orbits and is deÐned as a \ 1/2(a ] d). The stability condi-
tion is the condition for having two complex conjugate
roots of modulus 1 in the characteristic equation. An orbit
is stable if o a o\ 1. The evolution of the stability of a family
of periodic orbits as a function of the energy in the rotating
frame is given in an a) diagram. Of special interest in(E

J
,

this diagram is the case when a becomes equal to 1 either by
being tangent to or by intersecting the a \ 1 line, usually
called the a \ 1 axis (see, e.g., &Contopoulos GrosbÔl

At these points, a new family is bifurcated and intro-1986).
duced into the system. It has the same periodicity as the
parent family and inherits its stability. Thus, after a S] U
transition, i.e., when a stable family becomes unstable, a
new stable family is introduced into the system, and after a
U ] S transition, a new unstable one is introduced. Never-
theless, beyond their bifurcation point, the new bifurcated
families may change their stability &(Contopoulos GrosbÔl

These changes of stability of the main, as well as of1989).
the bifurcated, families will be described in this paper by
means of the characteristic and stability diagrams.

3. THE AXISYMMETRIC CASE

In the axisymmetric case one can always Ðnd the direct
orbits, which are circular and which make up the ““ central ÏÏ
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FIG. 1.ÈThe stability index a as a function of in the axisymmetricE
Jcase. Three of the main resonances and corotation are marked.

family, namely, the family that in general contains the ellip-
soidal orbits that support the bar when the perturbation is
added (see see also the remark on p.Contopoulos 1983a ;
338 in The characteristic of thisAthanassoula 1992a).
family is a continuous line reaching the curve of zero veloc-
ity (CZV) at corotation. The variation of the stability index
for the central family is presented in and showsFigure 1
that this family is stable everywhere. The stability curve
oscillates between the limits of stability o a o\ 1 and reaches
the a \ 1 axis at the resonances 2 :1, 3 :1, 4 :1, and so on. The
Ðrst three n :1 resonances are marked, as well as corotation.
They appear in energies corresponding to distances of 0.28
kpc (2 :1), 1.91 kpc (3 :1), and 2.54 kpc (4 :1). These, however,
are the resonance distances in the axisymmetric case only.
In the description of the nonaxisymmetric models we will
see how the resonance distances are displaced with respect
to those shown in The points beyond the 4 :1Figure 1.
resonance are due to the successive ups and downs of the
stability curve between [1 \ a \ 1, in always shorter
energy intervals as we approach corotation. In the axisym-
metric case the radial distance between the 4 :1 resonance
and corotation corresponds to 1 kpc.

4. MODEL ““ C ÏÏ

Model ““ C ÏÏ consists of the axisymmetric and the cos 2h
and 4h terms of the potential given in We haveequation (1).
calculated orbits in this potential in order to Ðnd the di†er-
ences introduced by the presence of sine terms. This is par-
ticularly important since the sine terms are usually not
included in general barred potentials used for orbital
studies (for a review, see &Contopoulos GrosbÔl 1989).

The main family in this model is the family of the
elliptical-like orbits elongated along the bar and starting
perpendicular from the bar minor axis, usually denoted by

& Papayannopoulos Its character-x1 (Contopoulos 1980).
istic, as well as the characteristic of all other families playing
a role in the dynamics of the system, is given in Figure 2.
There are three areas of particular interest on this diagram.
The area of the 2 :1 and 1 :1 resonances in the lower left-
hand corner of the area of the 3 :1 resonanceFigure 2 ;
around where the families and areE

J
\ [60,000, t1 t2bifurcated ; and Ðnally the area beyond the 4 :1 resonance,

where the characteristic of has a gap and the familiesx1 f1,and 5 :1 appear. The stability diagram of model ““ C ÏÏ isf2,given in Figure 3.

FIG. 2.ÈCharacteristics of the main families of periodic orbits for
model ““ C.ÏÏ The second branch of the bifurcating asymmetric families does
not appear on this diagram. Unstable parts of the characteristics are given
with dashed lines, while the curve of zero velocity is the dotted line labeled
““ CZV.ÏÏ

4.1. Orbital Behavior Close to the Center
Following the evolution of the characteristic towardx1lower energies, we observe that around theE

J
\ [93,000,

curve bends upward to the right and ends on the CZV. For
lower x in the same region, another branch appears, so that
a gap is formed. The part of corresponding toFigure 2

is given in enlargement in[96,000\E
J
\[86,400 Figure

We note that the potential is not realistic in the4. QFG
center. However, we did not observe any strange mathe-
matical behavior due to this. In any case, the potential used

FIG. 3.ÈThe stability curve of and its bifurcations for model ““ C ÏÏx1

FIG. 4.ÈThe evolution of the characteristic of close to the region ofx1the 2 :1 and 1 :1 resonances for model ““ C.ÏÏ
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FIG. 5.ÈThe evolution of the morphology of periodic orbits belonging to the family as we move on its characteristic in the direction of the arrow in thex1previous Ðgure. In (a) we have an orbit at the right of A while in (b) and (c) we have two orbits from the part of the characteristic between A(E
J
\[92,846),

and B and respectively).(E
J
\[92,544 E

J
\[90,156,

for our calculations is not representative of the potential of
NGC 4314 for distances smaller than 20A (1 kpc), where a
bulge component exists and where the assumption(QFG)
of a constant thickness is not appropriate. Nevertheless, we
examined the orbital morphology and stability in this
region for completenessÏ sake. refers to radii \300Figure 4
pc, i.e., the area where a nuclear ring is observed in NGC
4314 et al. The shape of the orbits(Garcia-Baretto 1991). x1is, as usual, elliptical. However, moving on the character-x1istic in the sense of the arrow in the eccentricity ofFigure 4,
the orbits decreases, and, Ðnally, for orbits between points A
and B, the minor axis of the ellipses is along the y-axis of the
bar. This way the orientation of the stable elliptical orbits
changes, providing the system with stable orbits such as, in
other systems, those of the families andx2 x3 (Contopoulos
& Papayannopoulos Athanassoula1980 ; 1992a, 1992b).
This evolution of the form of the orbits in this region can be
seen in Figure 5.

In as well as in subsequent x) diagrams, theFigure 4, (E
J
,

unstable parts of the characteristic curves are given with
dashed lines. We can thus see that the family has anx1unstable part close to point A. Moving to larger aE

J
,

U ] S transition occurs near There, familyE
J
\ [91,500.

is bifurcated. Initially, this family is unstable, but it soono1becomes stable and turns toward lower energies. The topol-
ogy of the stable orbits of the family changes in an inter-o1esting way as we move to the left in This is shownFigure 4.
in starting from orbit ““ 1,ÏÏ which is the orbitFigure 6,
exactly at the bifurcating point, and going to orbit ““ 5.ÏÏ The
Ðrst orbits are ellipses inclined with respect to the bar minor
axis. For even lower energies they fold, giving stable orbits
like those labeled by ““ 4 ÏÏ and ““ 5.ÏÏ The extent of these orbits
is less than 200 pc. We note that we Ðnd two branches of
family They have the same initial x values but di†erento1.So in the x) diagram in both branches arex5 . (E

J
, Figure 4,

represented by the same curve.
Other families of periodic orbits found close to the center

are the two branches of family d, labeled in byFigure 4 d1and the retrograde family r ; and Ðnally two mored2 ;
branches of a family denoted by and Families andr1 r2. d1are unstable over the major part of their energy ranged2and have only small stable parts very close to the center.
When stable, they are very small and ““ bean shaped,ÏÏ and
the orbits of each branch have always positive, or, respec-
tively, always negative, x values. The unstable orbits(Fig. 7)
of this family resemble the 1 :1 orbits found by

FIG. 6.ÈStable orbits belonging to family Along the sequence 1 to 5o1.we move from larger to smaller energies.

FIG. 7.ÈA typical unstable d orbit
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& Petrou Families and havePapayannopoulos (1983). r1 r2shapes similar to and but are described in the opposited1 d2sense. All orbits mentioned in this paragraph seem to play a
minor role, even in the local dynamics of the system.

4.2. T he 3 :1 Resonance Region
As shown in family has a small unstable partFigure 3, x1close to where a [ 1. This implies a S] UE

J
\ [60,000,

and a U ] S transition, which will bring two new simple
periodic families into the system, which we will call, respec-
tively, and The orbits have a triangular shape witht1 t2. t1one side roughly parallel to the bar minor axis and have
been missed in many surveys since they do not start o†
perpendicular from the x-axis. As shown in thereFigure 8,
are two branches, symmetric with respect to the bart1minor axis. Two corresponding orbits of the two families
have initial values of opposite signs and the same x andx5 E

Jvalues. Thus they share the same location on the x)(E
J
,

diagram. Away from the bifurcating point they develop
loops at the ““ corners ÏÏ of the triangles, the largest loop
being along the bar major axis. The maximum extent of
orbits belonging to this family along the major axis of the
bar is almost 2.5 kpc. The family consists of unstable 3 :1t2orbits symmetric with respect to the bar minor axis, found
in many other models (see, e.g., Athanassoula 1992a, 1992b).
An example is given in and its branchesÈaboveFigure 9,
and below the characteristicÈare given in As inx1 Figure 4.
other models, the families of orbits generated at the 3 :1
resonance a†ect the dynamics of the system only locally,
since they have stable parts only at this region.

4.3. Orbits around the UHR Resonance
In this section we will discuss the stability of periodic

orbits around the UHR and their possible connection with
the rectangular-like isophotes around the end of the bar in
NGC 4314.

The appearance of gaps in the characteristics around the
UHR region and the coexistence of two families beyond it

FIG. 8.ÈTwo orbits of the family. They have the same position ont1the x) diagram but belong to two di†erent branches. The orbit labeled(E
J
,

““ 1 ÏÏ has positive initial while the orbit labeled ““ 2 ÏÏ has negative initialx5 , x5 .

FIG. 9.ÈA typical symmetric 3 :1 orbit belonging to the family t2

are typical of the orbital behavior in several bar potentials.
These gaps are of two kinds. Either the original character-
istic of family deviates upward and the ““ new ÏÏ 4 :1 familyx1is found for the same at smaller x values (type 1 gap), orE

Jthe characteristic reaches a maximum x and thenx1decreases. In this latter case the new branch can be found
for the same at larger x (type 2 gap)E

J
(Contopoulos 1988 ;

& In both types the 4 :1 familyContopoulos GrosbÔl 1989).
has a minimum at the gap. In the Ðrst type the upperE

Jpart of its characteristic curve is stable, while the lower is
unstable. In the second type the upper part is unstable and
the lower stable (see Fig. 1 in &Contopoulos GrosbÔl

Along the stable parts we may have transitions to1989).
instability and bifurcations of new families.

In Figures and respectively, we give close-ups of10 11,
the characteristics of the main families and their stability
curves close to the UHR for model ““ C.ÏÏ clearlyFigure 10

FIG. 10.ÈThe characteristics of the main families at the UHR region of
model ““ C.ÏÏ
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FIG. 11.ÈThe stability curves of the main families at the UHR region of model ““ C ÏÏ

shows that we are dealing with a hybrid kind of gap, which
shares features of both types. Moving to the right toward
corotation, Ðrst we encounter a gap that we can identify as
““ type 1,ÏÏ since the characteristic of deviates upward andx1the corresponding orbits are diamond-like and stable. A
family coexists below the characteristic of and from itf1 x1bifurcates at somewhat larger energies a 5 :1 family, one
branch of which remains very close to The situationf1.locally closely resembles characteristics at the UHR region
of a potential studied by consisting ofContopoulos (1983b),
an isochrone axisymmetric part and a & WoltjerBarbanis

bar perturbation. However, for slightly larger ener-(1967)
gies (at becomes unstable, bifurcatingE

J
B [51,000) x1another stable family If one follows the evolution of the( f2).““ stable path ÏÏ Ðrst along the characteristic and then thex1family, one notices a behavior resembling that of a ““ typef1

FIG. 12.ÈStable orbits at the UHR region of model ““ C.ÏÏ In each box
we include the name of the family to which the orbit belongs.

2 ÏÏ gap, since this ““ stable path ÏÏ presents a maximum x
value. Yet, contrary to the ““ type 2 ÏÏ case, the orbits of the
downward branch are diamond-like. The stable parts of the

and 5 :1 families are small, as can be estimated fromf1 In we give typical stable orbits of allFigure 11. Figure 12
families encountered at the UHR region of model ““ C.ÏÏ

5. MODEL ““ T ÏÏ

Model ““ C ÏÏ has been used as an approximation of the
total potential calculated by for NGC 4314. In thisQFG
section we will calculate the orbital structure in the total
potential ““ T ÏÏ and, by comparison, Ðnd the e†ect of the sine
terms.

In this model even the orbits do not start perpendicu-x1lar to the bar minor axis, thus even these orbits are not
uniquely speciÐed by their position in the x) diagram.(E

J
,

The interconnections of the several families of periodic
orbits are more efficiently followed by means of their stabil-
ity curves, given in For comparison with modelFigure 13.
““ C,ÏÏ however, we give in the x) projection ofFigure 14 (E

J
,

the diagram. For the 3 :1 orbits, which are difficult(E
J
, x, x5 )

to follow on the x) diagram, we will give the full three-(E
J
,

dimensional characteristics. In we include onlyFigure 14
one branch of each bifurcating family for simplicity. We see
that close to the center the family evolves more smoothlyx1than in model ““ C.ÏÏ At the 3 :1 resonance it bifurcates two
families of 3 :1 periodic orbits, as did model ““ C,ÏÏ and Ðnally

FIG. 13.ÈThe stability diagram for family and for the bifurcatingx1families in model ““ T.ÏÏ
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FIG. 14.ÈThe x) diagram displaying the main families of periodic(E
J
,

orbits in model ““ T.ÏÏ Only one branch of each bifurcated family is included.

has a declining part just beyond the 4 :1 resonance. Its sta-
bility curve levels o† at the 4 :1 resonance, thus showing the
typical behavior of the stability index in this region

& &(Contopoulos GrosbÔl 1986 ; Contopoulos GrosbÔl
Let us now examine in more detail the various1989).

regions of interest.

5.1. Orbits Close to the Center
Moving from larger to smaller energies on the x)(E

J
,

diagram, we observe close to the center, at aE
J
B[90,000,

rather abrupt ““ drop ÏÏ of the characteristic to even lowerx1x values. Beyond this point the orbits get more and morex1inclined with respect to the major axis of the bar and, before
falling onto the minor axis, develop loops. The evolution of
their shapes follows that of the family in model ““ C ÏÏo1 (Fig.

For the same values and for larger xÏs we have15). E
Janother family of stable elliptical orbits, family whosex2,3,characteristic forms a closed loop in the x) plane. We(E

J
,

have named it because of the location of its character-x2,3

FIG. 15.ÈClose to the center the shape of the orbits of the family ofx1model ““ T ÏÏ have an evolution similar to that of the orbits of family ino1model ““ C.ÏÏ From 1 to 3 we move from larger to smaller values.E
J

FIG. 16.ÈA closeup of the 2 :1 and 1 :1 resonance region in the x)(E
J
,

diagram of model ““ T.ÏÏ Unstable parts are denoted with dashed lines.

istic on the x) plane and because the most elongated of(E
J
,

its members are roughly aligned with the bar minor axis. Its
orbits correspond to the orbits found in the up-going
branch of the characteristic (between points A and B inx1of model ““ C ÏÏ and could be related to the observedFig. 4)
nuclear ring located at this region of the galaxy, although
this cannot be claimed with certainty since the poten-QFG
tial is inaccurate so close to the center. A blowup of the
lower left-hand corner of is given inFigure 14 Figure 16.
Family has two stable parts. One close to the CZV,x2,3and another close to Successive stable orbits along thex1.upper stable part (AB) are given in The stableFigure 17.
orbits at the lower stable part (CD) resemble the neighbor-
ing orbits but have inclinations of opposite sign.x1Even closer to the center, at the 1 :1 resonance, has ax1small unstable part. The bifurcating families there have
shapes like orbit ““ 3 ÏÏ in with one of the loopsFigure 15,
larger than the other. Finally for we found aE

J
\ [95,500,

family of stable orbits orbiting around the center of the
system having radii of a few pc. Let us again note that the

FIG. 17.ÈSuccessive stable orbits of the family. Orbits that arex2, 3rounder and less inclined with respect to the bar minor axis orbits corre-
spond to lower values.E

J
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families appearing at the 2 :1 and 1 :1 resonances a†ect the
dynamics of the system only locally.

5.2. Orbits at the 3 :1 Resonance
As already mentioned, only one branch of each 3 :1 family

is plotted in The complete diagramFigure 14. (E
J
, x, x5 )

around the 3 :1 resonance is given in The curvesFigure 18.
wind in the three-dimensional space, and one has to rotate
the Ðgure in order to trace their exact shape. The bifurcated
families change their initial stability away from the bifur-
cating point The shapes of orbits close to this(Fig. 13).
point are as shown in Figures and for families19a 19c t1and respectively. Their shapes, however, change as wet2,move along the characteristic of each family. Family hast1triangular stable orbits of the same kind as in(Fig. 19b)
model ““ C,ÏÏ but now completely asymmetric. The evolution
of as we recede from the bifurcation point is also shownt2in It evolves along the sequence c] d ] e] fFigure 19.
while also changing its stability, and we observe that the
orbits in the stable part have, like the orbits of family at1,triangular shape with a loop close to the major axis of the
bar. Both our ““ C ÏÏ and ““ T ÏÏ models show a preference for
loop structures along the major axis of the bar in this area.
If one considers the two branches of family in botht1models, or the stable orbits of the family in model ““ T,ÏÏt2then one gets Ðgures with loops on both sides of the bar,
similar to what we see in The role of the asym-Figure 8.
metric orbits at the 3 :1 resonance region, as well as at the
UHR region that we will describe below, has, for compari-
son, also been investigated in the FerrerÏs bar model used by
Athanassoula We found good agreement(1992a, 1992b).
between our results for the ““ C ÏÏ and ““ T ÏÏ models and those
for this general model. This indicates that the stellar
response at the 3 :1 resonance found in the potential isQFG
representative of a larger class of barred potentials.

5.3. Simple Periodic Orbits at the UHR Resonance
The stability index of levels o† at the 4 :1 resonance.x1This is a typical behavior found in several two-dimensional,

and recently & also in three-(Patsis GrosbÔl 1996)
dimensional, galactic models. The leveling o† seems to
prevent family from bifurcating a new family, as it doesx1in model ““ C.ÏÏ On the characteristic diagram the(Fig. 14),

FIG. 18.ÈThe characteristics of the main families at the 3 :1 region of
model ““ T.ÏÏ Considering the x) plane initially being on the plane of the(E

J
,

paper the horizontal axis and x the vertical one) and the axis perpen-(E
J

x5
dicular to it, we have rotated the x) plane 70¡ around the axis and(E

J
, E

J45¡ around the axis clockwise.x5

FIG. 19.ÈOrbits belonging to the 3 :1 families and in model ““ T.ÏÏt1 t2(a) and (b) give two stable t1 orbits corresponding to andE
J
\[60,485

[58,024, respectively, i.e., for values of at the beginning and the end ofE
Jthe range for which the family exists. The orbits of are in a sequence oft2increasing distance along the characteristic of this family from the bifur-

cating point. They correspond to [59,073, [60,730, andE
J
\ [59,783,

[60,780 for (c), (d), (e), and ( f ), respectively. All orbits are chosen from the
branches depicted in Fig. 14.

curve of family reaches a maximum x and then decreases.x1One would thus expect a ““ type 2 ÏÏ 4 :1 resonance gap in this
case. The problem, however, is severely complicated by the
presence of family f, at slightly lower energies. Close to its
branching from the f bifurcates a 5 :1 family. The rangex1,of stability of both these families is about the same as found
in ““ C.ÏÏ Family f, as well as the 5 :1 family in its stable part,
are of rectangular-like shape. For the same energies the
orbits of are diamonds having developed small loops.x1Thus the orbital behavior around UHR is quite di†erent
from the standard ““ type 2 ÏÏ case, where the part of the
characteristic where x decreases with energy gives stable
rectangular-like orbits. In our case we have in this region
stable diamond-like orbits, corresponding to those found in
family of model ““ C.ÏÏ The diamond-shaped orbits startf2being obviously inclined (i.e., they have large initial x5
values) with increasing and for somewhat larger energiesE

Jdevelop loops roughly along the minor axis of the bar. Let
us now consider the relative extent of all these stable orbits
at the UHR region. In general, the stable rectangular 4 :1
orbits reach larger distances along the major axis of the bar
than the corresponding orbits for the same Only forx1 E

J
.

the projections of the diamond-[52,000\E
J
\[51,000

shaped orbits on the y-axis, i.e., along the bar major axis,x1
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FIG. 20.ÈStable orbits at the UHR region of model ““ T.ÏÏ In (a) we observe a typical f orbit, in (b) a diamond shaped orbit, and in (c) we observe how thex1orbits of this latter family evolve along the declining branch. Larger loops correspond to larger values. The orbits in (c) do not help the bar to extend toE
Jlarger distances along the major axis of the bar.

are as long as the projections of the rectangular-like orbits
on the same axis. Beyond this point, i.e., for energies larger
than roughly the orbits become less elon-E

J
\ [51,000, x1gated along the y-axis, with larger projections on the x-axis.

As a result, the longest stable orbits along the bar major
axis are found at the 4 :1 resonance region. Shapes of stable
periodic orbits and their relative positions are given in
Figure 20.

5.4. Other Orbits at the UHR Resonance
We have also studied periodic orbits of multiplicity

higher than 1, quasi-periodic and chaotic orbits in the UHR
region. We looked at energies where both f and arex1stable, as well as at energies where the only stable family is

A Poincare� cross section at is givenx1. E
J
\ [53,248.175

in The positions of the initial conditions of theFigure 21.
orbits belonging to f and are marked by arrows. Thex1space occupied by the invariants belonging to the f orbit is

very small. An enlargement is given on the right-hand side
of the Ðgure. The larger stability regions observed in Figure

belong to stable periodic orbits of higher multiplicity.21
The most important are a double periodic orbit (marked
with ““ db ÏÏ) and a triple periodic one (marked with ““ tr ÏÏ).
Their shapes are given in The double periodicFigure 22.
orbit db is like a hybrid of the two 4 :1 simple periodic
orbits, while the triple one resembles Ðgures combining the
two branches of 3 :1 stable orbits. Such triple orbits, like in
the 3 :1 families, have some ““ horizontal ÏÏ segments. These
segments are nearer to the center than the corresponding
segments of the 4 :1 rectangular-like orbits. By trying
several randomly chosen initial conditions (always for the
same as in the Poincare� cross section) and integrating forE

Jtimes equal to about 10 orbital periods of the corresponding
periodic orbits, it becomes clear that the motion of the test
particles is reminiscent of both kinds of stable simple
periodic orbits existing in the system. In most of the cases

FIG. 21.ÈA Poincare� cross section at i.e., in the UHR region in model ““ T.ÏÏ The initial conditions of the main periodic orbits areE
J
\[53,248.175,

marked with the names of the families to which they belong.
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FIG. 22.ÈStable periodic orbits of higher multiplicity at the UHR region in model ““ T.ÏÏ In (a) we give the double periodic orbit db and in (b) the triple
periodic orbit tr.

the shape of the orbits at the apocenters is characterized by
a boxy structure. This is formed either by ““ f type ÏÏ rather
straight parts (small sides of the rectangles) or by displaced
loops of type.ÏÏ A typical example is given in““ x1 Figure 23a.
The initial conditions for this orbit are (x, 86),x5 )\ (1.14,
i.e., far from the f periodic orbit, for which (x0, x5 0) \[4.3670396). This and other similar examples(0.97308883,
clearly show that nonperiodic orbits with initial conditions
at the chaotic region surrounding the periodic orbit f may
strongly enhance the rectangular structure. The initial con-
ditions for the orbit in are (x, 9.6).Figure 23b x5 ) \ (0.7,

We integrated several chaotic orbits for about 50 orbital
periods of the or f orbit at the same and saw that theyx1 E

Jstill support the rectangular-like structure of the bar. In
we give three such examples with initial condi-Figure 24

tions in the chaotic region. In (a) we again start relatively
close to f, in (b) we have (x, [43), and inx5 ) \ (0.90,
(c) (x, 90). Introducing a 400 ] 400 Cartesian gridx5 ) \ (1,
and integrating with equal time steps, we create an image of
each orbit counting the number of points at each grid cell.
Larger intensities (i.e., lighter parts on the Ðgure) corre-
spond to positions where the orbit passed more times than

in the darker areas. In this way we have a crude estimation
of the structures this orbit will support by locally enhancing
the density of the bar. This can be better seen by applying a
smoothing Ðlter on the images. This is given in Figures 24d
and for Figures and respectively. In all cases, a24e 24a 24b,
kind of rectangular shape is present. This is clear in Figures

and and to a lesser extent in For the24a 24c Figure 24b.
orbit in we give the contour of the space Ðlled byFigure 24c,
the orbit, and we indicate by arrows the ““ straight
segments ÏÏ (top) that contribute in making the barrel-
shaped contour with the Ñat small edges (bottom) (Fig. 24f ).
We note that the longer the area covered along the major
axis of the bar, the more ““ f shaped ÏÏ is the orbit. Athanass-
oula has already discussed the role of these(1991, 1996)
orbits in forming the rectangular-like isophotes at the ends
of bars. Furthermore, discussed chaoticPfenniger 1984b
orbits that could support structures, while their role in con-
structing self-consistent models of barred galaxies has
recently been put forward by & ContopoulosKaufmann
(1996).

The general orbital behavior at the declining part of the
characteristic is di†erent from what we have seen forx1

FIG. 23.ÈNonperiodic orbits at the UHR region of model ““ T ÏÏ
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FIG. 24.ÈImages of orbits, with initial conditions in the chaotic region of integrated for about 50 orbital periods of the or f orbit at the sameFig. 21, x1 E
Jvalue. All of them support Ñat structures close to the end of the bar.

Family is stable, but, as already men-E
J
\[53,248.175. x1tioned, its orbits do not support the Ðnal extent of the bar

toward corotation. The Poincare� surface of section for
is given in The area occupiedE

J
\[49,439.11 Figure 25c.

by the stable can be seen in the right central part. Quasi-x1periodic orbits follow the shape of the diamonds. These
orbits could support structures across rather than along the
bar On the other hand, if we start integrating(Fig. 25b).
direct orbits starting from the nearby chaotic sea (between
the area occupied by and the retrograde family at thex1center left-hand side in the Poincare� section), we observe
that very soon the particles depart from the central region
and then populate the areas to the left-hand and right-hand
side of the Poincare� section. Thus, a test particle will not
orbit for a long time along the bar but will escape(Fig. 25a)
to larger radii, orbiting after that at the corotation region.
The main conclusion is that neither quasi-periodic nor
chaotic orbits beyond the distance of the 4 :1 resonance
inÑuence the extent and shape of the bar in the QFG
potential.

5.5. V ariation of )
b

The corotation radius proposed by for NGC 4314QFG
is 70A ^ 10A. In our study we examined several ““ C ÏÏ-type
and ““ T ÏÏ-type models with values of giving a corotation)

bradius in this range. In all cases we found basically the same
orbital behavior as presented in the previous sections, with
the resonant radii scaled according to the chosen value.)

bAt the 4 :1 resonance region, however, there is a di†erence
between faster and slower rotating bars. The di†erence con-
sists in the relative location [i.e., on the characteristic x)(E

J
,

diagrams] of the families and f, and of the families ofx1orbits trapped around the Lagrangian points. We call these
latter families ““ l ÏÏ families. For fast rotating bars, like the
cases we examined until now, their characteristics can be
found at larger than those corresponding to the 4 :1E

J
Ïs

region of the model. On the other hand, for 41 km s~1)
b
[

kpc~1, parts of the characteristics of these families can be
found close to the region where the characteristicx1declines with increasing They contain both stable andE

J
.
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FIG. 25.ÈNonperiodic orbits and a Poincare� section for E
J
\

[49,439.110.

x) diagrams of slow rotating bars. In (a) we give a ““ C ÏÏFIG. 26.È(E
J
,

model with km s~1 kpc~1 and in (b) a ““ T ÏÏ model rotating with)
b
\ 40.23

km s~1 kpc~1.)
b
\ 38.23

FIG. 27.ÈOrbits of the families encountered in the slow rotating model
““ T.ÏÏ The orbits are labeled according to the family to which they belong.

unstable parts. In we present two such cases,Figure 26
namely, a model of type ““ C ÏÏ with km s~1)

b
\ 40.23

kpc~1 and a ““ T ÏÏ model with km s~1(Fig. 26a) )
b
\ 38.23

kpc~1 In this ““ T ÏÏ model, corotation is located at(Fig. 26b).
4 kpc (80A). Both stable and unstable parts are plotted with
a continuous line on these diagrams. In the partFigure 26a
of the branch of family to the left of is stable over al1 f2larger region than the stable part of In the case off1. Figure

and have stable parts of about the same width as26b, l1 l2family f. Representatives of the families found in the ““ T ÏÏ
model having stable parts at the 4 :1 resonance region and
beyond are given in Obviously the orbits trappedFigure 27.
around the Lagrangian points make test particles traverse
both the bar and the outer disk region. Chaotic orbits,
having and initial conditions close to theE

J
Z [47,300

periodic orbits supporting the bar, typically follow for a few
revolutions the rectangular- or diamond-shaped orbits and
then cross corotation and follow l-type orbits for some time.
This relation between the two types of 4 :1 orbits and the l
families has been also observed in N-body models, even in
the case of a perturbed bar et al.(Sundin 1993 ; Sundin

Thus, in the slowly rotating bar case many nonper-1993).
iodic orbits with initial conditions below the curve and atx1the same time before, but close to, its declining part in the

x) diagram follow the l families. The l orbits, however,(E
J
,

do not a†ect the orbital behavior at the region where the
rectangular orbits are stable.

6. CONCLUSIONS AND DISCUSSION

We have examined the stability of the principal families
of simple periodic orbits in a potential calculated by QFG
directly from near-infrared observations of NGC 4314. The
general conclusion of our paper is that the existing families
of periodic orbits, their stability, and the general orbital
behavior support, to a large extent, the observed morphol-
ogy of the galaxy. This argues that the potential is aQFG
good approximation of the potential of NGC 4314 in the
plane of the disk. Furthermore, the orbital structure in the
model is in agreement with the assumption of a bar rotating
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as fast as to put the end of the bar inside but close to
corotation. Further results can be summarized as follows :

1. The main structure in NGC 4314 is, of course, the bar.
The orbits of the family are its main building blocks.x1Bifurcating families a†ect the dynamics of the system
locally, namely, close to the n :1 resonance where they are
generated. Away from their birth places, they are mainly
unstable.

2. In the innermost regions of both models, i.e., for r [

pc, we Ðnd families with both stable and unstable orbits.300
The orbital behavior encountered in this area is given with
reservation because of the unrealistic deÐnition of the
potential in the center and the lack of the bulge component.
In model ““ C ÏÏ they are introduced as a continuation of the

family, while in model ““ T ÏÏ they are separate families.x1The ellipticity and orientation of their orbits vary along the
characteristic curves, the former being particularly clear for
family and the latter for family Thus, both near-x2, 3 o1.circular and elongated orbits can be found in the innermost
parts, i.e., in the region of the 1 :1 and 2 :1 resonances. It is
interesting to note that the 2 :1 resonance region corre-
sponds to the region where a nuclear ring is observed. This
coincidence, together with the fact that the potential is not
accurate in this region, suggests that the ring might be a
strong feature of the disk, the existence of which is not
a†ected by the presence of a separate bulge component. To
check this possibility and to see to what extent the exact
form of the potential inÑuences the stability and shape of
the orbits in the inner parts, one should calculate orbits in
potentials that are somewhat di†erent in the innermost
regions. In these new potentials it would be also necessary
to examine the gaseous response in this area, since the ring
is mainly a gaseous feature.

3. The role of orbits that are asymmetric with respect to
the bar minor axis is important. At the 3 :1 resonance region
we have seen that the stable bifurcating families are the
asymmetric ones. It is well worth noting that we Ðnd a
preference for stable motion in this area. This is clearly seen
in models of type ““ T,ÏÏ where the shape of the bifurcated
family which is initially unstable, changes tot2, t1-type
orbits in its stable part. The stable orbits in all cases are
those with one side roughly parallel to the barÏs minor axis.
As already suggested by nonperiodicAthanassoula (1996),
orbits around them could enhance the rectangularity of the
bar. We have veriÐed this by integrating several nonper-
iodic orbits in the 3 :1 region. However, the extent of these
orbits along the major axis of the bar does not exceed 2.5
kpc, so they do not contribute to the boxiness of the outer
rectangular isophotes. Another asymmetric family found in
the ““ C ÏÏ models is which corresponds to the decliningf2,part of the family in the ““ T ÏÏ models. These familiesx1introduce inclined diamond-like orbits close to corotation.
These are in general the simple periodic orbits found closest
to corotation. To put the whole matter in a nutshell, these
asymmetric orbits, whose role is almost neglected in pre-
vious studies of barred potentials, provide the most impor-
tant bifurcated families at the 3 :1 resonance region, as well
as just beyond the 4 :1 resonance.

4. Although rather detailed, the information obtained
from our orbital calculations does not provide any clear-cut
solution to the existence of the outer boxy isophotes. The K@
image in shows that the boxy isophotes inside corota-QFG
tion cover a radial distance along the bar major axis of

i.e., B230 pc. Furthermore, the northern side is moreB4A.6,

boxy than the southern one. The height di†erence between
the shortest and the longest projections on the y-axis of the
stable rectangular-like orbits found in the 4 :1 resonance
region of model ““ T ÏÏ covers this radial extent of 230 pc. On
the other hand, the phase space area occupied by the f and
the 5 :1 families is tiny. Yet, as argued initially by Athanass-
oula their e†ect may be enhanced by the(1991, 1996),
behavior of neighboring orbits. As we have seen, if one
chooses initial conditions close to but outside the area
covered by the invariant curves of the periodic orbits, a
chaotic orbit can stay close to the periodic one for several
orbital periods. In this case its contribution to the density
response will be similar to the contribution of a nonperiodic
orbit trapped around the periodic one. In other words,
chaotic orbits could support the rectangular structures for
signiÐcant lengths of time. We have indeed, in all cases we
have examined, found that chaotic orbits have major
““ horizontal ÏÏ sections, almost parallel to the barÏs minor
axis and close to their apocenters. Another phenomenon,
which seems to contribute even more to the formation of
the small sides of the boxes, is the wobbling of the orbits
trapped around the diamond-like orbits with loops,x1during which they Ðll an area with nearly straight parts at
the two ends of the bar. To summarize, in a ““ T ÏÏ model
orbits in nonperiodic or chaotic motion at the 4 :1 region, as
well as further out, may occupy regions whose outline could
explain the rectangular-like isophotes in this region. All the
above suggest that the boxy isophotes are not directly
related to a single family of periodic orbits but are a collec-
tive phenomenon reÑecting the structure of phase space and
the encountered orbital behavior at the 4 :1 resonance
region.

5. The extent of the bar is limited by the morphological
evolution of the family. Beyond the 4 :1 resonance thex1 x1characteristic in the x) diagrams declines with increas-(E

J
,

ing energy (model ““ T ÏÏ) or becomes unstable, bifurcating a
family (model ““ C ÏÏ). This reÑects the change of shape off2its orbits. Beyond the UHR region family becomesx1strongly asymmetric. Stable orbits do not help the bar extend

toward corotation because they shrink along the bar major
axis and increase their loops as well as their projections on
the minor axis. Thus, the longest stable periodic orbits are
found at the 4 :1 resonance region and are those that will
mostly determine the outer structure of the bar. Quasi-
periodic orbits reproduce this behavior, while chaotic orbits
populate the corotation region and do not contribute to the
bar density. This evolution of the shape of the family andx1its association with the termination of the bar has not been
pointed out in other studies, probably because the role of
the ““ asymmetric ÏÏ orbits in barred potentials has been so
far underestimated.

6. Our calculations show that ““ C ÏÏ-type models are a
reasonable approximation of the total potential. Although
introduced in di†erent ways, all important families have
been found in the same region in both models. Nevertheless,
““ C ÏÏ models fail to reproduce the twisting of the outer x1orbits roughly beyond the area of the 3 :1 resonance. In ““ T ÏÏ
models all orbits have an initial component. Thex5 D 0
twisting becomes obvious for those orbits that are consider-
ably peaked. This evolution of the orbits, in combinationx1with the strongly ““ asymmetric ÏÏ orbits beyond the UHR
region, is responsible for the observed twisting of the outer
isophotes in rectiÐed images of several barred galaxies like
NGC 1365, NGC 3953, and so forth. This reproduces rather
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well the twist in the isophotes and argues that the sine terms
are not negligible for the dynamics of many barred galaxies.

7. The range of given by corresponds to the)
b

QFG
rotation frequency of the bar in NGC 4314. From orbital
studies alone it is difficult to decide if the lower or upper
limit is closer to reality. However, we should remark that
the slower rotating bars, which put corotation closer to the
80A limit, give more space between the boxy isophotes and
the end of the bar in the galaxy. The important role of the l
families in these models may enhance the long sides of the
boxes. Since we believe that the structure of the end of the
boxes is determined by the orbital behavior at the UHR (for

values just before the l families appear in the system), itE
Jcould be possible that orbits trapped around the Lagrang-

ian points contribute to the rectangularity of the bar. In
such a case a rather slower rotating bar would be prefer-
able.

8. Finally, we Ðnd good agreement between the orbital
behavior in the potential and results of N-body simu-QFG
lations found in the literature. The close relation of the

orbits we Ðnd in the 4 :1 region and the orbits belonging to
the l families is also present in the orbits found in the
N-body simulations by et al. their Figs. 11h,Sundin (1993 ;
11k, and 11l). Interesting similarities are also found in the
3 :1 families. The 3 :1 type orbit given in ofFigure 11j

et al. stays for a long time close to an orbitSundin (1993)
resembling our stable orbit in On the otherFigure 19e.
hand, the 3 :1 orbit in their deviates fast from anFigure 11f
orbit resembling our unstable 3 :1 periodic orbit in Figure

Agreement with typical N-body orbits in barred galaxy19d.
simulations found by & Sellwood e.g., theirSparke (1987;
Fig. 10) should also be mentioned.
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E., Bienaymè, O., Martinet, L., & Pfenniger, D. 1983, A&A,Athanassoula,

127, 349
E., Morin, S., Wozniak, H., Puy, D., Pierce, M., Lombard,Athanassoula,

J., & Bosma, A. 1990, MNRAS, 245, 130
R. 1992, ApJ, 395,Ball, 418

B., & Woltjer L. 1967, ApJ, 150,Barbanis 461
G. F., Higdon, J. L., Tollestrup, E. V., Hahn, J. M., & Harvey,Benedict,

P. M. 1992, AJ, 103, 757
G. F., et al. 1993, AJ, 105,Benedict, 1369

D. L., Bertin, G., Stockton, A., P., Moorwood, A. F. M., &Block, GrosbÔl,
Peletier, R. F. 1994, A&A, 288, 365

G. 1983a, Cel. Mech.,Contopoulos, 31,193
1983b, ApJ, 275,ÈÈÈ. 511
1988, A&A, 201,ÈÈÈ. 44

G., & P. 1986, A&A, 155,Contopoulos, GrosbÔl, 11
1989, A&A Rev., 1,ÈÈÈ. 261

G., & Papayannopoulos, Th. 1980, A&A, 92, 33 P. O.Contopoulos,
Lindblad(eds.) - Springer-Verlag
Vaucouleurs, G., de Vaucouleurs, A., Corwin, H. G., Jr., Buta, R. J.,de

Paturel, G., & Furgue, P. 1991, Third Reference Catalogue of Bright
Galaxies (New York : Springer)

D., Wozniak, H., Rieke, M., Martinet, L., & Bratschi, P. 1996,Friedli,
A&A, in press

J. A. 1988, ARA&A, 26,Frogel, 51
J. A., Downes, D., Combes, F., Gerin, M., Magri, C.,Garcia-Baretto,

Carrasco, L., & Cruz-Gonzalez, I. 1991, A&A, 244, 257
P. J. 1985, A&AS, 60,GrosbÔl, 261

M. 1965, Ann. dÏAstrophys., 28,He� non, 992
D. E., & Contopoulos, G. 1996, A&A, 309,Kaufmann, 381

Th., & Petrou, M. 1983, A&A, 119,Papayannopoulos, 21
P. A., & P. 1996, A&A, 315,Patsis, GrosbÔl, 371

D. 1984a, A&A, 134,Pfenniger, 373
1984b, A&A, 141,ÈÈÈ. 171

D., & Friedli, D. 1991, A&A, 252,Pfenniger, 75
A. C., Frogel, J. A., & Gonza� lez, R. A. 1994, ApJ, 437, 162Quillen, (QFG)
A. C., Frogel, J. A., Kenney, J. D. P., Pogge, R. W., & DePoy, D. L.Quillen,

1995a, ApJ, 441, 549
A. C., Frogel, J. A., Kuchinski, L. E., & Terndrup, D. M. 1995b,Quillen,

AJ, 110, 156
M. W., Vogel, S. N., & Teuben, P. J. 1995, ApJ, 449,Regan, 576

M., Axon, D., Probst, R., & Gatley, I. 1995, MNRAS, 274,Shaw, 369
L., & Sellwood, J. 1987, MNRAS, 225,Sparke, 653
M. 1993, Ph.D. thesis, Chalmers Univ.,Sundin, Go� teborg
M., Donner, K. J., & Sundelius, B. 1993, A&A, 208,Sundin, 105


