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ABSTRACT
We analyze several aspects of the recently noted neutron star collapse instability in close binary

systems. We utilize (3 ] 1) dimensional and spherical numerical general relativistic hydrodynamics to
study the origin, evolution, and parametric sensitivity of this instability. We derive the modiÐed condi-
tions of hydrostatic equilibrium for the stars in the curved space of quasi-static orbits. We examine the
sensitivity of the instability to the neutron star mass and equation of state. We also estimate limits to the
possible interior heating and associated neutrino luminosity that could be generated as the stars grad-
ually compress prior to collapse. We show that the radiative loss in neutrinos from this heating could
exceed the power radiated in gravity waves for several hours prior to collapse. The possibility that the
radiation neutrinos could produce gamma-ray (or other electromagnetic) burst phenomena is also dis-
cussed.
Subject headings : binaries : close È gamma rays : theory È stars : evolution È stars : interiors È

stars : neutron

1. INTRODUCTION

In recent numerical studies of the relativistic hydrody-
namics of close neutron star binaries in three spatial dimen-
sions & Mathews Mathews, &(Wilson 1995 ; Wilson,
Marronetti henceforth WMM96), it was noted that as1996,
the stars approach coalescence they appear to experience a
collapse instability. For an appropriate equation of state
(EOS), binary neutron stars might generally become black
holes many seconds prior to merger. If correct, this e†ect
could have a signiÐcant impact on the anticipated gravity-
wave signal from neutron star binaries near coalescence.
Such premerger collapse might also be associated with
heating, neutrino production, and electromagnetic bursts as
the released gravitational energy from collapse is converted
into thermal energy of the stars.

Moreover, the numerical evidence that such an instability
exists poses a number of new questions such as the sensi-
tivity of the instability to the speciÐc EOS employed, or the
intrinsic spin and masses of the stars. One would also like to
understand the time history of the collapse and any associ-
ated electromagnetic or neutrino emission.

In this paper we present some new three-dimensional cal-
culations that begin to examine these issues. Unfortunately,
however, such relativistic hydrodynamic calculations in
three spatial dimensions are computationally expensive. A
complete systematic study of this instability in three spatial
dimensions will be long in coming. In this paper, however,
we show that in large part this e†ect can be replicated in
terms of modiÐed one-dimensional spherical relativistic
hydrodynamics. We show that the relativistic e†ects of
placing stars in a close binary can be approximated by
adding a term involving an average Lorentz-like factor that
increases the e†ective gravitational forces on the stars. The
collapse observed in the three-dimensional calculations can
be understood in this one-dimensional framework, and one
can survey easily the sensitivity of this e†ect to parameters
characterizing the binary and the neutron star EOS.

We can also follow the possible precollapse compression
and heating of the neutron star material. This provides a
framework in which to model the possible associated neu-
trino and electromagnetic signals such as gamma-ray
bursts. We show that signiÐcant heating and neutrino emis-
sion is possible as the stars gradually compress before they
reach the collapse instability. During the heating epoch the
associated neutrino and electromagnetic radiative losses
may dominate over the power loss from gravitational radi-
ation.

2. FIELD EQUATIONS

Our method of solving the Ðeld equations in three spatial
dimensions was discussed in & Mathews andWilson (1995)

Here we present a brief review of some featuresWMM96.
relevant to the present discussion.

We start with the slicing of spacetime into a one-
parameter family of hypersurfaces separated by di†erential
displacements in timelike coordinates as deÐned in the
(3]1) formalism Deser, & Misner(Arnowitt, 1962 ; York
1979).

Utilizing Cartesian x, y, z isotropic coordinates, proper
distance is expressed

ds2 \ [(a2[ b
i
bi)dt2] 2b

i
dxi dt ] /4d

ij
dxi dxj , (1)

where the lapse function a describes the di†erential lapse of
proper time between two hypersurfaces. The quantity isb

ithe shift vector denoting the shift in spacelike coordinates
between hypersurfaces. For an orbiting binary, is domi-b

inated by the orbital motion of the system plus a small
contribution from frame drag In the frame of(WMM96).
one star in the one-dimensional calculations described here,
most of the e†ect of the is transformed away.b

iThe curvature of the three-geometry is described by a
position-dependent conformal factor /4 times a Ñat-space
Kronecker delta. We refer to this gauge choice as the
““ conformally Ñat condition ÏÏ or CFC. For a static system,
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the vanishing of the Weyl tensor in three dimensions sug-
gests (cf. that there exists a conformally ÑatWeinberg 1972)
solution to the Einstein equations. One must be careful,
however, not to overimpose symmetry conditions (e.g.,

Shapiro, & Teukolski For a dynamic system,Cook, 1996).
one can always impose conformal Ñatness as an initial con-
dition. There are, however, nonzero time derivatives of the
spatial metric and extrinsic curvature that can begin to
introduce o†-diagonal elements of as the system evolves.c

ijIn particular, the imposition of conformal Ñatness excludes
gravity-wave information contained in the transverse trace-
less components of the metric. However, as discussed below,
several recent studies have indicated that this approach is
still an excellent approximation when a comparison with
exact results can be made.

The implementation of the CFC means that we solve the
constraint equations of general relativity at each time as
though there were a Ðxed distribution of matter. We then
evolve the hydrodynamic equations to the next time step
against this background metric. Thus, at each time slice we
can obtain a solution to the relativistic Ðeld equations and
information on the hydrodynamic evolution. Information
on the generation of gravitational radiation can then be
obtained from a multipole expansion of the(Thorne 1980)
transverse traceless components of the metric.

It is important to appreciate that at each time slice, a
numerically valid solution to the Ðeld equations is obtained.
In this way the strong Ðeld properties of the system are
included. For this reason, this approach is a signiÐcant
improvement over a post-Newtonian approach (which is
also conformally Ñat at low order ; see the Appendix). The
hydrodynamic variables respond to these Ðelds. An approx-
imation we have made herein is the neglect of an explicit
coupling of the gravity waves. These, however, contribute
negligibly to the metric, stress energy tensor, or hydrody-
namic evolution When desired, this coupling(WMM96).
can be added via a multipole expansion.

We reduce the solution of the equations for the Ðeld vari-
ables / and a to simple Poisson-like equations in Ñat space.
We begin with the Hamiltonian constraint equation (York

that reduces to1979) (Evans 1985 ; WMM96),

+2/\ [4no1 . (2)

In the Newtonian limit the source term is dominated by the
proper matter density o. In the strong Ðeld of the orbiting
binary, however, o must be enhanced by a generalized
curved-space Lorentz factor W (cf. This deriveseq. [11]).
directly from the occurrence of the four-velocity in the stress
energy tensor. There are also contributions from the inter-
nal energy density vo, pressure P, and extrinsic curvature

Thus, we writeK
ij
.

o1\/5
2
C
oW 2] ov(!W 2[ !] 1) ] 1

16n
K

ij
Kij
D

, (3)

where ! is an adiabatic index from the EOS as deÐned
below. Similarly, the lapse function is determined from

+2(a/) \ 4no2 , (4)

o2\ a/5
2

]
G
o(3W 2[ 2)] ov[3!(W 2] 1) [ 5]] 7

16n
K

ij
Kij
H

.

(5)

In it was shown that the collapse instability canWMM96
at least in part be traced to the e†ect of the Lorentz-like
factor W on the source density for / and (a/). In WMM96
and below it is shown that terms that scale as (W 2[ 1) also
enter into the hydrodynamic equations in a way which
enhances the gravitational force on each star. In the Appen-
dix we suggest that, even in a post-Newtonian approx-
imation, such terms might cause the e†ective gravitational
potential to be deeper than it would be for static isolated
stars.

Regarding the reliability of the CFC as an approach to
this problem, we note that a recent study et al.(Cook 1996)
has shown that an axially symmetric CFC approximation is
quite good when computed physical observables are com-
pared with the exact results for axisymmetric, extremely
rapidly rotating, neutron stars. This is the simplest system
for which an exact metric begins to di†er from a CFC
metric.

In another recent application to the nonaxisymmetric
case of orbiting binaries & Scha� fer have shownReith (1996)
that an expansion using this metric is identical to a post-
Newtonian expansion for terms of order (v/c)2. The Ðrst
deviation appears in terms of order (v/c)4. However, we Ðnd
that the deviations are small. The expressions in their paper
are in terms of a dimensionless parameter l4 m1m2/It is common in post-Newtonian expansions to(m1] m2)2.compare with a Schwarzschild orbit for which l\ 0.
However, for neutron star binaries l\ 0.25 is most appro-
priate. For equal-mass neutron star binaries exactly.l\ 14Even for (a relatively large asymmetry form1/m2\ 2
neutron stars) l\ 0.22. For l\ 0.25 the di†erence between
the conformally Ñat and post-Newtonian (v/c)4 correction
for the perihelion advance is about is 4.5%. The (v/c)4 term
for the momentum di†ers by about 2.8%, and the angular
momentum term di†ers by 24.1%. Since (v/c)4D 10~4 for
the binaries considered here, these di†erences in the two-
body dynamics are probably insigniÐcant. Note that in the
present application we compute an exact instantaneous
numerical solution to the Einstein equations using this
metric and do not rely upon an expansion that may deviate
in individual terms but still provide the correct results. Note
also that the principal e†ect we are investigating here (that
due to the W 2[ 1 terms) is of order (v/c)2 (see the
Appendix), for which the post-Newtonian and conformally
Ñat terms agree exactly. Also, note that the e†ect described
here is a relativistic e†ect that completely dominates (see
below) over the possible stabilizing inÑuence of Newtonian
tidal distortion as proposed in The e†ect weLai (1996).
describe was not considered in that paper.

3. RELATIVISTIC HYDRODYNAMICS

To solve for the Ñuid motions of the system in curved
spacetime it is convenient to use an Eulerian Ñuid descrip-
tion We begin with the perfect Ñuid stress-(Wilson 1979).
energy tensor, which in covariant form can be written,

Tkl\ (o ] ov] P)Uk Ul ] Pgkl , (6)

where v is the internal energy per gram, P is the pressure,
and is the four-velocity.UlBy introducing a set of Lorentz contracted state variables
it is possible to write the relativistic hydrodynamic equa-
tions in a form that is reminiscent of their Newtonian
counterparts. The hydrodynamic state variables are the
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coordinate baryon mass density

D\ W o , (7)

the coordinate internal energy density

E\ W ov , (8)

the spatial three-velocity

V i\ a
U

i
/4W [ bi , (9)

and the coordinate momentum density,

S
i
\ (D] !E)U

i
. (10)

The Lorentz-like factor W is

W \ aUt \
C
1 ] ;

i/13 U
i
2

/4
D1@2

, (11)

and the EOS index ! is

!\ 1 ] P
ov

. (12)

Note that in Ñat space (a \ /\ 1), W reduces to the usual
special-relativistic Lorentz factor.

In terms of these state variables, the hydrodynamic equa-
tions are as follows :

1. The equation for the conservation of baryon number
takes the form(oUk)

‰l\ 0

LD
Lt

\ [6D
L log /

Lt
[ 1

/6
L

Lxj
(/6DV j) . (13)

2. The internal energy equation is derived from T k‰kl \ 0,

LE
Lt

\ [6!E
L log /

Lt
[ 1

/6
L

Lxj
(/6EV j)

[P
CLW

Lt
] 1

/6
L

Lxj
(/6W V j)

D
. (14)

3. The spatial components of the momentum conserva-
tion condition takes the form,(T

i‰kl \ 0)

LS
i

Lt
\ [6S

i
L log /

Lt
[ 1

/6
L

Lxj
(/6S

i
V j) [ a

LP
Lxi

]2a(D] !E)
A
W [ 1

W
B L log /

Lxi
] S

j
Lbj

Lxi

[W (D] !E)
La
Lxi

, (15)

where for the present stability analysis we have set the radi-
ation reaction term to zero.(WMM96)

Regarding the stability of our treatment of numerical
relativistic hydrodynamics, we have applied a number of
standard tests (e.g., shock tubes, pressureless collapse, etc.)
as noted in One important test in the presentWMM96.
context is that of stable stars in a stable orbit (with no
radiation reaction). We have found that for such systems,
equilibrium conÐgurations are obtained after a small frac-
tion of an orbit. When the velocity damping is removed
there is no discernible change of the stars for several orbit

periods. This illustrates an advantage of the shifted grid that
we employ. There is essentially no matter motion with
respect to the grid once a stable equilibrium has been
achieved. Hence, numerical stability can be maintained for
a long time.

Another important test is that of a single nonrotating star
on the three-dimensional spatial grid. We Ðnd that the equi-
librium gravitational mass as a function of central density
agrees with the spherical hydrostatic Tolman-
Oppenheimer-Volko† equilibrium gravitational mass as a
function of central density to within a fraction of a percent.
We also Ðnd that a dynamical instability ensues once the
stellar mass exceeds the maximum hydrostatic mass as
expected.

In isotropic coordinates, the condition of hydrostatic
equilibrium for the stars (dSi/dt \ 0, V i\ 0, L log //Lt \ 0)
can be inferred from equation (15),

LP
Lxi

\ [(o ] ov!)
CL log a

Lxi
[ U

j
a

Lbj

Lxi

]
AL log a

Lxi
[ 2

L log /
Lxi

B
(W 2[ 1)

D
. (16)

Some discussion of the relative magnitude of the terms in
is useful. The Ðrst term with L log a/Lxi is theequation (16)

relativistic analog of the Newtonian gravitational force. In
the Newtonian limit a ] 1 [ GM/r. Hence [L log a/
Lxi] GM/r2. In there are two ways in whichequation (16)
the e†ective gravitational force increases as W exceeds
unity. One is that the matter contribution to the source
density for a or / is increased by factors of DW 2 (cf. eqs.

and The more dominant e†ect is that from the[3] [5]).
terms in that scale as (W 2[ 1). These termsequation (16)
result from the affine connection terms in the!kjk T kj
covariant di†erentiation of T kl. These terms have no New-
tonian analog but describe a general relativistic increase in
the curvature gravitational force as the speciÐc kinetic
energy of the system increases. This increase in e†ective
gravity as the stars approach each other can be thought of
as a correction to the Newtonian gravity that scales as
(W 2[ 1) times the Newtonian gravity. This (W 2[ 1) factor
can be thought of as a kind of speciÐc kinetic energy (cf. eq.

from the orbital motion of the binary. The extra[11])
L log //Lxi term further increases the e†ect by a factor of 2.
This factor comes from /2D (1/a). A further increase of
binding arises from the terms in the Ðeld sources, butKijK

ijthese terms are much smaller than the W 2[ 1 contribu-
tions.

In our shifted spatial grid, the Ñuid three velocities V i are
nearly zero. Hence we can use to Ðnd as aequation (9) U

ifunction of bi. We can also replace bi in withequation (9)
the dominant contribution from orbital motion, b6 BR1 ] u6 ,
where R is the coordinate distance of the stars from the
center of mass. Hence, equations and give(9) (11)

SW 2T B
1

(1[ u2R2/4/a2)
B

1
(1[ v2/c2) , (17)

where c\ a//2\ 1 is the coordinate light speed.
In our simulations an e†ective velocity of (uR/c)B 0.25 is

obtained for the last stable orbit of 1.45 stars. In theM
_three-dimensional calculations the average SW 2[ 1T typi-

cally rises up to D 5% before the orbit becomes dynami-
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cally unstable. Thus, we estimate that before orbit
instability, the e†ective hydrostatic gravitational force on
the stars is increased by D10% over that of stationary non-
orbiting stars for which SW 2[ 1T \ 0. This increased
gravitational force increases the central densities as the stars
approach and can induce collapse.

It is of interest to compare the magnitude of the (W 2[ 1)
correction to the Newtonian gravity with the magnitude of
the Newtonian tidal energy that would tend to stabilize the
star. In it was estimated that the Newtonian tidalLai (1996)
energy should scale as

*EtidalB [j
GM2R5

r6 , (18)

where for neutron stars j B 0.1, M is the mass of a star, R is
the neutron star radius, and r is the orbital separation. In
contrast, the correction to the Newtonian self-gravity from
the motion of the stars in a binary is

*EGRB 2(W 2[ 1)
GM2

R
. (19)

Taking the ratio of these two contributions, we Ðnd

*Etidal
*EGR

B
j

2(W 2[ 1)
AR

r
B6

D 10~4 , (20)

where we have used typical values near collapse (cf. Table 1)
of R/r D 0.2 and (W 2[ 1)D 0.05. Thus, the e†ect of the
increased relativistic gravitational force is expected to
dominate over the stabilizing tidal distortion by about 4
orders of magnitude. In a similar analysis, we estimate that
even for white dwarfs near merger, this relativistic increase
in the gravitational energy exceeds the stabilizing Newto-
nian tidal energy.

The centrifugal term in is dominated by theequation (16)
contribution from orbital motion U

j
(Lbj/Lxi) B U

j
uD

10~8. This term varies little over an individual star, and
inside a star this term is small compared to the L log a/Lxi
term. Hence, this term can be neglected in the discussions of
stellar stability. It is important, however, for determining
the orbits and gravity-wave frequency (WMM96).

4. EQUIVALENT SPHERICAL MODEL

To better understand the relativistic e†ects described
herein, it is useful to reduce the hydrodynamic equations to

FIG. 1.ÈContours of W 2[ 1 in the Z\ 0, X-Y plane from the three-
dimensional calculations for neutron stars with J \ 2.6] 1011M

G
\ 1.40

cm2. Contour decrease from a maximum of W 2[ 1 \ 0.04 in steps of
0.005.

an approximate spherical model. Such a model can also be
used to make a schematic survey of the sensitivity of col-
lapse to EOS parameters and possible interior heating.
From we see that the conÐguration of eachequation (16)
star can be described by a modiÐed version of the familiar
equation of hydrostatic equilibrium. This is true as long as
the contribution of orbital motion to (W 2[ 1) can be
treated as a constant factor and the and centrifugalK

ij
Kij

terms can be ignored. Of course, W 2 is not constant over
the stars. However, in our three-dimensional calculations it
is observed to vary little over the volume of a star.

Contours of constant (W 2[ 1) from a three-dimensional
calculation are shown in From this we deduce thatFigure 1.
it is not a bad approximation to replace (W 2[ 1) in the
source equations and hydrodynamical equations with

(W 2[ 1) B (W
r
2[ 1 ] SW 02[ 1T) , (21)

where is the contribution from radial motion inside aW
rstar, and is an approximately constant factorSW 02 [ 1T

that accounts for the inÑuence of orbital motion in the

TABLE 1

PARAMETERS CHARACTERIZING THE ORBIT CALCULATIONS FOR STARS WITH ANDM
G
0 B 1.45 M

_
FOR AN EOS WITH M

C
\ 1.70

J (1011 cm2)

PARAMETER 2.2 2.3 2.5 2.6 2.7

M
B

(M
_

) . . . . . . . . . . . . . . . . . 1.598 1.598 1.620 1.620 1.598
M

G
(M

_
) . . . . . . . . . . . . . . . . 1.416 1.420 1.322 1.317 1.423

f (Hz) . . . . . . . . . . . . . . . . . . . . 410 310 280 250 267
d
P

(km) . . . . . . . . . . . . . . . . . . . 39.4 40.6 50.3 50.7 53.0
o' (1015 g cm~3) . . . . . . 2.03 2.70 3.58 2.92 1.93
SW 3D2 [ 1T . . . . . . . . . . . . . . . . . . . . 0.050 0.052 0.043
a& . . . . . . . . . . . . . . . . . . . . . . . 0.440 0.379 0.283 0.288 0.463
/'2 . . . . . . . . . . . . . . . . . . . . . . 1.90 2.05 1.78 2.68 1.84
E0 (M

_
s~1) . . . . . . . . . . . . . . 0.016 0.0040 0.00048 0.00047 0.0061

Orbit . . . . . . . . . . . . . . . . . . . . . Unstable Stable Stable Stable Stable
Stars . . . . . . . . . . . . . . . . . . . . . Unstable Unstable Unstable Unstable Stable

is the total gravitational mass of the binary divided by 2. Also, f is the gravity-waveNOTEÈM
Gfrequency, i.e., twice the orbit frequency.
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curved spacetime of the binary. The equilibrium and stabil-
ity of a binary star can then be approximated using a one-
dimensional description.

However, since the metric variables a and / depend upon
the density distribution, it is not possible to directly
compute the hydrostatic equilibrium of the star. Instead, the
star must be evolved hydrodynamically (with damping) as

is increased to obtain the new equilibrium con-SW 02 [ 1T
Ðguration. Hence, we construct a modiÐed spherical hydro-
dynamic model as follows :

1. For a given distribution of mass and energy, the
Poisson equations and for / and a can be integrated(2) (4)
directly. The only di†erence is that the source terms now
become:

o1B
/5
2

Mo[1] v] v!(W
r
2[ 1 ] SW 02[ 1T)]N , (22)

and

o2B
a/5
2

M3o(1 ] v!)(W
r
2[ 1 ] SW 02[ 1T)

] o[1] v] 6v(![ 1)]N . (23)

2. The hydrodynamic equations become:

LD
Lt

\ [6D
L log /

Lt
[ 1

/6r2
L
Lr

(/6r2DV r) . (24)

3. The equation for internal energy conservation
becomes :

LE
Lt

\ [6!E
L log /

Lt
[ 1

/6r2
L
Lr

(/6r2EV r)

[P
CLW

r
Lt

] 1
/6r2

L
Lr

(/6W
r
r2V r)

D
. (25)

4. The momentum equation is :

LS
r

Lt
\ [6S

r
L log /

Lt
[ 1

/6r2
L
Lr

(/6r2S
r
V r) [ a

LP
Lr

] 2a(D] !E)
C(W

r
2[ 1 ] SW 02[ 1T)

W
r

D L log /
Lr

[ (W
r
2] SW 02[ 1T)(D] !E)

La
Lr

, (26)

where we have neglected the centrifugal term as noted
above.

The calculations reported here were performed on an
Eulerian grid in which the star is resolved into about 100
radial zones.

5. EQUATION OF STATE

A key part of the calculations presented here is the use of
a realistic neutron star EOS. The orbital calculations pre-
sented in used the zero temperature, zero neu-WMM96
trino chemical potential EOS from the supernova
numerical model of & Mayle Tavani,Wilson (1993), Mayle,
& Wilson Calculations made with this EOS for a(1993).
model of supernova 1987A give an explosion energy of

1.5] 1051 ergs, consistent with observation. Also, the neu-
trino spectra and time of neutrino emission are in good
agreement with the IMB et al. and Kamio-(Bionata 1987)
kande neutrino detections et al. These models(Hirata 1987).
also reproduce the desired abundance distribution of r-
process heavy elements in the baryon wind from the proto-
neutron star et al. The maximum neutron(Woosley 1994).
star mass for this EOS as converted to a zero temperature
version for our present studies is An impor-M

C
\ 1.70 M

_
.

tant point is that with an EOS that would allow a higher
mass neutron star, & Mayle were not able toWilson (1993)
obtain satisfactory results.

In only cold equilibrium conÐgurations wereWMM96
computed. However, in the present work we wish to
examine the possible heating of the stars as they collapse.
Hence, we include Ðnite temperature e†ects in the EOS. The
electron fraction is small for neutron stars Hence,Y

e
> 1.

for the heating calculations of interest here, we can relate
the temperature to the internal energy by assuming a non-
relativistic Fermi gas of neutrons.

We wish to analyze the sensitivity of the collapse insta-
bility to the neutron star EOS. To do this we diminish the
maximum mass achievable for a given EOS by imposing a
maximum value for the index ! at high density. From this
maximum, the adiabatic index asymptotes to 2 at high
density to guarantee causality.

We Ðnd a maximum neutron star mass of M
C
\ 1.55,

1.64, and 1.70 for 2.346, and 2.470, respec-!' \ 2.297,
tively. This range of masses is consistent with (and even
slightly above) the upper range of the observed upper mass
limit for neutron stars. has assigned a lowerFinn (1994)
limit of 1.15È1.35 and an upper limit of 1.44È1.50M

_
M

_at the 1 p (68%) conÐdence level. At the 2 p (95%) con-
Ðdence level the upper limit increases to 1.43È1.64 InM

_
.

an independent approach, & Brown haveBethe (1995)
recently argued from nucleosynthesis constraints that the
maximum neutron star mass is 1.56 They also pointM

_
.

out that if kaon condensation is taken into account the
critical mass may only be 1.50 If the maximumM

_
.

observed stellar mass were as low as the 1 p upper limit, i.e.,
1.50 it could be that almost all neutron star binariesM

_
,

would collapse before coalescence.
With the present state of knowledge of the nuclear EOS

at high density, however, it is still possible that the
maximum neutron star mass could be signiÐcantly greater
than 1.70 That is, the observed low mass limits mayM

_
.

only be an artifact of the way in which neutron stars are
formed in Type II supernovae rather than a limit from the
EOS. We have made some preliminary studies of stars with

for an EOS with We haveM
G

\ 1.45 M
_

M
C
\ 1.85 M

_
.

not observed collapse before the orbit instability is reached.
It seems likely that, for a sufficiently sti† EOS, merger will
occur as two neutron stars as considered in many Newto-
nian and post-Newtonian simulations (e.g., &Rasio
Shapiro Centrella, & McMillan1992 ; Zhuge, 1994 ; Janka
& Ru†ert 1996).

6. SUMMARY OF THREE-DIMENSIONAL RESULTS

6.1. Summary of Previous Results
In orbit calculations were made for two 1.70WMM96

baryonic mass neutron stars for an EOS for which theM
_gravitational mass in isolation was and theM

G
\ 1.45 M

_
,

critical neutron star mass was Orbit solu-M
C
\ 1.70 M

_
.
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TABLE 2

PARAMETERS CHARACTERIZING THE ORBIT CALCULATIONS AT THE FINAL EDIT FOR STARS WITH INM
G
0 \ 1.40 (M

B
\ 1.548) M

_ISOLATION AND FOR EQUATIONS OF STATE WITH 1.64, AND 1.55M
C
\ 1.70, M

_

J (1011 cm2)

PARAMETER 2.5 2.6 2.5 2.6 2.5 2.6 2.7

EOS M
C

1.70 1.70 1.64 1.64 1.55 1.55 1.55

M
G

(M
_

) . . . . . . . . . . . . . . . . 1.300 1.306 1.299 1.306 1.285 1.299 1.310
f (Hz) . . . . . . . . . . . . . . . . . . . . 270 287 272 251 256 260 233
d
P

(km) . . . . . . . . . . . . . . . . . . . 62.1 64.8 61.7 65.6 55.3 60.3 68.2
o' (1015 g cm~3) . . . . . . 1.82 1.79 1.82 1.86 2.95 2.36 1.98
SW 3D2 [ 1T . . . . . . . . . . . . . . 0.0384 0.0365 0.0387 0.0354 0.0434 0.0298 0.0339
a& . . . . . . . . . . . . . . . . . . . . . . . 0.435 0.443 0.426 0.444 0.266 0.396 0.440
/'2 . . . . . . . . . . . . . . . . . . . . . . 2.05 2.02 2.08 2.02 2.91 2.18 2.02
E0 (M

_
s~1) . . . . . . . . . . . . . . 0.0016 0.00155 0.00156 0.00141 0.000548 0.00113 0.00112

Orbit . . . . . . . . . . . . . . . . . . . . . Stable Stable Stable Stable Stable Stable Stable
Stars . . . . . . . . . . . . . . . . . . . . . Stable Stable Stable Stable Unstable Unstable Stable

tions were sought for three separate values of angular
momentum. The neutron stars were taken to be corotating
initially, although it was noted that relativistic e†ects subse-
quently induce some Ñuid motion in the stars relative to the
corotating frame. In the present study we have not con-
sidered the more realistic possibilities of initial neutron star
spins or nonequal masses. Such systems contain less sym-
metry and require a larger computational e†ort, which we
leave for future work.

The Ðrst calculation was made with an orbital angular
momentum of 2.2 ] 1011 cm2. The stars settled down into
what appeared at Ðrst as a stable orbit, but later (less than
one complete orbit) the stars began to slowly spiral in. The
next calculation was made with an angular momentum of
2.3] 1011 cm2 for which the orbit appeared stable.
However, after about 1 to 2 revolutions the central densities
were noticed to be rising. By the end of the calculation the
central baryonic densities had continuously risen to about
2.7] 1015 g cm~3 (B10 times nuclear matter density),
which is near the maximum density for a stable neutron star
for an EOS with It appears that neutron stars ofM

C
\ 1.70.

this mass range and the adopted EOS may continue to
collapse as long as the released gravitational energy can be
dissipated. For this orbit the stars are at a separation dis-
tance of far from merging. By the time the calcu-d

p
/m\ 9.5,

lation was ended, the minimum a had diminished to 0.379
and /2 had risen to 2.05 corresponding to a minimum coor-
dinate light speed of 0.18.

A third calculation was made with the angular momen-
tum increased to 2.7] 1011 cm2. As can be seen in Table 1

the stars at this separation seemed both stabled
p
/m\ 12.4

and in a stable orbit. However, with only a slight increase in
baryonic mass 1.598 ] 1.620) a collapse ensues.(M

b
6.2. New T hree-dimensional Results

In the present work, these results are supplemented with
additional three-dimensional calculations for initially coro-
tating stars. The new results are obtained with better
resolution and an improved treatment of boundary condi-
tions. These calculations have been run several times longer
than in so that for cases where the instabilityWMM96
occurs we have followed the collapse to higher densities and
stronger Ðelds.

These new results along with the previous results are
summarized in the Tables For the star with1È4. M

G
B 1.45

in isolation, we have added calculations at intermediateM
_orbital angular momenta of 2.5 ] 1011 and 2.6] 1011 cm2

where we have run for much longer times and further into
the collapse. We Ðnd that even at 2.6 ] 1011 cm2 the stars
collapse while still at a distance of over 50 km apart and
with a gravity-wave frequency of only 250 Hz. The collapse
instability appears to onset between 2.6 and 2.7 ] 1011 cm2
as SW 2[ 1T ] D0.05 (depending upon the baryon mass).

The rate of energy and angular momentum loss generally
increases as the compression proceeds and a becomes small.
We note, however, that for unstable stars or orbits, the
systems are no longer in quasi-equilibrium orbits. Since the
radiated energy and momentum are sensitive functions of
separation and u, the computed values of energy and
angular momentum loss become unreliable as an average

TABLE 3

PARAMETERS CHARACTERIZING THE ORBIT CALCULATIONS AT THE FINAL EDIT FOR STARS WITH

IN ISOLATION AND FOR EQUATIONS OF STATE WITHM
G
0 \ 1.35 (M

B
\ 1.49) M

_
M

C
\ 1.70 M

_

J (1011 cm2)

PARAMETER 1.90 1.95 2.00 2.05 2.10 2.1

M
G

(M
_
) . . . . . . . . 1.225 1.231 1.238 1.243 1.248 1.252

f (Hz) . . . . . . . . . . . . 413 388 365 346 330 312
d
P

(km) . . . . . . . . . . . 46.4 48.4 50.8 52.8 54.8 57.6
SW 3D2 [ 1T . . . . . . 0.0531 0.0497 0.0459 0.0431 0.0408 0.0388
a& . . . . . . . . . . . . . . . 0.399 0.413 0.428 0.440 0.449 0.457
/'2 . . . . . . . . . . . . . . 2.22 2.16 2.10 2.06 2.02 1.99
E0 (M

_
s~1) . . . . . . 0.0038 0.0034 0.0032 0.0030 0.0029 0.0026

Orbit . . . . . . . . . . . . . Unstable Stable Stable Stable Stable Stable
Stars . . . . . . . . . . . . . Unstable Stable Stable Stable Stable Stable
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TABLE 4

PARAMETERS CHARACTERIZING THE ORBIT CALCULATIONS AT THE FINAL EDIT FOR STARS WITH M
G
0 \ 1.35

IN ISOLATION AND FOR EQUATIONS OF STATE WITH(M
B
\ 1.49) M

_
M

C
\ 1.55 M

_

J (1011 cm2)

PARAMETER 2.10 2.15 2.20 2.30 2.40 2.50 2.60

M
G

(M
_

) . . . . . . . . 1.238 1.246 1.255 1.262 1.268 1.274 1.279
f (Hz) . . . . . . . . . . . . 270 287 272 251 256 260 233
d
P

(km) . . . . . . . . . . . 50.6 55.0 57.8 62.5 66.8 70.1 74.4
SW 3D2 [ 1T . . . . . . 0.0476 0.0427 0.0379 0.0350 0.0319 0.0293 0.0272
a& . . . . . . . . . . . . . . . 0.392 0.424 0.452 0.465 0.480 0.493 0.503
/'2 . . . . . . . . . . . . . . 2.23 2.10 2.01 1.96 1.91 1.86 1.83
E0 (M

_
s~1) . . . . . . 0.00022 0.0023 0.0022 0.0019 0.0016 0.0013 0.0011

Orbit . . . . . . . . . . . . . Stable Stable Stable Stable Stable Stable Stable
Stars . . . . . . . . . . . . . Unstable Stable Stable Stable Stable Stable Stable

estimate. This is the reason for the lack of monotonicity in
the values of Tables Eventually, the systemE0 1È4.
approaches two black holes and is no longer well describ-
able in our framework. From the rates of energy and
angular momentum loss for these calculations we make a
crude estimate that a delay of about 5 s occurs(WMM96)
between the collapse instability and the orbit instability for
stars with this EOS and This would haveM

G
\ 1.45 M

_
.

interesting consequences on the gravity-wave or electro-
magnetic signals, as discussed below.

We have also run three-dimensional calculations for stars
that would have and 1.35 in isolationM

G
\ 1.40 M

_
M

_(Tables and For these systems the EOS was varied as3 4).
well as the angular momentum. Results from these calcu-
lations are summarized in Tables We found, as2È4.
expected, that the 1.40 stars are stable for lower angularM

_momenta than the 1.45 stars. However, stars of thisM
_mass will still collapse for an EOS that is softer. For

example, the 1.40 star will collapse for J \ 2.6] 1011M
_cm2 if the upper mass limit from the EOS is reduced to 1.55

We have found that with the EOS it isM
_

. M
C
\ 1.70 M

_necessary to reduce the mass to before theM
G

\ 1.35 M
_

FIG. 2.ÈCentral proper baryon density for one-dimensional modelso
c(solid lines) as a function of for a star with LinesSW 02[ 1T M

G
\ 1.40 M

_
.

are drawn for EOSs that give a maximum neutron star mass of M
C
\ 1.70

and 1.64 as labeled. For comparison, the points show numericalM
_

M
_results from the three-dimensional calculations at various values of

for the EOS (squares) and theSW 02[ 1T M
C
\ 1.70 M

_
M

C
\ 1.70 M

_EOS (circles).

stars can survive to Ðnal orbit plunge without collapsing
Ðrst (see Table 3).

6.3. Connection to One-dimensional Calculation
One of the concerns in the three-dimensional calculations

of was whether the stars and Ðeld variables wereWMM96
sufficiently resolved to produce reliable numerical results.
In the three-dimensional calculations, the spatial resolution
only provided D10È15 zones in radius across a star. In the
one-dimensional calculations, however, one can easily
provide many radial zones. We have made a survey of
various physical quantities such as the central extrema in a,
/, and o, as well as the total gravitational mass as aM

Gfunction of the number of radial zones. We have found that
there is no signiÐcant di†erence in the Ðeld variables, hydro-
dynamics variables, or gravitational mass as the radial
zoning is increased from 15 to 200 zones. Even for only 10
radial zones the error in mass only rises to D1%. Hence, the
zoning in the three-dimensional calculations discussed here
and in is probably not a signiÐcant source ofWMM96
uncertainty.

We wish to explore the reliability of the one-dimensional
model as the Lorentz-like factor is increased.SW 02 [ 1T

shows the proper central baryon density as a func-Figure 2
tion of Results are given for two di†erent EOSs ;SW 02[ 1T.
one for which and one withM

C
\ 1.64 M

_
; M

C
\ 1.70

Also shown for comparison are central densities as aM
_

.
function of average values for (W 2[ 1) from three-
dimensional calculations. We see that the basic trend of
increasing central density with increasing orbital motion is
reproduced, although the central density in the one-
dimensional calculations is about 2% higher than the three-
dimensional calculations for the same average SW 02 [ 1T
factor. This suggests that replacing the distribution in W
with a mass-weighted average value slightly overestimates
the e†ect. Nevertheless, this approach is sufficiently accu-
rate to apply to the schematic parameter study of interest
here.

7. HEATING

In the released binding energy was assumed toWMM96
be deposited only in increased Fermi energy. Any thermal
excitation was assumed to be radiated away so that the
stars remained cold. However, it is not necessarily true that
the input energy above the increasing Fermi energy goes
into thermal energy or that it is efficiently radiated away. If
this energy were not dissipated, the stars could simply oscil-
late about the equilibrium rather than collapse. We argue,
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however, that it seems most likely that such oscillations
would be quickly damped relative to the timescale for inspi-
raling. Initially, the radial changes will be quite small, and
the coupling of radial motion to thermal excitation could
occur, for example, via star quakes in analogy with
observed pulsar glitches. As the rate of energy release
becomes more rapid and the crust melts, we speculate that
the coupling of radial modes with the orbital motion, non-
radial Ñuid motion, and tidal forces will lead to a complex
excitation of higher modes and shocks that could further
heat the star and increase the entropy. Also, the coupling of
radial modes with the magnetic Ðelds could damp the oscil-
lations. Eventually, as the stars become hot enough, T D 1
MeV, neutrino viscosity will serve to damp the radial
motion, but this would be late in the evolution.

As these dissipative processes come into play it seems
plausible that signiÐcant thermal energy could be excited. If
the thermal energy is efficiently radiated away, then the
stars will remain near zero temperature and the previous
calculations are valid. However, it is also possible that the
energy may not be radiated away as rapidly as it is released,
in which case, the damping will be converted into both
increased Fermi energy and thermal energy. An upper limit
to the temperature of the star would be that corresponding
to no radiation during the compression. In the present work
we estimate the possible heating and radiation of the stars
as they adjust to the changing orbit factor andSW 02[ 1T
tidal forces.

If there is sufficient heating, the stars may produce an
associated neutrino and/or electromagnetic signal as they
compress. Hence, it is of interest to estimate the possible
heating of the stars as released binding energy is converted
to internal energy.

One can make a simple estimate & Wilson(Mathews
for the heating from the change in gravitational1996)

binding energy as the stars compress in the three-
dimensional calculations. From as J changes byTable 1,
4 ] 1010 cm2 in the three-dimensional numerical calcu-
lations the angular momentum loss rate is cm. TheJ0 D 1
time to radiate this change in J is *J/J D 1.33 s. From the
change of binding energy with central density for single
stars for a particular EOS, it is possible & Wilson(Mathews

to estimate the energy available for heating of the1996)
stars after increasing the Fermi energy. This has an associ-
ated change in baryonic mass, hence, it is only an order of
magnitude estimate, which we improve upon below.

Nevertheless, this change in binding energy could corre-
spond to a release of as much as 6 ] 1052 ergs in thermal
energy and a heating rate of 5] 1052 ergs s~1 per star. The
corresponding average energy over the stars could be
2 ] 1019 ergs g~1. If this energy were injected into a star on
the verge of collapse, (central density of 2.42] 1015 g cm~3)
it would heat the core to a temperature T B 45 MeV
(assuming that the core has the heat capacity of a degener-
ate Fermi gas of neutrons).

This much heating could lead to copious neutrino emis-
sion and may provide a framework in which to produce
gamma-ray or X-ray bursts. Hence, there is motivation to
numerically study this possible heating. We do this in the
spherical calculations by imposing an energy-conserving
damping term in the equations of motion. This damping
relaxes the stars to their new equilibrium. The damped
kinetic energy is added as internal energy. By integrating

the rate at which kinetic energy is damped into internal and
thermal energy, and estimating the fraction that can be sub-
sequently radiated away, we get a measure of the possible
heating of the star before collapse.

8. RESULTS

8.1. Analysis of the Collapse Instability
With the above one-dimensional approximation to the

e†ects of orbital motion, we can make a systematic study of
stellar stability as a function of mass, EOS, and SW 02[ 1T
factor. First we set and run a hydrodynamicSW 02[ 1T \ 0
calculation at zero temperature with velocity damping until
an equilibrium conÐguration is achieved for a given gravita-
tional mass and EOS. Then we increase in smallSW 02[ 1T
increments and evolve the star hydrodynamically with con-
servative damping. That is, the damped kinetic energy is
added to the Fermi and thermal energy as the calculation
proceeds.

For stable stars, we generally observe that the kinetic
energy at Ðrst rises to a maximum and then damps to zero
in the hydrodynamic simulations. For a star that has
reached the collapse instability, however, the kinetic energy
Ðrst rises to a maximum, then falls to a minimum, and then
begins to rise again as the collapse ensues. Hence, we deÐne
the collapse instability for this systematic study as the point
at which the radial kinetic energy begins to increase with
time rather than relaxing to zero. We wish to analyze the
heating and neutrino emission up to this point. Once the
instability is reached, the stars quickly collapse and much of
the subsequent heating or neutrino emission becomes lost
below the event horizon.

Figures show the central value of the lapse a and the3È5
released gravitational energy (in units of 1053 ergs) asE53increases from zero to the point at whichSW 02[ 1T
dynamical collapse is evident.

Instability in these calculations is also manifest by a
decreasing rapidly once it falls below some critical value. In
these calculations this instability occurs as a ] 0.4È0.5
depending upon the value of (W 2[ 1), the initial mass, and
the EOS. A similar phenomenon has been noted in previous

FIG. 3.ÈCentral values of the lapse function a and the released gravita-
tional energy in units of 1053 ergs as increases from zero toE53 SW 02[ 1T
the collapse instability point. These calculations use an EOS that gives a
maximum neutron star mass of The di†erent curves areM

C
\ 1.55 M

_
.

labeled by their associated gravitational mass.
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FIG. 4.ÈSame as but for an EOS that gives a maximum neutronFig. 3,
star mass of M

C
\ 1.64 M

_
.

studies of spherical stars in the isotropic gauge. It was noted
that once a \ 0.5 unstable collapse generally(Wilson 1979)

ensues, but of course those calculations had no (W 2[ 1)
e†ect. We see the same a \ 0.5 limit as the mass is increased
with (W 2[ 1) \ 0. The central a in the three-dimensional
orbit calculations near collapse is also about 0.4.

The size of the Lorentz factor at instability and the
amount of input thermal energy increases with initial gravi-
tational mass and critical mass of the EOS as oneM

G
M

Cwould expect. The released energy rises approximately
quadratically with The total energy released upSW 02[ 1T.
to the instability point increases with decreasing mass and
increasing of the EOS.M

C

8.2. Temperature and Neutrino L uminosity
The absolute surface neutrino luminosity will depend

upon details of the neutrino transport from the interior. It
should scale, however, with surface temperature according
to a Stefan-Boltzmann law, and the total lumi-L

s
P T

s
4,

nosity should scale with the surface radius r and the lapse a
sat the surface, L totP L s r2as

2.

FIG. 5.ÈSame as but for an EOS that gives a maximum neutronFig. 3,
star mass of M

C
\ 1.70 M

_
.

If the luminosity is not as great as the rate at which
thermal energy is added to the stars, then central tem-
peratures and the associated neutrino luminosity could be
quite high. To estimate the luminosity and temperature as a
function of time, consider the Newtonian angular frequency

u2B
m
r3 , (27)

and deceleration due to quadrupole radiation (cf. Blanchet
et al. 1995),

u5 \ 9620m5@3u11@3 . (28)

The evolution of u from earlier times (t \ 0) up to a value
can be estimated by integratingu0 equation (28) :

u\ u0
(1[ (64/5)m5@3u08@3t)3@8

. (29)

From the time dependence of (m/r) isequation (27)

m
r

\ (mu0)3@2
[1[ (64/5)m5@3u08@3t]1@4

. (30)

Since (W 2[ 1) can be thought of as a kind of speciÐc
kinetic energy, it should scale as m/r in a stable Keplerian
orbit :

W 2 [ 1 \; U
i
2

/4 P
m
r

, (31)

From this we get an approximate time history

SW 02[ 1T \ W1 3D2 [ 1
[1 [ (64/5)m5@3u08@3t]1@4

, (32)

where is normalized to give the averageequation (33)
factor from the three-dimensional calculation,SW 3D2 [ 1T

which has an angular velocity u0.From this relation of as a function of time it isSW 02[ 1T
now possible to construct a possible picture of the lumi-
nosity as a function of time. Ideally, one would like to
model the detailed thermal neutrino production and trans-
port as released gravitational energy is deposited in the
interior. Although we have begun such a calculation, a
detailed modeling of the neutrino transport is quite chal-
lenging, and it will take some time before a systematic study
can be completed. Nevertheless, we can gain qualitative
insight into the signal expected from a simple schematic
model.

From Figures we note that the total input thermal3È5
energy grows quadratically with SW 02[ 1T,

EinP SW 02[ 1T2 . (33)

To convert this thermal energy into a luminosity we assume
that the neutrino Ñux through any surface at radius r should
scale as

Fl P
A r2T 02
oi0 T 2

B d(T 4)
dr

P
r2
o

T
dT
dr

, (34)

where is the opacity evaluated ati0 T0.The net neutrino Ñux passing through r is a result of
neutrinos di†using throughout the volume interior to r. To
approximate the e†ective temperature of the Ñux passing



0.0 2.0 4.0 6.0 8.0
R (km)

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

T
  (

M
eV

)

MG = 1.40

MC = 1.70

0.0 0.5 1.0 1.5
t (sec)

0.0

0.5

1.0

1.5

E
53

Lν

Eth

.
Ein

938 MATHEWS & WILSON Vol. 482

through r we assume that the thermal energy is deposited
uniformly in mass throughout the star. The neutrino Ñux at
any radius r is then taken to be proportional to the mass
interior to r,

FlP m(r) , (35)

where

m(r) \ 4n
P
0

ror@2 dr@ . (36)

Equations and deÐne an e†ective neutrino tem-(35) (36)
perature proÐle with radius (cf. Fig. 6)

T (r) \ A
CA/0r m(r@)dr@

r@2
B

[
A/0R m(r@)dr@

r@2
BD1@2

, (37)

where A is a normalization constant. We then solve equa-
tions under the boundary condition that T \ 0(35)È(38)
outside the star, and by equating the total thermal energy at
any given time to the integrated thermal internal energy per
gram v(T ) for a given temperature and density proÐle in our
the EOS, i.e.,

P
0

Rv(T )4nr2o dr \ Eth . (38)

The radial temperature proÐle of a 1.40 star just asM
_the collapse instability is reached is shown in forFigure 6

the EOSs with For this EOS, central tem-M
C
\ 1.70.

peratures as high as T B 70 MeV are possible.
The neutrino Ñux is then calculated using equation (35)

with the proper coefficients included. The Ñux near the
surface then gives the luminosity. The luminosity can be
used to then deÐne an e†ective neutrino luminosity tem-
perature,

L l \ 4nR2 acT eff4
4

A11
4
B

. (39)

As the stars compress, released gravitational energy can
be deposited as internal energy to be radiated away by
neutrinos. The rate of accumulated thermal energy is then
given by the balance between the rate at which gravitational

FIG. 6.ÈRadial temperature proÐle just as the instability is reached
(SW 2[ 1T \ 0.055) of a 1.40 star for an EOS that gives a maximumM

_neutron star mass of M
C
\ 1.70 M

_
.

energy is deposited as thermal energy from the contraction
of the stars and the rate of energy loss by neutrinos.E0 in L lWe Ðnd that the temperature proÐle as determined above
is consistent with a scaling where T is evaluatedEthD T 2,
from near the surface. This scaling arisesequation (38)
because the system can be approximated as a degenerate
nucleon gas. Also, from the Ñux scaling we Ðnd(eq. [35])
that dT /dr P T , so that Hence, both andL l DT 2. Eth L lscale with the surface temperature T 2, and we can write

L l P T 2B kEth . (40)

The evolution of the thermal energy can then be written as
follows :

E0 th\ E0 in[ kEth . (41)

The constant k is evaluated from above, andequation (35)
the rate of deposited thermal energy is evaluated from equa-
tions and(33) (34).

E0 inB
dEin

dSW 02[ 1T
dSW 02[ 1T

dt
. (42)

The analytic solution for the heating of the star then
becomes

EthB e~kt
P

E0 in ekt{ dt@ . (43)

shows the estimated neutrino luminosity (inFigure 7 L lunits of 1053 ergs s~1), the total accumulated internal
energy (in units of 1053 ergs), and the rate of gravita-Ethtional energy release (in units of 1053 ergs s~1), for a 1.40E0 instar with the EOS. These quantities areM

_
M

C
\ 1.70

plotted as a function of time for the last 1.5 s of a star with
and an EOS with where theM

G
\ 1.40 M

_
M

C
\ 1.70 M

_
,

timescale is deÐned by equation (29).
The total luminosity can become quite signiÐcant as the

collapse instability is approached. About 4 s before collapse,
the neutrino luminosity from each star rises above 1051 ergs
s~1. The luminosity exceeds 1052 ergs s~1 about 0.5 s before
collapse. The combined neutrino luminosity from the two

FIG. 7.ÈEstimated neutrino luminosity (in units of 1053 ergs s~1),L lthe total accumulated internal energy (in units of 1053 ergs), and theEthrate of gravitational energy release (in units of 1053 ergs s~1), for a 1.40E0 instar with the EOS. These quantities are plotted as a func-M
_

M
C
\ 1.70

tion of time for the last 1.5 s of a star with and an EOS withM
G

\ 1.40 M
_M

C
\ 1.70 M

_
.
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stars ultimately reaches nearly 1053 erg s~1 before collapse.
This is comparable to the neutrino emission from Type II
supernovae, but in this case the emission is from bare
neutron stars.

In the quadrupole approximation (Thorne 1980 ;
the gravity-wave luminosity scales with theWMM96), E0 GWsquare of the (l] 1)th time derivative of the mass quadru-

pole moment, Thus, we write :E0 GWD Q2u6B (m/r)5.

E0 GW\ E0 GW3D
(1 [ (64/5)m5@3u08@3t)5@4

. (44)

From this we estimate that the power (and angular
momentum) lost in neutrinos will exceed the energy loss in
gravity waves for roughly 3 hr before collapse. This means
that the late evolution up to collapse may not be deter-
mined by the rate of gravitational radiation but by the
hydrodynamics and heat transport of the compressing
neutron stars.

If the radiative momentum loss dominates at early times,
one may wonder whether it could be observed as an
increased slowdown rate in the orbit of a known binary
pulsar. We have estimated how much the orbit period of the
binary pulsar PSR [1913]16 would be a†ected. Damour
& Taylor have determined that the ratio of the(1991)
observed orbit period change to the general relativistic pre-
diction is (galactic)^ 0.0076P0 obs/P0 GR\ 1.0081 ^ 0.0022
(observational). We estimate that any orbit period change
from compressional heating is at least two orders of magni-
tude below the observational error.

9. CONCLUSION

We have made a survey of the compression, heating, and
collapse of neutron stars in close binaries. In particular, we
have developed a schematic model to describe when the
collapse instability may occur as a function of initial
neutron star mass and the EOS. We have also analyzed the
possible heating of the neutron star interiors as the stars
approach the collapse instability. We Ðnd that the stars may
obtain quite high thermal energy and neutrino luminosity
in the Ðnal seconds before collapse. This could have signiÐ-
cant implications both for gravity-wave and neutrino
astronomy as follows :

9.1. Implication for Gravity-Wave Detectors
The analysis here indicates that the radiative neutrino

luminosity could exceed the gravity luminosity for hours
prior to the collapse instability. If so, this could have a
profound inÑuence on the inferred gravity-wave signal. The
loss of orbital angular momentum due to neutrinos and
electromagnetic radiation will be considerably greater than
that of two cold, stable neutron stars. The merger will occur
on a shorter timescale, and the gravity-wave signal will be
dominated by the dynamics of heating and thermal radi-
ation and not the gravity-wave amplitude up to the point of
the instability.

Once the collapse instability is reached, we estimate that
the formation of one or two black holes will occur rather
abruptly. After collapse, however, the system may not
appear simply as two black holes in vacuum. As has been
observed in supernova calculations for some time (cf. Mayle
& Wilson & Mayle this much neutrino1988 ; Wilson 1993)
radiation is likely to ablate electron-positron pairs together
with baryonic material from the surface of the stars.

Baryons ejected in this wind are likely to be present after
collapse and may interact with the orbiting objects. To
some extent they will provide material to accrete onto the
remaining members (neutron star or black holes) of the
binary. They may also provide a damping medium that
could accelerate the decay of the orbit. Thirdly, this hot
wind material may provide a medium in which to anchor
the magnetic Ðeld lines of the precollapse stars (see Wilson

& Wilson et al.1975 ; Ru†ini 1975 ; Damour 1978).
We speculate that these e†ects may serve to accelerate the

merger of the two black holes. The interaction of the stars
with this medium may a†ect the dynamics of the black hole
inspiral unless the material is ejected with sufficiently high
velocity. Clearly, this is an area that warrants further inves-
tigation. If our speculation is correct then the gravity-wave
signal becomes a probe of the EOS, hydrodynamics, and
thermodynamics of the neutron stars as they approach and
pass through this collapse instability.

9.2. Implications for Gamma-Ray Bursts
The possibility that gamma-ray bursts could be gener-

ated by neutrino emission from coalescing neutron stars has
been speculated upon for some time. Recently, &Janka
Ru†ert have made post-Newtonian hydrodynamics(1996)
calculations of neutron star mergers and included the neu-
trino emission therefrom. They Ðnd high luminosities, but
the timescales are so short (Dms) that they conclude that it
will be difficult to model gamma-ray bursts by neutron star
mergers. This short timescale stems from the timescale for
mergers. This difficulty is avoided, however, in our model,
in which the timescale is set by the gradual compression of
the stars. We estimate similar luminosities, but in our model
the neutrino luminosity endures for much longer times, thus
rendering the possibility of a gamma-ray burst more plaus-
ible.

We have shown that signiÐcant heating and associated
neutrino luminosity is possible in the last seconds before the
collapse instability. This poses some interesting possibilities
for cosmological models of gamma ray bursts. The thermal
emission of neutrinos provides an environment for the gen-
eration of an e`-e~ pair plasma by annihilation aroundll6
the stars. The neutrino emission is occurring in the deep-
ening gravitational well of the two stars. Their interactions
will be enhanced by the curved space around the neutron
stars. Furthermore, the region between the stars may
provide an environment for the buildup of neutrino and
matter Ñux and the production of a pair plasma as desired
in some gamma-ray burst scenarios (e.g., & ShemiPiran
1993).

In addition to the collapse-induced neutrino emission
itself, the escaping neutrinos are likely to generate a
neutrino-heated baryon wind from the stars &(Mayle
Wilson & Mayle Unlike in supernovae,1988 ; Wilson 1993).
the velocity of this wind can be quite high, particularly later
in the evolution as the neutrino luminosity grows. This later
emission of the high-velocity wind could interact with
matter emitted previously, producing shock heating in
environments of relatively low optical depth far from the
stars. The interactions themselves may contribute to the
production of a pair plasma.

As a preliminary test of this scenario we ran a calculation
of neutron stars instantly heated such that the surface tem-
perature was D5 MeV. We then followed the neutrino and
matter transport using the numerical supernova model of
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& Wilson We observed a blow o† of the outerMayle (1988).
layer (D10~5 of the neutron star. This material wasM

_
)

accelerated to a speed corresponding to a relativistic c
factor of D10. One possibility is that this high-speed matter
interacting with magnetic Ðelds and/or interstellar clouds
might produce gamma rays.

Finally, we also note that after collapse, the previously
ejected material will continue to experience heating either
by accretion onto the black holes or by ram pressure from
the orbiting stars. Once present, this plasma might become
anchored to magnetic Ðeld lines around the precollapse
stars & Wilson et al. The(Ru†ini 1975 ; Damour 1978).
interactions and magnetic recombination of these Ðeld lines
could also contribute to heating and pair plasma pro-
duction.

All of these processes may be occurring in the back-
ground of the remaining orbiting binary system from times

prior to collapse until the Ðnal merger to a single black hole.
This orbit period may lead to an underlying millisecond
substructure in associated burst signals possibly consistent
with observations.

Clearly, this is an area that also warrants more investiga-
tion. Work along this line is underway to explore such
e†ects as a possible framework in which to model cosmo-
logical gamma-ray bursts.
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APPENDIX

POST-NEWTONIAN ANALYSIS OF THE (W 2[ 1) EFFECT

The e†ect described in this paper stems from a numerical solution to the full Einstein Ðeld equations in the approximation
that the three metric remains conformally Ñat. We have interpreted the apparent stellar collapse as the result of a general
relativistic increase in the strength of the gravitational acceleration that causes the stars to compresses and heat as the orbit
shrinks. At least in part, this increased gravity involves terms that scale with (W 2[1). Since (W 2[ 1) can be thought of as a
measure of the speciÐc kinetic energy, we interpret this part of the increased relativistic gravity as arising from the increasing
mass energy associated with the increasing four-velocity of the binary pair as they approach.

Although we expect that post-Newtonian relativity is a poor approximation in the strong Ðelds near the neutron stars, it is
nevertheless instructive to look for this (W 2[ 1) e†ect in post-Newtonian relativity. One motivation for such an analysis is
that the post-Newtonian expansion is an independent approximation to the metric. Hence, it can help to dispel concern as to
whether the stellar collapse is somehow an artifact of our metric choice. This exercise can also provide some intuitive insight
as to the origin of this phenomenon. In this Appendix, therefore, we outline how a post-Newtonian expansion might exhibit
an enhancement of the e†ective gravitational potential that involves terms scaling as (W 2[ 1).

In the post-Newtonian approximation (see one presumes that it is possible to write the metric as the sum ofWeinberg 1972)
the Minkowski tensor plus corrections given by an expansion in powers of v2D (GM/r) in a conformally Ñat metric. For
example, the time-time component of the metric is written

g
tt
\ [1 ] g

tt
(2)] g

tt
(4) . . . , (A1)

where the numbers in parentheses (n) denote terms of order of vn. From this metric, the corresponding components of the
affine connection and Ricci tensor can be similarly expanded. One also decomposes the stress energy tensor into the
Newtonian rest mass density plus corrections :

T tt\ T tt(0)] T tt(2)] T tt(4) . . . (A2)

T ij\ T ij(2)] T ij(4) . . . , (A3)

where the numbers in parentheses now denote terms of order (M/r3)vn and

T tt(0)4 o(1 ] v) . (A4)

The remaining T kl(n) terms then derive from subtracting T tt(0) from the perfect Ñuid tensor and retaining terms at the
appropriate order.

Let us consider only the component of the metric as an indicator of the strength of the gravitational Ðeld. For example,g
ttthe Ðrst post-Newtonian correction to the metric, the term, is justg

tt
(2)

+2g
tt
(2)\ [8nGT tt(0) . (A5)

Thus, we have

g
tt
(2)\ [2' , (A6)

where ' is just the Newtonian gravitational potential. Velocity-dependent terms enter at the next order. Following Weinberg
we have(1972)

g
tt
(4)\ [2'2[ 2( , (A7)
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where ( is a second gravitational potential given by

+2( \ L2'
Lt2 ] 4nG[T tt(2)] T ii(2)] . (A8)

To obtain insight into ( we Ðrst write the appropriate terms from the perfect Ñuid energy momentum tensor,

T tt(2)\ o(1] v)(W 2 [ 1 [ ') , (A9)

where the identiÐcation of (W 2[ 1) with v2 is valid at order v2. The spatial part is just

T ii(2)\ (W 2[ 1)o(1 ] v) ] 3P . (A10)

Thus, the source for the Laplacian of ( includes terms that scale as (W 2[ 1) times the mass-energy density plus a smaller
contribution from the second-order time derivative of the Newtonian potential :

+2( \ L2'
Lt2 ] 4nG[2o(1 ] v)(W 2[ 1 [ ') ] 3P] (A11)

This suggests how the e†ective gravitational potential may be deeper for binary stars [where (W 2[ 1) [ 0] than the static
potential of two isolated stars. The total compression e†ect, however, derives from the covariant derivative of the stress energy
tensor as illustrated in One must consider the e†ective hydrostatic equilibrium of each star, which may involve termseq. (16).
of higher order than Ðrst post-Newtonian.
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