GAUCHE ETHYL ALCOHOL: LABORATORY ASSIGNMENTS AND INTERSTELLAR IDENTIFICATION

J. C. Pearson
Jet Propulsion Laboratory, California Institute of Technology, Mail Stop 183-301, 4800 Oak Grove Drive, Pasadena, CA 91109-8099

K. V. L. N. SASTRY

Department of Physics, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 5A3
Eric Herbst ${ }^{1}$ and Frank C. De Lucia
Department of Physics, Ohio State University, Columbus, OH 43210-1106
Received 1996 August 9; accepted 1996 November 7

Abstract

Ethyl alcohol (ethanol) is known to possess a pair of closely spaced excited torsional substates (gauche+, gauche-) at an energy of approximately 57 K above the ground (trans) torsional substate. We report an extended analysis of some gauche--gauche $+Q$-branch $(\Delta J=0)$ transitions with a threesubstate fixed frame axis method (FFAM) Hamiltonian. Our approach accounts for complex transgauche interactions for the first time. In addition, we are able to obtain intensities for perturbed rotational transitions, and to determine the trans to gauche + separation to be 1185399.1 MHz . A complete ground state rotational-torsional partition function accounting for the previously neglected gauche substates is presented. Based on our analysis, a total of $14 U$ lines obtained towards Orion KL can now be assigned to gauche substates of ethanol. Analysis of these lines yields a rotational temperature of 223 K and a total (trans + gauche) column density of $7.0 \times 10^{15} \mathrm{~cm}^{-2}$. The column density is in reasonable agreement with the recent value of $2-3 \times 10^{15} \mathrm{~cm}^{-2}$ based on observations of trans-ethanol by Ohishi et al., although there is some disparity in the rotational temperatures. Eight additional U lines in the literature are assigned to transitions of gauche ethanol.

Subject headings: ISM: molecules - line: identification - molecular data - molecular processes radio lines: ISM

1. INTRODUCTION

Ethyl alcohol (ethanol) has been observed in several warm, dense interstellar clouds. It was initially detected in Sgr B2 by Zuckerman et al. (1975) and later detected in W51M by Millar et al. (1988) with a large fractional abundance of 10^{-8}. Ethanol has also been reported towards Orion KL by Turner $(1989,1991)$ and (tentatively) by Ziurys \& McGonagle (1993). The most recent detection towards Orion KL, and the most convincing, has been made by Ohishi et al. (1995). These authors detected four lines of ethanol and obtained a column density of $\approx 1 \times 10^{15} \mathrm{~cm}^{-2}$ and a rotational temperature of $\approx 70 \mathrm{~K}$. Also, quite recently, a large number of submillimeter transitions have been detected in the Hot Core G34.3+0.15, and a rotational temperature of 125 K and a column density of $2.0 \times 10^{15} \mathrm{~cm}^{-2}$ derived (Millar, Macdonald, \& Habing 1995). The recent observations suggest that ethanol is primarily localized in hot core regions with gas densities of $10^{6}-10^{8} \mathrm{~cm}^{-3}$ and temperatures near or in excess of 100 K. Although several mechanisms for forming ethanol in the gas phase have been proposed (Millar et al. 1988), its large abundance in hot cores suggests a major role for dust chemistry (Charnley et al. 1995). In these sources, it is probable that ethanol or a suitable precursor was formed on the surfaces of dust particles during a previous colder era. Once star formation began, the regions warmed, evaporating the ethanol or precursor (Caselli, Hasegawa, \& Herbst 1993).

The rotational spectrum of ethanol is complicated and often perturbed by internal rotation (torsional) motions,

[^0]especially by the motion of the hydroxyl (OH) proton, that lead to trans and gauche substates. In the ground vibrational state, the trans substate is the lowest in energy; rotational transitions in this substate are the ones previously observed in the interstellar medium. The rotational spectrum of ethanol has been the subject of many previous laboratory investigations; summaries are given in Pearson et al. (1995, 1996). In our first paper on the ground vibrational state spectrum of ethanol (Pearson et al. 1995), we measured and analyzed a large number of millimeter wave and submillimeter-wave rotational transitions in the trans substate, while in our second paper (Pearson et al. 1996) we measured and analyzed a large number of transitions in the two closely spaced gauche states (gauche + and gauche -), which lie only 57 K above the trans substate and should be easily excited in warm interstellar regions (although no identifications of interstellar gauche-ethanol have been previously reported, to the best of our knowledge). The rotational transitions in the gauche substates consist of transitions within each substate and transitions which cross from one substate to the other.

Previous laboratory investigations of rotational transitions in the ground vibrational state of ethanol have treated the trans and two gauche substates as noninteracting, but such analyses are only successful for a limited range of the quantum numbers J and K_{a} (Pearson et al. 1995, 1996) due to strong trans-gauche interactions outside this range. In this paper, we report the first combined transand gauche-ethanol ground state analysis, the precise trans to gauche energy difference, and laboratory spectra of four often perturbed c-type ($\Delta K_{a}= \pm 1, \Delta K_{c}=0$) gauche - to gauche $+Q$-branches $(\Delta J=0)$ and their perturbationallowed x-type ($\Delta K_{a}=0, \Delta K_{c}=0$) counterparts.

Our previous analysis of gauche ethanol and our current combined trans-gauche analysis have enabled us to assign and analyze $14 U$ lines in the $97.5-98.0 \mathrm{GHz}$ region as belonging to three different Q-branches between the gauche torsional substates of ethanol. The U lines were observed in Orion KL and reported by Ohishi et al. (1988) as part of a search for the PS radical. These transitions have line widths on the order of $3 \mathrm{~km} \mathrm{~s}^{-1}$, consistent with a hot core source called the Compact Ridge that is known for its oxygen-rich organic molecules (Blake et al. 1987). Ohishi et al. (1988) speculated that the U lines were high-lying but ruled out methanol and its ${ }^{13} \mathrm{C}$ isotopomer as the carriers. Although the majority of the U lines can be assigned directly from the results of Pearson et al. (1996), there are some which lie above the J and K_{a} limits of that analysis. These lines show significant perturbations with the trans substate; as a result, line strength and transition frequency calculations require the model of the entire ground state presented in this paper. With intensities generated by our model, we can determine the ethanol column density and rotational temperature in Orion KL. We also propose assignments of eight other previously reported U lines to gauche ethanol Q-branch transitions.

2. THEORY

Ethanol is a prolate asymmetric top ($\kappa \approx-0.92$) with two large-amplitude internal motions, the threefold internal rotation of the protons of the methyl group, and the asymmetric internal rotation of the hydroxyl proton. The methyl internal rotation has C_{3} group symmetry, which results in A and E substates with A to A and E to E selection rules. The
threefold symmetric $\left(\mathrm{V}_{3}\right)$ barrier for the methyl internal rotation was determined to be $1173.7 \mathrm{~cm}^{-1}$ (Pearson et al. 1995) and $1331 \mathrm{~cm}^{-1}$ (Kakar \& Quade 1980) in the trans and gauche substates of the ground vibrational state, respectively. Since these barriers are rather high, transitions of the ground state A and E components occur with less than 1 MHz separation. The A / E splittings can often be resolved in the trans substate, but can rarely be resolved in the gauche substates. In the submillimeter region, methyl torsional splittings are almost never resolved and are effectively averaged by any measurements. Any resolved methyl torsional splittings have been averaged in this treatment of ethanol

The potential for the motion of the OH proton has a global minimum (the trans well) that corresponds to the hydroxyl proton lying in the CCO plane. Two secondary minima (the gauche wells) occur when the proton lies approximately 120° from the trans minimum (Pearson et al. 1996). Figure 1 shows the potential based on some recent work of Su \& Quade (1996). The energy difference between the trans and gauche minima is due to the departure from perfect threefold symmetry. The plane of symmetry containing the trans minimum can be used to describe the symmetry of torsional wave functions with the C_{s} symmetry group. Solution of the torsional wave equation results in a series of wave functions which are symmetric (e) or antisymmetric (o) about the CCO plane of symmetry and can be labeled by the number of nodes. Since the barrier is predominantly threefold, each torsional state is divided into three substates. The lowest energy wave function, e_{0}, or trans, has no nodes, is symmetric, and peaks in amplitude at

Fig. 1.-Potential energy for torsional motion of the hydroxyl proton in ethanol shown as a function of torsional angle, measured from the trans configuration, at which the potential is a minimum. The two different gauche wells are equivalent and lie slightly higher in energy than the trans well.
the trans minimum. The next two wave functions have one node each and comprise a closely spaced symmetric (e_{1} or gauche +) and antisymmetric (o_{1} or gauche -) pair with amplitude peaks at the gauche potential minima. Ground state torsional wave functions computed with the potential of $\mathrm{Su} \&$ Quade (1996) are shown in Figure 2. These wave functions are significantly less localized than those calculated from the previous potential of Kakar \& Quade (1980), which contains a slightly higher barrier.

The selection rules determined by the C_{s} group allow a and b-type transitions between substates of the same symmetry and c-type transitions between substates of different symmetries. As a result, a - and b-type transitions are formally allowed within each torsional substate and between trans and gauche + , while c-type transitions are allowed between gauche + and gauche - and trans and gauche - .

The reported dipole moments for ethanol are given in matrix form in Table 1. In the trans substate, the b component of the dipole moment dominates, while the a component is quite small. In the gauche torsional substates, the a-component of the dipole is large and the b-component small. It should be noted that no trans a-type or gauche b-type transitions have been observed in the absence of large level mixing. The line strengths predicted from the dipole moment components reported for these states should lead to observation of transitions; however, these transitions have not been detected in spectrometer systems with high sensitivity, suggesting that the effective transition moments may be significantly smaller than previously reported. It should also be noted that the dipole components were determined using analyses that excluded many important interactions among the substates of the

Fig. 2.-Calculated unnormalized wave functions for the lowest lying trans (top), gauche + (middle), and gauche - (bottom) torsional substates

TABLE 1
Transition Dipole Matrix

	Trans	Gauche +	Gauche-
Trans	$\mu_{a}=0.046 \mathrm{D}^{\text {a }}$	$\mu_{a}=$ NA	$\mu_{a}=0.0^{\text {b }}$
	$\mu_{b}=1.438 \mathrm{D}^{\text {a }}$	$\mu_{b}=$ NA	$\mu_{b}=0.0^{\text {b }}$
	$\mu_{c}=0.0^{\text {b }}$	$\mu_{c}=0.0^{\text {b }}$	$\mu_{c}=$ NA
Gauche +	$\mu_{a}=$ NA	$\mu_{a}=1.264 \mathrm{D}^{\mathrm{c}}$	$\mu_{a}=0.0{ }^{\text {b }}$
	$\mu_{b}=$ NA	$\mu_{b}=0.104 \mathrm{D}^{\mathrm{c}}$	$\mu_{b}=0.0{ }^{\text {b }}$
	$\mu_{c}=0.0^{\text {b }}$	$\mu_{c}=0.0^{\text {b }}$	$\mu_{c}=1.101 \mathrm{D}^{\mathrm{c}}$
Gauche -	$\mu_{a}=0.0{ }^{\text {b }}$	$\mu_{a}=0.0{ }^{\text {b }}$	$\mu_{a}=1.264 \mathrm{D}^{\mathrm{c}}$
	$\mu_{b}=0.0^{\text {b }}$	$\mu_{b}=0.0{ }^{\text {b }}$	$\mu_{b}=0.104 \mathrm{D}^{\mathrm{c}}$
	$\mu_{c}=$ NA	$\mu_{c}=1.101 \mathrm{D}^{\mathrm{c}}$	$\mu_{c}=0.0^{\text {b }}$

Notes.-The symbol NA means not available. Transition dipoles listed as NA are probably small and are fixed to zero in the calculations reported here. The symbol D stands for Debye ($1 \mathrm{D}=10^{-18}$ esu cm).
${ }^{\text {a }}$ Takano, Sasada, \& Satoh 1968.
${ }^{\text {b }}$ From symmetry.
${ }^{\text {c }}$ Kakar \& Quade 1980.
ground vibrational state. Symmetry-allowed transition moments between the trans and gauche substates are not known and are listed as "not available" in Table 1. The trans to gauche transition moments are expected to be small due to limited torsional overlap between these substates.

We have previously discussed a suitable Hamiltonian for OH torsional motion in ethanol and its interaction with the overall rotational motion (Pearson et al. 1996). The Hamiltonian H, derived and applied by Quade and coworkers (Quade \& Lin 1963; Quade 1966, 1967; Knopp \& Quade 1968), can be divided into three terms:

$$
\begin{equation*}
H=H_{R}+H_{\mathrm{TR}}+H_{T} \tag{1}
\end{equation*}
$$

Here H_{R} is the rigid-body rotational Hamiltonian with centrifugal distortion, H_{T} is the torsional Hamiltonian, and H_{TR} is the torsion-rotation interaction. A variety of steps lead to an effective Hamiltonian which contains operators similar to those used in treating Coriolis and Fermi interactions between vibrational states. This effective Hamiltonian H is given to second order in angular momentum by the expressions

$$
\begin{align*}
H_{R}= & A^{(\sigma)} P_{a}^{2}+B^{(\sigma)} P_{b}^{2}+C^{(\sigma)} P_{c}^{2}+F^{(\sigma)}\left(P_{a} P_{b}+P_{b} P_{a}\right) \\
H_{\mathrm{TR}}= & D^{\left(\sigma^{1}, \sigma^{2}\right)}\left(P_{b} P_{c}+P_{c} P_{b}\right)+E^{\left(\sigma^{1}, \sigma^{2}\right)}\left(P_{c} P_{a}+P_{a} P_{c}\right) \\
& +F^{\left(\sigma^{1}, \sigma^{2}\right)}\left(P_{a} P_{b}+P_{b} P_{a}\right)+M^{\left(\sigma^{1}, \sigma^{2}\right)} P_{c}+N^{\left(\sigma^{1}, \sigma^{2}\right)} P_{b} \\
& +Q^{\left(\sigma^{1}, \sigma^{2}\right)} P_{a}+R^{\left(\sigma^{1}, \sigma^{2}\right)}\left(P_{b}^{2}-P_{c}^{2}\right)+S^{\left(\sigma^{1}, \sigma^{2}\right)} P_{a}^{2} \\
H_{T}= & \Delta E^{(\sigma)} \tag{2}
\end{align*}
$$

where the P_{i} are the components of angular momentum along the principal axes $(i=a, b, c)$ and the spectroscopic constants contain superscripts σ which refer to torsional substate. The procedure is referred to as the fixedframework axis method (FFAM). In the FFAM formulation, all the H_{TR} terms connect two different torsional substates, so that the spectroscopic constants have two superscripts $\sigma^{1} \neq \sigma^{2}$. An H_{R} term exists for each substate; setting $F^{(\sigma)}$ to zero for one of the substates defines the axis system of the entire molecule as the effective principal axes of that substate (trans in this case). The H_{T} terms do not contain kinetic and potential energy expressions relating to torsional motion; rather, they are simply parameters which define the energies of the gauche substates with respect to the trans substate. In addition to expanding the H_{R} terms to
include higher order angular momentum terms, all the operators off diagonal in torsional substate can be expanded (Pearson et al. 1996) in order to help account for the higher order effects of the torsion and torsion-rotation interactions that are only approximately treated in this Hamiltonian formulation.
The C_{S} symmetry group dictates which of the H_{TR} terms possess nonzero off-diagonal matrix elements and which set of substates are linked by those elements, as discussed in our earlier work (Pearson et al. 1996). Here we briefly discuss the inclusion of these terms for trans-gauche interactions. Their effect is to produce perturbations from normal asymmetric top energy level patterns, selection rules, and intensities. In addition to possessing a dependence on torsional substate, the off-diagonal matrix elements also depend on the angular momentum quantum numbers. Since the total angular momentum J is a good quantum number, $H_{\text {TR }}$ connects only those pairs of rotational levels in different torsional substates with the same total angular momentum J. To understand the dependence of nonzero matrix elements on the "pseudo" quantum numbers K_{a} and K_{c}, let us first consider ethanol to be a prolate symmetric top so that K_{a} is a real quantum number. In this limit, nonzero off-diagonal elements for the transgauche interactions exist for $\Delta K_{a}=0, \pm 1, \pm 2$. The true asymmetric top functions, however, contain many different K_{a} quantum numbers (the designated quantum numbers K_{a} and K_{c} only refer to the most important prolate and oblate basis functions) so that trans-gauche interactions can occur when K_{a} changes by any amount. For interactions between the trans and the gauche + substates, K_{c} must change by an even amount ($\Delta K_{c}=0, \pm 2$ in the oblate symmetric top limit) and for interactions between the trans and gauchesubstates, K_{c} must change by an odd amount ($\Delta K_{c}= \pm 1$ in the oblate symmetric top limit). Unfortunately, these rules do not hold in all instances, since the gauche substates are often mixed (Pearson et al. 1996). Despite this great complexity, the analysis of interactions is aided by the general fact that the strongest interactions between pairs of rotational levels involve the smallest changes in K_{a} and the most closely spaced energy levels computed without interactions (this assertion is quantified in the next section). In particular, when two series of energy levels, each denoted by K_{a} and K_{c}, are plotted against J, it can be seen that interactions are strongest at so-called "level crossings." In our earlier work on the spectra of the gauche torsional substates, we included only interactions between those two substates. In this paper, we have utilized a full three-substate formulation, which is the first time, to the best of our knowledge, that three states, including two of the same symmetry (trans and gauche +), have been analyzed with the FFAM method. Alhough our more complex analysis does not yet allow us to analyze all of the measured transitions, it has facilitated a considerable extension in the J and K_{a} range of our earlier work.

3. ANALYSIS

During the course of our investigations on the millimeterwave and submillimeter-wave spectrum of ethanol (Pearson et al. 1995, 1996; this work), laboratory measurements were undertaken using five different spectrometer systems. The details of these spectrometer systems can be found elsewhere (Helminger, Messer, \& De Lucia 1983; Booker, Crownover, \& De Lucia 1988; King \& Gordy 1953; Friedl
et al. 1995). A number of additional $12-26 \mathrm{GHz}$ transitions have been assigned from a survey reported by MichielsenEffinger (1962).

Our ground vibrational state data set now contains approximately 3500 measured transitions with typical uncertainties of 50 kHz , of which approximately 1600 have appeared previously in the literature (Pearson et al. 1995, 1996). The analyzed transitions lie between 8 and 652 GHz and cover a J and K_{a} range of 50 and 17 , respectively. The present three-state model fits all 3500 transitions with a root mean square deviation of 400 kHz , with the majority fitting to near experimental accuracy $(50-100 \mathrm{kHz})$. Despite a few remaining problems, the current analysis successfully fit many transitions shifted more than 1 GHz by previously neglected trans-gauche interactions. Although our spectroscopic work is incomplete, we are currently able to report a variety of astronomically interesting and perturbed gauche - to gauche + spectral branches. These branches were partially analyzed in our previous work, but now we have been able to analyze these branches to a much higher J quantum number. A complete list of spectral transitions along with a comprehensive analysis will appear later.

We have divided the newly analyzed spectral lines into two tables. Table 2 contains gauche --gauche $+K_{a}=0,1$ and $K_{c}=J{ }^{c} Q$-branches $\left(\Delta J=0, \Delta K_{a}= \pm 1, \Delta K_{c}=0\right)$ along with perturbation allowed ${ }^{x} Q$ transitions $(\Delta J=0$, $\Delta K_{a}=0, \Delta K_{c}=0$) between the same levels where seen.

Table 3 contains gauche--gauche $+K_{a}=1,2$ and $K_{c}=$ $J-1{ }^{c} Q$-branches along with perturbation-allowed ${ }^{x} Q$ transitions between the same levels where seen. Some of the lower J lines $(J<30)$ in the tables were also analyzed with our previous two-state analysis (Pearson et al. 1996). These two tables include the quantum numbers, the measured frequencies, the observed minus the calculated frequencies, the intensities in terms of $\mu_{x}^{2}{ }^{x} S_{\mathrm{ba}}$, (the dipole component squared multiplied by the line strength), the lower state energies, and selected notes. The intensities are based on the transition moments in Table 1, with all unknown values assumed to be zero. In Tables 2 and 3, the gauche + state is denoted by $t=0$ and the gauche - state by $t=1$. A significant number of the transitions involve highly perturbed levels and are denoted in the note column with " gg " for a gauche + gauche - perturbation or " $t g$ " for a transgauche perturbation. Note that although the designated tg perturbations have their onset at high J, such interactions are important at lower J as well.

To provide a feel for the trans-gauche (tg) interactions involved in the three-state analysis, we have shown transgauche level crossings for gauche $J(0, J)$ and $J(1, J)$ levels in Figure 3, and trans-gauche level crossings for gauche $J(1, J-1)$ and $J(2, J-1)$ levels in Figure 4. The gauche levels in Figure 3 are the energy levels which are connected by the transitions in Table 2 while the gauche levels in Figure 4 are the levels connected by the transitions listed in

Fig. 3.-Crossings between two selected gauche + and two selected gauche - rotational-torsional levels involved in the transitions analyzed here $[J(0, J)$, $J(1, J)]$ with assorted rotational levels of the trans substate. Energies relative to the lowest gauche rotational torsional level [gauche $+; J(0, J)]$ are plotted vs. total angular momentum quantum number J. At the crossings, perturbations which necessitate our current three-state analysis are at their maximum values. For a given series of rotational levels in the trans substate, interactions occur either with the gauche + or gauche - levels; these possibilities are indicated by + and - , respectively, in the labeling of the trans substate series.

TABLE 2
GaUche - Gauche $+{ }^{c} Q$ and ${ }^{x} Q$ Branches with $K_{a}=0$ or 1 and $K_{c}=J$

J^{\prime}	K_{a}^{\prime}	K_{c}^{\prime}	t^{\prime}	$J^{\prime \prime}$	$K_{a}^{\prime \prime}$	$K_{c}^{\prime \prime}$	$t^{\prime \prime}$	Frequency (MHz)	$O-C$	$\mu^{2} S^{\text {a }}$	$\begin{gathered} E_{\text {lower }} \\ \left(\mathrm{cm}^{-1}\right) \end{gathered}$	Notes
1	0	1	1	1	1	1	0	71918.992	-0.420	1.8	40.9458	
1	1	1	1	1	0	1	0	121933.986	-0.288	1.8	40.1173	
2	0	2	1	2	1	2	0	72986.578	-0.470	3.1	42.0628	
2	1	2	1	2	0	2	0	120900.880	-0.279	3.0	41.2695	
3	0	3	1	3	1	3	0	74519.642	-0.400	4.4	43.7376	
3	1	3	1	3	0	3	0	119420.966	-0.289	4.5	42.9949	
4	0	4	1	4	1	4	0	76437.327	-0.378	6.1	45.9694	
4	1	4	1	4	0	4	0	117579.752	-0.247	5.9	45.2899	
5	0	5	1	5	1	5	0	78637.457	-0.334	7.6	48.7569	
5	1	5	1	5	0	5	0	115494.515	-0.220	7.4	48.1501	
6	0	6	1	6	1	6	0	81003.969	-0.287	9.5	52.0990	
6	1	6	1	6	0	6	0	113325.517	-0.157	9.1	51.5703	
7	0	7	1	7	1	7	0	83417.055	-0.237	11.4	55.9943	
7	1	7	1	7	0	7	0	111344.327	-0.104	9.4	55.5448	
8	0	8	1	8	1	8	0	85765.145	-0.172	13.7	60.4413	
8	1	8	1	8	0	8	0	110368.495	-0.051	8.1	60.0682	
9	0	9	1	9	1	9	0	87959.044	-0.053	15.6	65.4384	
9	0	9	1	9	0	9	0	97034.628	-0.007	0.1	65.1357	
9	1	9	1	9	0	9	0	105162.089	-0.172	14.7	65.1357	
10	0	10	1	10	1	10	0	89946.985	-0.061	18.2	70.9843	
10	0	10	1	10	0	10	0	97159.134	0.052	0.1	70.7437	
10	1	10	1	10	1	10	0	96584.856	-0.160	0.2	70.9843	
10	1	10	1	10	0	10	0	103796.950	-0.101	16.5	70.7437	
11	0	11	1	11	1	11	0	91737.109	0.067	19.4	77.0774	gg
11	0	11	1	11	0	11	0	97363.587	0.170	0.4	76.8897	gg
11	1	11	1	11	1	11	0	96862.936	-0.137	0.1	77.0774	gg
11	1	11	1	11	0	11	0	102489.386	-0.065	20.3	76.8897	gg
12	0	12	1	12	1	12	0	93477.574	0.280	21.1	83.7165	gg
12	0	12	1	12	0	12	0	97797.282	0.394	1.3	83.5724	gg
12	1	12	1	12	1	12	0	97214.225	-0.104	1.1	83.7165	gg
12	1	12	1	12	0	12	0	101533.895	-0.028	20.6	83.5724	gg
13	0	13	1	13	1	13	0	90007.707	-1.210	15.7	90.9003	gg
13	0	13	1	13	0	13	0	93279.005	-1.122	2.1	90.7912	gg
13	1	13	1	13	1	13	0	95607.001	0.423	7.6	90.9003	gg
13	1	13	1	13	0	13	0	98878.281	0.494	15.7	90.7912	gg
14	0	14	1	14	1	14	0	93497.421	-0.780	24.4	98.6280	gg
14	0	14	1	14	0	14	0	95946.145	-0.700	0.5	98.5463	gg
14	1	14	1	14	1	14	0	96534.856	0.072	0.9	98.6280	gg
14	1	14	1	14	0	14	0	98983.548	0.121	26.3	98.5463	gg
15	0	15	1	15	1	15	0	94696.400	-0.456	31.1	106.8985	
15	1	15	1	15	0	15	0	98585.095	0.079	31.2	106.8379	
16	0	16	1	16	1	16	0	95416.540	-0.351	32.1	115.7111	
16	1	16	1	16	0	16	0	98230.313	0.035	32.4	115.6666	
17	0	17	1	17	1	17	0	95924.464	-0.264	36.1	125.0652	
17	1	17	1	17	0	17	0	97962.858	0.059	36.1	125.0327	
18	0	18	1	18	1	18	0	96301.823	-0.198	37.3	134.9602	
18	1	18	1	18	0	18	0	97774.307	0.042	37.4	134.9367	
19	0	19	1	19	1	19	0	96589.759	-0.156	40.9	145.3958	
19	1	19	1	19	0	19	0	97649.502	0.051	40.9	145.3788	
20	0	20	1	20	1	20	0	96814.209	-0.131	42.2	156.3715	
20	1	20	1	20	0	20	0	97574.042	0.070	42.3	156.3593	
21	0	21	1	21	1	21	0	96993.103	-0.081	45.6	167.8871	
21	1	21	1	21	0	21	0	97535.908	0.027	45.6	167.8784	
22	0	22	1	22	1	22	0	97139.012	-0.024	47.0	179.9424	
22	1	22	1	22	0	22	0	97525.798	0.060	47.1	179.9362	
23	0	23	1	23	1	23	0	97263.582	-0.048	50.3	192.5370	
23	1	23	1	23	0	23	0	97536.849	0.119	50.3	192.5326	
24	0	24	1	24	1	24	0	97369.131	-0.014	51.8	205.6709	
24	1	24	1	24	0	24	0	97562.844	0.100	51.8	205.6678	
25	0	25	1	25	1	25	0	97463.716	0.023	55.0	219.3439	
25	1	25	1	25	0	25	0	97600.390	0.085	55.0	219.3417	
26	0	26	1	26	1	26	0	97549.692	0.011	56.5	233.5558	
26	1	26	1	26	0	26	0	97645.192	0.019	56.5	233.5542	
27	0	27	1	27	1	27	0	97631.329	0.160	59.6	248.3065	
27	1	27	1	27	0	27	0	97698.530	0.056	59.6	248.3054	
28	0	28	1	28	1	28	0	97708.888	0.114	61.2	263.5958	
28	1	28	1	28	0	28	0	97755.610	0.063	61.2	263.5950	
29	0	29	1	29	1	29	0	97784.113	0.133	64.1	279.4236	
29	1	29	1	29	0	29	0	97815.987	0.051	64.1	279.4231	
30	0	30	1	30	1	30	0	97857.476	0.152	63.4	295.7898	tg
30	0	30	1	30	0	30	0	97865.529	0.165	2.4	295.7896	tg
30	1	30	1	30	1	30	0	97869.443	0.169	2.4	295.7898	tg

TABLE 2-Continued

J^{\prime}	K_{a}^{\prime}	K_{c}^{\prime}	t^{\prime}	$J^{\prime \prime}$	$K_{a}^{\prime \prime}$	$K_{c}^{\prime \prime}$	$t^{\prime \prime}$	Frequency (MHz)	$\mathrm{O}-\mathrm{C}$	$\mu^{2} S^{\text {a }}$	$\begin{aligned} & E_{\text {lower }} \\ & \left(\mathrm{cm}^{-1}\right) \end{aligned}$	Notes
30	1	30	1	30	0	30	0	97877.456	0.056	63.4	295.7896	tg
31	1	31	1	31	0	31	0	97998.068	0.021	63.3	312.6923	tg
31	1	31	1	31	1	31	0	97940.731	0.019	4.9	312.6943	tg
31	0	31	1	31	0	31	0	97989.809	0.198	4.9	312.6923	tg
31	0	31	1	31	1	31	0	97932.445	-0.004	63.9	312.6943	tg
32	1	32	1	32	0	32	0	98021.302	0.146	20.2	330.1364	tg
32	0	32	1	32	0	32	0	98039.493	-0.031	49.7	330.1364	tg
32	1	32	1	32	1	32	0	98006.956	-0.040	50.3	330.1369	tg
32	0	32	1	32	1	32	0	98025.137	0.022	19.8	330.1369	tg
33	1	33	1	33	0	33	0	98091.912	0.003	64.5	348.1170	tg
33	0	33	1	33	0	33	0	98087.678	0.034	8.8	348.1170	tg
33	1	33	1	33	1	33	0	$98060.630^{\text {b }}$	0.055	8.8	348.1181	tg, B
33	0	33	1	33	1	33	0	98056.249	0.168	64.4	348.1181	tg
34	1	34	1	34	1	34	0	$98163.428^{\text {b }}$	0.042	48.0	366.6354	tg, B
34	0	34	1	34	0	34	0	$98163.428^{\text {b }}$	0.128	48.0	366.6353	$\operatorname{tg}, \mathrm{B}$
34	0	34	1	34	1	34	0	98160.391	-0.042	27.0	366.6354	tg
34	1	34	1	34	0	34	0	98166.466	0.013	27.0	366.6353	tg
35	1	35	1	35	0	35	0	98237.509	0.075	64.2	385.6915	tg
35	0	35	1	35	0	35	0	98235.479	0.021	13.7	385.6915	tg
35	1	35	1	35	1	35	0	98236.443	0.025	13.7	385.6915	tg
35	0	35	1	35	1	35	0	98234.400	-0.004	64.2	385.6915	tg
36	0	36	1	36	1	36	0	98309.847	-0.012	76.6	405.2851	
36	1	36	1	36	0	36	0	98312.053	-0.028	76.6	405.2851	
37	0	37	1	37	1	37	0	98386.495	-0.114	81.6	425.4160	
37	1	37	1	37	0	37	0	98388.088	-0.105	81.6	425.4160	
38	0	38	1	38	1	38	0	98464.381	-0.175	84.1	446.0842	
38	1	38	1	38	0	38	0	98465.570	-0.177	84.1	446.0842	tg
39	0	39	1	39	1	39	0	98544.249	-0.262	83.0	467.2895	tg
39	1	39	1	39	0	39	0	98545.375	-0.297	83.0	467.289	
40	0	40	1	40	1	40	0	98634.200	-0.583	74.1	489.0317	tg
40	1	40	1	40	0	40	0	98638.544	-0.750	74.1	489.0317	tg

> Notes.-(B) Blend; (gg) gauche +-gauche - interaction; (tg) trans-gauche interaction. See also Fig. 3.
> a Units are Debye squared.
> b Uncertainty of 250 kHz .

Table 3. The gauche levels, plotted as a function of J with respect to the lowest level of the four depicted, are shown as the horizontal or nearly horizontal lines. Gauche-gauche (gg) interactions, which peak at $J=13$ and $J=18$, are especially noticeable in Figure 4. To illustrate possible interactions with trans levels, the energies of selected trans levels defined by K_{a} are also shown. These energies increase more rapidly as functions of J and cross the gauche levels; at the crossings, interactions are noticeable even if the K_{a} values of the gauche and trans levels differ by wide amounts. The (+) and (-) shown after the labeling of the trans levels refer to the symmetry of the interacting gauche substate. The strength of the interaction between levels that cross in the absence of torsional rotational interaction decreases about 1 order of magnitude for each quantum of K_{a} difference, with the $\Delta K_{a}=2$ interactions being about 3 GHz and $\Delta K_{a}=5$ interactions being about 3 MHz .

4. ASTRONOMICAL ASSIGNMENTS

The U lines from Ohishi et al. (1988) that are believed to be caused by ethanol are given in Table 4. The observed U line frequencies, measured (laboratory) rest frequencies, T_{A}^{*}, $\Delta v, \mu^{2} S$, upper state energies, quantum assignments, and estimated $v_{\text {LSR }}$ values are also given. The method used here for determining the total column density N, discussed by Blake et al. (1986) and Turner (1991), contains the assumption that the emission source is optically thin and characterized by a single excitation temperature $T_{\text {rot }}$. In this approximation, the logarithm of the upper state column
density N_{u} divided by the upper stage degeneracy g_{u} can be plotted against the upper state energy E_{u} / k in the following manner:

$$
\begin{align*}
\log _{10}\left(\frac{N_{u}}{g_{u}}\right) & =\log _{10}\left(\frac{3 k W}{8 \pi^{3} v_{\text {ba }}{ }^{\mathrm{x}} \mathrm{~S}_{\text {ba }} \mu_{\mathrm{x}}^{2}}\right) \\
& =\log _{10}\left[\frac{N}{Q_{\mathrm{rs}}}\right]-\frac{E_{u}}{k}\left(\frac{\log _{10}(e)}{T_{\text {rot }}}\right), \tag{3}
\end{align*}
$$

so that the slope $-\log _{10}(e) / T_{\text {rot }}$ and intercept $\log _{10}\left(N / Q_{\mathrm{rs}}\right)$ contain the excitation temperature $T_{\text {rot }}$ and the total column density N divided by the partition function Q_{rs}, respectively. Here W is the integrated line intensity which, with an assumed beam efficiency of 100%, is estimated to be T_{A}^{*} times the velocity linewidth Δv, and v_{ba} is the transition frequency.

In order to obtain an accurate partition function, the trans to gauche + tunneling frequency, or energy difference, must be known. This parameter is determined by the location of perturbations between trans and gauche levels and by the frequencies of several perturbation-allowed trans to gauche transitions. The best value for the energy difference between the rotationless trans and gauche + substates is $1185399.1 \pm 5.0 \mathrm{MHz}$, or $39.54066 \pm 17 \times 10^{-4} \mathrm{~cm}^{-1}$. Although this number does not represent a final value, since our analysis is as yet incomplete, it is certainly sufficiently accurate to calculate column densities and rotational temperatures. Table 5 contains Q_{rs} values for a variety of temperatures, calculated with an explicit sum over all states of

TABLE 3
GAUCHE +-GAUCHE- ${ }^{c} Q$ - AND ${ }^{x} Q$ BRANCHES with $K_{a}=1$ OR 2 AND $K_{c}=J-1$

J^{\prime}	K_{a}^{\prime}	K_{c}^{\prime}	t^{\prime}	$J^{\prime \prime}$	$K_{a}^{\prime \prime}$	$K_{c}^{\prime \prime}$	$t^{\prime \prime}$	Frequency (MHz)	$O-C$	$\mu^{2} S^{\text {a }}$	$\begin{gathered} E_{\text {lower }} \\ \left(\mathrm{cm}^{-1}\right) \end{gathered}$	Notes/ References
2	1	1	1	2	2	1	0	22618.680	-0.318	0.8	44.6573	1
2	2	1	1	2	1	1	0	$172641.532^{\text {b }}$	-0.100	1.0	42.1717	2
3	1	2	1	3	2	2	0	24288.620	-0.301	2.1	46.3867	1
3	2	2	1	3	1	2	0	$171023.183^{\text {b }}$	-0.491	1.7	43.9554	2
4	1	3	1	4	2	3	0	26501.780	-0.275	2.0	48.6916	1
4	2	3	1	4	1	3	0	168882.814		2.5	46.3321	P
5	1	4	1	5	2	4	0	29255.850	-0.187	3.8	51.5706	1
5	2	4	1	5	1	4	0	166235.871	0.073	3.1	49.3005	
6	1	5	1	6	2	5	0	32570.910	-0.136	3.1	55.0214	1
6	2	5	1	6	1	5	0	163107.033		4.1	52.8589	P
7	1	6	1	7	2	6	0	36566.190	-0.082	5.6	59.0378	1
7	2	6	1	7	1	6	0	159531.132		4.7	57.0048	P
8	1	7	1	8	2	7	0	41903.357	-0.011	1.8	63.5950	
8	2	7	1	8	1	7	0	155556.341		5.8	61.7354	P
9	1	8	1	9	2	8	0	43196.394	-0.085	5.0	68.8693	
9	2	8	1	9	1	8	0	151249.647		6.6	67.0470	P
10	1	9	1	10	2	9	0	48378.176	-0.090	7.9	74.5923	
10	2	9	1	10	1	9	0	146706.763		7.7	72.9347	P
11	1	10	1	11	2	10	0	53529.699	-0.008	9.1	80.8901	
11	2	10	1	11	1	10	0	142083.013	0.617	8.8	79.3916	
12	1	11	1	12	2	11	0	58737.678	0.119	10.3	87.7546	
12	2	11	1	12	1	11	0	137749.076	0.927	8.5	86.4034	gg
13	1	12	1	13	2	12	0	63952.368	-0.053	12.6	95.1823	
13	2	12	1	13	1	12	0	126566.577	-0.034	5.3	94.2062	gg
14	1	13	1	14	2	13	0	69108.218	-0.090	12.9	103.1705	
14	2	13	1	14	1	13	0	125279.125	-0.044	15.9	102.2398	gg
15	1	14	1	15	2	14	0	74188.188	-0.130	16.0	111.7166	
15	2	14	1	15	1	14	0	121496.294	0.211	15.4	110.9154	
16	1	15	1	15	2	15	0	79364.773	...	13.2	120.8184	P
16	2	15	1	16	1	15	0	117710.218	0.319	19.4	120.1491	
17	1	16	1	17	2	16	0	85419.515	-0.153	14.0	130.4738	gg
17	2	16	1	17	1	16	0	114436.488	0.327	19.0	129.9256	
18	1	17	1	18	2	17	0	80605.135		22.7	140.6806	P, gg
18	2	17	1	18	1	17	0	112894.167	0.038	13.1	140.2393	
19	1	18	1	19	2	18	0	84983.789	-0.193	22.1	151.4369	gg
19	2	18	1	19	1	18	0	106931.232	0.436	23.5	151.0869	
20	1	19	1	20	2	19	0	88039.276	-0.294	30.1	162.7410	
20	2	19	1	20	1	19	0	105225.485	0.424	30.4	162.460	
21	1	20	1	21	2	20	0	90354.336	-0.404	29.2	174.5912	
21	2	20	1	21	1	20	0	103608.598	0.358	29.9	174.3793	
22	1	21	1	22	2	21	0	92156.495	-0.428	34.9	186.9862	
22	2	21	1	22	1	21	0	102282.795	0.317	35.1	186.8239	
23	1	22	1	23	2	22	0	93568.906	-0.473	34.5	199.9247	
23	2	22	1	23	1	22	0	101243.633	0.255	34.8	199.8015	
24	1	23	1	24	2	23	0	94677.029	-0.489	39.6	213.4057	
24	2	23	1	24	1	23	0	100452.072	0.213	39.6	213.3128	
25	1	24	1	25	2	24	0	95546.737	-0.525	39.4	227.4282	
25	2	24	1	25	1	24	0	99864.418	0.162	39.5	227.3587	
26	1	25	1	26	2	25	0	96230.704	-0.509	44.1	241.9915	
26	2	25	1	26	1	25	0	99440.009	0.097	44.1	241.9398	
27	1	26	1	27	2	26	0	96770.969	-0.500	44.0	257.0949	
27	2	26	1	27	1	26	0	99143.725	0.055	44.1	257.0567	
28	1	27	1	28	2	27	0	97200.941	-0.513	48.5	272.7379	
28	2	27	1	28	1	27	0	98946.268	0.005	48.5	272.7099	
29	1	28	1	29	2	28	0	97546.875	-0.509	48.6	288.9202	
29	2	28	1	29	1	28	0	98823.696	0.000	48.6	288.8996	
30	1	29	1	30	2	29	0	97828.953	-0.479	52.8	305.6412	
30	2	29	1	30	1	29	0	98755.450	0.026	52.8	305.6264	
31	1	30	1	31	2	30	0	$98060.635^{\text {c }}$	-0.690	53.0	322.9007	B
31	2	30	1	31	1	30	0	98713.724	0.195	52.9	322.8907	
32	1	31	1	32	2	31	0	98274.012	0.191	56.6	340.6980	
32	1	31	1	32	1	31	0	98614.669	-0.963	0.5	340.6866	
32	2	31	1	32	2	31	0	98528.611	0.551	0.5	340.6980	
32	2	31	1	32	1	31	0	98869.244	-0.626	56.0	340.6866	
33	1	32	1	33	2	32	0	98440.501	-0.156	57.1	359.0339	
33	1	32	1	33	1	32	0	98643.608	-0.556	0.3	359.0271	
33	2	32	1	33	2	32	0	98624.014	0.188	0.3	359.0339	
33	2	32	1	33	1	32	0	98827.119	-0.214	57.0	359.0271	
34	1	33	1	34	2	33	0	98602.599	-0.660	61.0	377.9074	
34	2	33	1	34	1	33	0	98881.092	-0.001	61.1	377.9024	
35	1	34	1	35	2	34	0	98713.078	0.089	60.3	397.3186	
35	1	34	1	35	1	34	0	98833.538	-0.150	1.3	397.3146	

TABLE 3-Continued

J^{\prime}	K_{a}^{\prime}	K_{c}^{\prime}	t^{\prime}	$J^{\prime \prime}$	$K_{a}^{\prime \prime}$	$K_{c}^{\prime \prime}$	$t^{\prime \prime}$	Frequency (MHz)	$\mathrm{O}-\mathrm{C}$	$\mu^{2} S^{\text {a }}$	$\begin{gathered} E_{\text {lower }} \\ \left(\mathrm{cm}^{-1}\right) \end{gathered}$	Notes/ References
35	2	34	1	35	2	34	0	98810.614	0.078	1.3	397.3186	
35	2	34	1	35	1	34	0	98931.034	-0.201	60.3	397.3146	
36	1	35	1	36	2	35	0	98800.965	0.019	63.2	417.2683	tg
36	1	35	1	36	1	35	0	98935.903	-0.224	2.2	417.2638	tg
36	2	35	1	36	2	35	0	98870.588	0.080	2.2	417.2683	tg
36	2	35	1	36	1	35	0	99005.484	-0.206	63.3	417.2638	tg
37	1	36	1	37	2	36	0	99091.145	0.231	45.1	437.7481	tg
37	1	36	1	37	1	36	0	99033.377	-0.319	20.5	437.7500	tg
37	2	36	1	37	2	36	0	99141.023	0.236	20.4	437.7481	tg
37	2	36	1	37	1	36	0	99083.254	-0.316	45.4	437.7500	tg
38	1	37	1	38	2	37	0	99126.548	-0.168	62.1	458.7733	tg
38	1	37	1	38	1	37	0	99145.500	0.056	7.4	458.7726	tg
38	2	37	1	38	2	37	0	99162.376	-0.190	7.4	458.7733	tg
38	2	37	1	38	1	37	0	99181.326	0.032	62.2	458.7726	tg
39	1	38	1	39	2	38	0	99227.093	-0.133	68.9	480.3330	
39	1	38	1	39	1	38	0	99242.045	-0.093	1.1	480.3325	
39	2	38	1	39	2	38	0	99252.987	-0.204	1.1	480.3330	
39	2	38	1	39	1	38	0	99267.951	-0.152	69.0	480.3325	
40	1	39	1	40	2	39	0	99328.837	-0.206	73.3	502.4292	
40	2	39	1	40	1	39	0	99359.031	-0.383	73.3	502.4289	

Notes.-(P) Predicted frequency with 300 kHz uncertainty; (B) blend; (gg) gauche + -gauche- interaction; (tg) trans-gauche interaction. See also Fig. 4.
${ }^{\text {a }}$ Units are Debye squared.
${ }^{\mathrm{b}}$ Uncertainty of 150 kHz .
${ }^{c}$ Uncertainty of 100 kHz .
References.-(1) Kakar \& Quade 1980; (2) Cohen 1995.

Fig. 4.-Crossings between two selected gauche + and two selected gauche - rotational-torsional levels involved in the transitions analyzed here [J(1, J-1), J(2, J-1)] with assorted rotational levels of the trans substate. Energies relative to the lowest gauche rotational-torsional level of the four [gauche $+; J(1, J-1)]$ are plotted vs. total angular momentum quantum number J. At the crossings, perturbations which necessitate our current three-state analysis are at their maximum values. For a given series of rotational levels in the trans substate, interactions occur either with the gauche + or gauche levels; these possibilities are indicated by + and - , respectively, in the labeling of the trans substate series.

TABLE 4
Orion-KL U-Lines Assigned to Gauche Ethanol

U-line (MHz)	Laboratory Frequency (MHz)	$\begin{aligned} & T_{A}^{*} \\ & (\mathrm{~K}) \end{aligned}$	$\begin{gathered} \Delta v \\ \left(\mathrm{~km} \mathrm{~s}^{-1}\right) \end{gathered}$	$\begin{aligned} & \mu^{2} S \\ & \left(D^{2}\right) \end{aligned}$	$\begin{gathered} E_{\text {upper }} \\ \left(\mathrm{cm}^{-1}\right) \end{gathered}$	J^{\prime}	K_{a}^{\prime}	K_{c}^{\prime}	t^{\prime}	$J^{\prime \prime}$	$K_{a}^{\prime \prime}$	$K_{c}^{\prime \prime}$	$t^{\prime \prime}$	$\begin{gathered} v_{\mathrm{LSR}} \\ \left(\mathrm{~km} \mathrm{~s}^{-1}\right) \end{gathered}$	Notes
U97536.9 .	97535.908	0.08	4.3	45.60	171.1318	21	1	21	1	21	0	21	0	6.0	bl
U97536.9 . .	97536.849	0.08	4.3	50.29	195.7861	23	1	23	1	23	0	23	0	8.8	bl
U97547.3 .	97546.875	0.06	3.0	48.54	292.1740	29	1	28	1	29	2	28	0	7.7	
U97550.1 .	97549.692	0.05	3.9	56.48	236.8097	26	0	26	1	26		26	0	7.8	
U97563.2 .	97562.844	0.05	2.6	51.78	208.9221	24	1	24	1	24	0	24	0	7.9	
U97574.7.	97574.042	0.09	2.0	42.26	159.6140	20	1	20	1	20	0	20	0	7.0	
U97597.8..	97600.390	0.21	2.7	54.95	222.5973	25	1	25	1	25	0	25	0		bl ex
U97632.2 .	97631.329	0.06	2.9	59.59	251.5631	27	0	27	1	27	1	27	0	6.3	
U97650.1..	97649.502	0.12	2.8	40.88	148.6360	19	1	19	1	19	0	19	0	7.2	
U97756.4.	97755.610	0.05	2.5	61.17	266.8558	28	1	28	1	28	0	28	0	6.6	
U97774.9 . .	97774.307	0.07	3.2	37.40	138.1981	18	1	18	1	18	0	18	0	7.2	
U97816.8..	97815.987	0.05	2.7	64.11	282.6859	29	1	29	1	29	0	29	0	6.5	
U97933.1..	97932.445	0.06	1.1	63.86	315.9610	31	0	31	1	31	1	31	0	7.0	
U97963.2 . .	97962.858	0.09	1.5	36.11	128.3004	17	1	17	1	17	0	17	0	8.0	

Notes.-(bl) blend; (ex) excluded from analysis.
the ground vibrational state (trans and gauche) up to $J=50$. An analytical approximation to the three-substate $Q_{\text {rs }}$, accurate to within a few percent and based on the classical (continuous) approximation, is given by the expression

$$
\begin{align*}
Q_{\mathrm{rs}}(T)= & T^{3 / 2}[3.27+3.34 \exp (-56.89 / T) \\
& +3.34 \exp (-61.54 / T)] \tag{4}
\end{align*}
$$

Interestingly, nuclear spin plays no role here because there is only one hydroxyl proton, so that Pauli exclusion principle considerations do not pertain, as long as motions in the remainder of the molecule cannot act in concert with the

TABLE 5
Rotational Partition Function for Ethanol

Temperature (K)	$Q_{\mathrm{rs}}^{\mathrm{a}}$	$\log _{10}\left(Q_{\mathrm{rs}}\right)$
$9.375 \ldots \ldots$.	95.5968	1.9804
$18.570 \ldots \ldots$.	290.9459	2.4638
$37.500 \ldots \ldots$	1072.4158	3.0304
$75.000 \ldots \ldots$	4106.3917	3.6135
$150.000 \ldots \ldots$	14299.1626	4.1553
$225.000 \ldots \ldots$	28161.6572	4.4497
$300.000 \ldots$.	44151.7878	4.6449

[^1]hydroxyl proton to return the molecule to an indistinguishable configuration.

Figure 5 is the plot, known as a rotation diagram, for the transitions in Table 4. To produce the plot, unit beam efficiency has been assumed. The clearly blended line (U97597.8) has been excluded from the analysis. The U97536.7 blend has been included as an intensity weighted sum of the two transitions involved. From the 12 data points (11 single lines and one pair), we derive a best-fitting rotational temperature of $223_{-35}^{+66} \mathrm{~K}$, and a column density of $2.8_{-1.7}^{+3.9} \times 10^{15} \mathrm{~cm}^{-2}$. With the proper beam efficiency of 0.40 (Ohishi et al. 1988), the column density rises to $7.0 \times 10^{-15} \mathrm{~cm}^{-2}$. Both the rotational temperature and the column density can be compared with the recent values of Ohishi et al. (1995), determined from an analysis of four low-lying lines of trans-ethanol. These authors obtained a rotational excitation temperature of 70 K , which is significantly lower than our result. Using their temperature to determine the ratio of the total to trans partition functions, we calculate that their column density should be multiplied by a factor of ≈ 2 to obtain a total column density. With the higher temperature, a factor of ≈ 3 is more applicable. The resulting total column density of $2-3 \times 10^{15} \mathrm{~cm}^{-2}$ is in reasonable agreement with our value. Although the rotational temperature we obtain is not in good agreement with that of Ohishi et al. (1995), it is in better agreement with an earlier value of Turner (1991) who determined a rotational temperature of 216 K for trans-ethanol with a-type transitions neglected.

TABLE 6
Additional Proposed Assignments

U-line (MHz)	J^{\prime}	K_{a}^{\prime}	K_{c}^{\prime}	t^{\prime}	J^{\prime}	$K_{a}^{\prime \prime}$	$K_{c}^{\prime \prime}$	$t^{\prime \prime}$	Laboratory Frequency (MHz)	$\begin{gathered} v_{\mathrm{LSR}} \\ (\mathrm{~km} / \mathrm{s}) \end{gathered}$	T_{R} / T_{A}^{*} (K)	Reference	Source
U78640.	5	0	5	1	5	1	5	0	78637.457	-1	0.05	1	Orion-KL
U90355.	21	1	20	1	21	2	20	0	90354.336	7	0.08	1	Orion-KL
U97263.	23	0	23	1	23	1	23	0	97263.540	10	0.01	1	Orion-KL
U98230.2	16	1	16	1	16	0	16	0	98230.313	9.1	0.02	2	Orion-KL
U99142 .	27	2	26	1	27	1	26	0	99143.725	14	0.10	1	Orion-KL
U100453	24	2	23	1	24	1	23	0	100452.072	59	0.08	1	Sgr B2
U102490	11	1	11	1	11	0	11	0	102489.386	7	0.03	1	Orion-KL
U103796	10	1	10	1	10	0	10	0	103796.950	12	0.02	1	Orion-KL

Fig. 5.-Rotation diagram for ethanol in Orion KL using the measured U lines of Ohishi et al. (1988)

It is interesting to speculate on whether the Orion KL U lines assigned here belong to the Hot Core or to the Compact Ridge. The latter source is known for oxygencontaining organic molecules, although many molecules in this source have lower rotational temperatures than we determine for gauche ethanol. The $v_{\text {LSR }}$ values and linewidths in Table 4 indicate that gauche ethanol lies in the Compact Ridge (Ohishi 1996). It also seems clear that the trans-ethanol lines seen by Ohishi et al. (1995) stem from the Compact Ridge. Assuming ethanol to lie in either the Hot Core or the Compact Ridge, its fractional abundance with respect to H_{2} can be estimated to be $\approx 1-2 \times 10^{-8}$, a number equivalent to that determined for other sources, and only an order of magnitude or so below that of methanol.

Table 6 contains a second list of U lines reported by Lovas (1991) that may be attributable to the gauche ethanol Q-branch transitions presented in this paper. In addition to the U lines and relevant laboratory ethanol frequencies, Table 6 includes proposed assignments, astronomical sources, $T_{R} / T_{A}^{*}, v_{\text {LSR }}$ values, and the original references for the U lines. The lines are, with one exception, reported to only $1 \mathrm{MHz}\left(3 \mathrm{~km} \mathrm{~s}^{-1}\right)$, so that $v_{\text {LSR }}$ information is not very precise. Still it can be seen that our assignments for U78640 and U99142 are the least likely, since their estimated $v_{\text {LSR }}$ values are well outside the $5-8 \mathrm{~km} \mathrm{~s}^{-1}$ range of Orion KL.

5. SUMMARY

This is the third paper in a series on the laboratory millimeter-wave and submillimeter-wave spectrum of ethanol. In this paper, we introduce for the first time an analysis in which interactions among the three torsional
substates of the ground vibrational state are considered. Without a consideration of these interactions, previous separate analyses of the lowest trans substate (Pearson et al. 1995) and the excited gauche substates (Pearson et al. 1996) are limited to a restricted range of angular momentum quantum numbers. Although our three-substate analysis is currently capable of fitting 3500 transitions to a root mean square deviation of 400 kHz , we anticipate that future improvements will permit us to fit the laboratory data to near experimental accuracy ($50-100 \mathrm{kHz}$). At the current stage of development, we have successfully analyzed four often badly perturbed gauche--gauche $+Q$-branches. In addition, we have been able to predict line positions and calculate intensities for a large number of other perturbed transitions. Finally, the trans-gauche+ energy difference of $1185399.1 \pm 5.0 \mathrm{MHz}$ has been accurately determined.

From our measurements and calculations, we have assigned 14 astronomical U lines in the 97.5 to 98.0 GHz region of the spectrum, seen in the direction of Orion KL, to transitions between the two gauche substates of ethanol. Analysis of these lines indicates a high rotational temperature (223 K) and a large ethanol column density $\left(7.0 \times 10^{15} \mathrm{~cm}^{-2}\right)$ representative of a hot core-type source, most probably the Compact Ridge. The rotational temperature is approximately a factor of 3 larger than that determined using low-lying transitions in trans-ethanol by Ohishi et al. (1995) in the Compact Ridge. Perhaps one temperature does not describe the rotational torsional distribution of ethanol towards Orion KL.

Whatever its temperature, the large abundance of ethanol cannot be accounted for purely by gas-phase chemistry, indicating yet again the importance of dust chemistry in the
formation of saturated interstellar organic molecules. We have also proposed assignments for eight additional interstellar U lines to our recently analyzed gauche - to gauche $+Q$-branch ethanol transitions. Two of these assignments are ambiguous. Other tentative assignments of U lines in Sgr B2 and other sources to gauche ethanol based on our original work (Pearson et al. 1996) have been communicated to us by Millar (1996) and Ohishi (1996).

Previous determinations of interstellar column densities for ethanol have, to the best of our knowledge, ignored the gauche substates. Since these substates comprise two thirds of the ground vibrational state energy levels, they must be considered in column density determinations, unless the excitation temperature is considerably lower than the 57 K excitation of the gauche + substate. Because ethanol appears to be abundant only in warmer regions of molecular clouds, this exception is unimportant.

A machine-readable list of ethanol frequencies and intensities based on our work can be found in the JPL Submillimeter, Millimeter, and Microwave Spectral Line Catalog (Poynter \& Pickett 1985; Pickett et al. 1996; available online at http://spec.jpl.nasa.gov). The list is being updated. The intensities $I\left(\mathrm{~nm}^{2} \mathrm{MHz}\right)$ in the JPL catalog, based on integrated cross sections at 300 K , have to be converted to $\mu_{x}^{2 x} S_{\mathrm{ba}}$ for astronomical use. A general conversion formula is

$$
\begin{align*}
& \mu_{x}^{2}{ }^{x} S_{\mathrm{ba}}=\frac{I \times 2.403 \times 10^{4}}{v_{\mathrm{ba}}} \\
& \quad \times \frac{1}{\exp \left(-E_{l} / 208.5\right)-\exp \left(-E_{u} / 208.5\right)} Q_{\mathrm{rs}}(300 \mathrm{~K}) \tag{5}
\end{align*}
$$

where the frequency v_{ba} is in MHz , the upper and lower state energies E_{u} and E_{l} are in cm^{-1}, and $\mu_{x}^{2}{ }^{x} S_{\mathrm{ba}}$ is in units of Debye ${ }^{2}$ (1 Debye $=10^{-18}$ esu cm).

The portion of this work performed at the Jet Propulsion Laboratory, California Institute of Technology, was done under contract with the National Aeronautics and Space Administration. We would like to thank NASA for their support of laboratory astrophysics at the Ohio State University and the Ohio Supercomputer Center for the award of time on their Cray YMP8 computer. K. V. L. N. Sastry thanks Deutscher Akademischer Ausauschdienst (DAAD) for financial support during his stay in Giessen, Germany. The laboratory work in Giessen was supported by the Forschungsgemeinschaft and Fonds der Chemischen Industrie. Special thanks are due to Masatoshi Ohishi for his criticism of an earlier version of this manuscript and for his help with our foray into radio astronomy.

REFERENCES

Blake, G. A., Sutton, E. C., Masson, C. R., \& Phillips, T. G. 1986, ApJS, 60, 357
.1987, ApJ, 315, 621
Booker, R. A., Crownover, R. L., \& De Lucia, F. C. 1988, J. Mol. Spectrosc., 128, 62
Caselli, P., Hasegawa, T. I., \& Herbst, E. 1993, ApJ, 408, 548
Charnley, S. B., Kress, M. E., Tielens, A. G. G. M., \& Millar, T. J. 1995, ApJ, 448, 232
Cohen, E. A. 1995, private communication
Friedl, R. R., Birk, M., Oh, J. J., \& Cohen, E. A. 1995, J. Mol. Spectrosc., 170, 383
Helminger, P., Messer, J. K., \& De Lucia, F. C. 1983, Appl. Phys. Lett., 42, 309
Kakar, P. K., \& Quade, C. R. 1980, J. Chem. Phys., 57, 4060
King, W. C., \& Gordy, W. 1953, Phys. Rev., 90,319
Knopp, J. V., \& Quade, C. R. 1968, J. Chem. Phys., 483317
Kutner, M. L., Machnik, D. E., Tucker, K. D., \& Dickman, R. L. 1980, ApJ, 242, 541
Lovas, F. J. 1991, J. Phys. Chem. Ref. Data, 21, 181
Michielsen-Effinger, J. 1962, Bull. Acad. R. Belg., 48, 438
Millar, T. J. 1996, private communication
Millar, T. J., Macdonald, G. H., \& Habing, R. J. 1995, MNRAS, 273, 25
Millar, T. J., Olafsson, H., Hjalmarson, A., \& Brown, P. D. 1988, A\&A, 205, L5

Ohishi, M. 1996, private communication
Ohishi, M., et al. 1988, ApJ, 329, 511
Ohishi, M., Ishikawa, S.-I., Yamamoto, S., Saito, S., \& Amano, T. 1995, ApJ, 446, L43
Pearson, J. C., Sastry, K. V. L. N., Herbst, E., \& De Lucia, F. C. 1996, J. Mol. Spectrosc., 175, 246
Pearson, J. C., Sastry, K. V. L. N., Winnewisser, M., Herbst, E., \& De Lucia, F. C. 1995, J. Phys. Chem. Ref. Data, 24, 1
Pickett, H. M., Poynter, R. L., Cohen, E. A., Delitsky, M. L., Pearson, J. C., \& Müller, H. S. P. 1996, Submillimeter, Millimeter, and Microwave Spectral Line Catalog, JPL Publication 80-23, Revision 4
Poynter, R. L., \& Pickett, H. M. 1985, Appl. Opt., 24, 2235
Quade, C. R. 1966, J. Chem. Phys., 44, 2512

- 1967, J. Chem. Phys., 47, 1073

Quade, C. R., \& Lin, C. C. 1963, J. Chem. Phys., 38, 540
Su, C. F., \& Quade, C. R. 1996, J. Mol. Spectrosc., 175, 390
Takano, M., Sasada, Y., \& Satoh, T. 1968, J. Mol. Spectrosc., 26, 157
Turner, B. E. 1989, ApJS, 70, 539
-. 1991, ApJS, 76, 617
Ziurys, L. M., \& McGonagle, D. 1993, ApJS, 89, 155
Zuckerman, B., et al. 1975, ApJ, 196, L99

[^0]: ${ }^{1}$ Also Department of Astronomy, Ohio State University, Columbus, OH 43210-1106.

[^1]: ${ }^{\text {a }}$ Explicit sum over all ground state rotational torsional levels (trans, gauche + , and gauche-) through $J=50, K_{a}=50$.

