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ABSTRACT
We present the results of a study of the two-point correlation function for a sample of Ðeld galaxies

taken from the Canadian Network for Observational Cosmology cluster survey. The sample consists of
183 galaxies within a contiguous region of sky covering 216 square arcminutes. The objects have r-band
magnitudes 17.0¹ r ¹ 21.7 and redshifts 0.21¹ z¹ 0.53. The median redshift of the sample is 0.37. We
Ðt the real space correlation function to a power law Ðnding h~1 Mpcm(r) \ (r/r0)~1.7, r0\ 1.9~0.4`0.4

or uncertainties are estimated using the bias-corrected boot-()0\ 1), r0 \ 2.2~0.4`0.5 h~1 Mpc ()0\ 0.2) ;
strap resampling method, with 300 resamplings. This low correlation length implies strong evolution has
occurred in the correlation function ; if the observed correlation function is modeled as m(r, z) \ m(r, 0)
(1 ] z)~(3`e) with m(r, 0) \ (r/5.1 h~1 Mpc)~1.7, then e B 1.5. Comparison of the redshift space and real
space correlation functions indicates that the one-dimensional pairwise peculiar velocity dispersion p at
zB 0.37 is weakly inconsistent with 720 km s~1, the value predicted by the cosmic virial theorem if

The observed correlation functions are, however, consistent with p B 360 km s~1, the value)0\ 1.
expected if )0\ 0.2.
Subject headings : galaxies : clusters : general È galaxies : distances and redshifts È galaxies : evolution

1. INTRODUCTION

The study of galaxy clustering has yielded important
information about the large-scale structure of the universe
and about the environment of galaxies. One of the most
useful statistics employed in this study is the two-point
correlation function. This statistic quantiÐes the clustering
of galaxies and is directly related to the power spectrum of
density Ñuctuations in the galaxy distribution. The corre-
lation function, when estimated from data from redshift
surveys, also yields information about the dynamics of clus-
tering. Determining the evolution of the correlation func-
tion is therefore essential for an understanding of
cosmological structure formation.

The two-point correlation function has been extensively
studied at low redshifts ; gives a summaryEfstathiou (1995)
of redshift surveys that have been used for correlation
analysis. Observations of the correlation function at the
present epoch indicate that it is well described by a power
law,

m(r) \
A r
r0

B~c
, (1)

at scales h~1 Mpc. Here, and throughout this paper,r [ 10
all separations are given in physical, as opposed to com-
oving, coordinates unless otherwise stated ; the Hubble
parameter is taken to be h km s~1 Mpc~1.H0\ 100
Results from optical surveys of nearby galaxies include

^ 0.3 h~1 Mpc, c\ 1.77^ 0.04 from the Centerr0\ 5.4
for Astrophysics (CfA) survey & Peebles(Davis 1983), r0\
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h~1 Mpc, c\ 1.71^ 0.05 from the Stromlo-APM5.1^ 0.2
survey et al. and h~1 Mpc,(Loveday 1995), r0 \ 5.0 ^ 0.1
c\ 1.79^ 0.04 from the Las Campanas Redshift survey

For the purposes of comparing our results to(Lin 1995).
those from local samples, we adopt h~1 Mpc andr0\ 5.1
c\ 1.7.

The principal aim of this investigation is to examine the
evolution of the correlation function. A useful empirical
model for this evolution, introduced by & SzalayKoo

is(1984)

m(r, z) \ m(r, 0)(1] z)~(3`e) . (2)

In this model, e \ c[ 3 corresponds to clustering Ðxed in
comoving coordinates, as seen in biased cold dark matter
(CDM) simulations If e \ 0, clustering is(Carlberg 1991).
stable in physical coordinates. Carlberg, & Couch-Colin,
man Ðnd e D 0 for an open CDM (OCDM) initial(1996)
power spectrum with )0\ 0.2.

To determine e, one must compute the correlation func-
tion for objects at an earlier epoch. In the absence of red-
shift data, an estimate of the spatial correlation function
may be obtained by computing the angular correlation
function (e.g., & Szalay et al.Koo 1984 ; Efstathiou 1991 ;

& Pritchet This method does not require thatInfante 1995).
the distances to the objects in the sample be known; rather,
the clustering is observed as a two-dimensional projection
of the three-dimensional clustering over a wide range of
redshifts. In order to estimate the amount of clustering evo-
lution present in the data, therefore, models for both the
correlation function and its evolution and the redshift dis-
tribution of objects in the sample must be assumed; is notr0directly determined at any particular epoch. Using this
method, et al. and & PritchetEfstathiou (1991) Infante

Ðnd e [ 0 if under the assumption that there(1995) )0\ 1,
is no evolution in the luminosity function.

In order to produce a reliable estimate of the spatial
two-point correlation function from redshift data, redshifts
for a large number of objects must be obtained. Pencil-
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beam surveys using multiobject spectroscopy (MOS), such
as the AutoÐb survey et al. and the Canada-(Cole 1994)
France Redshift Survey (CFRS; Fèvre et al. are theLe 1996)
only surveys to date which contain a sufficient number of
objects at intermediate redshifts. Fèvre et al. ÐndLe (1996)
e D 0È2 in the CFRS survey, consistent with the evolution
observed in angular surveys.

In principle, data from pencil-beam surveys may be used
to estimate the redshift space correlation function. The
required velocity accuracy is, however, quite high. &Davis
Peebles Ðnd the one-dimensional pairwise peculiar(1983)
velocity dispersion in the CfA survey to be p \ 340 ^ 40
km s~1 at a separation of 1 h~1 Mpc. If the velocity errors
in a survey are comparable to p/21@2, computation of a
reliable redshift space correlation function from that survey
is impossible. et al. Ðnd a comoving correlationCole (1994)
length h~1 Mpc based on the redshift spacer0 \ 6.5 ^ 0.4
correlation function for the AutoÐb survey. The median
redshift of this survey is taking 6.5/z6 \ 0.16 ; r0(z\ 0.16)\
1.16 h~1 Mpc and h~1 Mpc inr0(z\ 0) \ 5.1 equation (2)
yields e B [4, at odds with previous angular correlation
results.

We present here estimates of the real space and redshift
space two-point correlation function for a sample of Ðeld
galaxies taken from the Canadian Network for Obser-
vational Cosmology (CNOC) cluster survey. The data are
described in The techniques used for computing the real° 2.
space two-point correlation function and its evolution,
along with the results for this survey, are presented in ° 3.
Also described there is our investigation of the redshift
space two-point correlation function and the heretofore
unknown pairwise peculiar velocity dispersion at zD 0.37.
Our conclusions are given in ° 4.

2. DATA

The data used here are taken from the CNOC cluster
survey. The observational procedures and data reduction
are described in detail in Ellingson, & CarlbergYee, (1996).
The data were obtained using the multiobject spectrograph
(MOS) at the Canada-France-Hawaii Telescope (CFHT). A
band-limiting Ðlter was used with the spectrograph to
reduce the wavelength range of each spectrum, further
increasing the multiplexing rate. One patch in the survey,
MS1512]36, is well suited to a correlation analysis of Ðeld
galaxies since the cluster is quite poor. Only data from this
Ðeld are analyzed here ; the complete catalog is presented in

et al.Abraham (1997).
Pencil-beam surveys present several problems related to

the fairness of the sample (a sample is fair if the structure
contained within it is representative of the global average).
The Ðrst difficulty relates to the beam width ; if the beam
diameter is similar to then the distribution of objects in ar0,beam may be dominated by a single large density inhomo-
geneity, biasing the estimation of m. One possible solution to
this problem is to calculate the correlation function from
data taken from many narrow pencil-beams scattered ran-
domly throughout the sky. However, this approach does
not make optimal use of the data ; it is preferable to place
the beams so that the beam-beam separation is comparable
to the beamwidth, thus increasing the number of pairs of
objects with separations on the order of Ther0.MS1512]36 data are from a mosaic of three Ðelds from the
survey, with a total angular size of 27@] 8@ (216 square
arcmin). The width of the sample at z\ 0.37 is D6.8 h~1

Mpc sufficiently large for an investigation of clus-()0 \ 1),
tering on scales Dr0.A second complication with MOS data is that of selection
e†ects. Magnitude selection may bias the sample toward
bright objects, which will lead to erroneous results if bright
objects cluster di†erently from faint objects. More impor-
tantly, MOS produces a lower limit on the separation of
objects for which spectra may be observed. Once one object
is designated to be observed through a slit on a given mask,
the placement of the spectra on the detector precludes
designing another slit closely above or below the Ðrst. This
can result in high density regions being sampled less com-
pletely than low density regions, possibly reducing the
observed correlation. Each of the three Ðelds composing the
MS1512]36 data was observed with 2 di†erent MOS
masks, with a higher priority given in the second mask to
completing observations of closely spaced pairs (see etYee
al. for details). This use of multiple masks somewhat1996
reduces the amount of geometric selection ; the remaining
selection is corrected by weighting the data as described
below.

To correct for the magnitude and geometric selection, a
magnitude weight and local magnitude weight arew

m
wlmcalculated from the data for each object in the sample. For

a given object with apparent magnitude in the bin
(m, m] *m) and observed redshift z, is proportional tow

mthe fraction of objects anywhere in the sample in the same
magnitude bin which have observed redshifts. The local
magnitude weight for an object is proportional to thewlmfraction of objects in a circle with radius 2@ about the Ðrst
object in the same magnitude bin which have observed red-
shifts. Also deÐned for each object is the geometric weight

which is related to the number of nearbyw
xy

\ wlm/w
m
,

objects at any magnitude which have observed redshifts. A
detailed explanation of the weighting procedure is given in

et al. A test of the extent to which these weightsYee (1996).
correct for the sampling nonuniformities is described in °

it is found that the weighting procedure adequately3.1 ;
o†sets the selection e†ects.

Four subsamples of the MS1512]36 catalog are created :
the photometric, redshift, Ðeld, and extended Ðeld samples.
The photometric sample, used for computing the angular
correlation function, consists of the 404 objects with photo-
metry in both the Gunn g- and r-bands, with r-band magni-
tude in the range 17.0 ¹ r ¹ 21.7. The upper magnitude
limit is chosen so that the magnitude weight of every object
in the redshift sample is less than 5 ; the lower limit is
employed since the masks were designed to exclude objects
much brighter than the brightest cluster galaxy, which has
r \ 18.45.

The redshift sample consists of the 183 objects in the
photometric sample which have identiÐed redshifts in the
range 0.21 ¹ z¹ 0.53 ; the median redshift of this sample is
0.37. These limits are chosen so that the spectral features
used to identify emission line objects lie within the optimal
response region of the Ðlter. This sample is shown in Figure

In this analysis we have extended the lower z limit from1.
0.27 in et al. to 0.21. The original higher limit wasYee (1996)
based on the detection of [O II] j3727 at the blue end of the
spectrum. However, the wavelength limits for the Ðlter used
are such that as [O II] j3727 disappears at the blue end, the
[O III] jj4959, 5007 lines come in on the red end. From our
sample, we have found that whenever the [O III] jj4959,
5007 and [O II] j3727 lines are both within the spectral
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FIG. 1.È MS 1512]36 redshift sample. The angular scale has been
expanded by a factor of D80. The objects within the central box are taken
to be potential cluster members ; they not included in the Ðeld sample and
are weighted less than the Ðeld objects in the extended Ðeld sample, as
described in the text.

range, they are always detected simultaneously. Hence we
can safely use the [O III] jj4959, 5007 lines to extend our
lower redshift limit ; no signiÐcant selection bias as a func-
tion of spectral type is seen in the redshift sample et al.(Yee
1996).

The Ðeld sample is constructed from the redshift sample
by removing the 61 objects that have redshifts
0.354¹ z¹ 0.390. These redshift limits correspond to the
limits of the cluster (from et al. enlarged byCarlberg 1996)
z\ 0.01 in both directions ; the Ðeld sample therefore
almost certainly excludes all cluster members. The Ðeld
sample contains 122 objects, with a median redshift of 0.34.

The extended Ðeld sample is the same as the redshift
sample, except that the 61 objects within the enlarged
cluster redshift limits 0.354 ¹ z¹ 0.390 have their local
magnitude weights reduced by a factor of 0.25. This
reduction factor is the ratio of the comoving number
density of objects in the Ðeld sample to the density within
the enlarged cluster redshift limits. This construction there-
fore removes the bias toward high density regions present in
the redshift sample, while making full use of all the redshift
data available.

3. ANALYSIS

3.1. Estimating the Correlation Function
The two-point correlation function m is deÐned by

(Peebles 1980)

dP(r) \ n6 [1 ] m(r)]dV , (3)

where dP(r) is the probability of Ðnding a second object in a
volume dV with a physical separation r from a randomly
chosen object and is the mean density of objects. For an6

Ðnite sample of objects and some (small) Ðxed separation
di†erence *r, m(r) may be estimated from asequation (3)

1 ] m(r)B
DD(r)
N

D
2

V
*V (r)

. (4)

Here, is the number of objects in the sample, DD(r) isN
Dthe number of ordered pairs of objects in the sample with

separation between r and r ] *r, V is the volume of the
sample, and *V (r) is the average volume of the set sur-
rounding a Ðrst object in which a second may be found with
separation between r and r ] *r from the Ðrst.

The volumes *V in are estimated usingequation (4)
Monte Carlo integration. A random data set containing N

Robjects is generated within the volume of the original data
set in a manner such that the random catalog is subject to
the same selection criteria as the data. If the number of pairs
of objects with separation between r and r ] *r, the Ðrst
object belonging to the data set, the second to the random
set, is DR(r), then

1 ] m(r) B
N

R
N

D

DD(r)
DR(r)

(5)

& Peebles(Davis 1983).
The pair counts DD and DR in mayequation (5)

be computed with arbitrary weights, so that DD(r) \
and where the sums are;

i,j w
i
(D)w

j
(D) DR(r) \;

i,j w
i
(D)w

j
(R),

taken over all data-data or data-random pairs of objects
with separation between r and r ] *r, respectively, and w

i
(D)

and are the weights to be applied to ith data andw
i
(R)

random object, respectively. The object counts andN
D

N
Rin are replaced with the weighted object countsequation (5)

and respectively. The corre-D\;
i/1ND w

i
(D) R\;

i/1NR w
i
(R),

lation function is then estimated as

1 ] m(r) B
R
D

DD(r)
DR(r)

. (6)

To correct for the selection e†ects present in this sample, the
weights used for computing the pair and object counts
deÐned above are the local magnitude weights wlm.

The selected random catalog is generated by Ðrst creating
a uniform random catalog, by randomly distributing
objects throughout the sample volume in such a way that
the comoving density of objects is constant. Apparent mag-
nitudes are then assigned to each object in the uniform
random catalog using the process described below, and
those objects lying outside the magnitude limits of the
survey are discarded. Finally, the local magnitude selection
is estimated at the angular position of each object-random
object, and objects failing the selection criteria are dis-
carded. For small data sets, this method is preferable to
smoothing the observed redshift distribution, since the red-
shift distribution is dominated by density inhomogeneities
comparable to the width of the sample, making the random
distribution obtained sensitive to the smoothing window
used.

Absolute magnitudes for the objects in the Ðeld sample
are required to determine the luminosity function, which is
used for generating the absolute magnitudes for the random
objects. The K-corrections are obtained by interpolating
from model K-corrections in the r and g bands as a function
of redshift for nonevolving galaxies of four spectral types
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(E] S0, Sbc, Scd, and Im). The models are derived by con-
volving Ðlter response functions with spectral energy dis-
tributions in Wu, & Weedman TheseColeman, (1980).
values are then corrected from the AB system to the stan-
dard Gunn system & Gunn For each galaxy(Thuan 1976).
with redshift, a spectral classiÐcation is estimated by com-
paring the observed g [ r color with the model colors at the
same redshift. The spectral classiÐcation, obtained via inter-
polation, is treated as a continuous variable between the
four spectral types. From the spectral classiÐcation, the
appropriate K-correction to the r magnitude is then derived
using the models.

The r-band absolute magnitudes for the random catalog
are generated according to the luminosity function for the
data. The luminosity function is modeled as a nonevolving
Schechter function (Schechter 1976),

'(M
r
)\0.4 ln 10/*100.4(1`a)(MrR~Mr) exp [[100.4(MrR~Mr)] ,

(7)

where is the comoving number density of objects'(M
r
)

with absolute magnitude per unit magnitude. TheM
rparameters and a are determined using the maximum-M

r
R

likelihood method of Tammann, & YahilSandage, (1979).
For the Ðeld sample, andM

r
* B[20.5 ] 5 log10 h

a B[1.2, consistent with the values found by et al.Lin
for the entire CNOC Ðeld sample. To test the(1996)

assumption that evolution is unimportant over the redshift
range of interest, the Ðeld sample was split into two further
subsamples ; the foreground sample, consisting of objects
with z\ 0.354, and the background sample, consisting of
objects with z[ 0.390. The luminosity function was then
calculated independently for these two subsamples ; no sig-
niÐcant di†erence was detected. The luminosity function is
then used as the probability distribution for the absolute
magnitudes of the objects in the uniform random catalog.
An rest-frame color is then chosen for each object,(g [ r)0so that the distribution of intrinsic colors in the uniform
random catalog is the same as that in the data catalog. The
r-band absolute magnitude and rest-frame colorM

r
(g [ r)0for each object are then used to compute the K-corrections,

using the method described above.
For each object in the uniform random catalog with

apparent magnitude within the sample limits, magnitude
and geometric weights and are estimated by inter-w

m
w

xypolating from the data weights. The magnitude weight
interpolation is a straightforward one-dimensional inter-
polation. The two-dimensional geometric weight inter-
polation is performed by convolving the spatial map of
geometric weights of each data object with a Gaussian with
a dispersion of 1@. The values of the convolved weights at
the position of the random object are then summed, yield-
ing a weight for that random object. The local magnitude
weight for the random object is then thewlm w

m
] w

xy
;

object is discarded unless is less than a randomly1/wlmchosen number between 0 and 1.

3.2. T he Angular Correlation Function
The methods described in for generating the random° 3.1

catalog and the weights are tested by comparing the
angular correlation functions for the photometric and red-

shift samples. The angular correlation function w is esti-
mated in a manner similar to that given in equation (6) :

1 ] w(h) B
R
D

DD(h)
DR(h)

, (8)

where the pair counts are now taken over pairs with
angular separation h. If the model for m is correct, then(1)

w(h)\ A
w

A h
1A
B~d

(9)

where d \ c[ 1.(Peebles 1980),
The random catalog used for computing w for the red-

shift sample is generated using the procedure described
above, while the catalog for the photometric sample was
generated uniformly ; both catalogs contain 10,000 objects.

shows the results of a power-law Ðt to the angularFigure 2
correlation for the photometric sample, with d Ðxed to 0.7,
and w for the redshift sample. The amplitudes in equation

are found to be for the photometric sample(9) A
w

\ 1.4~0.2`0.3
and for the redshift sample ; the conÐdenceA

w
\ 1.3~0.2`1.2

intervals are the 68% intervals as determined by the boot-
strap resampling method discussed in below. The con-° 3.3
sistency of these amplitudes indicates that the total weights
adequately describe the selection e†ects present in the data.
The photometric sample value of implies w(1@) B 0.08,A

wconsistent with the value found by & PritchetInfante (1995)
for a sample of objects with F¹ 22.

3.3. Estimating the Uncertainties in the Correlation Function
All uncertainties given in this paper are calculated using

the bootstrap resampling technique. Given a data set with
N objects, a large number of resampled data sets areNbscreated by randomly selecting N objects from the original

FIG. 2.ÈAngular correlation function w(h) for the photometric and red-
shift samples. The values of w for the photometric sample are indicated by
dots ; the data for the redshift sample are indicated by crosses. The error
bars are the 68% bootstrap conÐdence intervals. The solid line is given by
the least-squares Ðt to the photometric data, with d in Ðxed to 0.7.eq. (9)
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data set (with replacement). The correlation function m is
then measured for each resampled data set, producing Nbsestimates The uncertainty in the observedm

i
(1 ¹ i ¹Nbs).correlation function for the original data set is thenm0related to the distribution. In earlier work Frenk,m

i
(Ling,

& Barrow et al. for example), the uncer-1986 ; Fisher 1994a,
tainty in the correlation function has been estimated as the
standard deviation p of the resampled correlation function
estimates the 1 p conÐdence interval is thenm

i
; m \ m0^ p.

Here, however, we use the bias-corrected 68% conÐdence
interval m ½ where[mbc(0.16), mbc(0.84)],

mbc(t)\ G~1('M'~1(t) ] 2'~1[G(m0)]N) (10)

& Tibshirani Here, G is the cumulative dis-(Efron 1986).
tribution function (CDF) of the values and ' is the CDFm

ifor the normal distribution. is valid even if theEquation (10)
distribution of the values is not Gaussian, and even if them

imedian of the values di†ers from The bootstrapm
i

m0.method may also be used to estimate the uncertainties in
the Ðt parameters for w(h) and for the projected corre-A

w
r0lation function (discussed in the correlationw

p
(r
p
) ° 3.4) ;

functions for each resampling are Ðtted to the appropriate
model, yielding values for the Ðt parameters, orNbs A

wi
r0i.The resulting CDF is then used, as in toequation (10),

estimate the conÐdence interval for orA
w

r0.There is evidence Jing, & Bo� rner that the(Mo, 1992)
bootstrap method overestimates the uncertainties in the
correlation function. This appears to be the case here ; the
bootstrap uncertainties seem especially large for the pro-
jected correlation function However, the bootstrapw

p
(r
p
).

estimator is almost certainly preferable to the Poisson error
estimator

pm(r)B
S 2

DD(r)
(11)

which is known to be an underestimate of(Peebles 1973),
the true uncertainty for correlated data.

3.4. T he Real Space Correlation Function
Two di†erent correlation functions may be estimated

from redshift data ; the redshift space correlation function
m(s) and the real space function m(r). If the separation of a
pair of objects is computed directly from redshifts, it
includes the line-of-sight components of the objectÏs pecu-
liar velocities relative to the Hubble Ñow. For the range of
separations of interest here, the random internal motions of
bound groups of objects dominate, elongating structures
along the line of sight. This elongation reduces the observed
correlation at small separations, so the power-law model

is expected to be valid only for the real space(eq. [1])
correlation function.

3.4.1. Method

Although it is impossible to measure real space separa-
tions directly using only redshift data, it is possible to esti-
mate the parameters of a model for the real space
correlation function. This is accomplished by decomposing
the redshift space separation of a pair of objects into com-
ponents parallel and perpendicular to the line of sight to the
pair. Since the redshift space distortions act only along the
line of sight, functions only of the perpendicular component
must be independent of these perturbations.

The decomposition is performed assuming the separa-
tions are small, so that the e†ects of curvature may be
neglected. Thus, given two objects with redshifts andz1 z2and angular separation two vectors (i \ 1, 2) areh12, x

iformed, such that

o x
i
o\ 2c

H0

)0 z
i
[ (2 [ )0)(J1 ] )0 z

i
[ 1)

)02(1 ] z
i
)

, (i \ 1, 2)

(12)

("\ 0), and

x1 Æ x2\ o x1 o o x2o cos h12 . (13)

The comoving redshift space separation of the pair is
then and the line of sight to the pair iss B x2[ x1, x6 \

The components of the physical separation12(x1] x2).parallel and perpendicular to the line of sight are then

n \ s Æ x6
(1 ] z6 ) o x6 o

(14)

and

r
p
\
SA o s o

1 ] z6
B2[ n2 , (15)

where The deÐnition of the correlation func-z6 \ 12(z1] z2).tion is then generalized to describe the probability(eq. [3])
in excess of random of Ðnding an object with redshift space
separation n) from a randomly chosen object. This is(r

p
,

estimated as

1 ] m(r
p
, n) B

R
D

DD(r
p
, n)

DR(r
p
, n)

, (16)

where n) and n) are the weighted number ofDD(r
p
, DR(r

p
,

data-data and data-random ordered pairs with separations
n), respectively, and D and R are the weighted object(r

p
,

counts deÐned in ° 3.1.
Although n) is a†ected by the redshift space distor-m(r

p
,

tions described earlier, the projected correlation function
deÐned byw

p
(r
p
),

w
p
(r
p
)\
P
~=

= m(r
p
, n)dn , (17)

is not. Thus,

w
p
(r
p
) \
P
~=

= m(Jr
p
2] x2)dx , (18)

where the integral is over the real space correlation func-
tion. If the power-law model is employed, then(eq. [1])

w
p
(r
p
) \ Jn

!(d/2)
![(1 ] d)/2]

r0
Ar

p
r0

B~d
(19)

& Peebles The integral in must(Davis 1983). equation (17)
be truncated at some for any real data set. The quantitynmaxwhere2nn6 J

p
(r
p
, n),

J
p
(r
p
, n) \

P
~n

n P
0

rpm(r
p
@ , n@)r

p
@ dr

p
@ dn (20)

represents the mean number of objects in excess of random
within the cylinder with radius and length 2n centered onr

p
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an object in the sample ; this may be estimated as

2nn6 J
p
(r
p
, n) B ;

rp{:rp~n:n{:n

C
DD(r

p
@ , n@) [

AD
R
B
DR(r

p
@ , n@)

D
.

(21)

This function is expected to increase with n for small n,
approaching some limiting value at large n. showsFigure 3

(1 h~1 Mpc, n) versus n for the extended Ðeld sample.2nn6 J
pAs can be seen, cuto†s less than D3 h~1 Mpc exclude real

power in n), while noise appears to be the primarym(r
p
,

contributor to the integral for h~1equation (20) n Z 50
Mpc. We adopt 15 h~1 Mpc as the cuto† to be used in

no signiÐcant change in the derived corre-equation (17) ;
lation length is observed when the cuto† is varied between 5
and 35 h~1 Mpc.

3.4.2. Results

The projected correlation function is calculated forw
p
(r
p
)

the extended Ðeld sample using equations and with(16) (17),
the integral truncated at 15 h~1 Mpc. The random catalog
is generated using the method described in the catalog° 3.1 ;
contains 200,000 objects with redshifts.

The results are shown in is determined forFigure 4 ; r0and 0.2 by Ðtting the model to the data)0\ 1 equation (19)
with d Ðxed to 0.7. The correlation length for the extended
Ðeld sample is found to be r0\ 1.9~0.4`0.4 h~1 Mpc ()0\ 1)
or considerably smallerr0\ 2.2~0.4`0.5 h~1 Mpc ()0\ 0.2),
than the values found locally. As noted in the error° 3.1,
bars seem particularily large for the least-squares Ðtsw

p
(r
p
) ;

give s2\ 0.13 and s2\ 0.16 indicating()0\ 1) ()0\ 0.2),
that the bootstrap method probably overestimates the
uncertainties for this quantity.

As a test of the weighting procedure used to create the
extended Ðeld sample from the redshift sample, wasw

p
(r
p
)

also calculated for the Ðeld sample. For the Ðeld sample,
or Mpcr0\ 1.8~0.3`0.6 h~1 Mpc ()0\ 1), r0\ 2.1~0.4`0.7 h~1

The consistency of the correlation lengths for the()0\ 0.2).
Ðeld and extended Ðeld samples indicates that the weighting

FIG. 3.ÈCounts in excess of random within a cylinder of radius 1 h~1
Mpc and length 2n, h~1 Mpc, n), for the extended Ðeld sample, for2nn6 J

p
(1

and 0.2. The error bars are the 68% bootstrap conÐdence intervals.)0\ 1

FIG. 4.ÈProjected correlation function for the extended Ðeldw
p
(r
p
)

sample, for and 0.2. The error bars are the 68% bootstrap con-)0\ 1
Ðdence intervals. The solid line in each panel is from the least-squares Ðt of

to the data with d Ðxed to 0.7.eq. (19)

procedure used for including the cluster galaxies in the
extended Ðeld sample produces a reasonable estimate of the
average value of The presence of the cluster in the red-r0.shift sample causes the correlation length for that sample to
be much larger than that for either the Ðeld or extended
Ðeld samples ; for the redshift sample, Mpcr0\ 4.0~0.6`0.7 h~1

or()0\ 1), r0\ 4.2~0.6`0.7 h~1 Mpc ()0\ 0.2).
If it is assumed that the population in our sample at

zD 0.37 will evolve to the population observed at z\ 0 in
optical surveys, may be used, withequation (2) r0(z\ 0)
equal to the value observed in the local sample, to estimate
e. Applying with h~1 Mpc at z\ 0.37equation (2), r0\ 1.9
and h~1 Mpc at z\ 0 yields e B 2.2 usingr0 \ 5.1 ()0\ 1) ;

h~1 Mpc at z\ 0 gives e B 1.5 Thus,r0\ 2.2 ()0\ 0.2).
the correlation is found to be evolving rapidly in physical
coordinates.

An alternate explanation for the evolution observed in
the correlation function is that some of the objects in our
sample are weakly clustered and become intrinsically faint
at the present epoch et al. If the faint(Efstathiou 1991).
population is completely unclustered (m \ 0), and the corre-
lation function of the presently bright objects does not
evolve in physical coordinates, then equations and(2) (3)
imply that the correlation functions observed at z\ 0 and
at a higher redshift are related by

m(r, z) \ f (z)2m(r, 0)(1] z)~3 , (22)

where f (z) is the fraction of objects visible at redshift z which
are also visible at z\ 0. For this extreme limiting case of
m \ 0 for the now faint population, our data require that
f D 0.8. While a realistically clustered faint population
would require that f be lower, we cannot rule out evolution
in the galaxy population as the source of the reduction in r0at intermediate redshifts.

3.5. T he Redshift Space Correlation Function
As noted in the redshift space correlation function is° 3.4,

not expected to be a power law because of random peculiar
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FIG. 5.ÈRedshift space correlation function m(s) for the extended Ðeld
sample, for and 0.2. The error bars are the 68% bootstrap con-)0\ 1
Ðdence intervals. The dashed line in each panel is the power law in eq. (1)
with c\ 1.7 and taken from the Ðt to the corresponding projectedr0correlation function data. The solid curve in each panel is given by eq. (27),
with p \ 720 km s~1 and 360 km s~1 The dotted()0\ 1) ()0\ 0.2).
curve is obtained using a Gaussian with p \ 140 km s~1 in place of the
exponential in the velocity distribution model eq. (28).

velocities. However, measurements of m(s) can be used, in
conjunction with a model for the real space correlation
function, to provide information about the velocity dis-
tribution of objects in the sample. This, in turn, yields infor-
mation on the mean matter density.

3.5.1. Method

The real space correlation function m(r) is related to
n) bym(r

p
,

1 ] m(r
p
, n) \

P
g(r, ¿)[1] m(r)]d3v (23)

where g(r, is the distribution of relative(Peebles 1980), ¿)
peculiar pairwise velocities of pairs with separation r, and

where is the component ofr2\ r
p
2] [n [ v

z
/H(z)]2, v

z
¿

along the line of sight. To obtain a relation between the
redshift space correlation function m(s) and the real space
correlation function m(r), is integrated over aequation (23)
sphere of radius s ;

4n
P
~s

s m(s@)s@2ds@\ 2n
PP

~s

s P
0

(s2~n2)1@2m(r)g(r, ¿)r
r
dr

p
dnd3v ,

(24)

using the identity 2n /~s
s /0(s

2~n2)1@2 m(r
p
, n)r

p
dr

p
dn \

4n /0s m(s@)s@2ds@.
We employ here a simpliÐed model for the pairwise pecu-

liar velocity distribution in which g is independent of the
separation r. Two dimensions of the velocity integral in

may therefore be performed immediately ; weequation (24)
deÐne the line-of-sight peculiar pairwise velocity distribu-
tion thenf (v

z
) \ /~== /~== g(v

x
, v

y
, v

z
)dv

x
dv

y
. Equation (24)

reduces to

4n
P
0

sm(s@)s@2ds@\ 2n
P
~=

= P
~s

s P (s2~n2)1@2m(r) f (v
z
)r
p
dr

p
dn dv

z
,

(25)

where the integral on the left is over the redshift space corre-
lation function, while the integral on the right is over the
real space correlation function. Di†erentiating equation (25)
with respect to s gives the general relationship between the
redshift space and real space correlation functions, under
the assumption that g is independent of r,

m(s) \ 12s~1
P
~=

= P
~s

s m(Js2[ 2[v
z
/H(z)]n ] [v

z
/H(z)]2)

] f (v
z
)dn dv

z
. (26)

The argument to the real space correlation function in
is just the physical separation r, evaluatedequation (26)

with If m(r) is modeled as a power lawr
p
\ (s2 [ n2)1@2.

then the integral over n in mayequation (1), equation (26)
be performed analytically, Ðnally yielding

m(s) \ 1
2(2 [ c)

H(z)r0c s~1

]
P
~=

= C K
s ] v

z
H(z)

K2~c [
K
s [ v

z
H(z)

K2~cD
f (v

z
)
dv

z
v
z

.

(27)

The simpliÐed model for the velocity distribution used
here takes f to be an exponential with zero mean and disper-
sion independent of separation,

f (v
z
) \
S 1

2p2 exp
A
[J2

K v
z
p
K B (28)

& Peebles Here, p2 is the projected pairwise(Davis 1983).
peculiar velocity dispersion ; the three-dimensional mean-
square pairwise peculiar velocity Sv2T \ 3p2 since the mean
pairwise peculiar velocity is taken to be zero.

Given a value for the cosmological density parameter )0,p may be estimated using the cosmic virial theorem,

p2(r, z) \ 3H(z)2)(z)QJr0(z)cr2~c
4b(c[ 1)(2[ c)(4[ c)

(29)

et al. where Q relates the two-(Peebles 1980 ; Fisher 1994b),
and three-point correlation functions, b is the linear bias
factor, and J depends only on c [J(c\ 1.7)\ 4.14]. For c
close to 2, p is almost independent of separation, consistent
with depends on the relationequation (28). Equation (29)
between the distributions of galaxies and matter through
the (unknown) bias factor, and thus is of limited use as a
probe of the true value of Note that according to this)0.model, p evolves as (1] z)~e@2 (holding c and Q constant).

3.5.2. Results

The redshift space correlation function is calculated for
the extended Ðeld sample using the redshift space analog of
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equation (6)

1 ] m(s) B
R
D

DD(s)
DR(s)

, (30)

where DD(s) and DR(s) are the number of data-data and
data-random pairs with redshift space separations between
s and s ] *s, respectively. The random catalog used here is
the same as that used for computing the real space corre-
lation function. shows m(s) for the extended ÐeldFigure 5
sample, along with the predictions from usingequation (27),

h~1 Mpc, c\ 1.7, and p \ 720 km s~1 forr0\ 1.9 )0\ 1
and h~1 Mpc, c\ 1.7, and p \ 360 km s~1 forr0\ 2.2

These values of p are computed using)0\ 0.2. equation
with Q\ b \ 1. Also shown are the curves given by(29)

using a Gaussian pairwise peculiar velocityequation (27)
distribution with p \ 140 km s~1 ; this value corresponds to
the mean velocity uncertainty in the sample of D100 km
s~1.

As can be seen, the p \ 720 km s~1, model over-)0\ 1
estimates the redshift space perturbations. A least-squares
Ðt of to the data, using equations andequation (27) (28) (29),
with b \ 1, and c\ 1.7 yields)0\ 1, r0\ 2.9~0.4`0.6 h~1
Mpc, only marginally consistent with the value derived
from the projected correlation function data, r0\

h~1 Mpc. The p \ 360 km s~1, model1.9~0.4`0.4 )0\ 0.2
matches the observed m(s) more closely, consistent with the
low favored by & Peebles and et al.)0 Davis (1983) Fisher

However, the observed m(s) is consistent with a(1994b).
model with zero pairwise peculiar velocity dispersion and
redshift space distortions due solely to velocity measure-
ment errors ; more data are therefore needed for a precise
determination of p. We conclude that the data are best
modeled by a low-density parameter ; taking )0\ 0.2, r0\

h~1 Mpc and p \ 360 km s~1 yields models which2.2~0.4`0.5
are consistent with both the observed and m(s).w

p
(r
p
)

4. CONCLUSIONS

We have found that the physical correlation length for
0.21¹ z¹ 0.53 is if implyingr0\ 1.9~0.4`0.4 h~1 Mpc )0\ 1,
e B 2.2 if h~1 Mpc locally. Ifr0\ 5.1 )0\ 0.2, r0\ 2.2~0.4`0.5
h~1 Mpc and e B 1.5. The uncertainties are estimated using

the bias-corrected bootstrap resampling method, with 300
resamplings. These results are consistent with earlier results
obtained from angular surveys, which indicate rapid evolu-
tion et al. & Pritchet It is(Efstathiou 1991 ; Infante 1995).
also consistent with the results from the CFRS Fèvre et(Le
al. This decrease in from its present value may be1996). r0interpreted either as a real change in the clustering of the
observed galaxies or as caused by a weakly clustered popu-
lation which composes a substantial fraction of the objects
seen at zD 0.37, but which is intrinsically faint at the
present epoch.

The projected pairwise peculiar velocity dispersion at
z\ 0.37, p \ 720 km s~1, predicted by the cosmic virial
theorem using is somewhat inconsistent with the)0\ 1
observed redshift space correlation function ; is)0\ 1
therefore weakly rejected. The prediction, p \ 360)0\ 0.2
km s~1, however, matches the data more closely. Thus, the
relatively small redshift space distortions present favor low

as determined from the cosmic virial theorem, consistent)0with the results of & Peebles and et al.Davis (1983) Fisher
(1994b).

More data are required to obtain a precise value for p
and more reliable error estimates. A larger sample would
also enable computations of the correlation function for
subsamples based on galaxy color or intrinsic brightness,
which would help distinguish between the two possible
sources of observed evolution described in The° 3.4.
CNOC2 redshift survey, presently in progress, will yield
D5000 high-accuracy redshifts in the range 0.15¹ z¹ 0.7.
This survey will contain enough objects, and sample suffi-
ciently large scales, to permit accurate computations of the
redshift space and real space correlation functions and their
evolution at intermediate redshifts.

We thank all participants of the CNOC cluster survey for
assistance in obtaining and reducing these data. The Cana-
dian Time Assignment Committee for the CFHT gener-
ously allocated substantial grants of observing time, and the
CFHT organization provided the technical support which
made these observations feasible. We gratefully acknow-
ledge Ðnancial support from NSERC and NRC of Canada.
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