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ABSTRACT
We present a comprehensive analysis of the morphology and dynamics of relativistic pressure-matched

axisymmetric jets. The numerical simulations have been carried out with a high-resolution shock-
capturing hydrocode based on an approximate relativistic Riemann solver derived from the spectral
decomposition of the Jacobian matrices of relativistic hydrodynamics. We discuss the dependence of the
jet morphology on several parameters, paying special attention to the relativistic e†ects caused by high
Lorentz factors and large internal energies of the beam Ñow. The parameter space of our analysis is
spanned by the ratio of the beam and ambient medium rest mass density (g), the beam Mach number

the beam Lorentz factor and the adiabatic index (c) of the equation of state (assuming an(M
b
), (W

b
),

ideal gas). Both the ultrarelativistic regime and the hypersonic regime (relativistic Mach(W
b
º 20)

number greater than 100) have been studied.
Our results show that the enhancement of the e†ective inertial mass of the beam due to relativistic

e†ects (through the speciÐc enthalpy and the Lorentz factor) makes relativistic jets signiÐcantly more
stable than Newtonian jets. We Ðnd that relativistic jets propagate very efficiently through the ambient
medium, at speeds that agree very well with those obtained from an estimate based on a one-
dimensional momentum balance. The propagation efficiency of a relativistic jet is an increasing function
of the beam Ñow velocity.

Relativistic jets seem to give rise to two di†erent morphologies, according to the relevance of rela-
tivistic e†ects. Hot beams (i.e., with internal energies comparable to the beam rest-mass energy) show
little internal structure (as they are almost in pressure equilibrium with their surroundings) and relatively
smooth cocoons forming lobes near the head of the jet. Highly supersonic models, in which the kine-
matic relativistic e†ects due to high beam Ñow Lorentz factors dominate, display extended cocoons that
are overpressured with respect to the environment. The cocoon thickness decreases, and its mean pres-
sure increases with increasing beam Lorentz factor.
Subject headings : galaxies : jets È hydrodynamics È methods : numerical È relativity

1. INTRODUCTION

The presence of continuous channels (jets) emanating
from galactic nuclei and feeding the radio lobes in powerful
double radio sources was postulated by several authors in
the early seventies (e.g., & ReesBlandford 1974 ; Scheuer

With the advent of the Cambridge 5 km telescope1974).
and the Very Large Array (VLA), kiloparsec-scale jets were
discovered to be associated with more than 100 double
radio sources & Perley At this scale, the mor-(Bridle 1984).
phology of the observed jets varies from weak sources (i.e.,
Fanaro†-Riley class I sources ; & Riley toFanaro† 1974)
powerful sources (Fanaro†-Riley class II radio galaxies and
lobe-dominated radio-loud quasars). The most remarkable
di†erence is that FR I sources tend to have prominent,
smooth, continuous, two-sided jets running into the lobe
structures, whereas powerful sources have usually one-sided
(with a jet/counterjet Ñux density ratio greater than 4 :1),

1 Present address : Departamento de Astronom•� a y Astrof•� sica, Uni-
versidad de Valencia, E-46100 Burjassot, Valencia, Spain.

2 Present address : Max-Planck-Institut fu� r Gravitationsphysik,
Schlaatzweg 1, D-14473 Potsdam, Germany.

knotty jets with bright outer hot spots (see, e.g., &Muxlow
Garrington In core-dominated sources, where the1991).
luminous core is usually associated with a bright one-sided
radio jet, very long baseline interferometric imaging has
revealed a continuity between small- and large-scale struc-
tures, with inner parsec-scale one-sided jets proceeding to
outer kiloparsec-scale jets. Features in these jets are
observed to be moving away from the core at superluminal
speeds in more than 40 sources (see, e.g., et al.Ghisellini

to distances beyond 100 pc (as, e.g., in the quasar 3C1993)
273 ; Unwin, & MuxlowDavis, 1991).

Within the nowadays accepted model &(Blandford
Ko� nigl the superluminal motions and the jet asym-1979),
metries in compact sources are explained by assuming that
one of the twin jets propagates with relativistic speed at a
small angle to the line of sight toward the observer. In that
case Doppler beaming of the emission in the direction of
motion can account for the observed asymmetry in the
luminosity of the jets. In addition, because of a purely kine-
matic relativistic e†ect, any feature moving with highly rela-
tivistic speed along the jet toward a distant observer
appears to have a superluminal propagation velocity.
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Present observations of superluminal motion interpreted
according to the beaming hypothesis lead to the conclusion
that compact radio jets have bulk Ñows with Lorentz
factors as large as 10.

Additional, independent indications of highly relativistic
speeds can be derived from the intraday radio variability
occurring in more than a quarter of all compact extra-
galactic radio sources Quirrenbach, & Witzel(Krichbaum,

According to Rees, & Sikora if the1992). Begelman, (1994),
observed intraday radio variability is intrinsic and results
from incoherent synchrotron radiation, the associated jets
must have bulk Lorentz factors in the range D30È100.

Whether the relativistic Ñows inferred from radio jets at
parsec scales extend to kiloparsec distances is still an
unsolved question. The common belief is, however, that the
most powerful sources (i.e., FR II radio galaxies and
quasars), in which jet asymmetries are important, exhibit at
least mildly relativistic Ñows on large scales. In fact, bulk
Ñow velocities on the order of 0.7c have been found for
several sources (1928]738, et al. 3C 179,Hummel 1992 ;

1055]201, 1830]285, 2209]080,Akujor 1992 ;
et al. In the case of FR I sources, directHooimeyer 1992).

measurements of the proper motion of knots in the M87 jet
performed with the VLA & Owen(Biretta 1990 ; Biretta,
Zhou, & Owen have proved the existence of apparent1995)
superluminal motions out to a distance of D1 kpc. Accord-
ing to these authors, the measurements are compatible with
a kinematic model for the jet in M87 consisting of an inner
jet (from the nucleus to knot A, located at B1 kpc) contain-
ing a high Mach number Ñow with a Lorentz factor º3 and
a slower outer jet (Lorentz factor ¹2) beyond knot A. Such
a relativistic inner jet could be responsible for the one-
sidedness of the jet base seen in many FR I sources (see

& Garrington Finally, a decelerating rela-Muxlow 1991).
tivistic jet model applied to the archetypical(Laing 1996)
FR I source 3C 31 leads to an almost constant beam decel-
eration from 0.8c at distances less than 2 kpc from the
nucleus, to 0.1c at larger distances (B7 kpc).

Although the collisional mean free path is very large in
the jet plasma, a hydrodynamic description of the jet Ñow is
justiÐed because of the presence of microgauss magnetic
Ðelds, which provide the collisional coupling of the plasma.
In extragalactic jets, the Larmor radii and Debye lengths of
positrons (or protons) and electrons are several orders of
magnitude smaller than the jet widths Bland-(Begelman,
ford, & Rees For this reason, hydrodynamic simula-1984).
tions have become an important tool in our understanding
of the morphology and dynamics of extragalactic jets since

et al. veriÐed the jet model of &Norman (1982) Blandford
Rees in their pioneering investigation. Meanwhile,(1974)
hydrodynamic simulations have provided us with an under-
standing of structures observed in many VLA images of
radio jets, and magnetohydrodynamic simulations have
shown the importance of toroidal magnetic Ðelds for the
conÐnement of jets Norman, & Burns et(Clarke, 1989 ; Lind
al. Mu� ller, & Hillebrandt The conÐne-1989 ; Ko� ssl, 1990).
ment properties of overpressured cocoons in hypersonic jets
(see & Cioffi have been numerically investi-Begelman 1989)
gated by et al. Three-dimensional simulationsLoken (1992).

& Norman have been used to test models for(Balsara 1992)
narrow-angleÈtail sources, whose complex morphologies
are the result of the interaction of a supersonic jet with a
cross wind Rees, & Blandford(Begelman, 1979). Norman,
Burns, & Sulkanen and et al. studied(1988) Loken (1995)

the morphologies of radio sources with wide-angle tails by
means of two-dimensional (planar) and three-dimensional
jet simulations. According to their models, the expansion
and subsequent disruption of jets in wide-angleÈtail sources
results from the sudden change in the ambient pressure
(probably due to a shock) occurring in the outer halo (i.e.,
for distances in the range 10È50 kpc) of a galaxy. Three-
dimensional simulations Gull, & Scheuer were(Cox, 1991)
also required to explore whether multiple hot spots can be
produced by sideways motions of the jet (Scheuer 1982).

In the case of relativistic jets, numerical difficulties arising
in the integration of the relativistic hydrodynamic equa-
tions have traditionally restricted the research to the sta-
tionary regime & Marscher(Wilson 1987 ; Daly 1988 ;

& Pantano Only very recentlyDubal 1993 ; Bowman 1994).
have the Ðrst time-dependent simulations of relativistic jets
been performed Putten Mu� ller, & Iba� n8 ez(van 1993 ; Mart•� ,

& Mellema & Hughes1994 ; Eulderink 1994 ; Duncan 1994 ;
et al. & Mellema proved theMart•� 1995). Eulderink (1994)

collimation of relativistic spherical outÑows by thickened
disks, but they did not discuss the morphological properties
of the emerging jets. The remaining work dealt with initially
well-collimated beams, but the parameter space covered by
these simulations was very small. Putten per-Van (1993)
formed a relativistic jet simulation with beam Lorentz
factor 3.25 in slab symmetry. However, the jet propagation
was followed only for a distance of 6È7 initial beam radii.
Hence he was only able to verify the formation of a Mach
disk at the end of the relativistic beam. et al.Mart•� (1994)
and & Hughes have performed longer simu-Duncan (1994)
lations in planar and cylindrical symmetry, which were
restricted to low beam Mach number models. Both groups
derived similar conclusions concerning the morphology of
these relativistic models (e.g., lack of beam internal struc-
ture, steady propagation ; see below). Finally, the morphol-
ogy and dynamics of an extremely relativistic (Ñow Lorentz
factor 22) highly supersonic jet has only recently been con-
sidered by et al.Mart•� (1995).

This work represents the Ðrst attempt to study the mor-
phology and dynamical properties of relativistic jets for a
wide range of initial parameters, paying special attention to
relativistic e†ects that result from bulk Ñow velocities in the
beam close to the speed of light and from relativistic inter-
nal beam energies.

The paper is organized as follows : In we summarize,° 2,
for comparison, the main results concerning the morphol-
ogy and dynamics of classical jets. The relativistic simula-
tions are presented in which forms the body of the paper° 3,
and also contains some theoretical considerations concern-
ing the morphology and propagation properties of rela-
tivistic jets. The equations of relativistic hydrodynamics (in
conservation form) in cylindrical symmetry, a brief descrip-
tion of the numerical method used to integrate the dynami-
cal equations, and a discussion of the parameter space
covered by the simulations appear also in The main° 3.
conclusions of our study are given in The algorithm° 4.
used in the calculation of the numerical Ñuxes is described
in Finally, contains a set of one-Appendix A. Appendix B
and two-dimensional test problems that our hydrodynamic
code has successfully passed.

2. MORPHOLOGY AND DYNAMICS OF CLASSICAL JETS

In a series of papers (e.g., et al.Norman 1982 ; Norman,
Winkler, & Smarr Smarr, & Winkler1983 ; Norman, 1985 ;
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Winkler, & Smarr Norman and collabo-Norman, 1984),
rators presented a comprehensive study of the morphology
and dynamics of pressure-matched classical jets propagat-
ing into a homogeneous medium, which was based on an
extensive set of two-dimensional hydrodynamic simula-
tions. Initial jet models were constructed by varying two
parameters : the beam Mach number, and the densityM

b
,

ratio of the incoming beam gas to the ambientg 4o
b
/o

mmedium. Note that the third parameter, which then (for a
given adiabatic index) completely speciÐes the Ñow, was
Ðxed by assuming a pressure-matched jet, i.e., K 4 p

b
/p

m
\

1, where and are the pressure of the beam gas and ofp
b

p
mthe ambient medium, respectively. The models were scaled

setting where is the sound speed ino
m

\ c
s,m \ R

b
\ 1, c

s,mthe ambient medium. With this choice of scaling, the
density, the sound speed, and the Mach number of the beam
Ñow are dimensionless. The study covered one decade in M

b(from 1.5 to 12) and three decades in g (from 0.01 to 10 ; see,
e.g., Fig. 1 of et al.Norman 1983).

A detailed picture of the morphology of supersonic jets
was derived from the study. Supersonic jets are mainly com-
posed of a supersonic beam that ends in a Mach shock, a
cocoon made of shocked beam gas, a working surface

& Rees that separates beam and shocked(Blandford 1974)
ambient gas, and a bow shock. The propagation speed of
the working surface deÐnes the velocity of the jet itself.3
According to these studies, for sufficiently light (g ¹ 0.1),
high Mach number jets, the high pressure of the shocked
gas drives a backÑow toward the source, which gives rise to
an extended cocoon. The prominence of the cocoon dimin-
ishes when going from di†use to dense jets (g º 1 ; see
below). Holding the beam density Ðxed and reducing the
beam Mach number makes the extensive cocoons turn into
lobes of matter localized near the head of the jet.

The propagation velocity of the jet through the external
medium can be estimated by equating the momentum Ñux
of the beam gas and the external medium in the frame of the
working surface. For pressure-matched jets, the Newtonian
jet velocity, is then given byV

j
N,

V
j
N \

Jg
1 ] Jg

v
b

(1)

(see, e.g., et al. where is the Ñuid velocityNorman 1983), v
bwithin the beam. According to this formula, di†use jets (i.e.,

g being small) would propagate at a small fraction of the
beam Ñow velocity and only very dense jets will have propa-
gation speeds close to the beam velocity. Note that equation

has been obtained on the basis of a head-on momentum(1)
transfer between beam and ambient gas only, disregarding
any multidimensional e†ects such as, e.g., the sideways
expansion of the head of the jet. Hence the estimate has to
be considered as an upper bound of the actual jet propaga-
tion velocity. In the large sample of models studied by

et al. dense jets are seen to propagate mostNorman (1983),
efficiently, their speed, however, never exceeding 80% of the
one-dimensional estimate, whereas low Mach number
di†use jets appear to be less efficient (B40% of the one-
dimensional estimate). Moreover, highly supersonic, di†use
jets su†er from a secular deceleration due to internal shocks

3 In this paper, the velocity of the jet refers always to the advance speed
of the jet through the ambient medium and should not be confused with
the actual velocity of the material in the beam, which we refer to as the
beam Ñow velocity.

present in these models. Their nonsteady propagation leads
to the growth of vortices at the working surface due to
Rayleigh-Taylor instabilities. Only hypersonic (M

b
º 30),

dense enough (g º 0.03) models, as considered by
Bodo, & Ferrari seem to have propaga-Massaglia, (1996),

tion efficiencies greater than 1.0.
The mass Ñux across the terminal shock (which, inte-

grated over time, yields to a good approximation the mass
within the cocoon) is proportional to the beam Ñuid veloc-
ity relative to the Mach shock. Taking into account that the
Mach shock propagates almost at the advance speed of the
jet, allows one to determine the relative promi-equation (1)
nence of the cocoon in classical jet models. Di†use jets pro-
pagating at a small fraction of the beam Ñow velocity create
a pileup of shocked beam material, which feeds a thick
cocoon. Dense jets, on the contrary, have a small mass Ñux
into the cocoon, leading to morphologies in which the
beams are the most prominent element (““ naked beams ÏÏ).
These simple considerations are conÐrmed by the numerical
simulations (Norman et al. 1982, 1983).

According to the simulations, the beams show internal
structure (Norman et al. see also et al.1985, 1984 ; Bodo

In di†use, high beam Mach number models, the per-1994).
turbations arising in the cocoon by Kelvin-Helmholtz insta-
bilities of the cocoon/ambient gas boundary, or by the Ñow
within the cocoon itself, produce a chaotic distribution of
internal shocks. Periodic internal shocks can be produced
by a pressure mismatch between beam and cocoon in
stationary underpressured jets (see, e.g., & FalleWilson

and references cited therein). The main cause for the1985
internal beam structure of models with naked beams are
nonlinear pinching modes (i.e., axisymmetric) of the Kelvin-
Helmholtz instability. Among those, models with a suffi-
ciently small beam Mach number (M

b
\ 2g0.3 ; Cohn 1983)

are dominated by the fundamental mode, which is disrup-
tive, while for models with the dominant reÑec-M

b
[ 2g0.3,

ting mode saturates at Ðnite amplitude, leading to the
formation of a nearly periodic structure of biconical inter-
nal shock waves.

3. MORPHOLOGY AND DYNAMICS OF RELATIVISTIC JETS

The most obvious di†erence between classical and rela-
tivistic dynamics is the presence of a maximum velocity, i.e.,
the speed of light in vacuum, c, in the latter case. This
implies that relativistic Ñows can no longer be scaled in
space and time separately, but instead both scales are
related by the speed of light. Hence, beyond K, g, and c,M

b
,

an additional, Ðfth parameter is required to completely
specify a relativistic jet propagating into a homogeneous
medium. We chose the beam Ñow velocity, measured inv

b
,

units of c, to be this Ðfth Ñow parameter.
Similar to the classical case, an estimate of the jet velocity

can be obtained by equating the momentum Ñux of the
beam and the ambient gas in the frame of the working
surface (see Because both large speciÐc internaleq. [1]).
energies (compared to c2) and relativistic velocities are
encountered, the physical principle established above reads

o
b
h
b
W

b
@2v

b
@2 \ o

m
h
m

W
m
@2v

m
@2 (2)

for a beam in pressure equilibrium with the ambient
medium, h and W being respectively the speciÐc enthalpy
and the Ñow Lorentz factor (see below). The subscripts m
and b stand for ambient and beam, respectively. The primes
indicate that the corresponding velocities are measured in
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the reference frame of the working surface. The (relativistic)
velocity of the jet in the rest frame of the ambient medium,

can be introduced in by taking intoV
j
R \ [v

m
@ , equation (2)

account that the following relation between primed and
unprimed velocities holds :

W
b
@ v

b
@ \ W

j
W

b
(v

b
[ V

j
R) . (3)

Then one has

o
b
h
b
W

b
2(v

b
[ V

j
R)2\ o

m
h
m
(V

j
R)2 , (4)

which, after some rearrangement, yields

V
j
R \ Jg

R
*

1 ] Jg
R
*

v
b

, (5)

where is deÐned asg
R
*

g
R
* \ g

R
W

b
2 (6)

and is given byg
R

g
R

\ o
b
h
b

o
m

h
m

. (7)

Note that, for Ñuids with nonrelativistic internal energies,
tends toward g and, for those having both nonrelativisticg

Rinternal energies and nonrelativistic velocities, tendsg
R
*

toward g.
The Ðrst interesting result is that producesequation (5)

systematically larger propagation velocities than its clas-
sical counterpart for the same initial beam data (see ° 3.6).
Applying the same reasoning as in this implies a° 2,
reduction of the relevance of cocoons in relativistic models.
Moreover, in the classical case, only dense (i.e., g ? 1) jet
models have propagation speed estimates close to the beam
Ñow velocity. In the relativistic case, on the contrary, the
condition is fulÐlled whenever i.e., forV

j
R B v

b
(g

R
*)1@2? 1,

ultrarelativistic beam models, extremely hot jets, or both.
This result is easily understood, because in relativistic
dynamics both the internal energy and the Lorentz factor
contribute to the increase of the inertial mass density.

An estimate of the total mass within the cocoon is given
by the time integral of the mass Ñux across the terminal
Mach shock. For a cylindrical Ñow of cross section andnR

b
2

for a constant beam Ñow given by the initial conditions, g,
this estimate isv

b
,

mcocoon \ nR
b
2 o

b
v
b
@ W

b
@ T @ , (8)

where T @ is the total time measured in the reference frame of
the Mach shock. In terms of quantities measured in the rest
frame of the ambient medium, the previous equation reads

mcocoon \ nR
b
2 o

b
W

b
(v

b
[ VM)T , (9)

where is the velocity of the Mach shock measured in theVMrest frame of the ambient medium.
If a comparison is to be made between di†erent models at

some epoch, say, when the jet has propagated along a dis-
tance L , then for each model the appropriate evolutionary
time to be considered is Under these conditionsT \ L /V

j
R.

the total mass within the cocoon scales as

mcocoon P gW
b
(v

b
[ VM)/V

j
R . (10)

Taking into account that and substituting the pro-VMB V
j
R

pagation speed of the jet by the estimate of anequation (5),
extremely simple expression for the cocoon mass in terms of

initial beam parameters can be derived :

mcocoonP g/Jg
R

. (11)

Consistent with this expression is the result that hotter jets
will have increasingly less prominent cocoons.(g

R
? g)

Moreover, the independence of the cocoon mass from the
beam Ñow velocity, taken together with the larger densities
of the shocked beam gas for increasing beam Lorentz
factors, explains the thinner cocoons of faster jets.

In the following, we present the morphological and
dynamical characteristics of relativistic jets derived from
our numerical simulations. As we shall see, our results are
consistent with the theoretical considerations discussed
above.

3.1. Hydrodynamic Equations, Numerical Techniques, and
Initial Setup

We have solved the equations of special relativistic
hydrodynamics (units are chosen such that the speed of
light c4 1) for the conserved relativistic densities of rest
mass, D, momentum, S, and energy, q,

D\ oW , (12)

S \ ohW 2¿ , (13)

q\ ohW 2[ p [ D . (14)

In the above equations, o, p, and are the proper rest-mass¿
density, pressure, and coordinate Ñow velocity, respectively.
The Ñow Lorentz factor, W , and the speciÐc enthalpy, h, are
given by

W \ 1

J1 [ ¿ Æ ¿
, (15)

h \ 1 ] v] (p/o) , (16)

where v is the speciÐc internal energy.
The Ñow is supposed to be axisymmetric, and hence

we use two-dimensional cylindrical coordinates (r, z).
Expressed in this coordinate system and neglecting viscosity
and thermal conduction, the relativistic hydrodynamic
equations are

LD
Lt

] 1
r

LrDvr
Lr

] LDvz
Lz

\ 0 , (17)

LSr

Lt
] 1

r
Lr(Srvr ] p)

Lr
] LSrvz

Lz
\ p

r
, (18)

LSz

Lt
] 1

r
LrSzvr

Lr
] L(Szvz ] p)

Lz
\ 0 , (19)

Lq
Lt

] 1
r

Lr(Sr [ Dvr)
Lr

] L(Sz [ Dvz)
Lz

\ 0 (20)

or, in vector notation,

LU
Lt

] 1
r

LrF r

Lr
] LF z

Lz
\ S , (21)

with the vector of unknowns

U \ (D, Sr, Sz, q)T , (22)

Ñuxes,

F r \ (Dvr, Srvr ] p, Szvr, Sr [ Dvr)T , (23)

F z \ (Dvz, Srvz, Szvz ] p, Sz [ Dvz)T , (24)
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and sources

S \ (0, p/r, 0, 0)T . (25)

An equation of state has to be supplied to close the
system of In our calculations we haveequation (21).
assumed an ideal gas equation of state,

p \ (c[ 1)ov , (26)

where 4/3 ¹ c¹ 5/3 is the (constant) adiabatic index of
both the jet and the external medium Ñuids. A very impor-
tant quantity derived from the equation of state is the local
sound speed, which in the case of an ideal gas is given byc

s
,

c
s
2 \ c(c[ 1)v

1 ] cv
. (27)

In our calculations, the system of is solvedequation (21)
on a discrete numerical grid. The time variation of the state
vector U within a numerical cell is calculated by considering
the Ñuxes across the cell interfaces of that cell. Using a
method of lines, our discretization reads

dU
i,j

dt
\ [ 1

r
i
*r

(r
i`(1@2) FŒ i`(1@2),jr [ r

i~(1@2) FŒ i~(1@2),jr )

[ 1
*z

(FŒ
i,j`(1@2)z [ FŒ

i,j~(1@2)z ) ] S
i,j , (28)

where the subscripts i and j refer to the r- and z-
discretizations, respectively. and are the meanU

i,j S
i,jvalues of the state and the source vectors in the correspond-

ing two-dimensional cell, while and areFŒ
i`(1@2),jr FŒ

i,j`(1@2)z
the numerical Ñuxes at the cell interfaces. The latter are
calculated with an approximate Riemann solver that uses
the complete characteristic information contained in the
Riemann problems between adjacent cells & Mar-(Donat
quina It is based on the spectral decomposition of the1996).
Jacobian matrices of the relativistic system of equations
derived by et al. The spatial accuracy of theFont (1994).
algorithm is improved up to second order by means of a
conservative monotonic parabolic reconstruction of the
pressure, proper rest-mass density, and Ñow velocity follow-
ing the work of Colella & Woodward see &(1984 ; Mart•�
Mu� ller for the explicit formulae used in our relativistic1996
code). Integration in time is performed simultaneously in
both spatial directions by using a total variation diminish-
ing Runge-Kutta scheme of high order & Osher(Shu 1988).
Finally, a one-dimensional Newton-Raphson iteration is
used to compute in each time step the primitive variables
Mo, v, p, vr, vzN from the conserved ones (see & Mu� llerMart•�

for details). contains a set of one- and1996 Appendix B
two-dimensional test problems solved successfully with our
code.

Our two sets of simulations (see cover the evolution° 3.2)
of relativistic jets propagating through a homogeneous
ambient medium in a region extending 50 (25) initial beam
radii, in the z-direction and in the r-direction. TheR

b
, 7R

bcomputational domain is covered by a uniform numerical
grid consisting of 1000 (500) ] 140 zones. This corresponds
to a spatial resolution of 20 zones per beam radius. The
beam Ñuid is injected into the grid parallel to the symmetry
axis (i.e., the z-axis) through a nozzle at the bottom (r \ 0)
of the left boundary of the grid (z\ 0), which is 20 zones
wide.

We have used outÑow boundary conditions at all bound-

aries except at the symmetry axis (r \ 0 boundary), where
reÑection conditions have been imposed, and at the nozzle,
where we used Ðxed inÑow beam conditions. In the radial
direction the numerical grid described in the previous para-
graph was extended by 28 geometrically spaced zones
covering a region from to in order tor \ 7R

b
r \ 10.5R

bdelay and weaken the e†ect of a partial reÑection of the bow
shock at the top boundary.

3.2. Covered Parameter Space
lists the initial parameters of all jet models weTable 1

have calculated in our study. We have restricted ourselves
to pressure-matched jets. The set of models consists of seven
major simulations, which cover the evolution of the jet until
it has propagated to a distance of about In allzmax\ 50R

b
.

these ““ long ÏÏ simulations, the initial density ratio was set to
g \ 0.01 in order to focus on the e†ects caused by a varia-
tion of the internal beam Mach number and the beam Ñow
velocity, which govern the strength of the relativistic terms.
Relativistic e†ects are important whenever large velocities
(W ? 1) and/or large speciÐc internal energies (h ? 1) are
encountered in the Ñow. Moreover, for large speciÐc inter-
nal energies the local sound speed deÐned in equation (27)
approaches the limit

c
s
max\ Jc[ 1 , (29)

and it is seen that once is speciÐed, the value of thev
binternal beam Mach number must be larger than

Mmin\ v
b

Jc[ 1
, (30)

which is the minimum Mach number for a Ñow with adia-
batic exponent c moving at speed Beams with large spe-v

b
.

ciÐc internal energies are then obtained for values of M
bnear Mmin. Hence we Ðx the value of the classical beam

Mach number in the initial setup to control the strength of
the thermodynamical relativistic e†ects of our models. The
proper Mach number, where is theM\ W M

b
/Ws, WsLorentz factor associated with the local sound speed

which plays the role of the classical Mach(Ko� nigl 1980),

TABLE 1

INITIAL PARAMETERS OF THE DIFFERENT MODELS

Model g c v
b

M
b

M
b

zmax
A1 . . . . . . 0.01 4/3 0.99 1.72 9.97 50
A2 . . . . . . 0.01 4/3 0.999 1.74 31.86 50
a1 . . . . . . 1 4/3 0.99 1.72 9.97 25
a2 . . . . . . 0.1 4/3 0.99 1.72 9.97 25
B1 . . . . . . 0.01 4/3 0.99 6.0 41.95 50
B2 . . . . . . 0.01 4/3 0.999 6.0 132.32 50
b1 . . . . . . 0.1 4/3 0.9 6.0 13.61 25
b2 . . . . . . 0.1 4/3 0.99 6.0 41.95 25
C1 . . . . . . 0.01 5/3 0.9 6.0 13.61 50
C2 . . . . . . 0.01 5/3 0.99 6.0 41.95 50
C3 . . . . . . 0.01 5/3 0.999 6.0 132.32 50
c1 . . . . . . 0.1 5/3 0.9 6.0 13.61 25
c2 . . . . . . 0.1 5/3 0.99 6.0 41.95 25

NOTE.ÈHere g is the ratio of the rest-mass density of the beam
Ñuid and the ambient medium; c is the adiabatic index ; is thev

bbeam velocity ; is the Mach number (Newtonian deÐnition) ;M
bis the beam proper Mach number ; is the distance up toM

b
zmaxwhich the model has been evolved.
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number in two-dimensional steady relativistic hydrody-
namics, is also shown in Table 1.

The seven basis models of our sample have been chosen
to study both types of relativistic e†ects and can be classi-
Ðed according to the following scheme:

L1. Hot models and A2(M
b
BMmin).ÈA1 (v

b
\ 0.99)

Relativistic e†ects from large beam internal(v
b
\ 0.999).

energies are important and comparable to the e†ects from
Ñow speeds near the speed of light.

L2. Highly supersonic models (M
b
?Mmin) :

(a) Models with c\ 4/3.ÈB1 and B2(v
b
\ 0.99) (v

b
\

0.999) ;
(b) Models with c\ 5/3.ÈC1 C2(v

b
\ 0.9), (v

b
\ 0.99),

and C3 (v
b
\ 0.999).

Here relativistic e†ects from large beam speeds dominate.

According to this classiÐcation, the relativistic jet models
considered by et al. and & HughesMart•� (1994) Duncan

all are hot models.(1994)
Figures (Plates 1È4) show the density and pressure1aÈ1g

distribution and the Ñow velocity vectors of these seven
models at the end of the simulation, when the leading bow
shock is about to leave the computational domain.

The beam, the cocoon (blue/red region surrounding the
beam in the density frames), and the bow shock can be
clearly identiÐed in all Ðgures. Figures conÐrm the1aÈ1g
morphological considerations discussed at the beginning of
this section. The hot models A1 and A2(Fig. 1a) (Fig. 1b)
possess very thin cocoons while the highly supersonic
models C1, C2, and C3 (Figs. are dominated by a1eÈ1g)
thick cocoon that tends to become less prominent as the
beam Lorentz factor increases. The most outstanding pro-
perty of models B1 and B2 (Figs. and is their1c 1d)
extremely narrow bow shock, which is the result of the
acceleration of the jet (see below).

The basis set of ““ long ÏÏ simulations has been supplement-
ed with a subset of six models, which have a larger initial
density ratio (g \ 0.1 and g \ 1.0) but which have been
evolved only half as far in length Models a1(zmax \ 25R

b
).

and a2 form, together with model A1, a sequence of low
beam Mach number jets with a relativistic beam Ñow veloc-
ity and a decreasing initial density contrast (from g \ 1.0 to
g \ 0.01). The initial conditions of models c1, c2, and b2 are
the same as those of models C1, C2, and B1, respectively,
except for a larger value of the density contrast (g \ 0.1
instead of g \ 0.01). Finally, model b1 is almost identical to
model b2 except for its smaller value of the beam Ñow veloc-
ity instead of(v

b
\ 0.9 v

b
\ 0.99).

In the remainder of the section, we present the morpho-
logical and dynamical properties of our models in detail.
The structural features of the jets, i.e., head, cocoon, and
beam, are discussed in di†erent subsections although their
properties are closely related to each other. In the dis-
cussion we shall use models A1, B1, and C2 as prototypes
and refer to the other models whenever it is appropriate.

3.3. Structure and Dynamics of the Head of the Jet
As in classical jets (see, e.g., et al. the headNorman 1982),

of a relativistic jet consists of a terminal shock (a Mach
shock) where the beam Ñuid is decelerated, converting its
bulk kinetic energy into internal energy, a contact discon-
tinuity (the working surface) that separates the beam Ñuid
from the ambient medium, and a bow shock. The motion of

the working surface determines the propagation speed of
the jet through its environment.

Figures and (Plates 5, 7, and 9) show the2a, 3a, 4a
logarithm of the rest-mass density for a sequence of snap-
shots of models A1, B1, and C2, respectively. Obviously,
models with low and high beam Mach numbers exhibit very
di†erent behavior. Whereas in the Ðrst case (model A1) the
Mach shock is well deÐned during the whole simulation, it
is occasionally substituted by cross shocks in the high beam
Mach number models B1 and C2. Moreover, as these
oblique shocks are less efficient than normal shocks in
decelerating the beam Ñow, the contact discontinuity is
easily perturbed in these highly supersonic models. The per-
turbation of the contact discontinuity, already found in
classical jets with high beam Mach number (see etNorman
al. & Mu� ller is responsible for the pro-1982 ; Ko� ssl 1988),
duction of the vortices seen at the working surface in
Figures and3a 4a.

For highly supersonic jets with c\ 4/3, i.e., models of
category L2a, the contact discontinuity is close to the bow
shock. This gives rise to bow shock perturbations, causing
changes in its overall shape, which are reminiscent of the
““ nose cones ÏÏ observed in classical MHD jets et al.(Clarke

et al. In model B1 for example, a1989 ; Lind 1989). (Fig. 3),
Ðrst change in the shape of the bow shock begins to develop
in frame (d), when the original Mach disk disap-Figure 3a,
pears. A similar behavior is seen in frame (l), justFigure 3a,
at the end of our simulation. The perturbations of the bow
shock are connected with an increase of the propagation
velocity of the jet through the external medium. The accel-
eration of the jet is caused by the reconÐnement e†ect of the
internal shocks, which reduce the e†ective section of the
beam and thus increase the momentum transferred per unit
area. This behavior is also observed in models B2, b1, and
b2. As the distance of the Ðrst conical shock from the source
grows with the beam Ñow velocity, the change in shape of
the bow shock occurs nearer to the source in model b1 (at
about than in model B1 and further away in10R

b
) (22R

b
),

model B2 Whether this is a recurrent process by(30R
b
).

which the beam itself is becoming narrower or whether it is
only a ““ readjustment ÏÏ of the jet to the initial conditions
cannot be concluded from our present simulations. We
point out, however, that a similar behavior, which was
clearly recurrent, has been found in the long-term simula-
tions of extremely supersonic classical jets performed by

et al.Massaglia (1996).
On the other hand, in the case of model A1 we(Fig. 2),

observe an almost steady beam Ñow near the head, which
makes the jet head very stable. This result holds for model
A2 (cf. Figs. and too. It seems to be a generic pro-1a 1b),
perty of hot jets, because it is also found in models a2
(g \ 0.1) and a1 (g \ 1.0).

3.4. Cocoon Structure and BackÑow Dynamics
We Ðnd a strong dependence of the structure of the

cocoon upon the beam Mach number (see Figs. and2a, 3a,
Structural di†erences in the cocoon morphology are4a).

already evident at the beginning of the evolution (cf., for
instance, frame [a] in Figs. and Relativistic2a, 3a, 4a).
beams with internal Mach numbers close to the minimum
value are surrounded by lobes instead of cocoons. This
result, which was already found by et al. is inMart•� (1994),
agreement with our theoretical prediction that cocoons are
not prominent in hot jets. Moreover, in our relativistic
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models the absence of vortex shedding by the head pro-
duces a very stable structure. Consequently, in these jets the
backÑow is minimized, too. It is either restricted to a small
region near the head, as in models A1 (see Ñow velocity
panel in a1, and a2, or does not exist at all, as inFig. 1a),
model A2 (Fig. 1b).

BackÑow is more important in jets with a high beam
Mach number, where stable cocoons are found in the early
stages of the evolution. The cocoons eventually evolve into
vortices, producing turbulent structures model B1 ;(Fig. 3a,

model C2 ; see also models B2, C1, and C3). NewFig. 4a,
vortices are continuously produced by the head of the jet as
a result of its nonsteady propagation. The vortices grow as
they are advected upstream.

We Ðnd that the cocoon structure varies with the value of
the adiabatic exponent. For models with c\ 5/3, the
cocoon is mainly formed by large vortices. At the end of the
simulation, the cocoon has an almost constant thickness
along the beam for model C2, and for model(D4R

b
D3R

bC3). For models with c\ 4/3, the strong beam collimation
resulting from the Ðrst internal conical shock causes a large
acceleration of the jet. During the acceleration phase
(around frame [d] in the beam gas is less efficientlyFig. 3a),
redirected into the cocoon. After the acceleration phase
(frame [e] and later), the continuous Ñow into the cocoon is
reestablished, but it is very weak and has difficulties propa-
gating upstream. Hence small, turbulent vortices form very
soon. The transition between the parts of the cocoon
formed before and after the acceleration is seen in the
cocoon structure around (see frames [e]È[l]zB (15È18)R

bin Fig. 3a).
The absence of extended cocoons in models with small

internal beam Mach numbers causes the jet to evolve such
that the beam gas is in pressure equilibrium with the
shocked ambient gas (except for a region near the head of
the jet). This is seen in (Plate 6), where we plot anFigure 2b
evolutionary sequence of the pressure distribution of model
A1. Similar plots for models B1 and C2 are shown in
Figures and (Plates 8 and 10), respectively. The lack of3b 4b
internal structure found in the hot jets is probably a conse-
quence of the pressure equilibrium (see Highly super-° 3.5).
sonic jets, on the contrary, possess a rich internal structure
and overpressured cocoons (Figs. and The pressure3b 4b).
distribution within the cocoon/shocked ambient medium is
displayed in for models C1, C2, and C3, respec-Figure 5
tively. It shows the logarithm of the pressure normalized to
the initial beam pressure as a function of radial distance for
three values of the z-coordinate at the end of the simula-
tions. From an interesting dependence of the meanFigure 5,
pressure within the cocoon upon the bulk Ñow Lorentz
factor in the beam can be obtained. The overpressure for
models C1, C2, and C3 is approximately a factor of 3, 8, and
25, respectively, which is roughly proportional to the corre-
sponding beam Ñow Lorentz factor (2.3, 7.1, and 22.2). The
buildup of an overpressured cocoon was also discussed by

& Cioffi and numerically explored andBegelman (1989)
conÐrmed by et al. for Newtonian hypersonicLoken (1992)
jets.

3.5. Beam
The presence of shocks within the beam is directly con-

nected with the structure of the cocoon and the dynamical
processes occurring within it. Beams of relativistic, hot

models of our sample (i.e., models A1, B2, a1,(M
b
B Mmin)

FIG. 5.ÈLogarithm of the pressure normalized to the initial beam pres-
sure for models C1 (solid line), C2 (dotted line), and C3 (dash-dotted line) as
a function of position along several lines perpendicular to the jet axis
(z^ 7Èthickest lineÈz^ 17, and z^ 27Èthinnest line) at the end of the
simulation (see Figs. The pressure in the cocoon grows with the1eÈ1g).
initial beam velocity.

a2 ; see, e.g., Figs. have an almost complete lack of1a, 1b)
internal structure, in agreement with previous simulations

et al. & Hughes The absence of(Mart•� 1994 ; Duncan 1994).
shocks in hot beams is a consequence of the pressure equi-
librium between the beam and the surrounding cocoon/
shocked ambient medium. It also reÑects the great stability
of the beam surface against the growth of pinch instabilities
(the most disruptive modes in cylindrically symmetric
Ñows), which would cause internal shocks as in classical jets.
Neither the reÑecting mode nor the fundamental, or ordi-
nary, pinch mode (typical of low beam Mach number Ñows ;
see et al. and references cited therein) seemsNorman 1984
to develop in these hot jets (at least for the timescales
covered by our study). The e†ect of an instability dominated
by the fundamental mode is to create an ever broadening
mixing layer that eventually would destroy the supersonic
beam. We have performed three simulations with M

b
\

and density ratios of 0.01, 0.1, and 1.0, respectively. In1.72
all three cases we have obtained naked beams, but no trace
of growing pinch modes has been detected. This result is
consistent with the study of Kelvin-Helmholtz instabilities
in the linear regime performed by Trussoni, &Ferrari,
Zaninetti who found relativistic, hot jets to be(1978),
unconditionally stable.

Models having a high beam Mach number display, on
the contrary, a very rich and complex structure within the
beam. Internal oblique shocks separating compressed and
rareÐed regions are found. The reconÐning e†ect of these
internal shocks is evident in the Ñow velocity panels of

although it is more important in models withFigure 1,
larger beam velocity and smaller adiabatic exponent (e.g.,
models B1 and B2). In these highly supersonic models,
internal structure is generated within the beam by pertur-
bations of the beam boundary by vortices and bulk motions
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TABLE 2

PROPAGATION PROPERTIES OF RELATIVISTIC JETS

Model v
b

V
j
N V

j
R v6

h
d

A. Hot Relativistic Jets

a1 . . . . . . 1.23] 102 0.50 0.87 0.85 0.98
a2 . . . . . . 1.23] 102 0.24 0.86 0.85 0.99
A1 . . . . . . 1.23] 102 0.09 0.84 0.86 1.02
A2 . . . . . . 6.61] 101 0.09 0.94 0.93 0.99

B. Highly Supersonic Relativistic Jets (c\ 4/3)

b1 . . . . . . 5.43] 10~2 0.22 0.39 0.43 1.10
b2 . . . . . . 6.67] 10~2 0.24 0.69 0.73 1.06
B1 . . . . . . 6.67] 10~2 0.09 0.42 0.52 1.24
B2 . . . . . . 6.80] 10~2 0.09 0.70 0.80 1.14

C. Highly Supersonic Relativistic Jets (c\ 5/3)

c1 . . . . . . 2.09] 10~2 0.22 0.38 0.39 1.03
c2 . . . . . . 2.55] 10~2 0.24 0.69 0.71 1.03
C1 . . . . . . 2.09] 10~2 0.08 0.17 0.13 0.76
C2 . . . . . . 2.55] 10~2 0.09 0.42 0.37 0.88
C3 . . . . . . 2.60] 10~2 0.09 0.69 0.67 0.97

NOTE.ÈHere is the beam speciÐc internal energy, and arev
b

V
j
N V

j
R

respectively the Newtonian and relativistic one-dimensional estimates of
the velocity of the jet, is the numerically obtained average velocity of thev6

hhead of the jet, and d is the propagation efficiency of the jet.

within the cocoon. Additional internal structure (such as the
oblique shock created at the edge of the nozzle) is formed by
pressure mismatches between the beam and the high-
pressure cocoon. The angle formed by these oblique shocks
with the jet axis decreases with the proper beam Mach
number. In particular, we Ðnd from our simulations that the
conical shock impinges the axis at increasingly larger dis-
tances along the sequence of models C1, C2, and C3 (at 7R

b
,

and respectively), as well as along the model10R
b
, 20R

b
,

sequence B1 and B2 and respectively). Because(22R
b

30R
b
,

of the small angle between the Ðrst conical shock in models
B1 and B2 and the direction of the beam Ñow, these shocks
are extremely inefficient in decelerating the beam material
and are, hence, responsible for the observed acceleration of
the jet head in these models.

3.6. Propagation Efficiency
As for classical jets (see, e.g., et al. weNorman 1983),

deÐne the propagation efficiency of jets, d, as the ratio
between the average propagation velocity, of the head ofv6

h
,

the jet and its corresponding one-dimensional estimate, V
j
R,

given by equation (5) :

d \ v6
j
/V

j
R . (31)

Our results show (see that, for a wide range ofTable 2)
estimated jet propagation speeds the(0.17¹V

j
R ¹ 0.94),

efficiencies span the interval 0.76È1.24. These high effi-
ciencies, in particular those greater than 1.0, signiÐcantly
exceed those obtained for Newtonian jets. et al.Norman

found 0.49 ¹ d ¹ 0.90 for their comprehensive set of(1983)
jet models including di†use and dense jets, as well as highly
supersonic ones The efficiencies of our models(M

b
¹ 12).

are only comparable with the hypersonic Newtonian
models computed by et al.(M

b
B 30È300) Massaglia (1996).

Efficiencies very close to unity (i.e., 1.00^ 0.02) are
obtained for our subsample of hot models (a1, a2, A1, A2 ;
see The lack of internal structure within theTable 2A).

FIG. 6.ÈPosition of the jet head as a function of time for models A1
(plus signs) and A2 (triangles) (top), models B1 (plus signs) and B2 (triangles)
(middle), and models C1 (plus signs), C2 (triangles), and C3 (diamonds)
(bottom). Solid lines correspond to the theoretical estimates calculated
through The dashed line corresponds to a hypothetical jet propa-eq. (22).
gation velocity equal to the speed of light.

beam and the not very prominent or nonexistent cocoon
are responsible for the almost one-dimensional behavior of
these jets. Models that are highly supersonic and have a
small adiabatic index (c\ 4/3) have efficiencies greater than
100% (b1, b2, B1, B2 ; see This remarkable resultTable 2B).
is caused by an acceleration of those jets during an early
stage of their evolution, after the Ðrst oblique internal shock
has formed within the beam. The acceleration of the jet is
seen in through the change of shape of the bowFigure 3a
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FIG. 7.ÈLogarithm of the pressure in the hot spot, normalized to the
initial beam pressure, as a function of the beam Lorentz factor. The solid
line represents the logarithm of the pressure at the hot spot, assuming pure
one-dimensional momentum transfer. The squares represent the time-
averaged hot-spot pressures of models A1 (W \ 7.09) and A2 (W \ 22.37)
(top), B1 (W \ 7.09) and B2 (W \ 22.37) (middle), and C1 (W \ 2.29), C2
(W \ 7.09), and C3 (W\ 22.37) (bottom). The error bars correspond to one
standard deviation from the mean. In the middle panel, lower time-
averaged values correspond to the evolution prior to the jet acceleration
(t \ 25 for model B1 ; t \ 30 for model B2). Upper time-averaged values
correspond to the evolution after the acceleration phase.

shock between frames (c) and (e). This process happens
again later (see frame [l]) after a second oblique shock is
created in the beam. Finally, according to the data shown in

we can conclude that the efficiency of models thatTable 2C,
are highly supersonic and have a large adiabatic index

(c\ 5/3 ; subset L2b) increases with g for Ðxed (comparev
bmodels c1 and C1, or c2 and C2), with for Ðxed and smallv

bg (compare models C1, C2, and C3), and tends to 100% for
sufficiently dense, highly relativistic models (see models c1
and c2).

In the distance traveled by the head of the jet isFigure 6,
shown as a function of time for models A, B, and C. The
solid lines represent the predicted position of the jet head
according to the one-dimensional relativistic estimate. The
dashed line corresponds to a propagation velocity equal to
the speed of light. The symbols in each panel mark the
position of the head for a selected set of time steps for each
model. In the case of models A and C, the head propagates
slower than predicted by the one-dimensional estimate. On
the other hand, for models B1 and B2 the head moves at the
estimated speed early on in the evolution (t \ 25 in model
B1 ; t \ 30 in model B2) and then accelerates. In both
models, B1 and B2, the position of the head at the end of the
simulation (rightmost symbols in middle) is consis-Fig. 6,
tent with the onset of another acceleration phase. Besides
these two acceleration phases, there is no indication in our
results of any other signiÐcant instantaneous acceleration
taking place during the evolution of the jets.

4. DISCUSSION AND CONCLUSIONS

The most remarkable result of our comprehensive study
of relativistic jets is deÐnitely the large propagation speed of
the jets compared to the corresponding Newtonian models.
It is also important to note that the one-dimensional esti-
mate for the propagation speed based on a simple momen-
tum balance argument is extremely well conÐrmed by the
two-dimensional hydrodynamic simulations. The large pro-
pagation speed causes the cocoons of relativistic jets to be
generally less prominent than those of Newtonian jets. This
morphological characteristic is distinctly exhibited by
models of type A, which consist of an almost featureless
beam surrounded by a very thin cocoon extending back
from the head of the jet about halfway to the nozzle. As
illustrated by the sequence of models C1, C2, and C3, the
cocoon thickness decreases with increasing beam Ñow
velocity, which coincides with an increase of the propaga-
tion efficiency of the jet.

In the case of L1 models, the jet propagation velocities
are so large (0.85È0.93) and the backÑow within the thin
cocoon so unimportant that the jet is unable to produce an
extended cocoon. Matter deÑected at the working surface
remains near the head of the jet, forming a kind of lobe. In
L2 models, the jets have extended overpressured cocoons,
the mean pressure increasing almost proportionally to the
beam Lorentz factor. The existence of overpressured
cocoons was also pointed out by & CioffiBegelman (1989)
and conÐrmed by et al. for Newtonian hyper-Loken (1992)
sonic jets (see also et al. These over-Massaglia 1996).
pressured cocoons could help to conÐne the jets during
their early evolution and might be of relevance for the for-
mation of knots often observed in large-scale jets of power-
ful radio sources.

Qualitatively speaking, the results obtained in our simu-
lations of relativistic jets are consistent with the properties
of very dense Newtonian jets. This fact can easily be
explained by considering that both the speciÐc enthalpy (in
hot jets) and the Lorentz factor (in highly supersonic jets)
increase the e†ective inertial mass of the beam. The
enhanced inertia, which directly follows from the momen-
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tum equation, makes it more difficult to perturb relativistic
jets than Newtonian ones. It is also the reason that the
one-dimensional propagation estimates agree so well with
the numerical results. The ““ one-dimensionality ÏÏ of rela-
tivistic jets is further supported by comparing the (time-
averaged) pressure at the working surface near the jet axis
with the pressure predicted in the corresponding one-
dimensional problem. This problem of the impact of a one-
dimensional high-speed Ñow on a homogeneous ambient
medium at rest can be solved analytically by using the ana-
lytical solution of the relativistic Riemann problem derived
by & Mu� ller Applying this procedure to theMart•� (1994).
initial setups of our models, one can derive bounds for the
thermal pressure at the point of impact at the head of the
jet. The resulting pressure, normalized to the beam pressure,
is plotted in for model types L1, L2a, and L2b. TheFigure 7
solid line in which shows the logarithm of theFigure 7,
thermal pressure at the point of impact (in units of the beam
pressure) as a function of the beam Ñow velocity, indicates
that a larger impact velocity gives rise to a larger pressure.

further illustrates that the numerically obtainedFigure 7
time-averaged pressure at the head of the jet (the error bars
correspond to one standard deviation) agrees quite well
with the one-dimensional estimate for all models. The
noticeable decrease of the size of the error bars (i.e., decreas-

ing deviations from the mean pressure value) with increas-
ing beam Ñow velocity seen in once more conÐrmsFigure 7
the stability of relativistic Ñows against perturbations.

As a general conclusion, we can say that relativistic jets
seem to have very promising properties to propagate large
distances without being destabilized or even disrupted,
which is required for a successful modeling of observed jets
in extragalactic radio sources. However, realistic simula-
tions have to be extended to much larger distances in order
to account for the expected deceleration between parsec and
kiloparsec scales. The simulations of relativistic jets have
also to be performed in three spatial dimensions to check
for the development of possible nonaxisymmetric pertur-
bations (see Clarke, & HowellHardee, 1995).
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APPENDIX A

THE APPROXIMATE RIEMANN SOLVER

The numerical simulations presented in this paper have been performed using an approximate Riemann solver, proposed in
& Marquina due to Marquina. MarquinaÏs Ñux formula introduces a dissipative mechanism into the numericalDonat (1996),

scheme especially designed to eliminate undesired pathologies (such as the overheating phenomenon in wall shock reÑection
experiments or the long-wavelength noise behind slowly moving shocks ; see & Marquina which Ñaw mostDonat 1996),
high-order shock-capturing methods, if no excessive smearing is introduced at discontinuities. Contrary to other linearized
solvers (e.g., MarquinaÏs Riemann solver is not based on averagingÏs being able to solve Riemann problems withRoe 1981),
di†erent left and right equations of state. It has been designed for general hyperbolic systems of conservation laws and, in the
case of relativistic Ñuid dynamics, has allowed us to reach the ultrarelativistic limit with great accuracy (see Appendix B).
Moreover, our experimentation conÐrms that in two dimensions the dissipation of the scheme is sufficient to eliminate the
carbuncle phenomenon (see, e.g., which appears in all our high Mach number relativistic jet simulations whenQuirk 1994),
using other standard solvers.

MarquinaÏs Ñux formula applied to a system of conservation laws in one dimension,

LU
Lt

] LF(U)
Lx

\ 0 , (A1)

yields a conservative method whose numerical Ñux function is computed as follows : Given left and right states, the ““ sided ÏÏ
local characteristic variables and Ñuxes are calculated according to
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r
p \ lp(U

r
) Æ F(U

r
) ,

for p \ 1, 2, . . . , m, where m is the number of equations of the system. Here and are the (normalized) leftlp(U
l
) lp(U

r
),

eigenvectors of the Jacobian matrix of the system of A, calculated in the left and right states, andequation (A1), U
l

U
r
.

Let . . . , and . . . , be the corresponding eigenvalues. Then, for every k \ 1, . . . , m, we proceed asj1(Ul
), j

m
(U

l
) j1(Ur

), j
m
(U

r
)

follows :

1. If does not change sign in [for the equations of Ñuid dynamics, if then the scalarj
k
(U) [U

l
, U

r
] j

k
(U

l
) Æ j

k
(U

r
)[ 0],

scheme is upwind and the numerical Ñux is calculated according to the relevant characteristic information :
If thenj

k
(U

l
) [ 0,

/
`
k \ /

l
k , /~k \ 0 ,

else

/
`
k \ 0 , /~k \ /

r
k .
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FIG. 8a FIG. 8b

FIG. 8.È(a) Exact (solid lines) and numerical proÐles of pressure, density, and Ñow velocity for the planar shock reÑection problem with an inÑow velocity
when the shock has propagated 50 zones o† the site of reÑection (at x \ 0). The computations were performed on a uniform grid of 100 zones.v1\[0.9999,

(b) Same as (a), but for the cylindrical shock reÑection problem.

2. Otherwise, as a way to avoid the aforementioned numerical pathologies, the scalar scheme is switched to the more
viscous, entropy-satisfying local Lax-Friedrichs scheme :

a
k
\ max Mo j

k
(U

l
) o, o j

k
(U

r
) oN ,

/
`
k \ (/

l
k] a

k
u

l
k)/2 , /~k \ (/

r
k[ a

k
u

r
k)/2

(see & Marquina for details).Donat 1996

MarquinaÏs Ñux formula is then

FŒ M(U
l
, U

r
) \ ;

p/1

m
[/

`
p rp(U

l
) ] /~p rp(U

r
)] , (A2)

where are the right (normalized) eigenvectors of the Jacobian matricesrp(U
l
), rp(U

r
) A(U

l
), A(U

r
).

The spectral decomposition of the Jacobian matrices associated to the equations of relativistic hydrodynamics can be found
in et al. In our calculations, the numerical Ñuxes are computed by using taking as left and rightFont (1994). equation (A2),
states the reconstructed values at the interfaces.

MarquinaÏs numerical Ñux is consistent, i.e., U) \ F(U), implying local convergence of the numerical scheme, and inFŒ M(U,
fact, when applied to a constant-coefficient one-dimensional system, MarquinaÏs scheme yields the exact solution to the
Riemann problem.

APPENDIX B

ONE- AND TWO-DIMENSIONAL TEST PROBLEMS

We have tested our code against several problems involving strong shocks and high Lorentz factor Ñows, which have an
analytical solution.

B1. PLANAR AND CYLINDRICAL RELATIVISTIC SHOCK REFLECTION

We Ðrst consider the one-dimensional problem of the reÑection of a shock wave assuming planar, axial, or spherical
symmetry. Initially, i.e., at t \ 0, we have an inÑowing cold (i.e., v\ 0) gas with coordinate velocity and Lorentz factorv1 W1,which Ðlls the computational domain. In the case of planar symmetry, the gas is supposed to hit a wall placed at one of the
edges of the grid while, in the cases of cylindrical and spherical symmetry, the gas converges toward the axis or the center of
symmetry, respectively. In all three cases the reÑection causes compression and heating of the gas as kinetic energy is
converted into internal energy. This occurs in a shock wave, which propagates upstream. Behind the shock the gas is at rest

and as a consequence of conservation of energy across the shock, the gas has a speciÐc internal energy given by(v2 \ 0),

v2 \ W1[ 1 .

The compression ratio between shocked and unshocked gas, follows fromp \o2/o1,

p \ c] 1
c[ 1

] c
c[ 1

v2 ,
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FIG. 9.ÈExact (solid lines) and numerical proÐles of pressure, density, and Ñow velocity of the one-dimensional relativistic shock tube. The computations
were performed on a uniform grid of 400 zones.

where c is the adiabatic index of the equation of state. The shock velocity is given by

V
s
\ (c[ 1)W1 o v1 o

W1] 1
.

In the unshocked region O]), the pressureless gas Ñow is self-similar and has a density distribution given by(r ½ [V
s
t,

o1\
A
1 ] v1t

r
Ba

o0 ,

where a \ 0, 1, 2 for planar, cylindrical, or spherical symmetry, respectively, and where is the density of the inÑowing gas ato0inÐnity.
In our test calculations, we have used a gas with an adiabatic index c\ 4/3 and an inÑow velocity v1\ [0.9999,

corresponding to a Lorentz factor The computational grid consisted of 100 uniform zones covering the intervalW1\ 70.9.
r ½ [0, 1] and the reÑection, occurring at r \ 0. For numerical reasons the speciÐc internal energy of the inÑowing gas was set
to a small Ðnite value and the density at inÐnity was set equal to 1.(v\ 10~5W1)Figures and show the proÐles of pressure, rest-mass density, and Ñow velocity for planar and cylindrical shock8a 8b
reÑection, respectively. The proÐles are shown after the shock has propagated 50 zones o† the site of reÑection. In both cases
the shock wave is resolved by three zones, and there are no postshock numerical oscillations. The density jumps by a factor of
B400 across the shock. Near r \ 0, the density distribution slightly undershoots the analytical solution (B1% in the planar
and B4% in the cylindrical case) as a result of the numerical e†ect of wall heating. In the cylindrical case, an additional
systematic error of B1% in the postshock density occurs.

B2. ONE-DIMENSIONAL RELATIVISTIC SHOCK TUBE

Shock tubes represent a special case of a Riemann problem, in which the Ñuid in the states on both sides of the discontinuity
is at rest. They provide a useful tool to test numerical codes, because their evolution involves shock waves and rarefactions
and because analytical solutions are known. We have simulated several shock-tube problems with large jumps in the initial
pressure distribution, developing strong shocks that propagate at relativistic speeds. The numerical solutions obtained with
our hydrocode are stable (provided the Courant condition is fulÐlled) and converge when the grid is reÐned. As an example,
we show here the results obtained for a particular problem characterized by the following initial state :

o
L
\ 10.0 , o

R
\ 1.0 ; p

L
\ 13.3 , p

R
\ 6.610~7 ; v

L
\ v

R
\ 0 ; c

L
\ c

R
\ 5/3 .

The analytical solution can be obtained by using the procedure described in & Mu� ller The decay of the initialMart•� (1994).
discontinuity gives rise to an intermediate state located between a shock wave and a transonic rarefaction propagating to the
right. In this intermediate state, the Ñuid moves to the right at a speed of 0.72 behind the shock, whose speed is 0.83. The
density jump across the shock is equal to 5.1, which is larger than the classical limit of 4.0 for strong shocks (for c\ 5/3). A
contact discontinuity divides the intermediate state into two regions that have di†erent rest-mass densities.

We have performed this test with a one-dimensional version of our hydrocode, using a uniform grid of 400 zones. The initial
discontinuity was located in the middle of the grid covering the interval x ½ [0, 1]. shows the resulting distributionsFigure 9
of pressure, density, and Ñuid Ñow velocity. The numerical solution is free of spurious oscillations. The shock is smeared
across Ðve zones while the contact discontinuity (see the rest-mass density proÐle) is broadened somewhat more by numerical
di†usion. The constant states and the transition state across the rarefaction are captured with errors smaller than 1%.
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FIG. 10.ÈExact (solid lines) and numerical proÐles of pressure, density, and Ñow velocity along the diagonal normal to the initial discontinuity of the
two-dimensional relativistic shock tube. The computations were performed on a uniform grid of 200] 200 zones.

B3. A TWO-DIMENSIONAL TEST PROBLEM

The previous shock-tube test problem has also been used to check the behavior of our code in its two-dimensional
Cartesian version. The initial numerical setup consists of a grid of 200 ] 200 zones covering a unit square. The initial
discontinuity is placed along one of the diagonals of the grid. shows a snapshot of the rest-mass density, theFigure 10
pressure, and the Ñuid Ñow velocity along the diagonal normal to the initial discontinuity. Again, the numerical solution is
stable and represents the true Ñow pattern with very small errors except near discontinuities. The shock is resolved by B2È3
numerical zones.
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FIG. 1a

FIG. 1b

FIG. 1.È(a) Color-coded contour plots of the logarithm of the proper rest-mass density (top) and pressure (bottom) of model A1 (g \ 0.01, c\ 4/3,
and at the end of the simulation, when the leading bow shock is about to leave the computational domain. The maximum values arev

b
\ 0.99, M

b
\ 1.72)

coded in white (log o \ 0.62 ; log p \ 0.50). Decreasingly smaller values are coded in green, bright blue, dark blue, and red, and the minimum values are
coded in black (log o \ [3.04 ; log p \ [1.77). The corresponding Ñow pattern is overlaid on the proper rest-mass density plot. Flow velocity vectors are
plotted every fourth zone. The arrows within the beam and closer to the nozzle correspond to a Ñow velocity equal to (b) Same as (a), but for model A2v

b
.

(g \ 0.01, c\ 4/3, and The maximum values are log o \ 0.88 and log p \ 0.91. The minimum values are log o \ [2.50 andv
b
\ 0.999, M

b
\ 1.74).

log p \ [1.32. (c) Same as (a), but for model B1 (g \ 0.01, c\ 4/3, and The maximum values are log o \ 0.91 and log p \ [0.25. Thev
b
\ 0.99, M

b
\ 6.0).

minimum values are log o \ [2.80 and log p \ [3.76. (d) Same as (a), but for model B2 (g \ 0.01, c\ 4/3, and The maximum valuesv
b
\ 0.999, M

b
\ 6.0).

are log o \ 0.90 and log p \ 0.22. The minimum values are log o \ [2.79 and log p \ [3.64. (e) Same as (a), but for model C1 (g \ 0.01, c\ 5/3, v
b
\ 0.9,

and The maximum values are log o \ 0.66 are log p \ [1.51. The minimum values are log o \ [3.20 and log p \ [4.36. ( f ) Same as (a), but forM
b
\ 6.0).

model C2 (g \ 0.01, c\ 5/3, and The maximum values are log o \ 0.63 and log p \ [0.82. The minimum values are log o \ [2.93v
b
\ 0.99, M

b
\ 6.0).

and log p \ [4.17. (g) Same as (a), but for model C3 (g \ 0.01, c\ 5/3, and The maximum values are log o \ 0.73 and log p \ [0.41.v
b
\ 0.999, M

b
\ 6.0).

The minimum values are log o \ [2.91 and log p \ [4.06.

MARTI� et al. (see 479, 156)
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FIG. 1c

FIG. 1d
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FIG. 1e

FIG. 1f
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FIG. 1g
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FIG. 2a

FIG. 2.È(a) Twelve snapshots of the time evolution of the relativistic jet model A1 (g \ 0.01, c\ 4/3, and The logarithm of thev
b
\ 0.99c, M

b
\ 1.72).

proper rest-mass density is shown at times t \ 5.01 (a), 10.01 (b), 15.01 (c), 20.01 (d), 25.01 (e), 30.01 (f ), 35.01 (g), 40.02 (h), 45.02 (i), 50.02 (j), 55.03 (k), and 60.04
(l). Time is in units of The color coding is the same as in Note the extremely thin cocoon, with the majority of its material located in the lobe atR

b
/c. Fig. 1a.

the head. Note also the naked beam near the source (for further discussion, see text). (b) Same as (a), but showing the logarithm of the pressure. Note the
absence of any internal structure inside the beam, as it and the cocoon/shocked external medium are in pressure equilibrium. Also note the constant thickness
of the terminal Mach disk (for further discussion, see text).
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FIG. 2b
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FIG. 3a

FIG. 3.È(a) Same as but showing the time evolution of the relativistic jet model B1 (g \ 0.01, c\ 4/3, and The logarithm ofFig. 2a, v
b
\ 0.99, M

b
\ 6.0).

the proper rest-mass density is shown at times t \ 10.01 (a), 20.02 (b), 25.03 (c), 30.03 (d), 35.04 (e), 40.04 (f ), 50.05 (g), 60.06 (h), 65.07 (i), 75.08 ( j), 85.09 (k), and
90.10 (l). Time is in units of The color coding is the same as in Note the acceleration of the head of the jet in frames (d) and (l) and the unstableR

b
/c. Fig. 1a.

and turbulent structure of the thin cocoon (for further discussion, see text). (b) Same as (a), but showing the logarithm of the pressure. Note the overpressured
cocoon and the presence of a terminal Mach disk of diminishing cross section in the Ðrst two frames and the subsequent appearance of internal shock waves
inside the beam (for further discussion, see text).
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FIG. 3b
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FIG. 4a

FIG. 4.È(a) Same as but showing the time evolution of the relativistic jet model C2 (g \ 0.01, c\ 5/3, and The logarithm ofFig. 2a, v
b
\ 0.99, M

b
\ 6.0).

the proper rest-mass density is shown at times t \ 14.01 (a), 21.01 (b), 35.02 (c), 49.02 (d), 63.03 (e), 70.03 (f ), 87.54 (g), 100.17 (h), 105.18 (i), 115.20 ( j), 120.21 (k),
and 130.23 (l). Time is in units of The color coding is the same as in Comparing with note the presence of a more extended cocoon, alsoR

b
/c. Fig. 1a. Fig. 3a,

Kelvin-Helmholtz unstable, and the absence of any signiÐcant acceleration of the jet head. The vortex-shedding mechanism is clearly visible in some of the
frames (for further discussion, see text). (b) Same as (a), but showing the logarithm of the pressure. As in model B1 note the rich internal structure(Fig. 3),
within the beam and the presence of an overpressured cocoon (for further discussion, see text).
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FIG. 4b
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