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ABSTRACT
Evolution and disruption of galaxies orbiting in the gravitational Ðeld of a larger cluster galaxy are

driven by three coupled mechanisms : (1) tidal heating due to its time-dependent motion in the primary ;
(2) mass loss due to the tidal strain Ðeld ; and (3) orbital decay. Previous work demonstrated that tidal
heating is e†ective well inside the impulse approximation limit. Not only does the overall energy increase
over previous predictions, but the work is done deep inside the secondary galaxy, e.g., at or inside the
half-mass radius in most cases. Here these ideas applied to cannibalization of elliptical galaxies with
fundamental-plane parameters.

In summary, satellites with masses between 0.1% and 10% of a cluster giant are evaporated or signiÐ-
cantly evolved by internal heating as they sink to the center. This suggests that long-lived merger-
produced multiple nuclei giants should be rare. The precise location of the survival-evaporation
boundary and the central concentration of the stripped-mass proÐle depend on the rate of orbital decay.
Large secondaries evaporate preferentially, provided the orbital decay takes place over roughly Ðve or
more orbits. We estimate that secondaries with mass ratios as small as 1% on any initial orbit evapo-
rate, and those on eccentric orbits with mass ratios as small as 0.1% evolve signiÐcantly and nearly
evaporate in a galactic age. Captured satellites with mass ratios smaller than roughly 1% have insuffi-
cient time to decay to the center. After many accretion events, the model predicts that the merged system
has a proÐle similar to that of the original primary with a weak increase in concentration.
Subject headings : celestial mechanics, stellar dynamics È galaxies : evolution È galaxies : interactions È

galaxies : kinematics and dynamics

1. INTRODUCTION

The current picture of galaxy evolution in clusters leads
naturally to galactic cannibalism, especially deep in the
potential well where the giants reside. Although multiple
nuclei candidates have been identiÐed (e.g., Tonry 1985 ;

recent searches turned up many fewer innerLauer 1988),
core objects than expected (S. Tremaine 1995, private
communication).

A closer look at the evolutionary picture is motivated by
the recent demonstration that heating of galaxies or star
clusters because of the time-dependent tidal Ðeld can drive
their evolution at a rate beyond impulse approximation
estimates (Weinberg and hereafter1994a, 1994b, 1994c, W1,

and respectively ; Murali & Weinberg andW2, W3, 1996a
hereafter and respectively). This theory1996b, MW1 MW2,

invalidates the following often used argument. The higher
density of satellite galaxies implies shorter internal orbital
times than the orbit of the satellite itself. Therefore, the
stellar orbits in the satellite will be adiabatically invariant to
the tidal force, and since the dynamical friction timescale is
much less than a Hubble time for galaxy masses above

the satellite should sink to the center without suf-109 M
_

,
fering tidal disruption and remain a distinct compact entity.
This paper presents estimates of the evolutionary path and
evaporation lifetime for the cannibalized fundamental-
plane elliptical galaxies. We will Ðnd that ellipticals with
sufficient mass to decay are heated and evaporated before a
multiple nucleus system can result, although such systems
may exist transiently. The results also illustrate the inter-
play between tidal heating, tidal stripping, and orbital
decay. For example, if the sinking is very rapid, the inte-

1 Alfred P. Sloan Foundation Fellow.

grated work done by tidal heating can be too small for
signiÐcant evaporation. Nonetheless, the likely evaporation
of accreted galaxies with masses varying over several orders
of magnitude in the fundamental plane may help reconcile
the observation of a bimodal velocity distribution of multi-
ple nuclei as a dynamical frictionÈmediated(Tonry 1985)
selection e†ect and/or a transient population(Merritt 1984)
of evaporating secondaries.

We begin with a description of the astronomical scenario
in All members of the fundamental plane are represent-° 2.
ed by a spherical model with Ðxed initial concentration ; this
is roughly consistent with the observed fundamental-plane
relations given the relation, althoughFaber-Jackson (1976)
the best estimates suggest a weak dependence on concentra-
tion. We assume that the secondary is captured from the
cluster by dynamical drag, and we consider evolution after
the secondary is bound to the primary. The important
dynamical ingredients and their implementation are brieÑy
discussed in the technical details can be found in° 3 ;
Appendices A and B and elsewhere The results(W2; MW2).
for a number of astronomical scenarios are described in ° 4 ;
these include survival and evolution as a function of mass,
orbital decay, and the resulting distribution of stripped stars
in the primary. We compare them with the published
n-body work and discuss the sensitivity of the results to the
intrinsic dynamical approximations at the end of this
section. A summary is presented in ° 5.

2. ASTRONOMICAL SCENARIO

2.1. Background ProÐle and Fundamental-Plane Scaling
I have chosen a King model for both the primary and the

secondary. King models with log c\ 2.35 are representa-
tive elliptical proÐles (e.g., & Binney &Mihalas 1981 ; Vader
Chaboyer although King models are not good Ðts in1994),
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all Nonetheless, the mass model parameterizes thecases.2
range of stellar orbital times, and this range determines the
overall evolution rate from the resonant heating process, to
be described below. An appropriate concentration ensures
that a realistic range of orbital timescales are included. The
conclusions are weakly dependent on the inner proÐle and
other structural details of the model for high concentration
(see ° 4.4.4).

The radius and mass concentration is chosen according
to two fundamental-plane relations. The Ðrst is based on the
virial theorem and the Faber-Jackson relation, L P p4

& Jackson which results in the following(Faber 1976),
scaling :

RP M1@2 (1)

and o P M~1@2. The concentration parameter is invariant
under any fundamental-plane scaling that also assumes the
Faber-Jackson relation. Therefore, all three King model
parameters, mass, tidal or maximum radius, and concentra-
tion, are Ðxed for each secondary of given mass. The second
is based on recent observed fundamental-plane relations
(e.g., Djorgovski, & de Carvalho S. M. FaberPahre, 1995 ;
1995, private communication) :

RP M0.9 . (2)

To reduce the overall number of parameters in this study, I
have chosen to retain the constant-concentration models,
even though recent fundamental relations predict that
central density, and therefore concentration class, scales
with mass. Changes in concentration predominantly change
the inner proÐle and, as noted, only weakly a†ect the overall
evolutionary track of the accreted secondary.

There are three remaining parameters : orbital energy,
orbital eccentricity, and a secondary-to-primary mass ratio.
Orbital evolution is determined using local dynamical fric-
tion that requires the secondary to be inside the primary
(see °° and The initial orbits for the secondaries,3.4 4.4.3).
then, are chosen to have an energy whose circular orbit
encloses 99% of the primary mass. In other words, we con-
sider evolution just subsequent to capture. Eccentricity is
parameterized by the ratio of orbital angular momentum to
the maximum deÐned by the energy of the orbit, i 4

and Ðve values are chosen : 0.1(0.2)0.9. A pureJ/Jmax(E),
circular (radial) orbit has i \ 1.0 (i \ 0.0). Because a cap-
tured elliptical is likely to be on a plunging orbit, we will
emphasize the i \ 0.1 case. A parabolic encounter would
have a larger value of i. The model proÐle and location of
initial orbits in the model are shown in Finally,Figure 1.
each set of Ðve orbits is evolved for four di†erent secondary-
to-primary mass ratios : 10~4, 10~3, 10~2, and 10~1.

Dimensionless units are chosen for the King model such
that G\ M \ 1 and total gravitational potential energy
W \ [1/2. For the King model, withW0\ 9.5 Rcore \ 0.5
outer radius in these units. I will take a ÐducialRmax\ 7.91
central cluster galaxy to have inside ofM \ 1014 M

_which sets the timescale quoted in years inRmax\ 300 kpc,
This Ðducial choice is similar to that for M87 (e.g.,° 4.

& Tremaine & Tremblay ABinney 1987 ; Merritt 1993).
di†erent choice simply shifts the quoted timescale by the

2 The concentration parameter is deÐned as log c4 log10 (Rmax/Rcore).

FIG. 1.ÈDensity, mass, and potential for King model inW0\ 9.5
dimensionless units. The model is nearly isothermal for The0.05[ r [ 5.
lower right panel shows the pericenter and apocenter radii for each orbit
(ends of segments) and guiding center (circular orbit) radii (solid dots).

ratio

T
T0

\
A M
1014 M

_

B~1@2A Rmax
300 kpc

B3@2
. (3)

For reference, orbital periods for the Ðducial scaling whose
guiding center radii enclose 10%(20%)90% for
i \ 0.1(0.2)0.9 are described in Figure 2.

3. METHOD OVERVIEW

Evolution in the cannibalized ellipticals is caused by the
following four interacting physical e†ects : (1) resonant
heating and orbit shocking ; (2) self-consistent gravity ; (3)

FIG. 2.ÈPeriods of orbit scaled to a central cluster galaxy with M \
and The dots represent the orbital periods with1014 M

_
Rmax \ 300 kpc.

the guiding center radius enclosing 10%(20%)90% of the primary mass.
The values i \ 0.1(0.2)0.9 are ordered from bottom to top.
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tidal stripping ; and (4) dynamical friction. These will be
brieÑy described below, with additional detail in Appen-
dices A and B. We will see that dependencies in the e†ect of
the four physical processes govern the subsequent evolu-
tion.

3.1. Resonant Heating
The orbiting secondary galaxy experiences a di†erential

or tidal force. The combined strain and compressive force
are time-dependent and can do work on the secondary
galaxy. If the change in tidal force is rapid compared with
internal orbital timescales, a gravitational shock, the work
can be computed using the impulse approximation.
However, even if the change in strain is slower than internal
orbital timescales, signiÐcant work may still be done : most
realistic galaxies will have resonances between the two (or
more) internal orbital frequencies, the external forcing fre-
quency that leads to signiÐcant energy and angular momen-
tum exchange (W1; W2; W3).

More picturesquely, the time-dependent force will excite
a wake in the secondary. The wake will be dominated by a
quadrupole or barlike distortion whose pattern speed is
determined by the external frequency. Similar to torquing
by spiral arms, this ““ bar ÏÏ then couples to the tidal force,
transferring energy and angular momentum to resonant
orbits. The perturbation theoryÈderived heating rates used
here are in good agreement with n-body simulations (cf.

Hernquist, & Weinberg with theMW2; Johnston, 1996),
advantage of being able to follow a weak disturbance
without noise.

3.2. Self-Consistent Gravity
By JeansÏs theorem (e.g., & Tremaine anBinney 1987),

equilibrium of regular orbits is described by a phase-space
distribution function, f \ f (I), where the I are the actions (or
energy and angular momentum for a spherical system). The
associated potential and density solve the Poisson equation
by construction. Although the actions of most orbits are
invariant to the slowly changing tidal strain, the resonant
heating described above changes the actions of some small
subset of orbits, resulting in a slightly out of equilibrium
system.

At regular intervals, the Poisson equation is solved iter-
atively to maintain equilibrium. Because the external force
is assumed to do negligible work on an internal orbital
timescale, all external perturbations may be temporarily
turned o†, which Ðxes the actions and simpliÐes the solu-
tion. So the overall evolution consists of two phases : (1)
evolution of phase space due to external perturbations in a
Ðxed gravitational potential and (2) dynamical readjust-
ment with all perturbations removed. Practically speaking,
a new equilibrium is only computed when the changing
phase-space distribution implies a 1%È2% change to the
density proÐle.

As the equilibrium proÐle evolves, new orbits become
resonant with the external force. In this way, a small set of
resonant orbits at any one time can change the global struc-
ture over a number of dynamical timescales. Finally, for the
results below, the resulting equilibrium phase-space dis-
tribution is forced to be spherical and isotropic. This is not
an in-principle demandÈthe numerical implementation is
generalÈbut a choice driven by available CPU time (see
° 4.4.1).

3.3. T idal Stripping
The outer boundary of a secondary is deÐned by the

points at which a star is more strongly attracted by the
primary. For a circular orbit, this point is the analogous
inner Lagrangian point in the restricted three-body
problem. However, for an eccentric orbit, this is not an
easily parameterized problem; these points change as the
secondary orbits, resulting in foliated stable and unstable
regions (e.g., N-body simulations suggestKeenan 1981).
that setting the boundary to the inner Lagrangian point at
perigalacticon is a fair prescription.

The location of the inner Lagrangian point scales with
the ratio of mean density of the secondary to mean density
of the primary enclosed with the secondaryÏs orbit. There-
fore, as the secondary evolves because of time-dependent
heating, as described in stars may Ðnd themselves on° 3.1,
the unbound side of the tidal limit. This loss of material also
changes the equilibrium. If too much material is evapo-
rated, global equilibrium may be lost, and the smaller
galaxy ““ disrupts.ÏÏ

3.4. Dynamical Friction
Finally, the orbit itself is evolving by dynamical friction.

For small secondaries, ChandrasekharÏs dynamical friction
formula is an acceptable approximation (Chandrasekhar

see, e.g., & Tremaine This approx-1943 ; Binney 1987).
imation assumes that the primary is inÐnite and homoge-
neous with the local value of density and distribution of
velocities. The drag force is perpendicular to the motion of
the secondary assuming velocity isotropy. For large second-
aries, the situation is more complex (e.g., &Hernquist
Weinberg but the local approx-1989 ; Weinberg 1989),
imation will be used for simplicity. Further consequences of
the decaying orbit are an increasing resonant heating rate
and a stronger tidal limit, both of which accelerate the evol-
ution (see for further discussion).° 4.4.3

4. EVOLUTION OF SATELLITE GALAXIES

The models and methods of °° and are applied to2 3
groups of 20 models each. Each group of twenty has four
mass ratios, 10~2, 10~3, and 10~4, and ÐveMratio \ 10~1,
eccentricities, i \ 0.1(0.2)0.9 (cf. The two groupsFig. 1).
discussed here have guiding center orbits that enclose 99%
of the primary mass. The Ðrst group uses the virial scaling,
and the second uses the observed fundamental-plane scaling
(cf. ° 2).

Let us recall that the physical times quoted below assume
a primary mass of inside of 300 kpc.1014 M

_
Equation (3)

may be used to scale to any desired primary mass and
radius.

4.1. Disruption and Survival
Figures and describe the mass evolution for3, 4, 5, 6

fundamental-plane ellipticals as a function of initial eccen-
tricity for the four mass ratios. The contours indicate the
mass fraction remaining at the time indicated. The vertical
axis shows increasing initial orbital eccentricity. Galaxies to
the right of the 0.05 contour have completely evaporated.
Heating and stripping is severe for the most eccentric orbits
and the highest mass ratios. For the ratio 10~1, the orbit
decays in approximately ten orbits, and the galaxy has
evaporated for all eccentricities by roughly 1 Gyr (Fig. 3).
We will see in that evaporation occurs near the center° 4.2
of the host galaxy.
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FIG. 3a FIG. 3b

FIG. 3.ÈContours show remaining mass fraction (key at upper left of each panel) as a function of time (logarithmic scale) and initial value of i \ J/Jmax .The secondary-to-primary mass ratio is 10~1. (a) The virial fundamental-plane scaling. (b) The observed fundamental-plane scaling. The scalloping in the
contours is caused by the projection of a Ðnite grid.

FIG. 4a FIG. 4b

FIG. 4.ÈSame as but for mass ratio 10~2Fig. 3,

FIG. 5a FIG. 5b

FIG. 5.ÈSame as but for mass ratio 10~3. The range in time is extended to accommodate alternative scalings.Fig. 3,
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FIG. 6a FIG. 6b

FIG. 6.ÈSame as but for mass ratio 10~4. The range in time is extended to accommodate alternative scalings.Fig. 3,

The trends are similar for smaller mass ratios. A 1%
secondary evaporates in 10 Gyr for a nearly circular(Fig. 4)
orbit and in roughly 2 Gyr for an eccentric orbit. A 0.1%
secondaryÈa large dwarf galaxyÈdoes not completely
evaporate in 10 Gyr even for an eccentric orbit, although it
is close. Evolution is slower for smaller mass ratios because
(1) the density of the secondary is larger and therefore
couples more weakly to the tidal Ðeld, and (2) the orbital
decay rate, which is proportional to the mass ratio, is
slower.

4.2. Orbital Decay
shows the orbital evolution of initially i \ 0.1Figure 7

orbits for the four mass ratios. The decay rate is computed
using ChandrasekharÏs formula with ln "\ max

where is the radius of the guiding[ln (Rcirc/r1@2), 0.1], Rcirccenter for the secondary orbit and is the current half-r1@2mass radius of the secondary. Orbital torques are also com-
puted in the local approximation with ChandrasekharÏs
formula. These eccentric orbits become more circular
during their decay as previously described by(Fig. 8),

& van Albada Initially, the i \ 0.1 orbitsBontekoe (1987).
with guiding center trajectories enclosing 99% of the
primary mass have apocenters outside the primary (cf. Fig.

which may lead to an overestimate of the decay time. For1),
the Ðducial model only(M \ 1014 M

_
, Rmax\ 300 kpc),

the 10% and 1% mass ratio secondaries can decay into the
center in roughly 10 Gyr. The decay time for lower mass
galaxies is increased by the concurrent mass loss.

The longer lifetimes for large initial i are due to the lower
stellar density in the path of the secondary and the pro-
portionately longer decay times. For secondaries with

and i \ 0.3(0.2)0.9, the decay rate is nearlyMratio\ 10~2
constant for orbits in the inner primary (roughly inside the
half-mass radius of 60 kpc). The rate increases with decreas-
ing initial eccentricity because the secondary spends a larger
fraction of its time at higher primary density. This trend
decreases the spread of decay times with eccentricity but
does not compensate for the slower initial evolution of low-
eccentricity orbits.

Similarly, the steep gradient in time across the mass con-
tours in Figures reÑects the rapid mass evolution that3È6

takes place during the Ðnal stage of orbital decay. This
trend is maintained at the smallest mass ratios, although full
decay takes longer than a galactic age for the Ðducial
scaling.

Combining the results of this and the previous sub-
section, we reach the conclusion that satellites that can fall
to the center of a cluster giant by dynamical friction are
evaporated by internal heating. In all cases described, the
decay occurs over at least ten orbits. Shorter decay times
may not permit full evaporation.

4.3. Distribution of Stripped Material
As the secondary is stripped and evaporated, its stars

preserve the instantaneous orbit and build up the primary,
as suggested by The relative density dis-Richstone (1976).
tributions for secondaries on eccentric orbits, i \ 0.1, and
the four mass ratios are shown in Figure 9.

The higher mass secondaries, and 10~2,Mratio \ 10~1
lose mass quickly. Material is lost most quickly at peri-
center, and individual episodes of mass loss during each
orbit are visible in the outer galaxy. For 90%Mratio \ 10~1,
of the mass is lost within the half-mass radius of the primary
and 20% within 4 core radii. Overall, the remnant proÐle is
steeper than the primary and could be a signiÐcant contrib-
utor to the inner light after a few such events. The two
low-mass ratio cases, and 10~4, lose massMratio \ 10~3
more gradually, and the distribution of stars lost in the
outer primary is more extended than the primary, approx-
imating a r~2 distribution. Both have guiding center radii
larger than the primary half-mass radius and have lost
roughly 80% and 50% of their total mass at the point
depicted.

Overall, these results suggest that mass evaporated from
the secondary is distributed similarly to, and maybe steeper
than, the proÐle of the primary. After many accretion events,
the merged proÐle will be slightly more concentrated.

4.4. Comparison with Previous W ork
Recent work on dwarf-spiral galaxy mergers suggests

that the distribution of stripped material depends on both
the concentration of the secondary and the orbital decay
time. Simulations by Mihos, & HernquistWalker, (1996)
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FIG. 7a FIG. 7b

FIG. 7c FIG. 7d

FIG. 7.ÈThe orbital evolution for initial i \ 0.1 orbits for the four mass ratios 10~1, 10~2, 10~3, and 10~4 (right to left, top to bottom) with observed
fundamental-plane scaling (cf. Figs. Satellites with and 10~2 have zero mass at the Ðnal time shown.3È6). Mratio \ 10~1

show that a rapidly sinking satellite (infall in a few orbital
times) is tidally stripped but can survive the accretion event.
Simulations by & Carlberg show the con-Huang (1996)
verse : the orbital decay takes many orbital times, during
which the satellites are stripped and evaporated. Similarly,

Hernquist, & Fullagar who generalize theQuinn, (1993),
earlier work of & Goodman Ðnd that theQuinn (1986),
secondary is completely stripped near the center, building
up the inner regions by 10%È20%. The orbital decays take
place over roughly six orbits. Considered together, these
results suggest that survival or evaporation is correlated
with sinking time. Based on the work here, these trends are
expected : a larger infall rate reduces the integrated tidal
work and the likelihood of evaporation.

Unfortunately, very little n-body work on merging self-
consistent primary and secondary elliptical galaxies with
masses di†ering by orders of magnitude has been reported.
A search of the literature (G. D. Quinlan 1996, private

communication) revealed one similar n-body study by
& Quinn hereafter who performedBalcells (1990, BQ),

simulations with with rotating systemsMratio \ 0.1, 0.2
designed to explore the formation of counterrotating cores.
The remainder of this section will discuss the inherent
approximations in both the semianalytic and the n-body
approaches, and compare this with the result in particu-BQ
lar.

Although the overall secondary evolution and distribu-
tion of stripped mass proÐles described in °° are4.1È4.3
qualitatively similar to the resulting surface densitiesBQ,
di†er by an order of magnitude ! Discrepancies between the
two are likely to be caused by at least one of the following
four features : (1) production of velocity anisotropies, (2) the
validity of the perturbation approach for large secondaries,
(3) di†erent treatment of the orbital decay, and (4) di†er-
ences in concentration and mass proÐles. We discuss the
sensitivity of our predictions to each of these below and
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FIG. 8.ÈThe change in for mass ratios indicated for orbitsi \ J/Jmaxwith i \ 0.1 initially.

show that a plausible variance can resolve much of the
discrepancy.

4.4.1. Orbital Anisotropy

For computational expediency, the computations
described here do not follow the evolution of velocity aniso-

tropies in the secondary. Instead, isotropy is enforced by
assuming that the phase-space distribution is a function of
energy alone, f \ f (E). This simpliÐes the solution of the
Poisson equation for f, which is an integro-di†erential equa-
tion (e.g., The same iterative method is gener-Cohn 1979).
alized straightforwardly to solve the spherical anisotropic
case with f \ f (E, J) but is intensive computationally.
Because the high-eccentricity stellar orbits will be prefer-
entially lost, the isotropy assumption probably leads to an
overestimate of the mass loss. (see their Fig. E1)MW2
compare the run of remnant mass with time for both an
n-body simulation and the semianalytic approach used
here. At early times, the agreement is excellent. At late
times, the mass of the n-body remnant is larger than for the
semianalytic simulation because of circular anisotropy, in
addition to nonlinearity and relaxation.

4.4.2. Perturbation T heory L imits

It is difficult to assess precisely the limits of validity for
the perturbation theory without a targeted study. However,
direct comparison of this approach with n-body simulation
at the phase-space level agrees extremely well for small-
mass ratios (e.g., et al. For largeMW2; Johnston 1996).
secondaries, the the dynamical approximationsMratioZ 0.1,
made here will fail in the late stages of the accretion event.
Near the center, the tidal radius of the secondary can be as
large as the orbital radius, and the remnant mass can be as
large as the primary mass enclosed within the orbital radius.
This invalidates both the tidal force approximation and the
local dynamical friction formula (see For this case,° 4.4.3).
these Ðnal stages will be better described as a merger than a
combination of orbital decay and tidally driven evapo-
ration.

FIG. 9.ÈDistribution of stripped material from disrupting secondary (solid curve) compared with the background density (dashed curve) at three mass
ratios (labeled). These use the virial scaling and dimensionless units (° 2.1).
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4.4.3. Orbital Decay

The orbital decay described in for° 4.3 Mratio \ 10~1
occurs over 10 orbits, with the largest fraction of the sec-
ondary evaporating in or near the core (cf. top leftFig. 9,
panel). Orbital decay is more rapid in occuring overBQ,
roughly three orbits. This and a previous discussion point
toward orbital decay as a major part of the discrepancy.
The orbital decay rate a†ects the secondary evolution in
two ways. First, for a constant heating rate, the distribution
of stripped material would be relatively extended for slow
infall and centrally concentrated for rapid infall. Second, if
the decay rate is rapid, the likelihood that the secondary
survives infall to the center increases because the time-
integrated tidal work on the secondary will be smaller. In
reality, the heating increases toward the center, but overall
the amount of material deposited in the center will increase
as the decay time decreases. Survival or evaporation, then,
depends on the orbital decay rate.

ChandrasekharÏs dynamical friction formula (cf. ° 3.4)
treats the primary galaxy as an inÐnite homogeneous
medium and will only be accurate for very small second-
aries. The overall response of the primary will be important
for large secondaries (e.g., In addition, theWeinberg 1989).
local dynamical friction formula will overestimate the decay
rate for a small remnant orbiting in the core. These prob-
lems may suggest using n-body methods exclusively, but
n-body simulations do not resolve this issue easily. Simula-
tions with too few particles overestimate the merger times
because noise acts to amplify drag (e.g., & CombesLeeuwin

Clearly, this subject requires further work.1996).
Nonetheless, we may explore the e†ects of di†erent decay

rates with the semianalytic machinery. describesFigure 10

the distribution of stripped material for decay rates
increased successively by a multiplicative factor. The soft-
ened Ja†e proÐle used by is similar to a KingBQ W0\ 6.5
model, and their orbit has i B 0.5. The run in the left panels
in the Ðgure have the the Ðducial form of ln ", and those in
center and right panels have ln " increased by factors of 1.5
and 2, respectively. For the default value of ln ", the second-
ary disrupts outside the core. By increasing ln " by a factor
of 1.5, the decrease in decay time allows the secondary to
nearly reach the core before disrupting. By increasing ln "
by a factor of 2, the secondary reaches the core before dis-
rupting and joins the secondary distribution. The resulting
proÐle with enhanced dynamical friction is similar to Figure

in although the semianalytic results underproduce10 BQ,
the central buildup. The orbital decay rate in the 2 ] ln "
case is comparable to that of However, the details ofBQ.
the proÐle inside the core radius are not reliable because the
dynamics of the merging are not taken in account.

4.4.4. Central Concentration

shows the space density of stripped materialFigure 11
relative to the background proÐle for King models with

and the singular isothermal sphere (labeledW0\ 6È11
As in the primary and secondary have theW0\ O). ° 4.3,

same proÐle initially. The accreted galaxies have 1% of the
primary mass and i \ 0.1 initially. The choice of Mratio\10~2 helps ensure the validity of the perturbation approach.
As in previous Ðgures, the results are not phase-averaged,
and distinct features in these proÐles are due to particular
orbits. For the highest and lowest mass concentrations, the
singular isothermal and cases, the accreted galaxyW0\ 6
survives and settles at the center with roughly 10% and

FIG. 10.ÈDistribution of stripped material for a King model family with i \ 0.5 and M \ 0.1 for comparison with The values of ln " thatW0\ 6.5 BQ.
are larger than the Ðducial value by a factor of 1 are shown.
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FIG. 11a FIG. 11b

FIG. 11.ÈDistribution of stripped material for proÐles relative to the background for di†erent central concentrations (label at left)

20% remaining, respectively. The proÐles in doFigure 11
not include the mass of the survivor. In all other cases,
evaporation occurs near the center. For low-concentration
galaxies the relative density of the stripped(Fig. 11a),
material increases toward the center. For the sec-W0Z 7,
ondary is evaporated before reaching the core and produces
a peak in the relative density at that point. The heating
outside the core increases with concentration. The run of
relative density is similar for King models with W0Z 9.5.
The peak relative density of 40% for the case isW0\ 6
remarkable considering the 1% initial mass ratio. The
stripped-mass proÐle for the singular isothermal sphere is
more centrally concentrated and, with a peak relative
density of 20%, nearly an order of magnitude higher than
the case.W0\ 11

In summary, the trends with concentration reveal a com-
plicated interplay between the details of the proÐle and the
heating rate, preventing generalization. The proÐle deter-
mines both the orbital decay of the secondary and the fre-
quencies of the perturbing tide on the stellar orbits of the
secondary. Surprisingly, the low-concentration King
models are less subject to tidal evaporation. The evapo-
ration rate for the core-free singular isothermal model is
lower than the King models at large radii and much higher
at small radii. It is not clear whether or not other cuspy
proÐles will follow suit.

5. SUMMARY

The major conclusions of this work are as follows :

1. Time-dependent heating can evaporate secondaries
with mass ratios as small as 1% within a galactic age. Satel-
lites that can fall to the center of a cluster giant by dynami-
cal friction are evaporated by tidal heating in the process,
provided they do not fall too quickly (e.g., in fewer than
roughly Ðve orbits). The boundary between survival and
evaporation will depend on the orbital decay rate. The dif-
ference with the naive prediction that the denser satellite
galaxies will invariably survive orbital decay is due to the

breakdown of the one-dimensional adiabatic invariant in
three-dimensional stellar systems, as described in MW1.

2. Secondaries with mass ratios as small as 0.1% on
eccentric orbits are signiÐcantly evolved and nearly evapo-
rated. Because capture by dynamical drag will preferentially
produce high-eccentricity companions, this predicts a lower
limit : captured secondaries with mass smaller than 0.1% of
the primary will survive.

3. The proÐle of the mass loss as the satellite decays is
similar to, but slightly more concentrated than, that of the
original primary. This implies that the concentration of the
cluster giant will increase gradually after many mergers.

4. Evaporation occurs near the center of the primary ;
material from both cores combine into a single entity. This
suggests that long-lived multiple nuclei giants should be
rare. Of course, the accretion event will appear as a multiple
nucleus system over the Ðnal few orbits. This scenario does
not address the possibility that a massive accretion event
will lead to a nuclear gas accretion and a burst of star
formation & Mihos and perhaps form a(Hernquist 1995),
second nucleus in situ.

5. The details of the evolution depend intimately on
stellar orbits in both the primary (through dynamical
friction) and the secondary (through tidal heating). This is a
complicated multiscale problem. The semianalytic
approach treats the orbital dynamics accurately but fails in
the late stages of evolution when nonlinear interaction is
important. The n-body approach gives insight into the late
stages of merger-dominated evolution, but accurate
resolution of the orbital dynamics is challenged by particle
““ noise.ÏÏ This motivates a combined approach for future
work.
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the Sloan Foundation.
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APPENDIX A

ORBIT SHOCKING

Shocking caused by an oscillatory perturbation is a straightforward variant and is somewhat easier to compute than a
one-shot adiabatic disturbance described in For example, if a cluster is dynamically part of the thick disk, then theW2.
perturbation has the form where g(t) is then a periodic function of time. The function g(t) may be expanded as aV

p
\ g(t)z2,

Fourier series in its vertical oscillation period, P :

g(t)\ ;
k/~=

=
g
k
eikut , (A1)

where u\ 2n/P and

g
k
\ 1

P
P
0

P
dtg(t)e~ikut . (A2)

The Laplace transform of this Fourier series is trivial and is

gü \ ;
k/~=

= g
k

s [ iku
. (A3)

For physical scenarios (e.g., smooth and continuous mass proÐles), will converge rapidly with increasing o k o. The time-gkdependent perturbation theory is not sensitive to and does not require frequency stability over many orbital periods. A slow
drift due to orbital decay or a wobble due to nonaxisymmetric perturbations will only broaden the frequency distribution of
the resonance. The e†ect on the system will be negligible as long as the frequency breadth is small compared with the stellar
orbital frequencies. The calculation is analogous for orbit shocking with the following changes :

1. The potential perturbation expansion will be more general than the z2 dependence and will include all second-order
moments (all terms).Y 2m2. The Fourier expansion of g(t) will have two indices corresponding to the radial and azimuthal periods of the cluster
orbit.

See for details.MW2
We are only interested in the long-term secular change in the distribution function, after any transients have decayed.

Following we Fourier and Laplace transform the perturbed Boltzmann equation. The secular contribution is secondW2,
order in the distribution function, and the inverse Laplace transform leads to the desired result. As mentioned above, any slow
variation in the function g(t), e.g., due to the initial conditions or the evolution itself, has little e†ect on the secular change that
allows one to eliminate the temporal details altogether Alternatively, one can choose a convenient form for the(MW2).
long-term behavior g(t), such as a square pulse, and perform the transforms explicitly. Either way, for timescales that are large
compared with the stellar orbital times, the secular change due to heating becomes

df2
dt

\ n ;
k,l

o g
k
o2l Æ L

LI
(V

tl
V
t~l

)l Æ Lf0
LI

d(ku] l Æ )) ,

where denotes the action-angle transform of the tidal potential. As described in this expression has the formV
tl

MW2,

Lf
Lt

\ df2
dt

\ L
LE
C
A(E)

Lf
LE
D

, (A4)

which may be solved by standard techniques (e.g., Crank-Nicholson or schemes).Chang-Cooper 1970
A paper in preparation will describe the e†ects of disk shocking, orbit shocking and thick-disk shocking on the galactic

population of globular clusters.

APPENDIX B

TIDAL PERTURBATION

To compute the e†ect of an orbit in a galaxy, the galactic potential may be expanded in a frame that follows the cluster but
is nonrotating. The force is

F
t
\ [+' o

R`r
] +' o

R
, (B1)

F
i
B [

K
;
j

L2'
Lx

i
Lx

j

K
R/R(t)

x
j
, (B2)
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where R describes the cluster, and r the position of a star relative to the cluster. The tidal potential then follows directly :

V
t
\ 1

2
K CAd2'

dR2[ 1
R

d'
dR
B (R Æ x)2

R2 ] 1
R

d'
dR

r2
D K

R/R(t)
. (B3)

Expanding in spherical harmonics, perturbed quantities may be computed as outlined in the Appendix A. Theequation (B3)
noninertial velocity-dependent forces are not easily incorporated into a potential and have been ignored here.
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