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ABSTRACT
We derive the criteria for deÑagration to detonation transition (DDT) in a Type Ia supernova. The

theory is based on two major assumptions : (1) detonation is triggered via the Zeldovich gradient mecha-
nism inside a region of mixed fuel and products, and (2) the mixed region is produced by a turbulent
mixing of fuel and products either inside an active deÑagration front or during the global expansion and
subsequent contraction of an exploding white dwarf.

We determine the critical size of the mixed region required to initiate a detonation in a degenerate
carbon-oxygen mixture. This critical length is much larger than the width of the reaction front of a
Chapman-Jouguet detonation. However, at densities greater than ^5 ] 106 g cm~3, it is much smaller
than the size of a white dwarf. We derive the critical turbulent intensity required to create the mixed
region inside an active deÑagration front in which a detonation can form. We conclude that the density

at which a detonation can form in a carbon-oxygen white dwarf is low, less than 2È5 ] 107 g cm~3otrbut greater than 5 ] 106 g cm~3.
Subject headings : hydrodynamics È stars : interiors È supernovae : general

1. INTRODUCTION

The standard model for Type Ia supernovae (SN IaÏs) is
an explosion by a process of thermonuclear combustion.
One-dimensional calculations show that the two possible
modes of this combustion are either supersonic detonation
or subsonic deÑagration & Wheeler(Arnett 1969 ; Hansen

Imshennik, & Chechetkin1969 ; Ivanova, 1974 ; Nomoto,
Sugimoto, & Neo Thielemann, & Yokoi1976 ; Nomoto,

There is evidence, both theoretical and empirical,1984).
that SN IaÏs involve a transition from a deÑagration to a
detonation, or DDT (Khokhlov &1991a, 1991b ; Arnett
Livne Khokhlov, & Wheeler1994 ; Ho� Ñich, 1995 ; Ho� Ñich

et al. & Khokhlov and1995 ; Wheeler 1995 ; Ho� Ñich 1996
references therein). Pure detonation models tend to produce
an excess of iron-peak elements, rather than the
intermediate-mass elements that are observed in the outer
layers of SN IaÏs. Models in which DDT occurs can account
for the properties of SN IaÏs, including the observed corre-
lated dispersion in light curve amplitude and decay rate

et al. & Khokhlov In such(Ho� Ñich 1995 ; Ho� Ñich 1996).
models, the burning front starts as a deÑagration that
makes a transition to a detonation directly (the standard
““ delayed detonation ÏÏ model) or after the star has expanded
because of partial burning and then recompressed (the
““ pulsation delayed detonation ÏÏ). In these models, the
density at which DDT occurs is a free parameter. The com-
parison of these models with observations suggests that
DDT must occur at relatively low densities, of the order of
107 g cm~3. In this paper we address some of the key physi-
cal issues of DDT. In particular, we address the physical
mechanism by which DDT may occur in supernovae, and
why it might occur at low densities. The process of DDT is
not well understood in either supernovae or in terrestrial
combustion. Many of the principles presented here apply to
terrestrial conditions as well.

The analysis we present is based on a theory of uncon-
Ðned DDT Oran, & Wheeler It is(Khokhlov, 1996b).

assumed that the inherent mechanism of DDT is the Zeldo-
vich gradient mechanism et al. in which(Zeldovich 1970),
ignition in a region of induction time gradient leads to the
development of a reaction zone and a shock that coalesce to
form a detonation. In this theory, it is presumed that a
mixed region with gradients of temperature and composi-
tion, the combination of which results in an induction time
gradient, is created within a deÑagration region by turbu-
lence that microscopically mixes hot products and cold fuel.
Two quantities must be determined : the size of the critical
region, required for a self-propagating detonation toL

c
,

develop, and the amount of mixing (the intensity or velocity
of turbulence) required to produce that critical length of
mixing.

In supernovae, there are two situations in which DDT
could occur. First, DDT could occur directly, when turbu-
lent deÑagration alone creates a large mixed region that
ignites. For this process to occur, the Ñame surface associ-
ated with laminar burning has to be destroyed by turbu-
lence. When the laminar Ñame front is destroyed, reactions
will still continue at rates depending on the density and
temperature, but microscopic chemical and thermal mixing
of fuel and product occurs. The second way to initiate DDT
is for the deÑagration to die as a result of expansion before
the DDT occurs. If insufficient energy has been liberated,
the star will expand and then contract. Mixing of fuel and
products and the subsequent DDT may occur during the
contraction phase.

In this paper we Ðrst examine the mixing process and
determine the thermodynamic properties of the mixture as a
function of the degree of mixing. We show that these ther-
modynamic properties can be characterized by a single
parameter (e.g., the mass fraction of fuel), and that the
history of mixing, that is, whether mixing occurs before,
after, or during a pulsation phase, does not change the ther-
modynamic properties of the mixture signiÐcantly. We
derive the critical length scale to initiate a detonation by the
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Zeldovich mechanism. Next, we evaluate the turbulent
intensity necessary to break a laminar Ñame and to create
the conditions for DDT. This required the calculation of the
laminar Ñame speed and laminar Ñame thickness over a
wide range of densities, 3] 107È1010 g cm~3. Finally, we
estimate the critical density for DDT based on the existing
three-dimensional simulations of turbulent deÑagration in
SN IaÏs and discuss implications of the results for supernova
models.

2. THERMODYNAMICS OF MIXING

Consider a subsonic mixing process that occurs at
approximately constant pressure and assume that no reac-
tions occur during mixing. The conservation of mass and
enthalpy during mixing gives the thermodynamic param-
eters of the mixture,

h(T
m
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where h is the enthalpy ; f, p, and m stand for fuel, product,
and mixture of products and fuel, respectively ; and is theX

ffuel mass fraction in the mixture. We assume that the state
of the products, p, is determined by conservation of enth-
alpy during constant pressure burning in a deÑagration
wave,
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where *q is the energy released by nuclear reactions.
The value of *q depends on the density at which the

laminar Ñame is either quenched by turbulence or quenched
by expansion and is not known exactly. If the Ðnal stage of
deÑagration takes place at very low densities, say, less than
107 g cm~3, then only carbon would be able to react in a
deÑagration wave. Temperatures resulting from carbon
burning would be so low that oxygen would not react. In
this case, we expect *q ^ 3.7] 1017 ergs g~1, and the pro-
ducts of burning would consist predominantly of half
silicon and half oxygen by mass. At higher densities, both
carbon and oxygen will burn to form silicon group ele-
ments. For the latter case, we pick a typical value of
*q ^ 6 ] 1017 ergs g~1. Below we refer to these two choices
as cases A and B, respectively.

Now consider mixing and changes in pressure resulting
from global adiabatic expansion or contraction. For a
perfect gas, the order of mixing and expansion or contrac-
tion does not change the Ðnal state of mixed material. For
the equation of state of white dwarf material, this is not an
exact statement, but we show that it is a good approx-
imation.

shows the results of the following numericalFigure 1
experiment using the degenerate matter equation of state
described in the next section. A half-carbon, half-oxygen
fuel at density 5] 106 g cm~3 (point f in was burnedFig. 1)
at constant pressure to reach a half-silicon, half-oxygen
mixture (point p) and then mixed with at constantX

f
\ 0.5

pressure to yield the conditions at point Alternatively,m0.both fuel and products were expanded adiabatically by a
factor of 100 (to points f @, p@), and then mixed at constant
pressure to produce the conditions at point m@. Finally, the
mixture was returned along the adiabat to the initial pres-

FIG. 1.ÈComparison of thermodynamic properties of mixtures m and
formed by mixing the same products and fuel at high and at lowm0pressure, respectively.

sure. The Ðnal state, point m, is very close to even underm0,this extreme adiabatic expansion and contraction. The dif-
ference in temperature between points m and m@ is 5%, and
the di†erence in density is 7%. We conclude that, to a very
good approximation, the thermodynamic properties of a
mixture do not depend on the history of the mixing and
expansion processes. We make that assumption in the fol-
lowing analysis and neglect the order in which mixing and
expansion or contraction occur.

Mixing cold fuel and hot products raises the entropy of
the mixture, so that the mixture will ignite at lower density
than the fuel alone. For cases A and B, gives theFigure 2
density at which the energy-release rate in the fuel-product
mixture is 1/10 of the maximum energy-release rate for iso-
choric burning at this density. The maximum release rate
occurs after ignition, as the temperature rises and before
fuel is consumed. Once the mixture is at this density, the
induction time is very short, only 10 times the characteristic
time required to burn all of the fuel. The Ðgure shows that
for a pure fuel to ignite, it needs to be compressed to very
high densities. However, even for fuel mixed with rather
small amounts of hot products, the ignition density
decreases drastically and is ^106È107 g cm~3 for a wide
range in fuel fraction. If matter is returning to high densities

FIG. 2.ÈIgnition density as a function of the fuel fraction.
*q \ 3.7] 1017 ergs g~1 (solid line) ; *q \ 6.8] 1017 ergs g~1 (dashed
line).
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after a pulsation, a mixture containing a noticeable amount
of products cannot be compressed to densities signiÐcantly
in excess of 107 g cm~3 before it ignites. For the pulsation
delayed detonation models, therefore, the thermodynamic
considerations place a limit on the conditions at which
DDT can occur : DDT can only occur at densities near or
below 107 g cm~3. For the standard delayed detonation
models, however, no such limit can be placed by thermody-
namic considerations. For both cases, the kinetics and
hydrodynamics of ignition need to be considered to deter-
mine whether DDT can occur at thermodynamically
allowed conditions.

3. CRITICAL LENGTH SCALE FOR DDT

We now determine the critical size of the mixed region
capable of triggering a detonation. It has been shown

et al. that there are two processes that(Khokhlov 1996b)
are necessary for DDT to occur by the Zeldovich mecha-
nism. First, a spontaneous wave must be generated, and a
shock-reaction complex must be formed. This complex
forms somewhere in the middle of the mixed region where
there is both enough fuel and a high enough temperature.
Second, this complex must be able to survive the propaga-
tion into the unburned material.

To estimate the critical size of this region, we consider,L
c
,

as in et al. a nonuniform region createdKhokhlov (1996b),
by mixing the products of isobaric burning and fresh fuel,
such that there is a linear spatial distribution of fuel fraction
X

f
,

X
f
(x) \

Gx/L ,
1 ,

0 ¹ x ¹ L ,
x [ L ,

(5)

where L is the size of the mixed region. This creates a region
of oppositely directed gradients in temperature and concen-
tration of reactants. Initially, the velocity of the material is
zero, and the pressure is constant everywhere. TheP0boundary conditions at x \ 0 are reÑecting walls
(symmetry conditions).

The system is described by the Euler equations coupled
with the nuclear kinetic equations,

Lo
Lt

] $ Æ (oU) \ 0 , (6)

LoU
Lt

] $ Æ (oUU)] $P\ 0 , (7)

LE
Lt
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LY
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where the total energy density E\ E
t
] oU2/2 ]

is the sum of the thermal, kinetic, and nuclearoNAQ Æ Y
energies, U is the Ñuid velocity, is the thermal energyE

tdensity, Y is the vector in the composition space of mole
fractions of nuclei, Q is the vector of corresponding binding
energies per nucleon, and R(o, is the vector of netE

t
, Y)

rates of change of nuclear species with time ; is the Avo-NAgadro number. To describe thermonuclear burning, an
alpha-nuclei reaction network is used with Y\ (4He, 12C,
16O, 20Ne, 24Mg, 28Si, 32S, 36Ar, 40Ca, 44Ti, 48Cr, 52Fe,
56Ni). The equation of state includes contributions from

Fermi gases of electrons and positrons, radiation, and ions.
Further details of the input physics can be found in
Khokhlov (1993).

The system of equations is integrated numerically using a
one-dimensional version of the time-dependent, compress-
ible Ñuid code ALLA based on the piecewise parabolic
method & Woodward & Glaz(Collela 1984 ; Collela 1985),
implemented as Lagrangian step plus remap. Details of the
implementation are given in andKhokhlov (1995)

Oran, & Wheeler The nuclear reactionsKhokhlov, (1996a).
are coupled to Ñuid dynamics by time-step splitting. The
kinetic equations are integrated together with the equation
of energy conservation using a sti† solver with adjustable
substeps to keep the accuracy better than 1%. Most compu-
tations were done using a grid with 1024 equidistant com-
putational cells. The convergence of the numerical solutions
was tested for selected cases by varying the number of cells
from 1024 to 4096. Computations were carried out in both
planar and spherical geometries.

Computations were performed assuming that the pro-
ducts of burning that formed the mixture (state p in the
thermodynamic relations given in eqs. are charac-[1]È[4])
terized by the value of the energy released by the deÑa-
gration *q \ 4 ] 1017 ergs g~1, or *q \ 3 ] 1017 ergs g~1.
These values are close to case A of and have been selec-° 2
ted to test the sensitivity of the results to *q. For
*q \ 4 ] 1017, the composition of products was taken to
be pure 28Si. For the second value, the composition of pro-
ducts was taken to be half 28Si and half 16O by mass. The
system was prepared in an initial state and then allowed to
evolve in time, Ðrst until ignition took place, then until the
formation (or failure) of detonation, and Ðnally to the time
when the generated detonation or shock left the computa-
tional domain. The results of these computations are not
sensitive to the assumed energy release and composition.
They mainly depend on the density at which explosion
occurs, and on the size of the explosion region.

is an example of a computation in which aFigure 3
detonation successfully forms. The initial density of the fuel
is g cm~3, and the size of the mixed region iso0\ 1.0 ] 107
L \ 5.0] 105 cm. Figures show proÐles of density,3aÈ3e
temperature, pressure, velocity, and carbon mole fraction,
respectively, for selected times. In the initial state, the
density and carbon mole fraction of the mixture increase,
and the temperature decreases as a function of position x.
Because of such opposing temperature and concentration
gradients, the ignition does not occur Ðrst at the origin,
x \ 0, but is shifted to some point x [ 0 where the energy
generation rate is at a maximum. From this point, the igni-
tion spreads out supersonically as a spontaneous wave. A
detailed discussion of spontaneous burning is given in

et al. The overpressure and materialKhokhlov (1996b).
velocity in the spontaneous wave grow with time as the
phase velocity of the burning front decreases. When the
speed of the spontaneous wave approaches the speed of
sound, a shock wave emerges, and a shock waveÈreaction
complex forms. ProÐles 1È3 illustrate the spontaneous wave
propagation. There is no shock present at this stage. Matter
is continuously compressed and accelerated in the process
of burning, and expands and slows down afterward. The
shock-reaction complex forms between proÐles 3 and 4. The
complex continues to propagate through the matter as
density increases and temperature decreases (proÐles 4 and
5), but the strength of the complex grows. Finally, the
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FIG. 3a FIG. 3b

FIG. 3c FIG. 3d

FIG. 3.ÈInitiation of a detonation for g cm~3 and L \ 105 cm. ProÐles are shown for the initial time t \ 0, and for times (1) t \ 2.86] 10~5, (2)o0\ 107
7.05] 10~5, (3) 1.40] 10~4, (4) 1.63] 10~4, (5) 1.90] 10~4, (6) 2.33] 10~4, (7) 2.76] 10~4, and (8) 3.27] 10~4 s. ProÐles are shown for time against (a)
pressure, (b) temperature, (c) density, (d) velocity, and (e) carbon mole fraction. Distribution of nuclear species is also shown ( f ) at the time corresponding to
proÐle 2 and (g) at the time corresponding to proÐle 7.

complex passes into the fully unburnt cold fuel in the form
of a slightly overdriven detonation (proÐle 6), and begins its
relaxation to a Chapman-Jouguet state.

Figures and show the nuclear composition for the3f 3g
times corresponding to proÐles 2 and 7, respectively. These
Ðgures illustrate that at densities g cm~3, the impor-[107
tant reactions are 12C] 12C] 20Ne, 24Mg, 4He, and the
reactions on 20Ne and 24Mg that transform the products of
12C] 12C burning into the 28Si-group elements. Reactions
involving oxygen are less important. The initial amount of
oxygen in the mixture remains practically intact. The energy
release is approximately *q ^ (3.5È4) ] 1017 ergs g~1, con-
sistent with the value of the energy release for the products
of deÑagration adopted above, and with the assumptions
about the energy release made in Figures and° 2. 4a 4b
show a successful initiation of a detonation at a density Ðve
times higher, g cm~3. At this density, burningo0\ 5 ] 107
leads to higher temperatures because of a decrease in the
speciÐc heat of degenerate matter. As a result, oxygen burns
to silicon rather quickly and the energy of the(Fig. 4b),
explosion, *q ^ 7 ] 1017 ergs g~1, is almost 2 times larger
than in the previous case g cm~3.o0\ 107

The shock-reaction complex can survive propagation
down the temperature gradient and can grow into a fully

developed detonation only if conditions in front of the
complex change slowly enough, that is, if L is large enough.
If the variations of preshock density and temperature with
distance occur too rapidly, the reaction zone structure is
unable to adjust to the decreasing reaction rates behind the
shock and is unable to compensate for the energy required
to shock denser fuel.

Figures illustrate the failure of the initiation of a5aÈ5f
detonation at g cm~3 when the size of the mixedo0 \ 107
region was 20% smaller, L \ 4 ] 105 cm, than in the case
presented in Here, too, the spontaneous wave andFigure 3.
the shock-reaction complex form (proÐles 1È3). However,
the complex does not survive the propagation down the
temperature gradient. The shock and reaction separate. The
shock passes into the unburned matter leaving the reaction
wave behind. It is the condition that the complex must
survive the propagation down the temperature gradient,
not the formation of the complex alone, that determines the
critical size of the mixed region.

summarizes the results of a series of many com-Figure 6
putations performed to determine the critical size of theL

c
,

region capable of triggering a detonation, as a function of
fuel density. The value of is a very sensitive function ofL

cdensity. It is virtually independent of assumptions made



0

0

.01

.02

.03

.04

.05

Distance ,  cm

C
ar

bo
n 

M
ol

e 
F

ra
ct

io
n

1 2 3 4 5 6 7 8

0

-12

-10

-8

-6

-4

-2

0

Distance ,  cm

He

C
O

Ne
Mg

Si

Ca

Ti

Cr

0

-12

-10

-8

-6

-4

-2

0

Distance ,  cm

He

C

O

Ne

Mg

Si

Ca

Ti

Cr

682 KHOKHLOV, ORAN, & WHEELER Vol. 478

FIG. 3e FIG. 3f

FIG. 3g

about the energy release *q and composition of the pro-
ducts formed during the preceding deÑagration stage. The
critical length depends, however, on the energy release
during the explosion itself. As was mentioned earlier, the

energy release increases with increasing background
density, which makes the dependence of on density veryL

cstrong. The values of obtained in spherical and planarL
cgeometries are practically the same, because the radius of

FIG. 4a FIG. 4b

FIG. 4.ÈInitiation of a detonation for g cm~3 and L \ 1.3] 103 cm. (a) ProÐles are shown for the initial time t \ 0, and for timeso0\ 5 ] 107
(1) t \ 1.74] 10~8, (2) 7.89] 10~8, (3) 1.38] 10~7, (4) 1.90 ] 10~7, (5) 2.41 ] 10~7, (6) 3.38 ] 10~7, (7) 4.31 ] 10~7, and (8) 4.96 ] 10~7 s against pressure.
(b) Distribution of nuclear species at the time corresponding to proÐle 7.
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FIG. 5a FIG. 5b

FIG. 5c FIG. 5d

FIG. 5e FIG. 5f

FIG. 5.ÈFailed initiation of a detonation for g cm~3 and L \ 8 ] 104 cm. ProÐles are shown for the initial time t \ 0, and for timeso0\ 1 ] 107
(1) t \ 5.64] 10~5, (2) 1.12] 10~4, (3) 1.68] 10~4, (4) 2.22] 10~4, (5) 2.77] 10~4, and (6) 3.31] 10~4 s. ProÐles are shown against (a) pressure,
(b) temperature, (c) density, (d) velocity, and (e) carbon mole fraction. ( f ) Distribution of nuclear species at the time corresponding to proÐle 5.

curvature of a spherical front is approximately the same as
the critical length, which is much larger than the detonation
wave thickness.

The simulations show that the spontaneous wave grows
to an appreciable strength, and a shock-reaction complex
forms in a part of the mixed region with a high fuel fraction,

Thus, it is this mixture that is important forX
f
^ 0.8È0.9.

DDT. As shown in explosion of such a mixtureFigure 2,

can take place at densities ¹107 g cm~3 On the(Fig. 2).
other hand, as shown in the critical length forFigure 6,
DDT is a sensitive function of density ; it increases steeply at
low densities, and it is of order 3 ] 107È4 ] 105 cm at den-
sities of 5] 106È107 g cm~3. This length is a factor of
104È105 larger than the size of a detonation reaction zone.
However, even at these low densities, this length is small
compared to the radius of a white dwarf. The length scale L

c
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FIG. 6.ÈCritical length for the initiation of a detonation as a function
of the fuel density : circles, *q \ 4 ] 1017 ergs g~1 for deÑagration pro-
ducts ; triangles, *q \ 3 ] 1017 ergs g~1 for deÑagration products (all but
one triangle coincide with the circles).

is small enough to be formed by turbulent mixing in a
relatively small portion of the supernova ejecta for o Z 5

g cm~3.]106

4. CONDITIONS ON TURBULENT INTENSITY

Here we discuss the conditions necessary to produce a
mixed region of size for both the direct and the pulsationL

cmodes of delayed detonation. First, consider DDT in the
direct mode. A fundamental assumption is that turbulence
must destroy the Ñame front so that burned and unburned
materials can mix microscopically. To break the Ñame
front, the turbulence velocity at a scale comparable toU

b
,

the thickness of the laminar front, must exceed the normal
speed of the laminar Ñame,

U
b
^ KS

l
, (10)

where is the laminar Ñame speed, is the laminar ÑameS
l

d
lthickness, and K D 1 is a coefficient that describes the

ability of the laminar Ñame to survive in a turbulent
environment et al.(Khokhlov 1996b).

The mechanism for breaking the Ñame is Ñame stretching,
which includes the e†ects of strain and curvature. These
e†ects depend on the properties of the particular Ñame and
on the spectrum of the turbulence. For terrestrial Ñames, the
coefficient K signiÐcantly exceeds unity according to both
theory and experiments Candel, & Trouve�(Poinsot, 1996 ;

et al. For the thermonuclear Ñame, the valueRoberts 1993).
of K is not known exactly. The analysis of the nonlinear
stabilization of the Ñames in a turbulent Ðeld suggests
K \ 8 The numerical simulations of the(Khokhlov 1995).
Ñame presented in are consistent with aKhokhlov (1995)
large value of K. For the subsequent analysis in this paper,
we use the two values K \ 1 and K \ 8.

shows the laminar Ñame speed and thicknessFigure 7 S
lfor a half-carbon, half-oxygen mixture computed for thed

lrange of densities 3 ] 107È1010 g cm~3, as described in the
In the same Ðgure, we show according toAppendix. S

l& Woosley who computed the laminarTimmes (1992),
Ñame speed at high densities, o º 2 ] 108 g cm~3. Our
results are in good agreement with theirs at these densities.

FIG. 7.ÈVelocities and Ñame thickness as a function of density. andS
lare the laminar Ñame speed and thickness, computed in thed

l
appendix.

is the laminar Ñame speed according to & WoosleyS
l
TW Timmes (1992). U

b
8

is the critical turbulent velocity assuming K \ 8. is the estimated turb-Udlulent velocity at the scale of the Ñame front during the supernova explo-
sion, assuming no turbulence freezeout. is the same, but assumingUdlcturbulence freezeout.

At low densities the Ñame speed decreases with density
more rapidly than at high densities, and reaches a very low
value of cm s~1 at o ^ 3 ] 107 g cm~3. TheS

l
^ 3 ] 104

computed values of give assuming K \ 1. The curveS
l

U
b
,

shows the required turbulent intensity if K \ 8.U
b
8\ 8S

lTo relate to the intensity of turbulent motions onU
blarger scales, additional assumptions are required about the

spectrum of turbulent motions inside the white dwarf
during the explosion. The most favorable assumption for
DDT is that the turbulent spectrum is a Kolmogorov spec-
trum. By assuming that a Kolmogorov spectrum is estab-
lished, we ignore the time delay required to establish the
steady state cascade of turbulent energy and ignore
freezeout of turbulence resulting from the expansion of the
star. Under the assumption of a Kolmogorov spectrum, the
speed of turbulent motions at the scale of the laminar front

is related to the speed of turbulent motions on largerd
lscales asL [d

l

Udl \ U
L

Ad
l

L
B1@3

. (11)

During the deÑagration phase of the explosion, large por-
tions of the star will be occupied by the very convoluted
Ñame. To be speciÐc, we pick a typical value L \ L

f
^ 108

cm for the maximum size of the turbulent Ñame region
The turbulent region may be somewhat(Khokhlov 1995).

smaller in the beginning of the explosion and somewhat
larger at the end, but this value is of the correct order of
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magnitude. If we assume that the deÑagration is strong
enough to unbind the star, we have to assume that isL

flarge enough. The large-scale turbulence in a supernova is
driven by buoyancy. If we neglect the e†ects of freezeout
due to expansion of the star, we expect to be of order ofU

Lfthe Rayleigh-Taylor characteristic velocity at this scale,
where g is the e†ective gravita-U

Lf
^ URvT ^ 0.5(gL

f
)1@2,

tional acceleration. In a star in hydrostatic equilibrium, or
close to it, the value of does not exceed the speed of(gL

f
)1@2

sound. In equilibrium, P/RD og, where R is of order of the
stellar radius. From this it follows that a

s
^ (P/o)1@2 D

(gR)1@2 and hence for For our esti-(gL
f
)1@2 \ a

s
L
f
\ R.

mates we take the value of The valuesU
Lf

\ URvT \ 0.5a
s
.

of the turbulent velocity, at the scale of the Ñame front
estimated from using these values, are plottedequation (11)
in The intersection of the curve with the curvesFigure 7. Udland gives estimates of the transition densityS
l

U
b
8 otr¹(4È8)] 107 g cm~3, below which DDT may occur. We

emphasize that this estimate of is made neglecting anyotrtime delay in establishing the Kolmogorov spectrum and
neglecting freezeout of turbulence due to expansion of the
star.

In order to take the e†ect of freezeout into account, three-
dimensional simulations of the explosion of the entire star
are required. To date, only one such simulation has been
performed and the analysis presented in(Khokhlov 1995),
that paper suggests that the expansion freezes scales exceed-
ing approximately L ^ 106È107 cm, and that the turbulent
burning velocity at these scales does not exceed U

L
^

106È107 cm s~1. If we take from this range the most favor-
able values for DDT, cm s~1 and L \ 106 cm,U

L
\ 107

gives another estimate of the turbulent veloc-equation (11)
ity at the scale of the Ñame front, which is also shown inUdlc ,

The intersection of the curve with the curvesFigure 7. Udlcand gives, we believe, a more realistic estimate of theU
b
8 S

ltransition density g cm~3.otr¹ (2È5) ] 107
There are other e†ects that may inÑuence the transition

density. Self-turbulization of the Ñame on scales less than L
fmight be possible, as is preconditioning of a mixture by

shocks generated by the turbulence itself. The latter e†ects
might somewhat facilitate DDT but not to a great extent

et al. Self-turbulization due to the(Khokhlov 1996b).
Landau-Darrieus instability is limited by nonlinear e†ects.
Shock preconditioning requires a very strong shock to be
e†ective. We believe that there are two major unknown
factors in estimating the value of the spectrum of turbu-otr :lence in the exploding star, and the extent to which the
Ñame can survive turbulent stretch on small scales
(coefficient K).

Now consider the case in which the conditions for DDT
do not occur in the deÑagration phase, and the deÑagration
is extinguished by the expansion. In this case, burning is
quenched by expansion and the products and fuel mix
freely. There is no laminar Ñame front and there are no
nuclear reactions. This situation is still Rayleigh-Taylor
unstable. Previous estimates &(Khokhlov 1991b ; Arnett
Livne have shown that the mixed R-T region may be1994)
on the order of 106È108 cm, which is much larger than atL

cg cm~3. With a Kolmogorov cascade, theo Z 5 ] 106È107
eddy turnover time scales as j2@3, where j is the size of the
eddy. When the star is compressed, the turbulent motions
on all scales will be enhanced and mixing should proceed
vigorously (this is opposite to the e†ect of freezeout
expected during the expansion of the star). It is thus reason-

able to expect microscopic mixing to be complete before the
contraction This suggests that the pulsation mecha-phase.1
nism can lead rather naturally to conditions where DDT is
unavoidable in the recompression phase.

5. CONCLUSIONS

We applied a theory of DDT in unconÐned conditions
et al. to DDT in SN IaÏs. The two basic(Khokhlov 1996a)

assumptions of this theory are (1) the gradient mechanism is
the inherent mechanism that leads to DDT in unconÐned
conditions, and (2) the mechanism for preparing the gra-
dient of induction time is turbulent mixing that requires
breaking or quenching the Ñame front.

Using a series of numerical simulations, we determined
the minimum critical size of the mixed region, requiredL

c
,

for DDT We Ðnd that though much larger than the(° 3). L
c
,

detonation wave thickness, is at least 2 to 3 orders of magni-
tude smaller than a white dwarf radius for o [ 5 ] 106È107
g cm~3. Thus, a mixed region of critical size required for
triggering a detonation can, in principle, be formed by turb-
ulent mixing in a small portion of a supernova.

There are two possible modes of detonation formation in
a SN Ia : a direct mode when DDT occurs inside an active
deÑagration front, and a pulsation mode that is possible if
DDT does not occur directly, and if the energy released
during the deÑagration phase is not enough to unbind the
star. Then the star will experience a global pulsation, and
mixing will take place between the cold fuel and ashes of the
dead deÑagration. The requirements on the intensity of
turbulent mixing needed to form a mixed region of critical
size are di†erent in these two cases.L

cFor a direct mode of DDT (delayed detonation model),
the intensity of turbulence on small scales of the order of the
laminar Ñame thickness must be high enough to stretch and
break the surface of the laminar Ñame front (° 4, eq. [10]).
We computed the laminar Ñame velocity and thickness in a
wide range of densities 3 ] 107[ 1010 g cm~3 and esti-
mated the critical intensity of turbulence required to break
the Ñame at the scale of a laminar Ñame thickness.

We also tried to estimate the value of the transition
density at which DDT should occur during a SN Iaotrexplosion. Using available information about the intensity
of turbulence inside the exploding star, we conclude that a
realistic estimate of the transition density for the direct
delayed detonation explosion is g cm~3.otr[ (2È5)] 107
However, even under the most favorable and unrealistic
assumptions does not exceed 108 g cm~3.(° 4), otrIn the pulsation mode (pulsating delayed detonation
model), microscopic mixing throughout large areas can
occur because there is no Ñame front separating burned and
unburned matter ; thus, fuel and products can mix freely.
We considered the thermodynamics of the mixing process
in a supernova to demonstrate that the order of mixing(° 2)

1 We have invoked microscopic mixing in this model. There is consider-
able evidence that mixing occurs in supernova ejecta but is not always
microscopic. Several lines of evidence strongly suggest that the mixing in
SN 1987A was macroscopic but not microscopic. We note, however, that
the physical conditions here and in a collapse environment like SN 1987A
are di†erent. The instability leading to mixing in SN 1987A is expected to
be a Richtmeyer-Meshkov instability in which the density/pressure inver-
sion is only temporarily induced at composition/density boundaries
because of shock passage. In the thermonuclear explosions that we con-
sider here, the Rayleigh-Taylor instability is intrinsic and long lasting.
There should be ample time to mix to small length scales.
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and global expansion or contraction of the supernova is not
important. We also found that even a small fraction (Z1%)
of high-entropy products of burning mixed with cold, low-
entropy fuel increases the entropy of the mixture such that it
will ignite at very low densities. We conclude that in this
mode, the portions of the mixture of size comparable to or
exceeding would unavoidably detonate aroundL

c
otr^ 107

g cm~3.
Despite various details of DDT that require future con-

sideration, our main conclusion is that DDT in SN IaÏs
should occur in the density range 5 ] 106 to a few times
107. At higher densities, 108È109 g cm~3, either the required
turbulent velocity cannot be reached (direct mode of the
delayed detonation) or the material inevitably ignites before
such high densities are reached (pulsating mode of the
delayed detonation). At lower densities, the size of the criti-
cal region becomes too large. This conclusion agrees with
the results of global modeling of SN IaÏs, where the tran-

sition density, at which DDT occurs is a free parameter.otr,Global modeling suggests that, in order to Ðt observed light
curves and spectra of SN IaÏs, the transition density should
be g cm~3 & Weaverotr^ 107 (Khokhlov 1991a ; Woosley

et al. et al.1994 ; Ho� Ñich 1995 ; Nomoto 1995 ; Ho� Ñich 1995 ;
& KhokhlovHo� Ñich 1996).
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APPENDIX

PROPERTIES OF LAMINAR FLAMES IN DEGENERATE C-O MIXTURES

The velocity of a laminar Ñame is computed as the eigenvalue of the di†erential equations describing the structure of aS
lsteady state burning wave et al. We assume that the wave propagates steadily and that burning occurs at(Zeldovich 1985).

constant pressure since the Ñame speed is much less than the sound speed. The parameters of the fuel and the products of
burning are designated below by subscripts 0 and 1, respectively. The mass Ñux is constant through a steady wave,J

m
\ ou \

The equation of energy balance inside the wave iso0 S
l
\ o1 u1.

J
m

c
P

dT
dx

\ d
dx
A
s

dT
dx
B

] J
m
NAQ Æ R , (A1)

where is the speciÐc heat at constant pressure, s is the thermal conductivity, is the Avogadro number, Q is the vector ofc
P

NAbinding energies of nuclei, R is the vector of net reaction rates and x is the distance across the wave. The terms on the(° 3),
right side of describe the temperature changes due to the heat conduction and nuclear reactions. Nuclear moleequation (A1)
fractions Y are changing inside the wave as a result of nuclear reactions,

J
m

dY
dx

\ oR . (A2)

Ion di†usion is ignored in since, in a degenerate gas, the mean free paths of ions are much smaller than the meanequation (A2)
free paths of electrons and photons. The density o(T , Y) inside the wave is related to T and Y via the constant pressure
condition

P(o, T , Y)\ P0 . (A3)

The boundary conditions for equations are the following :(A1)È(A3)

Atx \ [O : T \ T0, o \ o0, Y\Y0,
dT
dx

\ 0 ; (A4)

At x \ O : T \ T1, o \ o1, Y\Y1,
dT
dx

\ 0 . (A5)

The points x \ ^O are singular points of equations The integral curve that passes through these singular points(A1)È(A3).
represents the solution for a steady Ñame front. We designate the value of corresponding to this integral curve as J*.J

mFor low temperatures, where is some value less than 2 ] 109 K, we can neglect the energy-generation term inT \Te, Tein comparison with the term describing the heat transport. At these temperatures, can beequation (A1) equation (A1)
rewritten as

dW
dT

\ J
m

c
P

s
, (A6)

where W \ s(dT /dx). The corresponding initial condition for is The integration ofequation (A6) W (T0) \ 0. equation (A6)
from to gives a certain value of from which we Ðnd the corresponding value of From this point,T0 Te We \ W (Te), (dT /dx)

Te
.

we integrate the full with the energy generation term included.equation (A1)
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The value J* is found using trial and error et al. The integral curves for diverge from the J* curve(Zeldovich 1985). J
m

D J*
when x ] O. For the asymptotic (x ] O) behavior is T ] [O, dT /dx ] [O. For the asymptoticJ

m
\ J*, J

m
[J*,

behavior is T ] O, dT /dx ] O. We use the di†erence in the behavior of the integral curves to discriminate between the cases
and The next trial value of is found as the average of the two most recent trial values lying on di†erentJ

m
\J* J

m
[ J*. J

msides of J*. It requires ^20 iterations to obtain the value of J* with an accuracy of 10~3. Then the laminar Ñame speed is
calculated as The values of are estimated approximately as the thickness of a zone where most of the nuclearS

l
\J*/o0. d

lenergy is released and the CO mixture is converted into Si-peak elements. Computations are done for the initial mixture of
equal masses of 12C and 16O with a small amount of 22Ne added in order to get a neutron excess g \ 0.002. The initial
temperature is K, and we used K. Flame parameters are not sensitive to variations of and if theseT0\ 108 Te \ 109 T0 Tetemperatures are below 2 ] 109 K.

In computations of and the following 133 species reaction network is used : n, p, 4He, 12,13C, 13N, 16O, 20,22Ne, 23Na,S
l

d
l
,

23h26Mg, 27Al, 27h32Si, 30h33P, 31h36S, 35h37Cl, 36h41Ar, 39h43K, 40h46Ca, 43h47Sc, 44h50Ti, 47h52V, 48h56Cr, 51h60Mn,
52h62Fe, 55h61Co, 56h64Ni, 57h65Cu, 59h66Zn. The forward reaction rates are taken from ThielemannÏs reaction rate library

Arnould, & Truran The binding energies and partition functions were taken according to et al.(Thielemann, 1987). Woosley
The backward reaction rates are calculated according to the principle of detailed balance. Screening corrections are(1987).

applied to the most important reactions, 12C] 12C, 12C] 16O, 16O ] 16O, and 3 4He] 12C, which control the thermonu-
clear energy release at low temperatures. Even for these reactions, screening factors were found to be relatively small (E[ 2È5)
for conditions where nuclear reactions signiÐcantly contribute to the right side of Most of the nuclear reactionsequation (2).
occur at high temperatures, and the corresponding screening factors are small in comparison with the expectedE[ 1.5
uncertainties in the nuclear reaction rates (D2È3). Screening corrections are taken from & ShalybkovYakovlev (1989).

The total thermal conductivity is calculated as the sum of electron and photon conductivities

s \ s
e
] sc , (A7)

with The expression for the photon opacitysc \ 4acT 3/3io. (Paczyn� ski 1983),

i \ 0.4Y
e

(1 ] 2.7] 1011o/T 2)
C
1 ]

A T
4.5] 108

B0.86D~1
cm2 g~1 , (A8)

approximates the low-density g cm~3) results of & Yueh that take the degeneracy of electrons and([6 ] 107 Buchler (1976)
relativistic scattering into account. is the electron mole fraction. At higher densities, the contribution of the photon opacityY

eto the total opacity is very small. Our results at high densities are in good agreement with those of & WoosleyTimmes (1992),
who used di†erent approximations for the photon thermal conductivity.

The electron thermal conductivity can be expressed in terms of the e†ective electron collisional frequency, asl
e
, (Yakovlev

& Urpin 1980)

s
e
\ 4.09] 109T x3

J1 ] x2
A1016

l
e

B
ergs cm~1 s~1 K~1 , (A9)

where is the electron Fermi momentum, and is a sum of ion-electron and electron-x \ pF/me
c^ 1.00910~2(oY

e
)1@3, pF l

eelectron collisional frequencies,

l
e
\ l

ei
] l

ee
. (A10)

The electron-ion collisional frequency is calculated using the mean ion approximation, following & YakovlevUrpin (1980),

l
ei

\ 1.78] 1016J1 ] x2 Y Z2"
Y
e

, (A11)

where and are the mean ion mole fraction and the mean atomic number, respectively, and " is theY \ ; Y
i

Z\Y
e
/Y

Coulomb logarithm that can be expressed for gaseous and liquid ionic states as the sum of the logarithm obtained in the Born
approximation and the non-Born correction & Urpin(Yakovlev 1980 ; Yakovlev 1987)

"\ "B ] d" , (A12)

with

"B\ ln
CA2nZ

3
B1@3S

1.5] 3
!
D

[ x2
2(1 ] x2) , (A13)

!\ 2.275] 105 Z5@3
T

(oY
e
)1@3 , (A14)

and

d"\n
2

ab2 1 ] 1.30a
1 ] a2(0.71[ 0.54b2) , (A15)
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b \ x

J1 ] x2
, a \ Z

137b
. (A16)

The thermal conductivity due to electron-electron collisions of relativistic electrons in a degenerate electron gas was calcu-
lated in the static screening approximation by & Yakovlev to beUrpin (1980),

l
ee

\ 0.511T 2 x3@2
(1 ] x2)5@4 J(y) s~1 , (A17)

where

y \ J3T
pe

T
, (A18)

and

T
pe

\ +u
pe

kB
\ 3.307] 108 x3@2

(1 ] x2)1@4 K (A19)

is the electron plasma temperature. Recently recalculated the integral entering the general expression ofYakovlev (1996), l
eenumerically and obtained the following analytical expression for J(y) :

J(y) \ 1
3
A y
1 ] ay

B3
ln
A2
y

] b
B

, (A20)

with a \ 0.113 and b \ 1.247. The largest error in the Ðt is D6% at y ^ 2.
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