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ABSTRACT
The Ñame born in the deep interior of a white dwarf that becomes a Type Ia supernova is subject to

several instabilities, the combination of which determines the observational characteristics of the explo-
sion. We brieÑy review these instabilities and discuss the length scales for which each dominates. Their
cumulative e†ect is to accelerate the speed of the Ñame beyond its laminar value, but that acceleration
has uncertain time and angle dependence which has allowed numerous solutions to be proposed (e.g.,
deÑagration, delayed detonation, pulsational deÑagration, and pulsational detonation). We discuss the
conditions necessary for each of these events and the attendant uncertainties. A grid of critical masses for
detonation in the range 107È2 ] 109 g cm~3 is calculated and its sensitivity to composition explored.
The conditions for prompt detonation are discussed. Such explosions are physically improbable and
appear unlikely on observational grounds. Simple deÑagrations require some means of boosting the
Ñame speed beyond what currently exists in the literature. ““ Active turbulent combustion ÏÏ and multi-
point ignition are presented as two plausible ways of doing this. A deÑagration that moves at the
““ Sharp-Wheeler ÏÏ speed, is calculated in one dimension and shows that a healthy explosion is0.1geff t,possible in a simple deÑagration if fuel can be efficiently burned behind a front that moves with the
speed of the fastest Ñoating bubbles generated by the nonlinear Rayleigh-Taylor instability. The rele-
vance of the transition to the ““ distributed regime ÏÏ of turbulent nuclear burning is discussed for delayed
and pulsational detonations. This happens when the Ñame speed has slowed to the point that turbulence
can actually penetrate the Ñame thickness and may be advantageous for producing the high fuel tem-
peratures and gentle temperature gradients necessary for detonation. No model emerges without diffi-
culties, but detonation in the distributed regime is plausible, will produce intermediate-mass elements,
and warrants further study. The other two leading models, simple deÑagration and pulsational detona-
tion, are mutually exclusive.
Subject headings : hydrodynamics È instabilities È stars : interiors È supernovae : general È

white dwarfs

1. INTRODUCTION

Despite 25 years of intensive investigation (e.g., Arnett
the basic physics whereby a carbon-oxygen core of1969),

nearly the Chandrasekhar mass (1.39 explodes as aM
_
)

Type Ia supernova (SN Ia) is still debated. One may reason-
ably conclude that it is a hard problem. In fact, only recent-
ly has the astrophysics community begun to proÐt from the
extensive experience of the chemical combustion com-
munity in order to appreciate fully just how complicated
burning coupled to hydrodynamics really can be.

The astrophysical problem is especially hard because the
nuclear Ñame propagates in an extensive medium in which
gravity plays a role and several instabilities have time to
develop over a large range of length scales. Any realistic
solution must take cognizance of these instabilities and, if
only by parameterization, incorporate them into the stellar
model.

This need, and variability in the outcome depending on
uncertain parameters, has given rise to several classes of
supernova models, all largely empirical. These include the
““ delayed detonation ÏÏ (Khokhlov 1991a, 1991b, 1991c ;

& Weaver ““ pulsational detonation ÏÏWoosley 1994) ;
(Arnett & Livne ““ pulsational deÑagration ÏÏ1994a, 1994b) ;

Sugimoto, & Neo Imshennik, &(Nomoto, 1976 ; Ivanova,
Chechetkin ““ convective deÑagration ÏÏ1974) ; (Nomoto,

1 Permanent address : Board of Studies in Astronomy and Astrophysics,
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Thielemann, & Yokoi and the fractal model of1984) ;
each of which, by various contrivances,Woosley (1990),

generates a Ñame which is born slow and accelerates very
rapidly as the star begins to come apart. This behavior has
been found essential to obtaining nucleosynthesis that
agrees with spectroscopic observations.

There are two simple solutions to the explosion problem,
neither of which is thought to be correct, but which bound
the real solution : (a) a laminar conductive Ñame and (b)
prompt detonation. The latter is improbable and(° 3.2.2)
would give unacceptable nucleosynthesis (no intermediate-
mass elements) ; the former is unphysical and would not give
an energetic explosion. Between these two extremes lies the
regime of unstable Ñame propagation, to which this paper is
mostly devoted. We begin by reviewing the relevant insta-
bilities and current views regarding their importance and
mutual couplings. Although much has been written, espe-
cially regarding the Rayleigh-Taylor (RT) instability, not all
share the same views even on this fundamental subject. It is
therefore necessary to state (our view of) the basics before
proceeding to the models, and so we brieÑy discuss the(° 2)
RT-instability, the Landau-Darrieus (LD) instability, the
Kelvin-Helmholtz (KH) instability, and turbulence. Our
main goals here are the following : (1) ascertaining the
uncertainties in the models in an attempt to resolve the
leading candidate(s) ; and (2) exploring the implications of
new physicsÈactive turbulent combustion, multipoint igni-
tion, and, especially, detonation in the distributed regimeÈ
for models for SN IaÏs.
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It is frequently stated & Livne(Khokhlov 1995 ; Arnett
that simple deÑagrations, those in which the Ñame1994a)

remains at all times subsonic and in which an intervening
pulse of the white dwarf does not occur, cannot give an
energetic explosion. We discuss why this may not be true,
either because of physics that has been left out of the calcu-
lations (°° or because the Ñame has not been3.1.2, 3.1.3)
modeled sufficiently accurately in three dimensions (° 3.1.1).

Another important point that has not been adequately
discussed in the context of astrophysical Ñames, is the idea
of ““ distributed burning.ÏÏ As long as the thickness of the
Ñame is negligible, it can be treated as a temperature discon-
tinuity. Heat never moves far from the burning surface. This
is the case during most of the ÑameÏs life. But for densities
below D3 ] 107 g cm~3, turbulence will disrupt the Ñame
sheet. Once this happens, one can no longer speak of the
Ñame as either laminar or conductive. It has entered a
domain where turbulent transport directly a†ects the
nuclear reaction region and smears it out over macroscopic
length scales. The combustion community calls this type of
burning the ““ distributed Ñame regime ÏÏ (e.g., Pope 1987),
and it is a frontier topic for them as well as us. While the
increased mixing of hot ash and cold fuel can, in some
instances, be beneÐcial for provoking a detonation, the
same process also leads to compositional mixing, which
increases the critical mass required for detonation to occur

In we discuss the physical conditions(° 3.2.1). ° 3.2.5
required for this sort of detonation and show that it is a
reasonable, if uncertain, occurrence. In this sense, it is
superior to many other models in the literature.

Much has been written about other forms of the ““ delayed
detonation model ÏÏ (e.g., Khokhlov 1991a, 1991b, 1991c ;

& Weaver yet the physics of the transitionWoosley 1994),
to detonation remains obscure. In °° and we3.2.4 3.2.5
discuss the two di†erent kinds of delayed detonation that
have been previously published and why each is unlikely to
occur.

In the conclusions we summarize our results.(° 4)

2. FLAME DYNAMICS AT HIGH DENSITIES

2.1. T he Conductive L aminar Flame
The simplest solution to the propagation of burning in a

premixed fuel is an elementary ““ Ñame.ÏÏ Heat is transported
ahead of the burning region, in this case, by electron con-
duction. The temperature rises to the point where reactions
can consume the fuel (carbon) on a di†usive timescale, and
this condition sets both the thickness of the Ñame and its
steady velocity & Lifshitz In the absence of(Landau 1991).
instabilities, these quantities can be determined analytically
with considerable precision & Woosley(Timmes 1992).

The critical mass required to keep a Ñame alive is small, a
few times where is the Ñame thickness. For iso-(4/3)nolth3 , lthlated regions below this mass, heat can di†use out and the
Ñame will die, but so long as a critical mass remains intact,
one cannot extract heat from the ashes of the combustion
(in order to raise the temperature of the fuel) over a greater
distance than It is impossible for a simple laminar Ñamelth.to turn into a detonation. As long as there is a Ñame with a
well-deÐned surface (exceptions to this will be discussed in
°° and detonation can only be achieved by2.6 3.2.5),
increasing the area of the Ñame.

It is well known that the laminar speed is too slow to
make a supernova with the observed properties. In fact, we

shall conclude (see also & Hillebrandt andNiemeyer 1995b
that the laminar speed is not very relevantKhokhlov 1995)

for the e†ective rate at which burning spreads. Turbulence
and RT instabilities are more important and carry the Ñame
at a speed independent of the microphysics. However, it is
important to keep track of the Ñame thickness, since this
may ultimately a†ect even the macroscopic nature of the
burning, and to distinguish the speed with which the outer
boundary of burning spreads from the total rate of mass
consumption. These rates are quite di†erent if a large
amount of fuel becomes entrained.

After a brief review of the various instabilities that arise
from a linear analysis of Ñame propagation under the inÑu-
ence of gravity and shear in ° we discuss the quasi-2.2,
stationary structure of the Ñame surface after it reaches the
fully nonlinear regime in °° and2.3, 2.4, 2.5.

2.2. L inear Instabilities
The problem of linear hydrodynamical stability of sub-

sonic Ñames in the thin-Ñame representation was Ðrst
analyzed by and, independently, byDarrieus (1938) Landau

LandauÏs result for the linear growth rate also(1944).
includes the inÑuence of gravity on the density jump pro-
duced by the Ñame front, which is equivalent to the RT
instability if the Ñame speed is set to(Chandrasekhar 1961)
zero. In the context of nuclear Ñames in degenerate carbon,
the LD instability has been explored in detail both analyti-
cally and numerically by & Sasorov andBlinnikov (1996)

& Liberman and its onset has been demon-Bychkov (1995),
strated by means of two-dimensional hydrodynamical
simulations & Hillebrandt All these(Niemeyer 1995a).
studies agree that on scales larger than the Markstein, or
critical, length Ñames movinglcritB 100lth (Markstein 1951),
upward are unstable to both LD and RT instabilities on all
wavelengths.

In addition to radial perturbations, we have to consider
perturbations that face in a direction perpendicular to
gravity, where buoyancy of burned material Ñoating in the
cold fuel induces tangential velocity di†erences along the
Ñame surface. Here, another instability becomes important,
the KH or shear instability (e.g., & LifshitzLandau 1991).
In our context, it is quite important to know the circum-
stances under which the Ñame surface in a Type Ia super-
nova is KH-unstable, since this condition marks the
transition to the fully turbulent burning regime. Strictly
speaking, tangential discontinuities can only occur if the
mass Ñux through the surface vanishes, for otherwise con-
tinuity of the momentum Ñux imposes continuity of the
tangential velocity components. The mass Ñux through the
burning zone is by deÐnition nonzero. Thus, we can qualit-
atively argue that the propagation of a Ñame tends to stabil-
ize the front against KH instability. If, however, the Ñow
Ðeld around a burning bubble is dominated by buoyant
acceleration, i.e., the mass Ñux becomes small compared
with the velocity components tangential to the front, the
Ñame becomes KH-unstable, as shown by numerical simu-
lations & Hillebrandt This occurs during(Niemeyer 1996).
the nonlinear stage of the RT instability.

2.3. T he Cellular Regime
In the nonlinear evolution of the LD instability, the for-

mation of cusps at the points where the Ñame front self-
intersects gives rise to an additional quadratic damping
term for the perturbation amplitude that is not included in
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LandauÏs linear stability analysis et al. It(Zeldovich 1985).
stabilizes the Ñame surface after cells with a stationary,
scale-independent amplitude have formed. The speed of the
emerging cellular surface is directly given by the increased
surface area, yielding

ucell\ ulam[1] v(k)] , (1)

where the velocity increment v is a function of the gas
expansion parameter If k isk \ob/ou (Zeldovich 1966).
small, as in the case of burning in degenerate matter, v can
be approximated by (Zeldovich 1966)

v(k) \ n2
24

(1[ k)2 B 0.41(1[ k)2 . (2)

Motivated by the large dynamical range of thermonu-
clear Ñames in white dwarfs, & SasorovBlinnikov (1996)
proposed a fractal model for the cellular structure of LD
unstable Ñames. By means of a statistical analysis of the
Sivashinsky equation for thin-Ñame propagation, the
authors estimated the fractal dimension of one-dimensional
Ñames as

D1d \ 1 ] D0 c2 , (3)

where c\ (1[ k). This result was conÐrmed by numerical
simulations of the closely related Frankel equation, which
yielded Furthermore, the authors derived theD0B 0.3.
fractal dimension of two-dimensional Ñame surfaces as
D2d B 2D1d.Here we take a simpliÐed approach that shows how ofD0one-dimensional cellular Ñame fronts can be related to v. By
doing so, we neglect some subtle, but important, com-
plications that arise in the statistical treatment of the Siva-
shinsky equation which are accounted for in the more
sophisticated approach of & Sasorov InBlinnikov (1996).
our simple model, we describe the cellular front as a hier-
archy of cells on all length scales. If consecutive cell gener-
ations are widely separated, we can assume that the
thin-Ñame approximation is valid on each scale. The e†ec-
tive propagation speed on scale is then related to scaleu

i
l
ibyl

i~1 \ l
i

u
i
\ u

i~1] vu
i~1 . (4)

Taking the continuum limit and integrating yields

u
i
\ u0 evi . (5)

We now assume that cell splitting occurs after a dilation
interval S, so that If the smallest unstable lengthl

i
\Sl

i~1.scale is of the order of the Markstein length, wel0\ lcrit,Ðnd and we can express the e†ective Ñame veloc-l
i
\ Silcrit,ity in terms of the length scale l :

ucell(l)B ulam
A l
lcrit

Bv@lnS
. (6)

If the Ñame speed is interpreted in a geometrical way, i.e.,
where denotes the increased surface of a cellu-u(l) P A1

l
, A1

llar front observed at the scale l, it follows that the surface
area behaves like a fractal (Mandelbrot 1983) :

A1
l
\ Alam

A l
lcrit

BDcell~1
, (7)

with the fractal dimension

Dcell\ 1 ] v
ln S

. (8)

Inserting in we Ðnd, in agree-equation (2) equation (8),
ment with & Sasorov that the fractalBlinnikov (1996),
excess of is proportional to c2\ (1[ k)2. Spe-equation (8)
ciÐcally, we Ðnd and agreement with theD0\n2/24 ln S,
authorsÏ numerical results yields a dilation interval, S B 4.

2.4. Nuclear Burning in the Flamelet Regime
In the case of a cellular Ñame front driven purely by the

LD instability, i.e. in the absence of gravity, there is no
known upper limit for the largest scale of cell formation.
However, if gravity is turned on, the cell structure is no
longer scale independent, which leads to the breakdown of
nonlinear stabilization As soon as the(Khokhlov 1995).
process of cell disruption and bubble formation occurs on
the largest scales, a cascade of turbulent velocity Ñuctua-
tions is produced that continues on scales below the actual
large-scale Ñame instability & Hillebrandt(Niemeyer

After the establishment of the turbulent cascade,1995b).
there exists a range of scales where burning is dominated by
isotropic, fully developed turbulence. We will restrict our
discussion to the conservative assumption that the pro-
duction of turbulence is provided purely by large-scale Ñuid
instabilities, so that turbulent burning can be called
““ passive.ÏÏ Some thoughts on ““ active ÏÏ turbulent com-
bustion, where thermal expansion within the burning region
is assumed to inÑuence the properties of turbulence, are
given in ° 3.1.2.

Cell formation ceases on the scale l where the turbulent
velocity Ñuctuations v(l) become comparable to Hereucell(l).the time of front interaction with turbulent eddies becomes
comparable to the eddy turnover time and, consequently,
perturbations caused by turbulence grow to amplitudes
comparable to the cell amplitudes. The cellular Ñame front
is thus unstable on these scales et al. Fur-(Zeldovich 1980).
thermore, numerical simulations of curved Ñames subject to
shear show the breakdown of the nonlinear stabilization
mechanism if & HillebrandtvshearB ucell (Niemeyer 1996).
The transition between cellular and turbulent burning
regimes is therefore marked by the Gibson scale, deÐned as
(Peters 1988)

v(lGibs) \ ucell(lGibs) . (9)

Note that, on the basis of the arguments above, we take
as an equality, which di†ers from earlier resultsequation (9)

where the smallest turbulent scale was(Khokhlov 1995)
found to be Using the Kolmogorov scaling lawB500lGibs.v(l) P l1@3, it follows that scales with the third power oflGibswhere v(L ) is, for instance, the magnitude of theucell/v(L ),
turbulent velocity on the largest turbulent scale L . If we
assume that near the beginning of the explosion this ratio is
close to unity, implying that and later decreaseslGibsB L ,
owing to the decreasing Ñame speed and the buildup of
shear in the RT mixing region, we Ðnd that the Gibson
length decreases continually during the explosion. An upper
bound for the intensity of turbulence on large scales is given
by the ““ freezing out ÏÏ of turbulent motions as a result of the
overall expansion of the star Using(Khokhlov 1995).

cm s~1 at L B 106 cm and cmv(L ) [ 107 ucellB ulamZ 105
s~1 & Woosley we estimate that(Timmes 1992), lGibsZ 1
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cm. Consequently, for all densities glGibsZ lth o Z 3]107
cm~3. For this reason, turbulent nuclear Ñame fronts in
white dwarf matter at these densities burn in the
““ corrugated Ñamelet regime ÏÏ (e.g., At lowerClavin 1994).
densities, the Ñame front enters the so-called distributed
regime that will be described in °° and2.6 3.2.5.

The Ñamelet regime is characterized by laminar Ñame
propagation on microscopic scales, while burning is deter-
mined purely by turbulence on large scales and is therefore
independent of microphysics. Fuel ““ digestion ÏÏ occurs in an
extended region behind the boundary of fuel and ashes, the
so-called turbulent Ñame brush. The size of this region and
the range of turbulent length scales adapt in a way that
provides a Ñame-brush propagation velocity that is decou-
pled from the laminar Ñame speed. On scales obeying l ?

one can express the e†ective Ñame speed, andlGibs, utur(l),turbulent front width, in terms of l and the turbulentdtur(l),velocity v(l) since both trans-(Kerstein 1988 ; Clavin 1990),
port of burning Ñuid into the fresh material and fuel con-
sumption inside the Ñame brush are limited by the eddy
turnover time Consequently, the rela-q

t
(l)B l/v(l)P l2@3.

tions

utur(l)B v(l) , dtur(l) B l (10)

are reasonable order-of-magnitude approximations that
have been employed extensively in combustion research in
the limit v(l)? ulam.

2.5. T he Rayleigh-Taylor Regime
On the largest scales cm) the Ñame dynamics is(l Z 106

dominated by buoyancy of the hot, burned material sur-
rounded by denser carbon and oxygen. The linearized
problem is expressed by the RT instability (Chandrasekhar

After a short period of exponential growth, the per-1961).
turbation amplitudes become comparable to their wave-
lengths and the structure enters the nonlinear stage where
interactions among the structures can occur, giving rise to
merging and fragmentation of bubbles. Another important
process is the appearance of KH-unstable regions along the
bubble surfaces. These produce turbulent eddies that spread
out bubble tips and walls. Finally, the long time evolution
shows continuing merging and fragmentation of rising
bubbles, creating an increasingly turbulent mixing layer

& Andrews(Snider 1994).
Experiments of gas bubbles rising in vertical tubes Ðlled

with Ñuid were performed to measure the asymptotic veloc-
ity of a single bubble & Taylor Best Ðts to the(Davies 1949).
measurements were obtained by the relation

vRT\BJgeff l , (11)

where B ½ [0.466, 0.490] is a constant, g is thegeff \ At
e†ective gravitational acceleration [At\ (ou[ ob)/(ouis the Atwood number], and l is the] ob) B 0.5(1[ k)
radius of the tube. solved the problem ana-Layzer (1955)
lytically for a spherically symmetric tube and derived
B\ 0.511. derived a similar prescriptionKhokhlov (1995)
for the propagation speed of RT-unstable Ñames in open
boxes from numerical simulations. While this result is true
for a single length scale, we need to consider a range of
RT-unstable scales, where the front creates a large number
of bubbles with various radii. The so-called Sharp-Wheeler
model statistically describes the nonlinear stage of a multi-
scale RT front It consists of a one-dimensional(Sharp 1984).
string of bubbles that are described by their radius, andr

i
,

height, According to the heights grow asz
i
. equation (11),
Neighboring bubbles merge if the di†erencez5

i
\ vRT.between their heights exceeds the radius of the smaller

bubble and thus the average bubble radius increases with
time. Consequently, the average rise velocity from equation

also grows. Numerical simulations of the Sharp-(11)
Wheeler model & Li show that the front(Glimm 1988)
asymptotically attains a constant acceleration that is pro-
portional to so that the RT mixing region grows at ageff,rate of approximately

rSW B 0.05geff t2 . (12)

This result is in agreement with full hydrodynamical simu-
lations and experiments Equiva-(Young 1984) (Read 1984).
lently, we can say that the front advances into the cold
material with a speed of

vSW B 0.1geff t . (13)

Comparing equations and shows that the(11), (12), (13)
maximum bubble radius evolves linearly with its displace-
ment from the stellar center (i.e., the inner boundary of the
RT mixing zone), lmaxP r.

In the context of supernova modeling, we are mainly
interested in the burning velocity of the RT-unstable Ñame
brush. As in we can argue that the overall burning rate° 2.4,
is limited by the fastest transport mechanism that mixes
ashes and fuel. Invoking the arguments of the previous
section, fuel consumption automatically adjusts to the
speed of fuel contamination by burning blobs in order to
provide a burning rate that is independent of microphysics.
The highest speed for each single length scale l is now given
by yielding A geometrical interpre-equation (11), uRT P l1@2.
tation of the Ñame speed in the nonlinear RT(eq. [7])
regime therefore yields a fractal dimension of the Ñame
surface, In addition, we need the evolution of theDRT\ 2.5.
maximum bubble size, as a function of time or radiallmax,displacement, like the one provided by the Sharp-Wheeler
model. If we assume that bubble growth is purely governed
by merging, and that burning is completed somewhere
within the RT mixing region (this need not necessarily be
the case), the e†ective burning velocity is given by the
Sharp-Wheeler speed One-dimensional super-(eq. [13]).
nova models using will be presented inequation (13) ° 3.1.1.

Finally, we deÐne the boundary between the turbulent
burning regime dominated by Kolmogorov scaling and the
buoyancy-driven RT regime by looking at the minimum
timescale for self-interaction of Ñame structures with the
size l, roughly given by As statedqsi(l) B l/vRT(l)P l1@2.
above, expansion of the star inhibits the growth of the
largest structures into the fully nonlinear regime where they
become isotropically turbulent. Expansion is characterized
by the hydrodynamical timescale s, so that self-qdynB 0.1
interaction resulting in fully developed turbulence occurs
on scales below deÐned by Insertingltur@RT qsi(ltur@RT) \ qdyn.yieldsequation (11)

ltur@RT\ qdyn2 B2geff B 106 cm , (14)

where we have used cm s~2 as a typical valuegeff B 5 ] 108
for the e†ective gravitational acceleration.

2.6. Summary of Instabilities and T heir E†ects
Beginning at the smallest dynamically relevant scale, the

thermal Ñame thickness, the Ñame propagates with thelth,laminar Ñame speed, until the smallest cells appear atulam,
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FIG. 1.ÈE†ective burning speed as a function of length scale for the
early, main, and late phases of the deÑagration. The shaded region rep-
resents the typical resolution of multidimensional simulations, *B 10 km.

Therefore, u(l)\ const (l). In the cellularlcritB 100lth.regime, Cellular stabilization fails whenu(l)P lDcell~2 B l0.1.
turbulent velocities become comparable to the e†ective cel-
lular Ñame speed at As a result of the KolmogorovlGibs.scaling law for turbulent velocity Ñuctuations and the
assumption that the turbulent Ñame speed is determined by
the eddy turnover time on every scale, we Ðnd that
u(l) P l1@3 in the fully turbulent regime. Above theltur@RT,largest upward velocity on scale l is determined by buoy-
ancy. Hence, u(l) P l1@2 according to equation (11). Figure 1
is a summary of the scale dependence of the burning speed
u(l). The piecewise scale-invariant burning regimes are rep-
resented by straight lines with di†erent slopes in the log-log
plot. Three separate curves are shown, corresponding to the
characteristic velocities and length scales at early, central,
and late times of the deÑagration phase (as represented by
three decreasing density values). All graphs are based on the
assumption that all the relevant instabilities and the tran-
sitions between them have reached a statistical equilibrium
state. This is true after approximately one growth time of
the largest considered scale (B0.2 s).

The curves in are constructed as follows : First,Figure 1
the largest fully turbulent length scale is computedltur@RTfrom with values for g taken fromequation (14) Khokhlov

while the burning speed at this scale is determined(1993a),
from This point in the u-l plane serves as theequation (11).
origin for the purely buoyant part with u(l) P l1@2 extending
to larger l, and for the Kolmogorov part reaching down-
ward. The laminar Ñame speed is used as the second absol-
ute point of each graph. Its value, as well as the thermal
Ñame thickness, and the expansion factor, c\ *o/o, arelth,taken from & Woosley At a length ofTimmes (1992). lcritBthe LD instability and the subsequent formation of100lth,cells mark the transition to the scaling withu(l) P lDcell~2

& Sasorov ThisDcellB 2(1] 0.3c2) (Blinnikov 1996 ; ° 2.3).
line is extended until it intersects the Kolmogorov line
coming from above, which deÐnes the Gibson scale lGibs.Notice that, by virtue of this construction procedure reÑec-

ting our current understanding of Ñame dynamics in scale
space, all burning properties above are uniquely ÐxedlGibsby large-scale phenomena and are therefore independent of
microphysics.

The early phase of the explosion, where o B 109 g cm~3,
is characterized by a high laminar Ñame speed and small
thermal expansion, resulting in a very shallow slope of u(l)
in the cellular regime. On scales of approximately 10 km,
however, both e†ects are already dominated by the RT
instability and turbulent burning. The turbulent regime
becomes more pronounced as declines and the Gibsonulamscale decreases (o B 108 g cm~3 [second graph]). Mean-
while, the cellular part of u(l) becomes steeper owing to the
increasing thermal expansion c. In the simpliÐed construc-
tion method outlined above, the highest turbulent velocities
are assumed to be coupled directly to the RT velocity at the
transition length Consequently, the model impliedltur@RT.here ““ forgets ÏÏ about all turbulence that has been built up
by earlier RT Ñuctuations, in contrast to the more realistic
expectation that the level of turbulence decreases according
to the almost negligible microscopic dissipation into heat.
This assumption of instantaneous adjustment results in
decreasing RT and turbulent Ñame speeds as the densityÈ
and therefore in A phenomenologi-geff equation (14)Èfalls.
cal approach to account for the memory e†ect of
accumulated turbulence in numerical simulations of SN IaÏs
has been proposed by & HillebrandtNiemeyer (1995b).

also shows that our argument breaks down atFigure 1
the lowest density (o B 107 g cm~3), represented in the
bottom graph. Here the Gibson length, is smaller thanlGibs,the thermal Ñame thickness, by almost 4 orders of mag-lth,nitude. Therefore, the conditions for the Ñamelet regime

are no longer satisÐed, implying that laminar Ñame(° 2.4)
propagation ceases to occur on all scales (strictly speaking,
this also implies that is no longer a well-deÐnedlGibsquantity). Instead, turbulent eddies disrupt the burning

FIG. 2.ÈRegions of Ñamelet and distributed burning depending on fuel
density and turbulent velocities at L B 10 km. The lines depict lth \ lGibsfor di†erent compositions (dashed line : dotted line : solidXC\ 0.2 ; XC\ 1 ;
line : The shaded region shows the range of turbulent Ñuctua-XC\ 0.5).
tions induced by the RT instability on large scales.
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region and dominate over conductive transport even on
microscopic scales. This burning regime is sometimes
termed ““ distributed ÏÏ or ““ stirred combustion ÏÏ (e.g., Pope

We emphasize that all of the preceding discussion is1987).
based sensitively upon the assumption of microscopic
Ñamelets and therefore becomes largely invalid after the
transition to the distributed burning regime. Regions of dis-
tributed and Ñamelet regimes are displayed in as aFigure 2
function of fuel density and macroscopic turbulent velocity
v(10 km). The lines depict the transition deÐned by lth\

for three di†erent compositions. Decreasing carbonlGibsmass fraction is related to an earlier transition to distrib-
uted burning, since the Ñame thickness grows while the
Ñame speed decreases.

3. HOW THE WHITE DWARF EXPLODES

3.1. DeÑagration
3.1.1. A Simple DeÑagration?

The simplest outcome to the exploding white dwarf
problem would be a supernova in which the Ñame remained
at all times and places subsonic and burned a sufficient
fraction of the stellar mass to explode the star violently on
the Ðrst attempt with no intervening pulsation. This is the
basis for the common ““ deÑagration ÏÏ or ““ convective
deÑagration ÏÏ model, of which W7 et al. is a(Nomoto 1984)
popular example. Numerous studies of this model (and
others like it, e.g., Axelrod, & WeaverWoosley, 1984 ;

& Weaver give at least moderately goodWoosley 1994)
agreement with the observed light curve, spectrum, and
nucleosynthetic requirements of common Type Ia events.
The model does so by virtue of having approximately the
correct proportions of intermediate-mass elements (SiÈCa)
to 56Ni and the right Ðnal 56Ni mass for a Chandrasekhar
mass starting point. This result is, in turn, a consequence of
a Ñame speed that has been crafted to yield the desired
result by a particular choice of transport algorithm (mixing-
length convection) and scale parameter (the mixing length
as a function of time). Knowing approximately the desired
result is useful, but can the Ñame speed in a real deÑagration
behave in the required way?

Recent multidimensional calculations di†er in their con-
clusions regarding this important issue. Khokhlov (1995)
and & Livne Ðnd that the Ñame moves tooArnett (1994a)
slowly to explode the star on the Ðrst try. &Niemeyer
Hillebrandt and Hillebrandt, & Woosley(1995b) Niemeyer,

Ðnd that a prompt explosion is possible, albeit a(1996)
weak one that makes little 56Ni. A key di†erence in these
calculations is the treatment of turbulence. All assume that
the RT instability is chieÑy responsible for the production
of turbulence, but while the former models assume that RT
structures are isotropic and therefore implicitly employ an
instantaneous adjustment of the turbulent cascade to the
RT Ñuctuations, the latter simulations allow for a time
delay between the production and dissipation of turbulent
kinetic energy. They therefore include a ““memory ÏÏ for the
history of the turbulent energy of each Ñuid element, which,
in some cases, gives rise to a buildup of turbulence above its
local equilibrium.

In the next sections, two physical ways of boosting the
deÑagration efficiency are discussed. A third possibility is
simply that calculations having the necessary three-
dimensional resolution and low numerical viscosity have
yet to be done. Were it not for drag (admittedly an unrea-

sonable omission), a buoyant bubble Ñoating in response to
its density contrast (D40% typically when the Ñame is at
1000 km) and local gravity (D1010 cm s~2) would quickly
achieve the sound speed. Assuming that the bubble dimen-
sion scaled linearly with distance from the center of the star,
a reasonable assumption in the bubble cascade model of
Sharp and Wheeler speciÐcally taking(Sharp 1984 ; ° 2.5),
the bubble radius, with r the distance to thelmax D 0.5r,
stellar center and using one obtains e†ectiveequation (11),
Ñame speeds D1500 km s~1. This prescription implicitly
includes drag, and the result is consistent with what is seen
by & Woosley in analytic calculationsGarcia-Senz (1995)
and by et al. in two-dimensional numericalNiemeyer (1996)
models. A similar result can be obtained by directly using
the Sharp-Wheeler burning velocity which, for(eq. [13]),
times 0.5È1 s, is again of order 1000È2000 km s~1. Provided
that turbulence is capable of burning out or ““ digesting ÏÏ all
material internal to the leading bubbles, this speed would be
enough to generate at least a mild explosion (consistent
with et al.Niemeyer 1996).

A simple one-dimensional calculation illustrating this
possibility is given in A Chandrasekhar massFigure 3.
white dwarf was ignited at its center and given an e†ective
Ñame speed that, after some time (0.5 s) during which the
Ñame was assumed to move at a slow speed (approximately
laminar), was assumed to be given by wasequation (13) ; geffcalculated each time step at the Ñame boundary. Calcu-
lations were done using the one-dimensional implicit
hydrodynamics code KEPLER Zimmerman, &(Weaver,
Woosley also described in This prescription1978), ° 3.2.1.
assumes that the Ñame moves with a radial speed given for
an ensemble of RT-unstable bubbles and(Sharp 1984 ; ° 2.5)
that turbulent processes behind the leading edge can
““ digest ÏÏ all unburned fuel. The explosion is a healthy one,
though short of intermediate-mass elements.

If for some reason the speed was greater, a stronger deÑa-
gration would result. E†ects that have been left out of the
simple Sharp-Wheeler speed are bubble growth(eq. [13])
by burning, which causes even small bubbles to merge, the
negative heat capacity of a mixture of 56Ni and a-particles

& Woosley and gradients in density(Garcia-Senz 1995),
and pressure.

3.1.2. Active Turbulent Combustion?

In we have neglected any feedback of burning itself° 2.4
on the intensity and spectrum of turbulence. In particular,
we assume that the overall propagation speed of the turbu-
lent Ñame brush is limited by the velocity of large-scale RT
bubbles This need not be true. Owing to the(eq. [11]).
limited range of observable scales, neither simulation nor
experiment presently rules out the possibility that thermal
expansion of burned material inside the Ñame brush signiÐ-
cantly increases the strength of turbulent Ñuctuations on all
turbulent scales. The energy available from nuclear burning
is D1018 ergs g~1, most of which goes into internal energy
and bulk expansion of the star. Only a tiny fraction of this
energy, D1014È1015 ergs g~1, is injected into turbulence by
the RT instability. Thus, the efficiency of any additional
feedback mechanism that converts nuclear energy to turbu-
lence need not be large. We therefore brieÑy discuss a pos-
sible mechanism for the feedback of burning on turbulence
and its consequences for supernova explosions.

Thermal expansion behind the laminar Ñame is the main
reason for the LD instability The growth of LD(° 2.2).



0 .5 1
-2

-1.5

-1

-.5

0

0

746 NIEMEYER & WOOSLEY Vol. 475

FIG. 3.ÈFinal velocity and composition in a simple one-dimensional calculation of a deÑagration in which the Ñame was constrained to move at a speed
(in the comoving frame) of with s. The velocity is sampled at t \ 10 s when it has taken on its coasting value. The Ðnal kinetic energy is0.1geff(t [ t0) t0\ 0.5
8.5] 1050 ergs. The mass of 56Ni is 0.57 and there are 0.24 of other iron group isotopes.M

_
, M
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perturbations in the absence of external Ñuctuations is
stopped by cusp formation leading to a stable cellular Ñame
structure. It is possible, however, that once the cellular
structure is disrupted by the turbulent cascade from above,
the production of speciÐc volume contributes again to the
growth of velocity Ñuctuations. Although local intersections
of Ñame segments resembling cellular cusps still occur in the
turbulent regime, their random orientation inhibits the for-
mation of any self-stabilizing structure. Instead, it is likely
that neighboring expanding regions accelerate the medium
in some stochastic direction, thereby enhancing the inten-
sity of velocity Ñuctuations.

In a Ðrst approximation, we assume that this e†ect is
most efficient on the scale of the expanding regions them-
selves and therefore does not signiÐcantly couple turbulent
velocities on di†erent scales. As a consequence, only the
Ñuctuation amplitudes would be a†ected, not their spec-
trum. The simplest case would then be a constant and scale-
independent growth rate, of turbulent velocityutur,Ñuctuations on each scale that depended only upon the
expansion parameter c,

dv(l)
dt

\ utur(c)v(l) , (15)

giving rise to exponential growth :

v(l, t) \ v(l, 0)eutur(c)t . (16)

Since the most plausible functional dependence of on cuturwould be monotonically growing, this e†ect could readily
account for the required delay of Ñame acceleration for a
delayed detonation. Furthermore, the argumentation of

concerning the transport and burning timescales is still° 2.4
true, so that still holds on every scale aboveequation (10)

the Gibson length (which now, of course, decreases accord-
ing to the increasing strength of turbulence). More compli-
cated, scale-dependent feedback mechanisms would also
alter the spectrum of turbulent velocities, giving rise to a
fractal dimension of the Ñame surface di†erent from
DB 7/3.

A recent proposal by gives strong supportKerstein (1996)
to the idea of active turbulent combustion. The author
states that power-law growth of the turbulent burning
velocity (as opposed to exponential growth expressed by eq.

naturally occurs in the absence of a stabilizing mecha-[16])
nism, either by self-acceleration or through a statistical
e†ect. However, the growth exponent is sensitive to the
underlying model of Ñame dynamics and thus remains
undetermined.

As there is no natural limit for this growth in the incom-
pressible regime, the velocity of turbulent eddies on large
scales would eventually exceed that of rising RT bubbles

From there on, the properties of the Ñame brush(eq. [11]).
would be independent of the RT instability. As the turbu-
lent velocities become close to sonic, compressibility e†ects
grow more important and may give rise to a delayed deton-
ation (see It must be noted that this self-° 3.2.4).
enhancement e†ect can only occur after the cellular
structure has been disrupted above the Gibson scale by the
turbulent cascade from larger scales. This, together with the
increasing gas expansion as the star expands, may explain
the delay in the acceleration of the turbulent burning front
necessary to account for SN Ia nucleosynthesis. We empha-
size again that the arguments given here are speculation
and need to be conÐrmed experimentally or numerically.
Three-dimensional simulations of burning in a preturbu-
lized medium covering as many scales as reasonable are
needed.
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3.1.3. Initial Conditions : Multipoint Ignition

As pointed out by & Woosley andGarcia-Senz (1995)
demonstrated by et al. the efficiency of aNiemeyer (1996),
white dwarf deÑagration is sensitive to the manner in which
the runaway is initiated. Multiple-point ignition a few
hundred kilometers out from the center gives more power-
ful explosions than one ignited at the stellar center. This is
because burning bubbles born o†-center are more buoyant
at birth because of the higher gravity and can travel farther
before the star begins to disrupt.

It is presently uncertain how far this trend can be contin-
ued. Obviously a white dwarf ignited simultaneously at a
large number of points scattered uniformly throughout its
mass would have no difficulty exploding, but that would be
artiÐcial. The condition of simultaneity requires synchro-
nization of the burning in regions that, at the time they run
away, are out of communication. The calculations of

& Woosley indicate that it would takeGarcia-Senz (1995)
an extremely Ðne tuning of the temperature in order to get a
convective bubble in the phase immediately preceding
runaway to Ñoat more than D200 km. Still, a large number
of 10 km bubbles, say, could be crowded onto a sphere of
this radius. If these Ñoated a large distance after burning
before acquiring sufficient velocity to drive lateral burning
by the KH instability and turbulence, the e†ective burning
rate could become quite large (picture a dandelion gone to
seed as the location of burned ash at this point). The time-
dependent competition between lateral and radial burning
is thus important. Three-dimensional calculations to
explore this possibility would be interesting.

3.2. Detonation
The simplest form of explosion, insofar as the hydrody-

namics is concerned, would be detonation. This was the
solution originally proposed by but numer-Arnett (1969),
ous variations have been proposed since then that di†er in
where and when the transition from subsonic to supersonic
burning occurs. In order to make this transition, it is neces-
sary that some volume sufficiently large to maintain a
detonation burn in a time short compared to that required
for sound crossing. Before discussing speciÐc models, we
begin by deriving a grid of critical masses capable of ignit-
ing and sustaining a detonation. We concentrate on den-
sities between 107 and 108 g cm~3 because this is the
approximate range required for a transition to detonation
that will provide ample intermediate-mass elements.

3.2.1. Critical Masses for Detonation

The general idea of a critical mass for detonation follows
Blinnikov & Khokhlov and(1986, 1987), Khokhlov (1991a),

see also & Clavin for a recentWoosley (1990) ; He (1994)
analysis of critical conditions for detonations. A propagat-
ing detonation wave must exert sufficient overpressure to
burn a region in a sound crossing time. If it does not, the
shock will degenerate into a pressure wave and damp. The
shock temperature for the self-consistent wave is given by
the density and composition. This temperature gives a time-
scale for burning which, when multiplied by the sound
speed, gives a rough estimate of the detonation wave thick-
ness. Unless this distance is very small compared to the size
of the region where the phase velocity of burning is super-
sonic, the detonation will damp.

We have determined empirically a series of critical masses
using the one-dimensional hydrodynamics code KEPLER

et al. which has nuclear physics and an(Weaver 1978),
equation of state appropriate for the problem. The nuclear
network employed contained 19 isotopes from hydrogen to
56Ni. Radiation transport was turned o† and only the
quadratic artiÐcial viscosity term employed. Spheres were
constructed of 100 zones with the mass of each zone
smoothly increasing outward (the Ðrst 30 zones had con-
stant mass ; the other 70 gradually increased logarithmically
to a value 100 times larger than the central zone in zone
100). For the calculations at o ¹ 108 g cm~3, a linear (with
respect to interior mass) temperature gradient was superim-
posed on the inner 28 zones with a central value of
3.2] 109 K falling to 4 ] 108 K in zone 28. The rest of the
zones also had a temperature of 4 ] 108 K. This tem-
perature gradient was such as to give a well-resolved super-
sonic phase velocity for the burning in the inner zones for
all spheres considered. The density was taken to be approx-
imately constant in all zones and a boundary pressure
applied to the sphere equal to that in the outer zones. For
the o \ 2 ] 109 g cm~3 case, the central temperature was
assumed to be 2.8 ] 109 K, declining smoothly over 55
zones to 7] 108 K, where it remained constant for another
145 zones. A sample calculation is given in Figure 4.

Burning was then turned on and the subsequent evolu-
tion followed for about 4000 time steps in each case (20,000
in the case of 2 ] 109 g cm~3). Several dozen such spheres
were modeled. A sampling of results is given in InTable 1.
each case the critical mass is the lowest value for which
detonation was achieved and maintained. The value given is
the mass interior to zone 20, i.e., most of the material upon
which the high burning temperature was imposed. In each
case a calculation using 10 times less mass was also carried
out and gave a failure. The length scale is thus resolved to
about a factor of 2. Because the results depend so sensitively
upon the composition, it was not worthwhile to attempt
greater resolution.

For the case of 50% carbon and 50% oxygen our results
agree well (within a factor of 10) with those of &Arnett
Livne However, we also explored the sensitivity to(1994b).
composition and found the mass fraction of carbon to be
very important. At a density of 3 ] 107 g cm~3, for
example, the critical mass is 5 orders of magnitude smaller
for pure carbon than for a mixture of 50% C and O. The
larger Q-value for the burning gives a higher burning tem-
perature in the detonation, and the reactions are very tem-
perature sensitive. On the other hand, the mass is 5 orders
of magnitude larger if the fuel is 40% carbon and 60%
silicon, and for 35% carbon and 65% silicon the critical
mass is larger than the star. We calculated mixtures of
silicon and carbon because, later, we shall consider the
possibility of igniting a detonation in a region where ash
and fuel have mixed. At these densities, carbon and oxygen
burn to intermediate-mass elements, of which silicon is
more representative than nickel. Apparently, for each
density, there is a critical mass of contamination by ash that
makes detonation impossible. But if the ash remains a small
component, the required critical masses are quite small.

While the calculations were carried out for thoroughly
mixed combinations, similar restrictions would apply to a
region of thinly laminated, but unmixed, fuel and ash. The
critical quantity is the overpressure produced in a region
large compared to the mixing scale. Since the ashes have
long since yielded their overpressure to sustaining the sub-
sonic expansion of the star, only the contribution of the fuel
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FIG. 4.ÈMicrodetonation of a sphere of 50% carbon and 50% oxygen at 2 ] 109 g cm~3. The detonation was initiated by a temperature gradient that
gave a supersonic phase velocity in the inner 70 cm (10~18 The temperature fell smoothly in the initial model to a constant background of 7 ] 108 K atM

_
).

87 cm (2.7] 10~18 The density jump in the steady state shock was 1.5. The times sampled in the Ðgure are 0.66, 1.9, 2.6, 3.2, 3.8, 4.3, 4.8, 5.4, andM
_

).
6.5] 10~8 s. Velocity is the solid curve ; pressure is the dashed curve.

is important. If the mass fraction of fuel in the macroscopic
region is low, the critical mass is large.

These masses are for isolated hot spots surrounded by
cold material. If the runaway occurs in an extended region
that is itself close to burning on a sound crossing time, they
could be smaller.

3.2.2. Prompt Detonation

We now discuss the possibilities for detonation in the
approximate time order in which the detonation appears.

First, there is the possibility of a prompt detonation
Critical masses for prompt detonation have(Arnett 1969).

been calculated by Blinnikov & Khokhlov and(1986, 1987)
are very small (see also for o \ 2 ] 109 g cm~3), soTable 1
there are an enormous number (D1018) of possibilities for

detonation in the inner 100 km of the white dwarf that runs
away. At issue, however, is the high degree of isothermality
required to produce a supersonic phase velocity.

derives the condition that the phaseWoosley (1990)
velocity of nuclear burning be sonic in the presence of a
temperature gradient dT /dr :

AdT
dr
B
crit

\ 0.3T 921.2 o93.05 K cm~1 . (17)

Convection ceases to be efficient in transporting energy at
about when the convective cycle time equals theT9\ 0.7,
nuclear burning time, and this is a convenient point at
which to evaluate the isothermal condition. The above
equation gives a critical gradient, dT /dr D 0.001 K cm~1.

TABLE 1

CRITICAL MASSES

Mass T9 burn qa
o 12C 16O 28Si 56Ni (M

_
) Radius (10 K) (s)

107 . . . . . . . . . . 0.5 0.5 0 0 10~10 2 km 3.5 4 ] 10~4
0.5 0 0.5 0 10~8 10 km 3.3 2 ] 10~3

3 ] 107 . . . . . . 1.0 0 0 0 10~19 1 m 5.5 2 ] 10~7
0.5 0.5 0 0 10~14 50 m 5.2 1 ] 10~5
0.5 0 0.5 0 10~10 1 km 4.3 2 ] 10~4
0.5 0 0 0.5 10~10 1 km 4.1 2 ] 10~4
0.4 0 0.6 0 10~5 50 km 3.9 1 ] 10~2
0.25 0.25 0.5 0 10~4 100 km 4.0 2 ] 10~1
0.35 0 0.65 0 Z10~1 . . . . . . . . .

108 . . . . . . . . . . 1 0 0 0 10~20 40 cm 6.5 1 ] 10~7
0.5 0.5 0 0 10~18 2 m 6.2 4 ] 10~7
0.5 0 0.5 0 10~12 150 m 5.5 3 ] 10~5

2 ] 109 . . . . . . 0.5 0.5 0 0 10~18 70 cm 9.7 7 ] 10~8

a Sonic crossing time assuming a sound speed of 5000 km s~1 (10,000 at 2] 109).
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Conduction will tend to smooth out temperature Ñuctua-
tions on small scales. For o \ 2 ] 109 g cm~3 and T9 \ 0.7,
the conductive opacity is about 10~5 cm2 g~1 and the con-
ductive length scale for 1 s is D10 m. The timescale to
increase nuclear energy generation at is D10 s.T9 \ 0.7
Interestingly, the critical mass for detonation is(Table 1)
also a few meters in radius, so perhaps an approximately
isothermal region of this size is not unreasonable.

However, for detonation within a single critical mass of
10~18 the temperature could only vary fromM

_
(Table 1),

by about one part in 1010 (if the conditions atT9\ 0.7
evolved without outside inÑuence to runaway) !T9B 0.7

For larger length scales, up to 107 cm, the restriction is less
severe but still very constraining, about one part in 105.
Further, this thermal condition must be maintained for an
appreciable fraction of the nuclear timescale at T9\ 0.7,

qnuc\ 0.15T 9~20.2o9~3.05 B 20 s . (18)

A prompt detonation becomes more likely if an only
approximately isothermal region exists at higher tem-
perature For example, consider the conditions(eq. [17]).
after the runaway has progressed and the hottest tem-
perature anywhere in the core is If this point isT9 \ 1.2.
surrounded by, say, 10 km of material in which the tem-
perature is between and a detonation willT9\ 1.2 T9\ 1.1,
occur. Similarly, a point having must be sur-T9\ 1.5
rounded by 104 cm of material between and 1.5,T9\ 1.4
etc. However, the nuclear timescales at these points are
5 ] 10~4 and 5 ] 10~6 s, respectively, and there is no effi-
cient energy transport mechanism that operates on such
short times.

The actual thermal structure is not known with such pre-
cision. Small Ñuctuations will be ampliÐed by the tem-
perature sensitivity of the nuclear burning. Turbulence,
energized by convection, has two e†ects. On the one hand, it
acts to smooth out inhomogeneities. But, to the extent that
the energy density in turbulence varies even slightly from
place to place, di†erent amounts of heat will be dissipated at
the (very small) Kolmogorov scale. The convective velocity
at is approximately 30 km s~1. The energy densityT9\ 0.7
in this turbulence is about 1012È1013 ergs g~1 ; the heat
capacity of the gas is D107 ergs g~1 K~1. The timescale for
generating this energy is on the order of the convective
turnover time 10È100 s. If 10% variations occurred in the
dissipation rate in two regions, the temperature variation
would be D105 K. Although this does not prove that a
prompt detonation is impossible, it suggests that it is much
more difficult than the large number of critical masses
implies.

The chief evidence against prompt detonation is not so
much the physics of igniting the detonation as the fact that
the models do not agree with observations. They produce
too much 54Fe with respect to 56Fe and no intermediate-
mass elements (e.g., The detonation waveWoosley 1990).
may be unstable at high densities g cm~3 ;(o Z 2]107

but the instabilities predicted act onKhokhlov 1993b),
scales of order 1 cm and less. This would have no e†ect on
the nucleosynthesis, since even a laminar Ñame would burn
through the residual fuel in less than an expansion time. If
an instability were found that left behind regions of
unburned material with the size D100 km, these regions
would not be completely burned by conduction in the
explosion. The model would resemble the deÑagration
ignited at many points throughout its volume, discussed in

the previous section. To our knowledge, no such instability
has been proposed.

3.2.3. Atmospheric Detonation

The Ðrst models in which detonations were actually cal-
culated rather than assumed et al.(Nomoto 1984 ; Woosley
& Weaver occurred because a subsonic deÑagration1986)
produced sufficiently strong pressure waves that their accu-
mulation ahead of the Ñame led to compression adequate to
ignite nuclear burning on a sonic time. This always
occurred near the surface of the star in the steepening
density gradient around 1.0È1.3 Such explosions madeM

_
.

only a small quantity of intermediate-mass elements, but
did produce very high velocity iron synthesized as 56Ni near
the surface. The high velocities may be necessary to explain
some supernova observations, especially for SN 1991T

et al. but the small synthesis of SiÈCa(Yamaoka 1992),
remains a problem for the typical SN Ia. The reason so little
silicon is made in these models is that the Ñame must move
an appreciable fraction of the sound speed in order to
steepen into a shock in the outer layers. Such rapid burning
consumes the white dwarf before it has had time to expand
and is still at high density.

To produce intermediate-mass elements, it is helpful if the
supernova Ðrst burns relatively slowly and expands and
then makes a transition to a detonation at a density D107 g
cm~1. At such a low density, detonation proceeds not to
iron but to silicon. This deÐnes the ““ delayed detonation ÏÏ
model of Khokhlov and &(1991a, 1991b, 1991c) Woosley
Weaver (1994).

3.2.4. Delayed Detonation

First we consider the model of Khokhlov, who attributes
the transition to detonation to temperature Ñuctuations.
These Ñuctuations arise from ““ nonuniform preheating of
the gas ÏÏ (or perhaps turbulence, though he emphasizes the
former). Khokhlov points out that a spontaneous transition
to detonation is frequently observed in terrestrial experi-
ments (e.g., & Moen involving turbulent Ñames.Lee 1980)
The underlying idea is similar to that discussed in A° 3.2.2.
single small region, but one larger than the critical mass,
burns faster than sound because of an anomalously high
temperature and shallow temperature gradient. Once a
detonation is initiated, even a small one, it propagates
through the rest of the star.

However, such large localized temperature Ñuctuations
are unlikely. As long as the Ñame retains a well-deÐned
surface (i.e., operates in the laminar or ““ Ñamelet ÏÏ regime ;

high fuel temperatures exist only in the thin interface° 2.4),
separating fuel and ash. Burning in this interface is very
subsonic (deÐning, in fact, the laminar speed) and the mass
in a Ñame thickness is much less than a critical mass. Pre-
viously existing, isolated temperature Ñuctuations in the
carbon fuel will tend to be damped and quenched by the
expansion. By very careful tuning, one might arrange to
have a disconnected region run away at a late time (burning
would occur at a rate that, for a long time, precisely bal-
anced adiabatic losses as in & WoosleyGarcia-Senz 1995).
Additional tuning could give this region such a shallow
temperature gradient that it burned supersonically. Not
only does this seem unlikely, but the runaway would be
much more likely to occur at an earlier time and there
would be nothing special to delay the burning until the
density declined below 3] 107 g cm~3, as is necessary if
intermediate-mass elements are to be produced.
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Temperature Ñuctuations might also be built up by the
collision of sound waves or blobs of matter moving in
random directions in the unburned carbon, but the energy
density of these collisions is small. Typical velocity shears
are 100 km s~1, implying an energy density of D1014 ergs
g~1. At a density of 3] 107 g cm~3, an internal energy
addition of about 1017 ergs g~1 is required to raise the
temperature above 2.0 ] 109 K, where burning on a hydro-
dynamic timescale can occur. We conclude that a delayed
detonation initiated by temperature Ñuctuations is unlikely.

A di†erent sort of delayed detonation was discussed by
& Weaver in lectures presented at LesWoosley (1994)

Houches in 1990. This kind of model resembles more the
atmospheric detonations of but there is an attempt° 3.2.3,
to ““ sculpt ÏÏ the Ñame speed so as to provoke a detonation
in a star with initially slow burning. In outcome the model
is the same as that of Khokhlov, but the detonation occurs
because of an accumulation of overpressure in a macro-
scopic region surrounding a topologically complex Ñame
surface. Geometry plays the key role, not temperature Ñuc-
tuations or gradients, and it makes sense to cast the model
in terms of the fractal dimension of the Ñame. Some repre-
sentative conditions illustrate the idea. At 3 ] 107 g cm~3,
the critical mass for detonation is around 10~14 (50 mM

_for 50% carbon ; The turbulent Ñame brush (Table 1). ° 2.4)
might be up to 200 km thick (i.e., it contains many critical
masses ; et al. the laminar speed of theNiemeyer 1996),
Ñame about 0.5 km s~1, the sound speed near 5000 km s~1,
and the smallest unstable wavelength about a centimeter.
The 200 km thick region will then burn supersonically if the
fractal dimension in that region exceeds 2.6.

There are several difficulties here. First, the fractal dimen-
sion associated with a turbulent Ñame is well pegged to
2.3È2.36, based upon both simple scaling relations (Kerstein

and experiment (e.g., Felton, &1988, 1991) Mantzaras,
Bracco & Santavicca & Ronney1989 ; North 1990 ; Haslam

A value of 2.6 would require nonstandard assump-1995).
tions (though o†ers arguments that theMandelbrot 1983
fractal dimension of isoscalar surfaces in turbulence should
be 2.5È2.66). It should be recognized, however, that D\ 7/3
is a statistical average. There may be regions having larger
dimension and others with smaller ones.

Why would this detonation occur preferentially at late
times? At earlier times, the Gibson length is much larger
and the structure of the Ñame brush correspondingly
coarser. At 109 g cm~3, for example, the laminar Ñame
speed is about 50 km s~1. A Ñame brush of 200 km (though
none would exist yet at this early time) would have a sound
crossing time of about 0.02 s, and the spacing between
burning regions for supersonic e†ective burning would be 1
km. The Gibson length at these conditions is larger than 1
km; so too is the minimum unstable Rayleigh-Taylor wave-
length & Woosley It would be hard to(Timmes 1992).
prepare such a layered structure without burning all the fuel
in the process. Detonation would be difficult.

A second condition required for a delayed detonation of
this type is that the mass fraction of ash in the Ñame brush
not be high. At 3 ] 107 g cm~3, suggests thatTable 1
detonation would not occur if the ash comprised more than
35% of the mass of the Ñame brush.

We conclude that a delayed detonation of the kind pro-
posed by & Weaver is possible, but itsWoosley (1994)
actual occurrence improbable. Whether the requisite Ðne
structure can be set up is unknown.

3.2.5. Detonation in the Distributed Regime

Instead of mixing and wrinkling a thin Ñame sheet, turbu-
lence, in the extreme, might mix heat from the ashes into
cold unburned fuel. Rather than accumulate a critical
surface area within a volume, the star might instead grad-
ually build a critical temperature in a volume of fuel larger
than in as KhokhlovÏs modelTable 1, (1991a, 1991b, 1991c)
requires. This sounds straightforward, but it can be difficult
to arrange. Indeed, for densities above about 3 ] 107 g
cm~3, without pulsation, it is impossible.

Above this density, the microphysics of the nuclear
burning and electron conduction can be decoupled from all
the instabilities we have discussed. Viewed on a sufficiently
small scale (i.e., the conductive Ñame thickness), the Ñame is
smooth and stable Since the thickness of the Ñame(Fig. 1).
is smaller than any critical mass in no detonationTable 1,
can occur.

However, as the density drops below about 3] 107 g
cm~3 nuclear burning proceeds at a slower rate and(Fig. 2),
the Ñame becomes thicker. For a mixture of 50% carbon
and 50% oxygen, & Woosley (1992) a ÑameTimmes Ðnd
thickness of 0.5 cm at 5] 107 g cm~3 and 4 cm for 1] 107
g cm~3. At the same time, the scale of the smallest turbulent
eddies that can turn over without burning (the Gibson
scale) grows progressively smaller. For a turbulent energy
density of 1014 ergs g~1 at 106 cm & Hillebrandt(Niemeyer

the Gibson scale is 0.2 cm and 10~4 cm, respec-1995b),
tively, at 5 and 1] 107 g cm~3. Somewhere between these
two densities a transition to a di†erent kind of burning must
occur.

Under these conditions it no longer makes sense to speak
of a Ñame propagated solely by electronic conduction. The
burning is smeared out by turbulence ; one enters the dis-
tributed regime of Heat can then be extractedFigure 2.
from burning regions and transported to fuel. To make the
transition to detonation a region of size larger than the
critical mass must assume a temperature gradient(Table 1)
shallower than that given by with a peakequation (17)
temperature such that the nuclear burning time is much
shorter than the stellar expansion time. We now illustrate,
with speciÐc conditions, how this might occur.

First, a portion of the Ñame brush moves into the distrib-
uted region. We take a density 3 ] 107 g cm~3 as represen-
tative. The turbulent Ñame brush is, at this point, a
Ðne-grained mixture of discrete phasesÈfuel and ash, Ðne-
grained, but still separated. Now, in places, the burning
begins to go out as turbulence penetrates the Ñame sheet,
homogenizes the composition, and reduces the temperature
to some low mean value where burning is very slow. Recall
the physics of the laminar Ñame & Woosley(Timmes 1992).
There is a critical temperature in the Ñame where conduc-
tion balances nuclear energy generation. The nuclear time-
scale at this temperature times the laminar Ñame speed
equals its thickness. As the Ñame enters the distributed
region, turbulent eddies with a size comparable to the Ñame
thickness (D1 cm) become fast enough to carry away
heated fuel before it can burn. One might say that turbu-
lence, for the Ðrst time, ““ enters ÏÏ the reaction region and
disperses it to larger length scales, where, again, the burning
time equals the (turbulent) transport time. For still lower
densities and temperatures, and thus lower burning rates,
the same level of turbulence is able to distribute the reaction
zone on even larger scales.
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This leads to regions where the burning is temporarily
quenched. As the overall density declines, these regions
grow in size and, if the star becomes unbound, eventually
encompass all the Ñame brush. These regions of suppressed
burning are still coupled by turbulence, however. An impor-
tant timescale to keep in mind is the characteristic turbulent
timescale for a critical mass We shall assume, and(Table 1).
justify later, that the fraction of ash in the mixture is small.
Taking carbon equals oxygen equals 50% by mass, the criti-
cal mass is D10~14 and its size is 50 m. Its turbulentM

_
,

turnover time is then s It is importantqcritD 10~3 (Fig. 1).
that this is very much less than the hydrodynamical time,

s, for the star to expand.qdyn\ 446/o1@2 D 0.1
If the mixture of fuel and ash burns faster than qcrit,mixing will be incomplete and no detonation is possible.

This requires that the temperature of the mixture be less
than cooler if one considers largerT9\ 2.2 (eq. [18]),
regions containing many critical masses. On the other hand,
the mixture must be able to resume rapid burning during
the hydrodynamic timescale, and that requires a tem-
perature larger than For intermediate tem-T9\ 1.7.
peratures of the mixture, a detonation is possible. The
temperature in the ashes of a typical deÑagration when the
density is 3] 107 g cm~3 is The electronic heatT9\ 4È5.
capacity still dominates, so Therefore, mixingC

v
P C

v
PT .

equal masses of fuel and ash gives a mixture with tem-
perature with little dependence on the temperatureTash/21@2,
in the cold fuel. If we want the mixture to have a tem-
perature of for example, then each part of ash mustT9\ 2,
be diluted with 5 parts of fuel if the unmixed ash has tem-
perature and 3 parts fuel if it has temperatureT9\ 5 T9 \
4. This justiÐes the use of the (ash-free) critical mass chosen
above. The actual dilution factor must ultimately come
from a numerical study that we are unable to do right now.
If it is too large or too small, the model fails.

A delay follows during which the temperature rises and
the mixture runs away. For a detonation to occur, a region
larger than the critical mass must have a nearly isothermal
temperature distribution about 20 K cm~1 if we(eq. [17]),
continue to use our (very approximate) representative value
of This means that once the mixture resumesT9\ 2.
burning, there can be no large region cooler than this peak
value minus the temperature gradient times the size of the
region (105 K for 50 m). The region can, of course, be larger
than the critical mass and the condition on the temperature
Ñuctuations less stringent, but larger regions will have
longer turbulent timescales and it will be harder to mix
them without the fuel already burning.

As in the case of prompt detonation one has(° 3.2.2),
many opportunities for an improbable event, so the
outcome is uncertain. However, because of the higher char-
acteristic temperature rather than the iso-(T9B 2 T9B 0.7),
thermal condition is not nearly so stringent, and with as
many as D1012 critical masses in the Ñame brush a detona-
tion does not seem so unlikely. The congruence of the
density where distributed burning can begin with that
required for a detonation to make appreciable
intermediate-mass elements is also particularly encouraging
for this modelÈanother key di†erence with the prompt
detonation model.

3.2.6. Pulsational Detonation

If inadequate fuel burns to disrupt the white dwarf on the
Ðrst pulse, contraction will cause rekindled combustion and

one or more pulsations will ensue. The burning conditions
after each pulse will di†er appreciably from the one before.
If the pulse does not go below D3 ] 107 g cm~3, the
boundary between ash and fuel remains intact but the Ñame
surface becomes dispersed throughout a greater fraction of
the mass and more convoluted as well. If the pulse goes
below D3 ] 107 g cm~3, turbulence will mix both the com-
position and the heat across the interface. During the
recompression, a large region of shared energy (or of dis-
persed Ñame) will reignite, giving rise once more to the
possibility of detonation, or at least very rapid combustion.

Models of this sort have been studied by Khokhlov
Mu� ller, & Ho� Ñich(1991b), Khokhlov, (1993), Ho� Ñich,

Khokhlov, & Wheeler and, in two dimensions, by(1995)
Arnett & Livne following early pioneering(1994a, 1994b)
work on pulsational deÑagration by et al.Nomoto (1976)
and et al. More recently hasIvanova (1974). Woosley (1996)
demonstrated, using mixing-length convection theory and a
fractal Ñame in a one-dimensional model where pulsation
was explicitly calculated, several possible outcomes includ-
ing either detonation (the pulsational analog to or° 3.2.4)
an accelerated deÑagration. However, no previous calcu-
lation has properly considered the critical role of turbu-
lence. Without turbulence, the surface topology is not made
much more complex during the pulse, nor is heat appre-
ciably shared between fuel and ash. The heated region is
instead conÐned to a narrow layer on the surface of a con-
ductive Ñame. This is the deÐnition of the Ñame thickness
and, for a monotonically expanding supernova, this thick-
ness is, at all times, thinner than the critical mass for deton-
ation. It is possible, in principle, for a very large amplitude
pulsation to lead to such a thick conductive Ñame that,
during recontraction, the heated region encompasses a criti-
cal mass, an approach taken, for example, by &Arnett
Livne But for the same conditions, turbulence(1994b).
would dominate the heat transport.

Observationally, the pulsational detonation model, or at
least the single large pulse version, has a difficulty. If a
large-amplitude pulse is necessary for the initiation of the
detonation, one would expect some white dwarfs to explode
weakly without pulsing at all. Why should all initial pulses
fall just short of producing an explosion? These supernovae
with their faint, broad light curves have, at the present time,
no observational counterpart. Perhaps they await dis-
covery. Or perhaps the explosion proceeds through a series
of low-energy pulses, only the last of which is always ade-
quate to provoke detonation. In the latter case, the density
3 ] 107 g cm~3 is critical. Pulsations that do not go below
this value would not lead to greatly accelerated burning
because their Ñames would remain, on the small scale,
laminar and dominated by conduction. The Ðrst pulsation
to go below this density would experience appreciable
mixing and heat sharing and greatly accelerated burning,
perhaps detonation, on the next pulse. Burning on a hydro-
dynamic timescale would also be guaranteed, since burning
would be responsible for halting the recompression.

What actually happens will not be known until realistic
three-dimensional models (with realistic ignition condi-
tions ; have been calculated, both to show the failure° 3.1.3)
of the Ðrst pulse and the degree of turbulent mixing during
subsequent pulses.

4. CONCLUSIONS

Our Ðrst conclusion, perhaps not a very reassuring one to
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the observers, is that there are a lot of models for how a
white dwarf explodes, none of which can be deÐnitely
excluded. However, our analysis suggests that some models
are more easily realized than others and provides calcu-
lations to clarify the situation.

The simplest model, plain carbon deÑagration, is an area
where progress can be and needs to be made. Currently one
does not know whether or not the burning front is able to
unbind the star without an intervening pulse, which would
exclude the pulsational detonation model. If a radial front
moves at the Sharp-Wheeler speed the star(eq. [13]),
becomes unbound, but this assumes efficient combustion by
turbulence within the RT mixing layer The radial(° 3.1.1).
velocity of the bubble front is set by the nonlinear Rayleigh-
Taylor instability, which should advance at nearly the
Sharp-Wheeler speed Behind the leading edge of(0.1geff t).the bubble front, burning is enhanced by turbulence gener-
ated by the Kelvin-Helmholtz instability in shear Ñows
bounding the RT-unstable blobs. It is not clear that fuel
consumption proceeds at the same speed as the bubble front
moves into the fuel. In other words, a stationary turbulent
Ñame brush may never be established during the explosion,
in which case the burning speed remains smaller than the
Sharp-Wheeler speed. High-resolution three-dimensional
calculations should ultimately clarify the issue. If the two
speeds are comparable, an explosion seems likely, if only a
mild one. The success of the Ðrst pulse is also very depen-
dent upon how the runaway is initiated in the star (°° 3.1.1,
3.1.3).

If the simple deÑagration succeeds, then, in order to agree
with observations, it must have a higher speed than current
multidimensional calculations suggest. We have discussed
two possible ways of speeding it up : active turbulent com-
bustion that increases the turbulence intensity by(° 3.1.2)
thermal expansion within the Ñame brush, and extreme
multipoint ignition According to recent results for(° 3.1.3).
the scaling behavior of unconÐned turbulent Ñames

active turbulent combustion is a very(Kerstein 1996),
promising Ðeld for future investigations, but its inÑuence on
the explosion mechanism remains speculative.

Delayed detonations without an intervening pulsation
are also not excluded, but those in the current literature
have problems The temperature Ñuctuations(° 3.2.4).
required to induce detonation by a ““ spontaneous burning ÏÏ
(Khokhlov are unlikely, and the large1991a, 1991b, 1991c)
fractal dimension and small minimum wavelength used by

& Weaver are inconsistent with currentWoosley (1994)
views regarding turbulence. Indeed, in the current view, an
e†ective burning speed, faster than the fastest turbulentutur,motion, v(L ) (which occurs on the largest scale L ), is impos-
sible This form of delayed detonation model survives(° 2.4).
for the time being, because the Kolmogorov mean Ðeld
description of turbulence may not fully describe our time-
dependent situation. The relation is an average.utur B v(L )
There may be appreciable Ñuctuations from this mean in
isolated small regions larger than a critical mass (we are
currently investigating this). Active turbulent combustion

might enhance the fuel consumption rate sufficient-(° 3.1.2)
ly. Another possibility is a burning geometry that favored

only radial growth early on but rapid nonradial com-
bustion at late times.

A more likely possibility, which we are suggesting here in
the astrophysical context for the Ðrst time, is a transition to
detonation as the star expands, its density declines, and it
enters the regime of distributed burning This(Fig. 2 ; ° 3.2.5).
kind of explosion has several appealing characteristics.
First, the transition to detonation occurs as a deÑagration is
dying. This naturally leads to the desired preexpansion of
the star and rapid burning at late times. In particular, abun-
dant intermediate-mass elements can be synthesized at den-
sities below the transition density, D107 g cm~3. If the
detonation ignites, it will naturally give a very energetic
explosion, currently a problem for the deÑagrations. Most
important, it does these things using credible, deÐnite
physics, which, though uncertain, can be tested by numeri-
cal modeling. At this point its greatest uncertainties are the
actual dilution factor for fuel and ash (a value of one part
ash to several parts fuel is optimal) and whether the neces-
sary isothermal conditions can be set up in the mixed
medium at For these reasons, this is the model thatT9B 2.
we favor at the present time. The observational conse-
quences of this form of detonation should be the same as for
other forms of (parameterized) delayed detonation models.

If the detonation fails to catch on the Ðrst try, and if
simple deÑagration fails, then pulsational detonation

o†ers an appealing alternative, but not one without(° 3.2.6)
its own puzzles. The deÑagration must fail after having
burned an appreciable mass so that the dwarf experiences a
large-amplitude oscillation. This requires some tuning so
that the star does not become unbound and yet still
expands enough to mix. Why do we see no supernovae that
just barely exploded? Here again distributed burning may
help. The detonation only lights once the pulsation has
sufficient amplitude to go to 107 g cm~3 at which point
efficient mixing occurs. The star could approach this limit-
ing density by one or more pulsations.

Because fundamental physics does not yet preclude
several qualitatively di†erent outcomes from very similar
starting points, it is possible that they all happen to some
extent. Even within a single class of model there is room for
considerable variation owing to di†erent ignition condi-
tions, variable ratios of carbon to oxygen (which set the
underlying conductive speed as well as a†ect the critical
detonation mass), and the uncertain transition to detona-
tion. Such diversity may be necessary to understand such
distinctively di†erent Type Ia supernovae as SN 1991bg
and SN 1991T.
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