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ABSTRACT
Searching through data for infrequent rapid bursts is a common requirement in many areas of scienti-

Ðc research. In this paper, we present a powerful and Ñexible analysis method that, in a single pass
through the data, searches for statistically signiÐcant bursts on a set of speciÐed short timescales. The
input data are binned, if necessary, and then quantiÐed in terms of probabilities rather than rates or
ratios. Using a measure-like probability makes the method relatively count rate independent. The
method has been made computationally efficient by the use of lookup tables and cyclic bu†ers, and it is
therefore particularly well suited to real-time applications. The technique has been developed speciÐcally
for use in an X-ray astronomy application to search for millisecond bursts from black hole candidates
such as Cyg X-1. We brieÑy review the few observations of these types of features reported in the liter-
ature, as well as the variety of ways in which their statistical reliability was challenged. The developed
technique, termed the burst expectation search (BES) method, is illustrated using some data simulations
and archived data obtained during ground testing of the proportional counter array (PCA) experiment
detectors on the Rossi X-Ray T iming Explorer (RXT E). A potential application for a real-time BES
method on board RXT E is also examined.
Subject headings : methods : data analysis È methods : statistical È stars : individual (Cygnus X-1) È

stars : variables : other È X-rays : stars

1. INTRODUCTION

Searching for occasional rapid features or bursts in
experiments in which photons are detected one by one can
be quite challenging when the count rate is relatively low
and Poisson statistics apply. A classic example of the use of
this type of analysis is in searching for rapid variability from
astronomical X-ray sources. This has been particularly
applicable for the e†orts made to date to identify the exis-
tence of a black hole as the origin of the X-rays from the
source Cyg X-1. The Rossi X-Ray T iming Explorer
(RXT E), launched on 1995 December 30, provides new
opportunities for this type of study, and Cyg X-1 style varia-
bility forms a natural example with which to illustrate this
new burst search method.

The earliest reported observations of millisecond time-
scale variability or bursts from Cyg X-1 were those reported
by Rothschild et al. The analysis method(1974, 1977).
employed revealed a total of 12 bursts. Another early
observation of rapid variability was that reported by

et al. Various authors reported statisticalOgawara (1977).
difficulties with the analysis methods employed, particularly
given the longer timescale shot noise variability seen from
Cyg X-1 & Sutherland(Terrell 1972). Weisskopf (1978)
modeled the shot noise using suitable parameters for the
frequency, decay time, and percentage of Ñux within the
shots, and they were able to produce bursts of similar sig-
niÐcance to those reported by Rothschild et al. (1974, 1977).
The located model bursts occurred as expected within the
enhanced count rate periods, but not right at the sharp
rising edge of the shots. & SutherlandWeisskopf (1978)
showed that neglect of these longer timescales leads to
““ events ÏÏ being found that have the duration of the basic
sampling bins. The work of Giles indicated that(1978, 1981)
such e†ects were only sufficient to bias the probability of
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acceptance of marginal cases, such as those being reported
at the time, and the basic searching approach adopted by

et al. is still a useful one. A completeRothschild (1974)
description of the mathematical theory for the shot noise
model has been given by Weisskopf, & KahnSutherland,
(1978).

The relationship between the duration of any enhance-
ment, whether caused by exponential shots or not, and the
averaging interval selected for the local mean was discussed
by Even the actual selection and binning of theGiles (1978).
basic temporal samples is important, as pointed out by

& Schechter In et al. groupsPress (1974). Rothschild (1974),
of 320 ks bins (minimum provided by telemetry) were taken
to build the basic 1.28 ms bin sizes, while in et al.Rothschild

bins of 160 ks duration were available. &(1977) Press
Schechter discuss the di†erence between these Ðxed(1974)
bins being combined from a random start point or being
specially selected by a clustering search to emphasize any
possible features. They discuss some correction statistics for
this second case. Questions such as ““ Is the phasing of the
adopted binning retained throughout the entire data set ? ÏÏ
and ““Was it deÐned a priori ? ÏÏ become important if the
features eventually reported have borderline signiÐcance.

The most extreme situation occurs when all the X-ray
counts are individually time-tagged and complete freedom
of binning becomes possible. The Ðrst data of this type were
obtained in 1976 by when photons from a largeGiles (1981)
area detector were time-tagged to 2 ks. Unfortunately,
because of an attitude control failure, only a short obser-
vation was made, but several bursts of similar signiÐcance
to those found by Rothschild et al. were(1974, 1977)
located. The Ðrst satellite datum obtained for Cyg X-1 with
rapid sampling was an observation by et al.Meekins (1984).
This single, pointed observation with the HEAO A-1 experi-
ment used a special high-rate telemetry mode for a short
period of time but saw no millisecond bursts. Additional
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observations of Cyg X-1, such as those with EXOSAT
& Hasinger and Ginga &(Belloni 1990) (Miyamoto

Kitamoto Miyamoto, & Kitamoto1989 ; Negoro, 1991)
have also not reported any millisecond or submillisecond
bursts.

The proportional counter array (PCA) experiment on
board RXT E is considerably more powerful than any pre-
vious experiment and can return vast amounts of high time
resolution data. In this paper, we describe a fast and effi-
cient search method for individual rapid burst events. This
is rather di†erent from studying the low-level quasi-periodic
oscillation type features, Ðrst reported by der Klis et al.van

from GX 5[1 and subsequently reported in many(1985)
X-ray binary systems. The search for isolated features is also
quite di†erent from that for millisecond pulsations in X-ray
binaries, as reported by et al. and etWood (1991) Vaughan
al. (1994).

2. THE BASIC POISSON ANALYSIS METHOD

The basic approach followed here is developed from that
described by et al. to detect millisecondRothschild (1974)
bursts from Cyg X-1. In this method, the basic bins used
had a duration of 1.28 ms, and the local mean count per bin
was obtained from a sample window of 409.6 ms or 320 of
these bins. All bins within a sample window were then
checked against the local mean for that sample. To perform
the test, et al. introduced the concept ofRothschild (1974)
an expectation value N(n) for the number of bins containing
n counts within each sample, using the mean count per bin
for each sample and Poisson statistics. The Poisson prob-
ability for a single bin is given by

P(r ; k) \ e~kkr

r !
, (1)

where r is the integer count in a bin and k is the local mean
per bin. The expectation value for any bin count value r is
the product of the Poisson probability for a single bin
P(r ; k) and the number of bins in the sample window.

et al. then searched all bins in eachRothschild (1974)
sample window to identify any that had a ¹0.01 chance
expectation value. The value of the mean was assumed to be
constant across the entire sample window.

The burst expectation search (BES) method di†ers from
RothschildÏs approach in a number of ways. Rather than
simply taking each bin in turn and calculating its chance
expectation, we acknowledge that the counts per bin are, by
deÐnition, integer numbers, and for a range of suitable
values of r (zero to a few hundred) calculate the com-
plimentary set of means that corresponds to a predeÐned
expectation value such as 0.01. Each of these calculated
values can be considered to be a threshold mean in the sense
that, when evaluating real data, a measured mean will fall
above or below it. The upper value of r simply depends on
the application. The BES method also tests the data against
a range of speciÐed expectation values in a single pass
through the data.

The initial data stream is either binned up into counts per
unit time interval, or it is automatically provided in this
form by a telemetry system structure. For the BES method,
the basic binning process can occur on any suitable short
timescale, and it is convenient to work in powers of 2 in
microseconds. Numbers of 64 to 1024 ks are suitable values.
Some longer time interval, perhaps 128, 256, or 512 times

longer than the basic bin size, is then used to deÐne a local
mean count rate centered around the basic bin of interest.
The bin of interest is included in the calculation for the local
mean. The bin count and local mean are then tested to see if
the bin count has a low probability of simple chance
occurrence. This again di†ers from RothschildÏs method in
that a running average local mean is used, rather than
assuming it is constant for the duration of the sample
window.

Taking the local mean as constant over the sample
window is a potential problem if step function edges, rather
than sharp bursts, are just entering or leaving the speciÐed
window. A sudden large increase in count rate occurring
near the end of the averaging window is an extreme
example, but Cyg X-1 is very variable, and power spectra
show signiÐcant energy from D10 ms to 10 s timescales.
Since one cannot simply assume that the mean is constant
over the whole observation, the choice of the averaging
interval becomes a trade-o†. There must be enough bins to
measure the mean to an acceptable precision (320 bins for
Rothschild, 256 bins in this paper), but not so many that
longer timescale intensity increases within the averaging
window make the mean too much of an underestimate. This
would bias the subsequent Poisson testing and result in
bursts, if present, having a higher statistical signiÐcance
than they really should. The use of a running mean helps to
further reduce these e†ects by making the test carried out
on each bin use a mean that is more representative of its
local environment.

In cases in which the long-term mean is relatively con-
stant, the running mean o†ers no advantage, and the dis-
tribution of the bin counts over the whole data sequence
can be examined to identify outlying cases. Such a distribu-
tion can also be compared directly with an expected dis-
tribution generated from the observed and stable mean
using Poisson statistics.

In addition to the introduction of a running mean, the
BES approach also uses a lookup-table method that mini-
mizes computation once the lookup table itself has been
computed. To construct the lookup table it is necessary to
deÐne the set of expectation values the data are to be tested
against, the number of bins in the averaging window, and
the maximum bin count for which we wish to test. As an
example, assume that we are looking for bins that have a
0.01 or less chance expectation, that the averaging window
has 256 bins, and that a count 7 bin is being considered. We
now calculate what the threshold mean level would be that
gives just the count 7 bin this level of signiÐcance. This can
be done using an iterative algorithm that is repeated until
the calculated mean is stable, within some deÐned small
limit. When doing this calculation, the Poisson probability
must be multiplied by the total number of bins within the
window, which is why this parameter is an input variable.
For the particular location example above, weTable 1
obtain a value of 0.9018 for the mean. To save space, not all
bin count rows are shown in Tables and It is now a1 2.
simple matter to evaluate any given bin count by testing it
against each of the Poisson table row entries against that
count value. If the measured window mean is lower than the
tabulated threshold mean, then the bin count chance expec-
tation is less than the column heading value, and the
ÏÏburst ÏÏ is signiÐcant.

In the above discussion, we have dealt with the mean
value within the sample window, but deriving the actual
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TABLE 1

THRESHOLD AVERAGES WITHIN A 256 SAMPLE WINDOW

EXPECTATION VALUES

HEIGHT 0.04 0.02 0.01 0.005 0.002 0.001

2 . . . . . . . . 0.0178 0.0126 0.0089 0.0063 0.0044 0.0028
3 . . . . . . . . 0.1012 0.0798 0.0630 0.0498 0.0394 0.0289
4 . . . . . . . . 0.2644 0.2198 0.1832 0.1529 0.1278 0.1009
5 . . . . . . . . 0.4988 0.4281 0.3683 0.3174 0.2739 0.2259
6 . . . . . . . . 0.7930 0.6950 0.6105 0.5373 0.4737 0.4017
7 . . . . . . . . 1.1369 1.0114 0.9018 0.8057 0.7209 0.6238
8 . . . . . . . . 1.5226 1.3698 1.2351 1.1158 1.0098 0.8867
9 . . . . . . . . 1.9437 1.7641 1.6046 1.4624 1.3350 1.1859
10 . . . . . . . 2.3955 2.1895 2.0057 1.8407 1.6921 1.5172
15 . . . . . . . 4.9968 4.6676 4.3690 4.0966 3.8471 3.5476
20 . . . . . . . 7.9885 7.5485 7.1461 6.7762 6.4345 6.0204
25 . . . . . . . 11.2339 10.6927 10.1956 9.7362 9.3098 8.7902
30 . . . . . . . 14.6605 14.0257 13.4407 12.8984 12.3935 11.7756
40 . . . . . . . 21.8965 21.0916 20.3469 19.6539 19.0058 18.2091
60 . . . . . . . 37.3404 36.2418 35.2214 34.2679 33.3726 32.2665
80 . . . . . . . 53.5699 52.2175 50.9591 49.7809 48.6723 47.2991
100 . . . . . . 70.2956 68.7159 67.2445 65.8653 64.5659 62.9540

NOTE.ÈThreshold Poisson means for the range of expectation values
0.04, 0.02, 0.01, 0.005, 0.002, and 0.001, assuming an averaging window of
256 bins. Not all integer bin counts are shown down the page. This
Poisson array table is constructed using methods described in ° 2.

mean is unnecessary. We can take the sum within the
window and multiply the values in by the numberTable 1
of bins in the window. Then we test as before, but we
compare the sum in the window against the sums in the new
table. shows the new computed table with the corre-Table 2
sponding entries now appearing as integers because the sum
is by deÐnition a summation of integers. The equivalent
value of the mean for the above count 7 example is now 230.
Notice that can be conveniently represented by 2Table 2
byte unsigned integers for real-time applications using
ROM or RAM storage.

3. FAST ANALYSIS ALGORITHM

The BES method uses lookup tables and simple algo-
rithms, which are computationally efficient, for rapidly

TABLE 2

THRESHOLD TOTALS WITHIN A 256 SAMPLE WINDOW

EXPECTATION VALUES

HEIGHT 0.04 0.02 0.01 0.005 0.002 0.001

2 . . . . . . . . 4 3 2 1 1 0
3 . . . . . . . . 25 20 16 12 10 7
4 . . . . . . . . 67 56 46 39 32 25
5 . . . . . . . . 127 109 94 81 70 57
6 . . . . . . . . 202 177 156 137 121 102
7 . . . . . . . . 291 258 230 206 184 159
8 . . . . . . . . 389 350 316 285 258 227
9 . . . . . . . . 497 451 410 374 341 303
10 . . . . . . . 613 560 513 471 433 388
15 . . . . . . . 1279 1194 1118 1048 984 908
20 . . . . . . . 2045 1932 1829 1734 1647 1541
25 . . . . . . . 2875 2737 2610 2492 2383 2250
30 . . . . . . . 3753 3590 3440 3301 3172 3014
40 . . . . . . . 5605 5399 5208 5031 4865 4661
60 . . . . . . . 9559 9277 9016 8772 8543 8260
80 . . . . . . . 13713 13367 13045 12743 12460 12108
100 . . . . . . 17995 17591 17214 16861 16528 16116

NOTE.ÈA repeat of but with the mean values multiplied by 256Table 1
and converted to integers. This table illustrates a more useful form suitable
for fast analysis and real-time hardware systems.

examining large data volumes. For analyzing archived data,
the processing speed is less important than for real-time
applications, but the method described below produces a
concise output that clearly illustrates any excessive bursting
in the input data stream. Some comments on the computa-
tional efficiency are made in a later section. A particular
feature of this analysis method is that the data are inter-
preted in terms of probability levels, rather than rates or
ratios, and are therefore largely independent of the actual
mean input data rate that can drift up and down through
the observation. The BES method is particularly suitable
for real-time analysis systems, and, in a later section, we
discuss its application to the Electronic Data System (EDS)
that is used by the PCA experiment on board RXT E.

The BES method requires the development and main-
tenance of Ðve types of interrelated data arrays. The dimen-
sions of these data arrays are consequences of deÐning a
rigid structure to the search methodÈnamely, a number of
bins across the sampling interval, a range of expectation test
values, a number of time bin sampling scales, and the range
of a few hundred integer counts. These Ðve array types are
given the following names : poisson array ; working array ;
result array ; normalization array ; and burst excess array.
We will now consider each of these in turn.

3.1. Poisson Array
The Poisson array contains a table of threshold mean

values computed using the method outlined in This° 2.
table is actually a constant table in the sense that, given a
set of expectation values, it can be computed once and it
then remains constant. Depending on the application, this
table can be recomputed each time the program is started,
read from a precomputed disk Ðle, read from a ROM chip,
or uplinked from the ground. shows part of aTable 1
typical Poisson array, with each vertical column represent-
ing a particular chance expectation value. The horizontal
rows are bin counts in integers, and a complete table would
goÈin increments of 1Èfrom 0 to the largest number of
interest.

The selection of a maximum of 100 counts per bin used in
constructing is somewhat arbitrary, but it is greaterTable 1
than the maximum counts per bin during the data analysis
and simulation results presented later. does notTable 1
contain entries for bin counts of 0 or 1, and this requires
some explanation. Bins with zero counts, although poten-
tially of interest, must by deÐnition be deÐcits rather than
excesses (bursts) and are therefore not of interest here. Bins
with 1 count also pose a problem because they could
equally be a background event contributing to the average
or a ““ burst ÏÏ event. There is no way of knowing which is the
case, and, although excessive bunching of 1Ïs in time would
be of interest, this is not applicable to the present analysis
method. Bin counts of 2 are also relatively insensitive to
meaningful statistical interpretation. In particular, reference
to or shows that for a bin count of 2 andTable 1 Table 2
expectation value of 0.002, the mean over the 256 sample
window is actually less than the bin count value itself. A
detailed discussion of the conÐdence limits for small
numbers of events in astrophysical data can be found in
Gehrels (1986).

To compute this array, it is only necessary to deÐne the
set of expectation values and the number of bins in the
averaging window (number of columns in the working
array).
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3.2. W orking Array
The working array is continuously updated with incom-

ing binned data samples and can exist in three states :
empty, loading, and operational. The empty state exists at
the start of processing the incoming data stream or follow-
ing a reset that may have been performed to clear out cor-
rupted data. The loading state is illustrated in the small
example of a working array shown in This tableTable 3.
also illustrates the basic principles of operation.

Each horizontal row of cells within the array is a ring
bu†er that has associated with it a head/tail pointer, a burst
pointer, and a sum register. These extra registers are also
shown in where the ring bu†ers have a length ofTable 3,
only 8. In practice, the ring bu†er length, the number of
columns in the array, will usually be 128, 256, or 512. The
top row of the working array represents the fastest cycling
ring bu†er, and each row below represents a slower cycle
time by a factor of 2. Only six rows are shown in Table 3,
but the number can be increased until the averaging time-
scale becomes larger than required, or the counts per bin
become so large that analysis for the complimentary result
array is invalid. The sampling for the basic input bins and
the dimensions of the working array can be adjusted to suit
the application. Every time a new bin count value is avail-
able, it is placed on the top row at the location pointed at by
the head/tail pointer, which is then incremented. This bin
count is also added to that rowÏs sum register, and the value
overwritten is subtracted from the sum register, which
therefore keeps a running value for the total sum of bin
counts on the top row. The burst pointer is deÐned to point
at a register halfway back along the ring bu†er, so for each

new input bin count this pointer also increments and cycles
modulo the row length. In the array is not fullyTable 3,
loaded, but assuming it was, we would have at any time a
row number, row sum, and bin count pointed at by the
burst pointer with which to perform a signiÐcance test.

After the arrival of two bin counts, they can be added
together and placed in the location pointed at by the head/
tail register for row 2. Row 2 then updates its pointers and
running sum, and it can perform a signiÐcance test as above.
Similarly, after row 2 has had two updates, they can be
summed and row 3 can be updated. This updating process
continues indeÐnitely, and the cascading process occurs in
sequence until, at regular intervals, all the rows in the
working array will have an update and burst signiÐcance
test performed at the same moment. In only sevenTable 3,
bin count inputs have entered the top row, and the cascade
has not yet reached the Ðrst element of the last row. For the
array size in the bottom row will be Ðlled andTable 3,
poised to roll round for the Ðrst time, after 256 inputs on the
top row (row length ] 2no. of rows~1), 128 on the second, etc.,
and the array is now deÐned as loaded. Up until this point,
all attempts to test the bins for burst signiÐcance will have
been inhibited, but once the loaded condition is detected,
the test becomes enabled. If the working array in Table 3
were now cycled through 256 more inputs, there would
have been 256 burst tests performed on bins in the top row,
256/2 performed on the next row down, etc.

To illustrate the temporal scaling for a more realistic
array size, consider the case presented in In thisTable 4.
example, the basic bin width for input to row 1 is 64 ks, and
the working array has a row length of 256 bins and a total

TABLE 3

LOADING A SMALL WORKING ARRAY

COLUMN

HEAD BURST

ROW 1 2 3 4 5 6 7 8 POINTER POINTER SUM

1 . . . . . . 5 3 7 4 3 6 4 . . . 8 4 32
2 . . . . . . 8 11 9 . . . . . . . . . . . . . . . 4 8 28
3 . . . . . . 19 . . . . . . . . . . . . . . . . . . . . . 2 6 19
4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 0
5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 0
6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 0

NOTE.ÈThis table illustrates a small working array whose loading has just been started so many
locations are still empty. The relationship between the working array and the head pointer, burst
pointer and sum vectors are illustrated. These relationships are explained in more detail in ° 3.2.

TABLE 4

SUMMARY OF A MORE TYPICAL WORKING ARRAY

Total Averaging Mean Counts No. of
Bin Size Mean Counts No. of Period per Average Average

Row (ms) per Bin Bins (ms) Period Periods

1 . . . . . . 0.064 0.32 32768 16.384 81 128
2 . . . . . . 0.128 0.64 16384 32.768 163 64
3 . . . . . . 0.256 1.28 8192 65.536 327 32
4 . . . . . . 0.512 2.56 4096 131.072 655 16
5 . . . . . . 1.024 5.12 2048 262.144 1310 8
6 . . . . . . 2.048 10.24 1024 524.288 2621 4
7 . . . . . . 4.096 20.48 512 1048.576 5243 2
8 . . . . . . 8.192 40.96 256 2097.152 10486 1

NOTE.ÈAfter a full cycle of input data to a more typical working array a summary of its
contents might look like that shown here. The length of a complete cycle depends on the number of
rows and columns in the working array. In this example the full cycle lasts 0.008192 ] 256 s.
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of eight rows. Within the input count rate or sourceTable 4,
intensity is assumed to provide 5120 counts s~1. Although
the processing of incoming numbers occurs continuously,
this working array can be considered to have a complete
cycle time of about 2.1 s. It will be apparent that the com-
bination of (1) always working in powers of 2 and (2) the
cascaded summation method, results in a simple and effi-
cient algorithm that can also have a Ñexible row length
(power of 2 in this paper) and number of rows (any integer).
The above description may sound a little complicated but,
in fact, it is very easy to implement.

3.3. Result Array
The result array is continuously updated once the

working array is loaded, but at deÐned regular intervals it is
read out and reset to zero. This might occur at one-fourth,
one-half, or integer multiples of the complete cycle time.
The number of columns in the result array is the same as the
number of deÐned expectation values in the Poisson array.
The number of rows in the result array is equal to the
number of rows in the working array. When a test is made
for an excess, the calling routine provides the row number,
row sum, and bin count of the potential burst. The row
number provides the index for the possible result array
updates, and the value of the bin count being tested is used
as the row index to obtain the set of threshold sums for all
the column entries in the Poisson array table. Each is then
compared with the row sum provided by the calling routine,
which will either exceed or not exceed each of them. If the
row sum is less than a sum from the table, then the accom-
panying bin count is considered to have an excess (a burst),
since its chance expectation value, if computed, would be
less than that of the expectation value in the corresponding
column heading. Assuming that at least one or more
columns produce a signiÐcant result, then the column with
the most signiÐcance (least likely by chance) is used as the X
index to increment the result array. Only one cell (or none)
is incremented for each test. After a period of time, it is
possible that the regular series of analysis tests may have
detected no signiÐcant excesses in bin counts and all loca-
tions in the result array will remain at zero.

If the same parameters and duration used to construct
are retained, then a possible outcome for the resultTable 4

array might look like that shown in Such a tableTable 5.
can then be produced at regular intervals. Notice that,

TABLE 5

TYPICAL RESULT ARRAY FOR THE WORKING ARRAY SETUP IN

TABLE 4

EXPECTATION VALUES

ROW 0.04 0.02 0.01 0.005 0.002 0.001

1 . . . . . . 67 21 1 0 0 0
2 . . . . . . 35 13 0 0 0 0
3 . . . . . . 17 4 0 0 0 1
4 . . . . . . 6 0 0 0 0 1
5 . . . . . . 1 0 0 0 0 1
6 . . . . . . 0 0 0 0 0 0
7 . . . . . . 0 0 0 0 0 0
8 . . . . . . 0 0 0 0 0 0

NOTE.ÈA possible result array state for a working array
setup like that in This imaginary set of results illustratesTable 4.
how ““ rare ÏÏ events with a 0.001 expectation value might be seen
superimposed on a low-expectation noise background.

except for building the Poisson array in the Ðrst place,
obtaining this table has required no multiplication or divi-
sions, and has only required the use of unsigned 2 byte
integers. This table is also source-intensity invariant, since it
deals only in probabilities.

Each result array has three basic components : expecta-
tion value, bin size, and bin count. A regular series of result
arrays can be accumulated over time to build up a multidi-
mensional data cube, where the integration sample number
becomes a fourth component. Various parameter com-
binations can then be selected from this data set. For
example, a three-dimensional graph for the 0.01 chance
expectation value could take the vertical axis to be the bin
counts, the horizontal axis to be the time bin sizes, and the
depth axis to be the integration samples, with time running
from the back to the front. With a Ðgure of this type, it is
possible to follow the form and evolution of any included
features.

3.4. Normalization Array
The values within the rows and columns of any general

result array should always contain a kind of ““ Ðxed ÏÏ
pattern, assuming that the data source has Poissonian noise
statistics. In we show a normalization array thatTable 6,
has been computed to suit the set of expectation test values
and number of rows used in The entries in thisTable 5.
table are calculated by multiplying the chance expectation
values by the number of averaging windows within the data
sample, since the expectation value is already referenced to
the averaging window width. For example, multiplying the
0.01 expectation value for row 1 of by 128, theTable 5
number of averaging windows in a complete analysis cycle
for row 1 (see gives a value of 1.28 for the chanceTable 4)
occurrence of this result array element. This assumes that
the expectation values within each averaging window are
independent and that taking 128 sets of observations simply
means that any particular feature is 128 times more likely to
be seen. Some of the symmetry apparent in is anTable 6
artifact of the spacing of the six chosen expectation values.

Although this type of exact normalization is attractive, it
turns out to be a little too simplistic due to the rapid sensi-
tivity threshold over which bins go from being nonsigniÐ-
cant to highly signiÐcant. Suppose a large, fast, single-bin
spike exists in the data that exceeds the expectation value
for the uppermost right-hand element in a result array. As

TABLE 6

TYPICAL NORMALIZATION ARRAY FOR TABLE 5

EXPECTATION VALUES

ROW 0.04 0.02 0.01 0.005 0.002 0.001

1 . . . . . . 5.12 2.56 1.28 0.64 0.256 0.128
2 . . . . . . 2.56 1.28 0.64 0.32 0.128 0.064
3 . . . . . . 1.28 0.64 0.32 0.16 0.064 0.032
4 . . . . . . 0.64 0.32 0.16 0.08 0.032 0.016
5 . . . . . . 0.32 0.16 0.08 0.04 0.016 0.008
6 . . . . . . 0.16 0.08 0.04 0.02 0.008 0.004
7 . . . . . . 0.08 0.04 0.02 0.01 0.004 0.002
8 . . . . . . 0.04 0.02 0.01 0.005 0.002 0.001

shows that many more samples were pro-NOTE.ÈTable 4
cessed at the shorter time intervals and a normalization array
can be constructed to match the result array shown in byTable 5
multiplying the expectation values by the respective number of
samples tested. This results in a normalization array of the
chance occurrences for each array element in Table 5.
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TABLE 7

BURST EXCESS ARRAYÈRATIO OF DIVIDED BYTABLE 5 TABLE 6

EXPECTATION VALUES

ROW 0.04 0.02 0.01 0.005 0.002 0.001

1 . . . . . . 13.08 8.2 0.78 0 0 0
2 . . . . . . 13.67 10.16 0 0 0 0
3 . . . . . . 13.28 6.25 0 0 0 31.25
4 . . . . . . 9.37 0 0 0 0 62.5
5 . . . . . . 3.1 0 0 0 0 125
6 . . . . . . 0 0 0 0 0 0
7 . . . . . . 0 0 0 0 0 0
8 . . . . . . 0 0 0 0 0 0

NOTE.ÈA normalized result can be obtained by dividing all the
entries in by those in This shows the ““ excess ÏÏ ratioTable 5 Table 6.
of activity at any particular timescale and expectation value. In this
hypothetical example, this excess ratio clearly shows activity at a
low level on short timescales, which one might quantify as noise.
The few 0.001 expectation value features added to now showTable 5
up quite dramatically.

this ““ spike ÏÏ bin count is diluted in successive rows down
the table, it may still exceed the threshold mean values in
that column in the next row, and, perhaps, also the next. On
the next row, it may be so smoothed out that it suddenly
only satisÐes a much higher expectation value and appears
some columns to the left. Depending on the precise
numbers, it may not even qualify for an entry on this row
and therefore only ever appear in the right-hand column.
Because of this complex sensitivity, the expectation pattern
formed subtly depends on the actual input rate, but for any
random data set it will, after sufficient integration, roughly
resemble the idealized and symmetric normalization array
described above.

3.5. Burst Excess Array
A burst excess array can be formed by dividing the result

array by the normalization array. An example of this is
given in divided by In such anTable 7 (Table 5 Table 6).
array, values signiÐcantly greater than 1 indicate an excess
above expected occurrence, and values signiÐcantly below 1
indicate a deÐcit. This is only a qualitative evaluation due to
the previously described problems deÐning the normal-
ization array, but it does provide a general way to search for
excess activity.

4. INTERPRETATION

is intended to give a plausible impression of theTable 5
possible contents of the result array after about 1 s. There
appear to be a few signiÐcant bursts and also some ““ noise ÏÏ
down at the level of chance occurrence that might be
expected considering the number of trials carried out. The
distribution of counts within the result array will clearly
depend on the variability characteristics of the incident
count rate, but the following general observations can be
made :

1. Faster variability or ““ spikiness ÏÏ tends to occur in the
upper rows.

2. Slower variability tends to occur toward the bottom
rows.

3. There will be more entries toward the top of the table,
simply because more trials have been carried out.

4. There will be more entries in the higher chance expec-
tation columns to the left-hand side.

The result of these combined e†ects is for the entries to
cluster to the top left-hand side of a typical result array.
Note that any features causing increments in, for example,
the 0.001 column of must also exceed the expecta-Table 5
tion values in the columns to its left-hand side, but, accord-
ing to the deÐnition employed here, only the right most or
lowest expectation column satisfying the test on each row
actually gets incremented. Any signiÐcant burst may also
appear in successive rows, one beneath the other, until it
becomes too diluted to stand out above the local mean for
that particular row. Tables and represent a rather5, 6, 7
contrived example, and it is necessary to use some real or
simulated data to illustrate the contents of a more realistic
result array.

5. EVALUATION EXAMPLES

Three types of data are used in the following sections to
illustrate the use of the BES method.

5.1. PCA Ground T est Data
Some extended data sets of archived PCA ground cali-

bration tests have been examined to illustrate the BES algo-
rithm. A description of the PCA detectors for RXT E can be
found in et al. The Ñight system consists ofZhang (1993).
Ðve almost identical detectors. The archived data sets store
34 bits for every detected PCA event, but for the BES
analysis we are only concerned with the time tag that is
available with 1 ks resolution. With a Fe55 calibration
source over the detector, providing an average rate of
D3200 counts s~1, a continuous run of 28,672 s produces
the result array shown in This table summarizes theTable 8.
bin count expectations of more than 9] 107 photons, with
over 5.7] 107 basic 0.5 ms bins being tested. A short
sample of the data is shown in This data set isFigure 1.
from a single detector.

At Ðrst sight, may appear to suggest a few excessTable 8
event clusters, but, with the exception of a single example,
this is not the case. The formal probability associated with
the individual bins is a very strong function of marginal
increases or decreases in the integer bin counts. Raising a
bin count by 1 leads to a very much lower chance expecta-
tion value, while lowering a bin count by 1 leads to a much
higher chance expectation value. For example, the expecta-
tion of 0.0002 for the count 11, mean 1.5742 burst (see Table

FIG. 1.ÈLight curve of a typical data segment for a PCA detector taken
from the archives of prelaunch ground test data. An 55Fe source illumi-
nates the detector to produce a mean rate of D3200 counts s~1. The plot
spans 1.024 s with the time axis having a resolution of 1 ms.
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TABLE 8

RESULT ARRAY FROM PCU GROUND TEST DATA SIMILAR TO THAT ILLUSTRATED IN FIGURE 1

EXPECTATION VALUES

BIN SIZE

(ms) 0.04 0.02 0.01 0.005 0.002 0.001 0.0005 0.0002 0.0001

0.5 . . . . . . . 524 592 320 47 79 8 8 2 3
1.0 . . . . . . . 1165 242 240 44 58 9 14 1 1
2.0 . . . . . . . 605 218 142 53 31 8 8 2 0
4.0 . . . . . . . 428 150 90 36 13 7 1 0 1
8.0 . . . . . . . 282 129 70 33 16 5 1 2 0
16.0 . . . . . . 200 112 50 17 14 6 1 0 0

NOTE.ÈThe result array generated for real PCA detector data obtained during prelaunch ground
testing. The detector was irradiated with a 55Fe calibration source to produce a count rate of D3200
counts s~1. This table is a summation over 28,672 s of data or more than 9 ] 10~7 photons. A typical
short data segment is shown in Fig. 1.

would reduce to an expectation of only 0.0025 for a count9)
10 bin with the same mean background.

The 12 events that contributed to the two right-hand
columns in represent the most signiÐcant featuresTable 8
found in many millions of bins of data, and their details are
given in Only a single case seems to stand out, andTable 9.
the data for the count 16, 0.5 ms bin example has been
carefully examined. This is possible for the PCA test data
since all the bits generated by a single event in the detectors
are retained by the ground logging system. This is in con-
trast to the Ñight situation, where on-board telemetry con-
straints dictate that, for all but the weakest observed

TABLE 9

FEATURES IN THE TWO RIGHT-HAND COLUMNS OF TABLE 8

EXPECTATION VALUES

BIN 0.0002 0.0001
NUMBER OF WIDTH

TESTS (ms) Height Mean Height Mean

57,335,808 . . . . . . 0.5 11 1.5742 12 1.6367
57,335,808 . . . . . . 0.5 11 1.5625 12 1.6367
57,335,808 . . . . . . 0.5 . . . . . . 16 1.6523
28,667,904 . . . . . . 1.0 16 3.4414 18 3.2539
14,333,952 . . . . . . 2.0 23 6.6875 . . . . . .
14,333,952 . . . . . . 2.0 22 6.2656 . . . . . .
7,166,976 . . . . . . . 4.0 . . . . . . 34 12.7617
3,583,488 . . . . . . . 8.0 54 25.8945 . . . . . .
3,583,488 . . . . . . . 8.0 54 26.0195 . . . . . .
1,791,744 . . . . . . . 16.0 . . . . . . . . . . . .

NOTE.ÈFeatures in the PCA ground test data set that are represented
in the two right-hand columns of These have the expectationTable 8.
values of 0.0002 and 0.0001. The columns show the bin width (ms), the bin
count (height), the mean rate of the surrounding 256 bin data window
(mean) and the number of bins tested to Ðnd the speciÐed example.

sources, the additional diagnostic Ñag bits describing the
various detector layer and anticoincidence information are
not retained. This anomalous count 16 bin contains two
short strings of what are known as ““ no Ñag ÏÏ events, which,
under Ñight conditions, the processing system would have
dropped. They were retained during this particular test,
since the processing system was running in what is known
as ““ transparent mode.ÏÏ Further discussion is outside the
scope of this paper and requires detailed knowledge of the
technical aspects of the PCA and its event processing hard-
ware and software.

5.2. Simulated Random Data
In order to examine more critically the results produced

by the BES method, an experiment was performed in which
the input bin count stream was simulated using algorithms
from et al. This is a straightforward processPress (1992).
when using the algorithm called poidev. This routine uses
the ran2 random number generator and the gammln func-
tion. The simulation was run for the same equivalent dura-
tion and mean count rate as that for the PCA ground test
data discussed in the previous section. The Ðnal contents of
the result array are shown in which can be directlyTable 10,
compared with Table 8.

To Ðrst order, there is reasonable agreement considering
the large number of bins being tested, but the simulation
consistently has more features than the real PCA data. This
is encouraging in the sense that it is not the real detector
that has excess features. But why is this so, considering that
the simulation was purposely set up to produce equivalent
data? The answer is that the PCA detectors and electronics
have a number of di†erent types of dead time, whereas the
simulation does not. The simulation has more time (no dead
time) in which to randomly cram in more events, and there-

TABLE 10

RESULT ARRAY FROM SIMULATED CONSTANT RATE DATA

EXPECTATION VALUES

BIN SIZE

(ms) 0.04 0.02 0.01 0.005 0.002 0.001 0.0005 0.0002 0.0001

0.5 . . . . . . . 1097 1577 717 94 285 29 28 12 11
1.0 . . . . . . . 2482 440 533 122 123 25 21 2 13
2.0 . . . . . . . 1131 354 325 115 56 31 11 1 2
4.0 . . . . . . . 706 301 132 78 66 24 11 2 1
8.0 . . . . . . . 483 175 104 54 30 8 3 2 1
16.0 . . . . . . 265 118 80 17 14 0 2 1 1

NOTE.ÈThe result array generated from simulated data designed to match the mean count rate of
the bench test data used to generate This table is a summation over 28,672 s of data.Table 8.
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TABLE 11

BURST EXCESS ARRAY FOR RESULT ARRAY IN TABLE 10

EXPECTATION VALUES

BIN SIZE

(ms) 0.04 0.02 0.01 0.005 0.002 0.001 0.0005 0.0002 0.0001

0.5 . . . . . . . 0.12 0.35 0.32 0.08 0.51 0.13 0.25 0.27 0.49
1.0 . . . . . . . 0.55 0.20 0.48 0.22 0.44 0.22 0.38 0.09 1.16
2.0 . . . . . . . 0.51 0.32 0.58 0.41 0.40 0.55 0.39 0.09 0.36
4.0 . . . . . . . 0.63 0.54 0.47 0.56 0.94 0.86 0.79 0.38 0.36
8.0 . . . . . . . 0.86 0.63 0.74 0.77 0.86 0.57 0.43 0.71 0.71
16.0 . . . . . . 0.95 0.84 1.14 0.49 0.80 0.00 0.57 0.71 1.43

NOTE.ÈThe burst excess array generated from simulated data. This is simply the ratio of the result
array divided by the corresponding normalization array (not shown). Values should(Table 10)
typically be centered about 1.0 with greater values indicating an excess of features above those
expected.

fore at a low level it can produce both more features at any
particular expectation value and some features that have a
lower chance expectation, than for a real detector. Dead-
time e†ects are particularly severe for the shorter time bins,
which accounts for the deÐcit in the Ðrst row of TheTable 8.
burst excess array is presented in and clearlyTable 11
shows the ““ loss ÏÏ along the 0.5 ms row. Since each X-ray
event seen by a single real detector and not vetoed by its
anticoincidence system produces at least 10 ks of dead time,
a burst of more than 12 photons in 0.5 ms leaves a detector
dead for more than 25% of the time. A range of other
factors contribute to dead time, the most signiÐcant of
which is the occurrence of very large event (VLE) pulses.
When high-energy charged particles pass through the detec-
tor, they saturate the analog electronics, requiring that all

FIG. 2.ÈTypical segment of data showing the shot noise form of the
intensity variations expected from Cyg X-1. The plot spans 16.4 s with the
time axis having a resolution of 16 ms.

events be inhibited for a period of time while it recovers. In
the case of the test data used here, the VLE inhibit window
was set at 550 ks. The VLE events occur at random and
their rate is much higher in orbit than on the ground. The
dead time of the PCA is quite a complicated topic, but it has
already been well studied in terms of its e†ect on power
density spectra when integrating on long data sets et(Zhang
al. The e†ect of the dead time on intensity, or on bin1995).
count distributions, has been less well quantiÐed. Extensive
simulations are underway to reconcile a detailed model of
the gas proportional counter and analog/digital electronics
with mission data and laboratory tests on the Ñight spare
detector. We do not propose to discuss dead-time correc-
tions in detail in this paper.

A comparison of the bin count distributions between the
real ground data and the simulated data, e.g., for 0.5 ms
bins, shows good agreement for the lower count bins. The
rarely occurring largest bin counts cannot be compared well
since there are so few of them. It is this part of the distribu-
tion that the BES method is intended to locate. A simple
comparison is also only possible for constant mean rates,
but the BES method is independent of source intensity.

5.3. Simulated Cyg X-1 Data
The intensity variations of Cyg X-1 have been character-

ized for many years in terms of a shot noise model that was
Ðrst proposed by Suitable shot noise param-Terrell (1972).
eters have been used in a computer program, written in C,
that simulates typical Cyg X-1 intensity Ñuctuations. A
sample of the simulated Cyg X-1 light curve is given in

and this appears somewhat similar in form to thatFigure 2,
of the earlier simulation work of & SutherlandWeisskopf
(1978).

TABLE 12

RESULT ARRAY FROM CYG X-1 SIMULATION DATA SIMILAR TO THAT ILLUSTRATED IN FIGURE 2

EXPECTATION VALUES

BIN SIZE

(ms) 0.04 0.02 0.01 0.005 0.002 0.001 0.0005 0.0002 0.0001

0.5 . . . . . . . 9 1 1 1 1 0 0 0 0
1.0 . . . . . . . 1 6 0 1 1 0 0 0 0
2.0 . . . . . . . 5 4 0 3 0 0 0 0 0
4.0 . . . . . . . 7 7 8 3 1 1 1 1 0
8.0 . . . . . . . 34 24 11 8 8 4 5 1 8
16.0 . . . . . . 71 51 15 4 3 14 23 0 0

NOTE.ÈThe result array for a simulated observation of Cyg X-1 with background rates and shot
noise characteristics similar to those expected during an RXT E PCA observation of the source. This
table is a summation over 65.5 s of data. A typical short data segment is shown in Fig. 2.
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The output of this simulation program can be used to
generate the bin count stream for input to the new BES
analysis method. Intensity variations like those shown in

produce the result array output shown inFigure 2 Table 12
after a summation of just over 1 minute of data. There are
more features than for a constant random source, but not as
many as might be expected given the intensity variations
evident in or the earlier comments of &Figure 2 Weisskopf
Sutherland The numbers that appear in the result(1978).
array are very sensitive to variations in the shot parameters
used to generate the simulated light curve. Small changes
can cause quite dramatic e†ects due to the various fast-
changing threshold e†ects associated with the Poisson
probability process. The simulation program will allow
detailed modeling of future PCA data on Cyg X-1 once an
actual observation has been made and the shot parameters
have been characterized. The bias of the shot pulses on the
BES method can then be estimated and removed in order to
identify any millisecond bursts or similar short timescale
features that may be present.

6. RXT E ELECTRONIC DATA SYSTEM APPLICATION

The NASA RXT E has several experiments on board
Rothschild, & Swank et al.(Bradt, 1993 ; Swank 1995 ; Giles

et al. The PCA experiment from the Goddard Space1995).
Flight Center is designed to surpass the performance of
earlier experiments in all key parameters, namely detector
area, time resolution, telemetry capacity, and also in respect
of operational Ñexibility. On a second-by-second basis, the
PCA will arguably be the Ðrst experiment to exceed the
performance of a rocket Ñight carried out in 1976 (Giles

That large area experiment (4000 cm2) required1981).
sophisticated data management & Whitford(Giles 1980),
and the PCA, with its much greater area of 7500 cm2, also
requires powerful processing capability. This is provided by
an Electronic Data System (EDS) built at the Massachu-
setts Institute of Technology (MIT), which, although it con-
tains many hard-coded operating modes, can have
additional capabilities programmed from the ground after
launch. Some details on the EDS can be found in etSwank
al. A much more detailed description can be found in(1995).
Chapter 7 of the Technical Appendix to the First RXT E
NASA Research Announcement.

The EDS contains six Event Analyzers (EAs), two of
which are committed to running standard mode 1 (1.22
kbits s~1) and standard mode 2 (3.25 kbits s~1). The other
four EAs are available for use by guest observers, and there
are a wide range of built-in data modes from which to
choose to suit their scientiÐc requirements. A BES mode
could be assigned to one of these four EAs for observations
of bright sources, where it would provide continuous burst
monitoring statistics. Alternatively, it could operate as a
sophisticated ““ burst trigger ÏÏ option within an EA, provid-
ing a signal pulse to an additional EA that then automati-
cally catches data for a time window encompassing the
triggering event.

This paper has demonstrated that the BES method can
be performed using an efficient algorithm and lookup-table
approach that minimizes real-time calculation require-
ments, and that an implementation within the EDS on
RXT E is very feasible. If the Poisson table has been com-
puted and stored or uplinked from the ground, and the
input to the analysis consists of ““ prebinned ÏÏ data, then the
processing only requires the control of address pointers and

the use of addition, subtraction, and AND operations. Pre-
binning the data would also only require addition and sub-
traction if this were performed with software, as would be
the case for RXT E.

Each basic binned input would result in approximately
the following number of operations per second :

N0\ 2.0
T
b

(N
e
T
e
] 6) , (2)

where is the basic bin duration, is the number ofT
b

N
eexpectation values in the Poisson table, and is the timeT

erequired for a single comparison of the running sum with a
Poisson table entry. The number 6 from resultsequation (2)
from the operations on the running row sum, head pointer,
and burst pointer.

Although the BES algorithms are not presently installed
on the EDS, it is possible to load new EA programs from
the ground, and a subset of the C routines developed here
would provide most of the needed code. A BES system may
be installed at a later stage in the RXT E mission, perhaps
initially as a ““ piggyback ÏÏ test exercise. The result array
presented in would require only 96 bytes of storage,Table 5
so a telemetry rate of D3 kbits s~1 would allow four result
array integrations per second to be returned to the ground.

7. DISCUSSION

As noted by any serious attempt to studyGiles (1981),
millisecond or submillisecond rare and isolated bursts
requires the following three criteria to be satisÐed simulta-
neously : (1) a large detecting area, (2) fast lowÈdead-time
electronics, and (3) high data-rate telemetry. It is clearly an
advantage to have a long observing time and a low back-
ground, but the main requirement when searching for very
rapid intensity variability is to detect the maximum possible
number of photons per millisecond from the target source.

During the 1980s, EXOSAT and Ginga provided the type
of instrumentation required, but both su†ered from severe
telemetry limitations that greatly reduced their potential for
this type of study. Compared to the 1976 rocket Ñight of

the PCA experiment on RXT E o†ers nearly 2Giles (1981),
times the detector area, much improved high-energy
response, more spectral resolution, simultaneous band-
width to 200 keV, and a much longer observing time. A
typical dedicated RXT E high time resolution observation
of a bright source such as Cyg X-1 could run continuously
for 30 minutes at a greater than 256 kbits s~1 data rate. A
single observation like this would log D13 times the
photons that might have observed, or D185Giles (1981)
times those obtained by et al. in their ÐrstRothschild (1974)
Ñight. The crucial point is that the photons detected per
millisecond would be signiÐcantly greater. The chance
expectation of the millisecond bursts reported by Roths-
child et al. and which were of(1974, 1977) Giles (1981),
order 0.01, would be extremely small (\10~9) when scaled
up to the PCA detector area. The BES method has been
devised to enable a large quantity of data to be quickly
quantiÐed and searched for millisecond burst type features.
Experiments with simulated data suggest that the BES
method can provide a useful characterization of rapid varia-
bility from celestial X-ray sources. E†orts in this challeng-
ing observational Ðeld declined as the emphasis in X-ray
astronomy shifted from mechanically collimated detectors
to imaging telescope systems. The PCA experiment on



No. 1, 1997 AN ALGORITHM FOR DETECTION OF INFREQUENT RAPID BURSTS 473

RXT E provides for the Ðrst time an opportunity to study
these timescales in a signiÐcant and detailed way.

The PCA experiment has Ðve separate detectors, and the
high telemetry rate available with RXT E allows detector
identiÐcation information to be retained. This is particu-
larly important in distinguishing real millisecond burst type
events from any spurious features, such as the short spike
noted in the long sequence of ground test data. Any event
seen in only one PCU would have to be rejected. Following
the successful launch of RXT E, many observations of Cyg
X-1 have been made, including several speciÐcally intended
to conÐrm and study the millisecond burst type features
discussed in this paper. Preliminary analysis of part of these
data suggests that isolated individual bursts of the size
expected from the earlier results are not present in the data

Jahoda, & Strohmayer Further studies to(Giles, 1996).
quantify the dead time and shot noise e†ects are in progress.

8. SUMMARY

This paper has reviewed some of the statistical problems
associated with the detection of rapid intensity changes,
such as millisecond bursts, from black hole candidates. A
new and efficient BES method is used to search for evidence
of the existence of rapid infrequent bursts on a variety of
short timescales. This method may be applicable to the
analysis of many types of scientiÐc time series data but is

illustrated here using simulated Cyg X-1 data and test data
from the PCA experiment ground calibration activities.

The BES method deÐnes and uses a group of interrelated
arrays : Poisson, working, result, normalization, and burst
excess. It uses a lookup table and algorithms that are both
Ñexible and computationally efficient for examining large
data volumes. Once regions containing potentially inter-
esting features are identiÐed, these sections of data can then
be examined in greater detail.

The BES method is suitable for real-time, on-board
analysis, having only a low bit rate telemetry requirement.
It can be used to trigger the capture of detailed data encom-
passing an identiÐed feature or to indicate that a source
should be speciÐcally reobserved with a suitable fast-
sampling, high-capacity data mode.

The BES method appears to o†er a fast and efficient way
of characterizing infrequent rapid intensity variability in
X-ray sources, and its usefulness will be investigated using
data from the PCA experiment on board RXT E.

We thank Will Zhang of the Goddard Space Flight
Center for providing some suitable archival PCA ground
test data and Ed Morgan of the MIT Center for Space
Research for information on the possibilities of adding new
modes to the EDS system on RXT E. We also thank the
referee for numerous comments that helped clarify the text.
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