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ABSTRACT
Plutinos are Kuiper belt objects that share the 3 :2 Neptune resonance with Pluto. The long-term

stability of Plutino orbits depends on their eccentricity. Plutinos with eccentricities close to PlutoÏs
(fractional eccentricity di†erence can be stable because the longitude di†erence*e/eP \ o e [ eP o /eP[ 0.1)
librates, in a manner similar to the tadpole and horseshoe libration in co-orbital satellites. Plutinos with

can also be stable ; the longitude di†erence circulates and close encounters are possible, but*e/ePZ 0.3
the e†ects of Pluto are weak because the encounter velocity is high. Orbits with intermediate eccentricity
di†erences are likely to be unstable over the age of the solar system, in the sense that encounters with
Pluto drive them out of the 3 :2 Neptune resonance and thus into close encounters with Neptune. This
mechanism may be a source of Jupiter-family comets.
Key words : celestial mechanics, stellar dynamics È Kuiper belt, Oort cloud È

planets and satellites : individual (Pluto)

1. INTRODUCTION

The orbit of Pluto has a number of unusual features. It
has the highest eccentricity and inclination(eP \ 0.253)

of any planet in the solar system. It crosses(iP \ 17¡.1)
NeptuneÏs orbit and hence is susceptible to strong pertur-
bations during close encounters with that planet. However,
close encounters do not occur, because Pluto is locked into
a 3 :2 orbital resonance with Neptune, which ensures that
conjunctions occur near PlutoÏs aphelion (Cohen &
Hubbard 1965). More precisely, the critical argument

librates around 180¡ with a period of3jP[ 2jN[ -P1.99] 104 yr and an amplitude of 82¡ ; here and arejP jNthe mean longitudes of Pluto and Neptune and is PlutoÏs-Plongitude of perihelion. Other resonances are present with
longer periods : for example, PlutoÏs argument of perihelion
librates with an amplitude of 23¡ and a period of 3.8 Myr. In
part because of its rich set of resonances, PlutoÏs orbit is
chaotic, although it exhibits no large-scale irregular behav-
ior over gigayear timescales (see Malhotra & Williams 1997
for a comprehensive review of PlutoÏs orbit). For reference,
PlutoÏs semimajor axis and orbital period are aP \ 39.774
AU and yr.PP \ 250.85

The most compelling explanation for PlutoÏs remarkable
orbit was given by Malhotra (1993, 1995). Malhotra argues
that Pluto formed in a low-eccentricity, low-inclination
orbit in the protoplanetary disk beyond Neptune. Sub-
sequent gravitational scattering and ejection of planetesi-
mals in the disk by all four giant planets caused NeptuneÏs
orbit to migrate outward & Ip 1984). As its(Ferna� ndez
orbit expands, NeptuneÏs orbital resonances sweep through
the disk, Ðrst capturing Pluto into the 3 :2 resonance and
then pumping up its eccentricity. If PlutoÏs orbit was circu-
lar before capture, its present eccentricity implies that it was
captured when NeptuneÏs semimajor axis was 0.814 times
its current value, or 24.6 AU (eq. [5]). This process may also
excite PlutoÏs inclination, although the details are less
certain (Malhotra 1998).

MalhotraÏs argument predicts that most Kuiper belt
objects with 30 AU should also be capturedÈAU[ a [ 50
and presently locatedÈin Neptune resonances (Malhotra
1995). This prediction has proved to be correct : of the D90
Kuiper belt objects with reliable orbits as of 1999 January 1,

over 30% have semimajor axes within 1% of the 3 :2 reso-
nance (although this number is exaggerated by obser-
vational selection e†ects). These objects have come to be
called Plutinos, since they share the 3 :2 resonance with
Pluto (see Malhotra, Duncan, & Levison 1999 for a recent
review of the Kuiper belt).

Almost all studies of the dynamics of the Kuiper belt so
far have neglected the gravitational inÑuence of Pluto,
because of its small mass for the(MP \ 7.40] 10~9 M

_Pluto-Charon system; Stern 1992 ; Tholen & Buie 1997).
However, like the Trojan asteroids and Jupiter, or the
Saturn co-orbital satellites Janus and Epimetheus, Pluto
and the Plutinos share a common semimajor axis, and
hence even the weak gravitational force from Pluto can
have a substantial inÑuence on the longitude of a Plutino
relative to Pluto. A crude illustration of the importance of
PlutoÏs gravity is to note that the half-width of the 3 :2
resonance, for (the maximum(*a/a)res ^ 0.01 0.2[ e[ 0.3
fractional amplitude of stable libration in semimajor axis ;
Malhotra 1996), is only a few times larger than the Hill
radius of Pluto, (*a/a)H \ [MP/(3 M

_
)]1@3 \ 0.0014.

The goal of this paper is to explore the dynamical inter-
actions between Pluto and Plutinos and their consequences
for the present structure of the Kuiper belt. Section 2 pro-
vides an approximate analytical description of the inter-
actions, ° 3 describes the results of numerical orbit
integrations, and ° 4 contains a discussion.

2. ANALYSIS

We examine a simpliÐed model solar system containing
only the Sun and Neptune, with masses and weM

_
MN ;

assume that NeptuneÏs orbit is circular and neglect all
orbital inclinations. We describe the motion of the Plutino
using the canonical variables

x1\ (GM
_

a)1@2 , y1\ j ,

x2\ (GM
_

a)1@2[1[ (1[ e2)1@2] , y2\ [- , (1)

where a and e are the semimajor axis and eccentricity and j
and - are the mean longitude and longitude of perihelion.
The same variables for Neptune or Pluto are denoted by
adding a subscript ““ N ÏÏ or ““ P.ÏÏ
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We consider only the resonant perturbations exerted by
Neptune, which can only depend on angles as an even func-
tion of the combination Thus, the Hamil-3y1[ 2yN1] y2.tonian of a Plutino may be written

H0(x, y, t)\ HK(x1)] A(x, 3y1[ 2yN1] y2)] B(x, y, t) ,

(2)

where is the Kepler Hamiltonian,HK(x1)\ [12(GM
_
)2/x12A is the resonant potential from Neptune, and B(x, y, t) is

the potential from Pluto. The same Hamiltonian describes
the motion of Pluto if we set B\ 0.

Now impose a canonical transformation to new variables
(J, w) deÐned by the generating function

S(J, y, t)\ J1(3y1[ 2yN1] y2)] 13J2(y2[ yP2) . (3)

Thus andw1\ LS/LJ1\ 3y1 [ 2yN1] y2 w2\ LS/LJ2\
while and13(y2 [ yN2), x1\ S/Ly1\ 3J 1 x2\ LS/Ly2\

and the new Hamiltonian isJ1] 13J2,

H(J, w, t)\ H0]LS
Lt

\ HK(3J1)[2y5
n1J1[ 13y5

p2J2

]A(3J1, J1] 13J2, w1)]B , (4)

where is the mean motion of Neptune and is they5 N1 [y5 P2apsidal precession rate of Pluto.
To proceed further we make use of the fact that B/A\

Thus we can divide the motion of a PlutinoO(MP/MN)> 1.
into ““ fast ÏÏ and ““ slow ÏÏ parts. The fast motion is determined
by the Kepler Hamiltonian and the resonant potential AHK(this is the opposite of normal usage, where the resonant
perturbations from Neptune are regarded as ““ slow ÏÏ com-
pared with nonresonant perturbations). The slow variations
are caused by the Pluto potential B.

First we examine the fast motion. We drop the poten-
tial B, so that is ignorable andw2 J2\ 3x2 [ x1\

is a constant of the motion.(GM
_

a)1@2[2[ 3(1 [ e2)1@2]
Thus if Pluto was captured into resonance from a circular
orbit with semimajor axis its present semimajor axis anda

i
,

eccentricity are related by

e2\ 59 [ 49(ai
/a)1@2 [ 19(ai

/a) . (5)

We write where is chosen to satisfyJ1\ J1r] *J1, J1rthe resonance condition for the Kepler Hamiltonian,

2y5 N1\ 3y5 1\ 3
dHK
dx1

or J1r\
1
3

x1r \
(GM

_
)2@3

(18y5 N1)1@3
. (6)

Since we expect so weA/HK \O(MN/M
_

)> 1 o*J1o >J1r,can expand to second order in dropping unimpor-HK *J1 ;
tant constant terms the fast motion is determined by the
Hamiltonian

H
f
(*J1, w1)\

9
2
Ad2HK

dx12
B
x1r

(*J1)2

] A
A
3J1r ] 3*J1, J1r ] *J1] 1

3
J2, w1

B

\[ 27
2a2 (*J1)2

] A
A
3J1r] 3*J1, J1r ] *J1] 1

3
J2, w1

B
. (7)

The Hamiltonian is autonomous and hence has a conserved
energy and action TheE

f
\H

f
I\ (2n)~1 { *J1 dw1.motion is along the level surfaces of in theH

f
(*J1,w1)-and typically consists of either libration oscillatesplane (w1between Ðxed limits) or circulation increases or(w1decreases without reversing), just as in the case of the

pendulum Hamiltonian. The stable equilibrium solutions
(i.e., zero-amplitude libration) are given by

*J1\ a2
9
ALA
Lx1

] 1
3

LA
Lx2

B
,

LA
Lw1

\ 0 ,
L2A
Lw12

\ 0 . (8)

The slow motion is determined by averaging the Hamilto-
nian of equation (4) over the fast motion :

H
s
(J2, w2, t) \ E

f
(J2) [ 13y5 P2J2] SBT . (9)

Here angle brackets indicates an average over one period of
the fast motion. The fast energy depends on throughE

f
J2the constraint that the fast action I is adiabatically invari-

ant.

2.1. Solutions with Zero-Amplitude L ibration
The solutions to the fast and slow equations of motion

are particularly simple in the case where the fast libration
amplitude is zero for both Pluto and the Plutino. This
approximation is not particularly realisticÈthe libration
amplitude of Pluto is 82¡Èbut illustrates the principal fea-
tures of the Plutino motions.

FIG. 1.ÈContour plot of the resonant gravitational potential F(x,w1)at the resonant semimajor axis, (eq. [6]), as obtained from eq. (24).x1\x1rThe ordinate is eccentricity, which is a proxy for x2\ x1r[1[ (1 [ e2)1@2].
The contour levels are uniformly spaced at intervals of 0.01 ; positive con-
tours are solid and negative contours are dotted.
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In this case the fast energy is

E
f
\ A(3J1r, J1r ] 13J2, w1r) , (10)

where is the equilibrium angle given by equation (8) andw1rwe have dropped much smaller terms that are O(A2). For
simplicity we shall assume that there is only one stable
equilibrium point, that is, one solution to equation (8) for
given At the equilibrium point the fast action is I\ 0,J2.
and the slow Hamiltonian (eq. [9]) is

H
s
(J2, w2, t)\ A(3J1r, J1r ] 13J2, w1r)[ 13y5 P2J2

] SB(3J1r, J1r ] 13J2, y1, y2, t)T ] O(A2) , (11)

where Since Pluto also is assumedy1\ 13(w1r] 2yN1[ y2).to have zero libration amplitude, yP1\ 13(w1r ] 2yN1Thus[ yP2).
3(yP1 [ y1)\ y2[ yP2 \ 3w2 mod 2n ; (12)

that is, the di†erence in longitude of perihelion between
Pluto and the Plutino is 3 times the di†erence in mean
longitude. The same result will hold true on average even if
the libration amplitudes are nonzero.

Now let us assume in addition that the eccentricities of
both Pluto and the Plutino are small. Since their semimajor
axes are the same, the gravitational potential from Pluto at
the Plutino may be written

B\ GMP
A r Æ rP

o rP o 3[ 1
o r [ rP o

B

\ GMP
a
C
cos (y1[ y

p1)[
1

2 o sin 12(y1[ y
p1) o
D

. (13)

Using equation (12) this simpliÐes to

B\ GMP
a
A
cos w2[ 1

2 o sin 12w2 o

B
. (14)

Moreover,

dyP2
dt

\ LA
Lx2

A
3J1r, J1r ]

1
3

JP2, w1r
B

] O(A2) ; (15)

thus the slow Hamiltonian can be rewritten as

H
s
(J2, w2)\ A

A
3J1r, J1r ]

1
3

J2, w1r
B

[ 1
3

J2
LA
Lx2

A
3J1r, J1r ]

1
3

JP2, w1r
B

]GMP
a
A
cos w2[ 1

2 o sin 12 w2 o

B
] O(A2) . (16)

The interesting behavior occurs when the actions andJ2 JP2are similar (i.e., the eccentricities of Pluto and the Plutino
are similar), so we write and expand A toJ2 \JP2] *J2second order in Dropping unimportant constants and*J2.terms of O(A2), we have

H
s
(*J2, w2)\

1
18

*J22A22
A
3J1r, J1r ]

1
3

JP2, w1r
B

]GMP
a
A
cos w2[ 1

2 o sin 12w2 o

B
, (17)

where A22\ L2A/Lx22.

This Hamiltonian is strongly reminiscent of the Hamilto-
nian for a test particle co-orbiting with a satellite,

H
c
(*x, w) \ [ 3

2a2 *x2]GM
a
A
cos w[ 1

2o sin 12w o

B
;

(18)

here and are conjugate vari-*x \ x1 [ x
s1 w\ j1 [ j

s1ables, and the subscript s denotes orbital elements of the
satellite. In this case the torques from the satellite lead to
changes in semimajor axis ; for a Plutino the semimajor axis
is locked to NeptuneÏs by the resonance, so torques from
Pluto lead to changes in the eccentricity instead.

When many of the features of orbits in the slowA22 \ 0,
Hamiltonian (eq. [17]) follow immediately from the
analogy with the Hamiltonian of equation (18), which has
been studied by many authors (e.g., Yoder et al. 1983 ;
Namouni, Christou, & Murray 1999). The trajectories are
determined by the level surfaces of the Hamiltonian. The
equilibrium solutions correspond to the triangular La-
grange points in the co-orbital case : *J2\ 0, w2\ ^60¡,

the eccentricity of the Plutino equals theH
s
\ [12GMP/a ;

eccentricity of Pluto, the mean longitude leads or lags by
60¡, and the perihelia are 180¡ apart. These solutions are
maxima of the potential from Pluto. For smaller values of

the orbits librate around the triangular points (““ tadpoleH
s
,

orbits ÏÏ). Small-amplitude tadpole librations have frequency
u given by

u2 \ [ 1
4

A22
GMP

a
. (19)

The tadpole orbits merge at the separatrix orbit, H
s
\

for this orbit the minimum separation is[3GMP/2a ;
Even smaller values of yieldw2,min\ 23¡.91. H

s““ horseshoe ÏÏ orbits, with turning points at where^w2,min,For allH
s
\ (GMP/a)(cosw2,min[ 12 o sin 12w2,min o~1).

tadpole and horseshoe orbits, the maximum and minimum
values of occur at and are given by*J2 w2\ ^60¡

*J2\ ^
C 18
A22

A
H

s
] GMP

2a
BD1@2

. (20)

Eventually the theory breaks down, when is smallw2,minenough that adiabatic invariance is no longer a valid
approximation.

2.2. T he Resonant Potential from Neptune
For quantitative applications we must evaluate the reso-

nant Neptune potential A(x, For small eccentricities,w1).the potential can be derived analytically,

A(x, w1) \ [ GMN
a
C1
2

b1@2(0) (a) ] 1
8

e2(2aD] a2D2)b1@2(0) (a)

] 1
2

e(5] aD)b1@2(2) (a) cos w1

] 1
8

e2(104] 22aD] a2D2)

] b1@2(4) (a) cos 2w1 ] O(e3)
D

, (21)

where D\ d/da, anda \ aN/a \ 1,

b1@2( j) (a) \ 1
n
P
0

2n d/ cos j/
(1[ 2a cos /] a2)1@2 (22)
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is a Laplace coefficient, Neptune is assumed to be on a
circular orbit, and inclinations are neglected.

Unfortunately, in the present case the high eccentricity of
the Plutino orbits makes this expansion invalid. However,
we may determine A(x, numerically for given actions xw1)by averaging the gravitational potential from Neptune over

at Ðxed that is,y2 w1,

A(x, w1)\ [GMN
a

F(x, w1) , (23)

where

F(x, w1)\
a
6n
P
0

6n
dy2
A 1

o rN [ r o
[ rÉrN

o rN o 3
B
x,w1,y2

] const ;

(24)

the unimportant constant is chosen so that A\ 0 for circu-
lar orbits, i.e., It can be shown analyticallyF(x1, 0, w1)\ 0.
that the contribution from the second (indirect) term in the
integrand vanishes.

We shall also write

A22\ L2A
Lx22

4 [ MN
M

_
a2 F22(x, w1) , (25)

where

F22(x, w1)\ x12
L2F(x, w1)

Lx22
.

Figure 1 plots the contours of F(x, at the resonantw1)semimajor axis as obtained from equation (24). Thex1r,potential is singular for collision orbits, which for small

FIG. 2.ÈOrbit of a Plutino for 20,000 yr in a reference frame corotating
with Neptune. Initially the resonant angle and the eccentricityw1\ 180¡
e\ 0.39. The high eccentricity was chosen to illustrate the character of the
orbit ; in a more realistic integration this orbit would be unstable because it
crosses the orbit of Uranus.

eccentricity satisfy

cos w1\ a [ aN
ea

. (26)

The conditions for stable zero-amplitude libration (eq. [8])
are satisÐed if and only if or and e[w1\ w1r \ n w1\ 0

Figures 2 and 3 show examples of these1[ aN/a \ 0.237.
two solutions, plotted in a reference frame corotating with
Neptune. Orbits of the Ðrst kind are similar to PlutoÏs,
although with smaller libration amplitude (compare Fig. 4
of Malhotra & Williams 1997). Orbits of the second kind
(Fig. 3) were discussed by Malhotra (1996), who calls them
““ perihelion librators.ÏÏ We shall not discuss these further,
since they do not appear to form naturally during reso-
nance capture of initially circular orbits ; moreover, for eZ

they are likely to be unstable, since they cross UranusÏs0.35
orbit and thus are subject to close encounters and collisions
with that planet.

Figure 4 plots and at theF(x1r, x2, n) F22(x1r, x2, n) ;
eccentricity of Pluto, corresponding to x2/(GM

_
a)1@2\

we have and0.0325, F(x1r, x2, n) \ [0.313
Thus, for example, the eccentricityF22(x1r, x2, n) \ 79.3.

oscillation in the separatrix orbit that marks the boundary
between tadpole and horseshoe orbits has amplitude
*e\ 0.007 (eq. [20]) and the period of libration of small
tadpole orbits is 2n/u\ 9.1] 107 yr (eq. [19]).

For our purposes it is sufficient to work with the follow-
ing numerical approximation to the resonant potential :

F3 (x, w1) \ [ 0.584] 0.130e
1 ] 1.709e

ln o 1 [ 4.222e cos w1 o , (27)

where This approximation isx2 \x1r[1 [ (1[ e2)1@2].
chosen to match the resonant potential at the resonant

FIG. 3.ÈOrbit of a Plutino for 20,000 yr in a reference frame corotating
with Neptune. Initially the resonant angle and e\ 0.49. In a morew1\ 0¡
realistic integration this orbit would be unstable, since it crosses the orbit
of Uranus.
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and as determined by theFIG. 4.ÈF(x1r, x2, n) (x2/x1r)3@2F22(x1r, x2, n)
numerical integral (24) and eq. (25) (solid lines ; the multiplicative factor
in front of is used because as The trianglesF22 F22P x23@2 x2] 0).
and dashed line show the approximations and given by eq. (27).F3 F3 22For reference, the eccentricity of Pluto, e\ 0.253, is marked by a circle at
x2/(GM

_
a)1@2\ 0.0325.

semimajor axis the dependence on the relativex1 \x1r ;semimajor axes of Neptune and the Plutino is suppressed
since the e†ects of this potential are only important near
resonance. The logarithmic factor is chosen to reproduce
the singularity in the resonant potential near the collision
orbits deÐned approximately by equation (26). The approx-
imation formula also matches the analytic formula (eq.
[21]) to O(e2) at w1\n.

Figure 5 shows the contour plot analogous to Figure 1
for the approximate resonant potential and the trianglesF3 ,
in Figure 4 show and The agreement is very good,F3 F3 22.especially considering that errors are ampliÐed by taking
the two derivatives required to generate F3 22.

3. NUMERICAL EXPERIMENTS

We follow the orbital evolution of Pluto and a Plutino in
a simpliÐed version of the Sun-Neptune-Pluto-Plutino four-
body system that isolates the resonant potential from
Neptune. Neptune is assumed to have a circular orbit that
migrates outward according to the rule

aN(t)\ a
f
[ *a exp ([t/q) (28)

(Malhotra 1993), where AU is NeptuneÏs presenta
f
\ 30.17

semimajor axis, *a \ 6 AU, and q\ 1.5 Myr. Thus
NeptuneÏs initial semimajor axis is 24.17 AU and the initial
location of the 3 :2 orbital resonance is 31.67 AU.

FIG. 5.ÈContour graph of the approximation (eq. [27]) to the reso-F3
nant gravitational potential. The contour levels are the same as in Fig. 1.

The initial eccentricity of Pluto is taken to be zero and its
initial semimajor axis is 33 AU, as required so that its
present eccentricity matches the observed value (eq. [5]).
We followed 160 test particles, with initial semimajor axes
distributed uniformly in the range [31 AU, 39 AU] and
eccentricities distributed uniformly in the range [0, 0.03].
The inclinations of Pluto and the test particles are chosen
randomly in the range [0¡, 3¡] and their angular elements
are chosen randomly from [0, 2n]. Pluto and the test par-
ticles feel the resonant potential from Neptune, as deÐned
by equations (23) and (27), but no other Neptune forces. The
e†ects of the resonant Neptune potential on the orbital ele-
ments of Pluto and the test particles are followed using
LagrangeÏs equations.

The test particles do not inÑuence Pluto or one another.
However, they are subject to the gravitational potential
from Pluto,

B(x, y, t) \ [GMP
A 1

o r [ rP o
[ r Æ rP

o rP o 3
B

; (29)

the e†ects of this potential on the orbital elements of the test
particles are followed using GaussÏs equations. The evolu-
tion of Pluto and the test particles is followed for 0.45 Gyr,
or 10% of the age of the solar system.

4. RESULTS

Of the 160 test particles, all but 12 are captured into the
3 :2 resonance with Neptune, in the sense that their Ðnal
semimajor axes are close to and their eccentric-(3/2)2@3aNities are near the prediction of equation (5), as shown in



1878 YU & TREMAINE

FIG. 6.ÈFinal eccentricity of the test particles as a function of their
initial semimajor axis. The solid line is the prediction of eq. (5), and the
crossing point of the dashed lines shows the location of Pluto, computed
with the same equation. The symbols denote the orbit classes discussed in
° 4 : tadpole orbits (open circles), horseshoe orbits ( Ðlled circles), transition-
al orbits (crosses), doubly transitional orbits (open squares), irregular circu-
lating orbits (starred squares), regular circulating orbits ( Ðlled triangles),
and orbits not captured into the 3 :2 resonance (open triangles).

Figure 6. The 12 particles that are not captured lie inside
the location of NeptuneÏs 3 :2 resonance at the start of the
calculation, (3/2)2@3] 24.17 AU \ 31.67 AU, and would
presumably be captured into other resonances if we used
the full Neptune potential to work out their motion. We
have veriÐed this presumption by conducting shorter inte-
grations (1 ] 107 yr) using the same initial conditions but
the complete Neptune potential. In this case all but 15 of the
160 particles were captured into the 3 :2 resonance ; the
remainder were captured into the 4 :3, 5 :3, or 7 :5 reso-
nance.

The behavior of the test particles in the 3 :2 resonance
(henceforth Plutinos) falls into the following broad classes :

T adpole orbits (Ðve particles).ÈThese have longitude
di†erence and di†erences in longitude of periheliony1 [ yP1that librate around the leading or trailing Lag-yP2[ y2range point of Pluto (Fig. 7). (Note that the libration center
for the orbit in this Ðgure is not 60¡ asy1 [ yP1 ^ 100¡,
implied by the analysis in ° 2.1. This discrepancy arises
because Pluto has a high eccentricity, while our analysis is
only valid for near-circular orbits. Similarly, the perihelion
di†erence librates around 3 times the di†er-- [ -P ^ 300¡,
ence in mean longitude as required by eq. [12].) The tad-
poles show no evidence of chaotic behavior or secular
evolution over the length of our integration. The analysis in

FIG. 7.ÈA tadpole orbit. In the top panel ““ dpp ÏÏ denotes the distance
between Pluto and the Plutino in AU. Subsequent panels show longitude
of perihelion, mean longitude, semimajor axis, eccentricity, orbital period
ratio to Neptune, and the resonant angle of the Plutino ; the detailed
deÐnitions of the orbital elements are in the text.

° 2.2 suggests that the maximum eccentricity di†erence for
these orbits is *e^ 0.007 ; this requires in turn that their
initial semimajor axes must have been close to PlutoÏs, as is
seen to be the case in Figure 6.

Horseshoe orbits (19 particles).ÈThe longitude di†er-
ence oscillates around 180¡, with jumps in the Plutino
eccentricity at the extrema of the longitude oscillation, as
predicted by the analysis of ° 2.1 (Figs. 8, 9). The motion
appears stable over the length of our integration, although
there are signiÐcant variations in semimajor-axis oscil-
lations during the course of the integration, and some
horseshoes may evolve into transitional orbits over longer
time intervals.

T ransitional orbits (43 particles).ÈThese show irregular
behavior or transitions between libration and circulation of
the longitude di†erence (Fig. 10). When the longitude di†er-
ence circulates, the particles are no longer protected from
close encounters with Pluto. However, the particles remain
in the 3 :2 Neptune resonance in the sense that the resonant
angle continues to librate.w1Doubly transitional orbits (two particles).ÈLike transi-
tional orbits, these show libration-circulation transitions in
the longitude di†erence, but in addition they show irregular
behavior in the resonant angle leading eventually to aw1,transition of from libration to circulation (Fig. 11).w1Although only two particles in our simulation exhibit this
behavior, a number of others show growing amplitude in
the libration and will probably move into this class inw1less than the age of the solar system. Such orbits are nor-



FIG. 8.ÈA horseshoe orbit

FIG. 9.ÈA second horseshoe orbit. The spikes in arise becausej [ jPsmall short-period oscillations occasionally carry this angle past 0 or 2n.

FIG. 10.ÈA transitional orbit

FIG. 11.ÈA doubly transitional orbit
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FIG. 12.ÈAn irregular circulating orbit

FIG. 13.ÈA regular circulating orbit

mally short-lived since once circulates, they are now1longer protected from close encounters with Neptune.
Irregular circulating orbits (17 particles).ÈThe longi-

tude di†erence circulates throughout the integration. Pluto
induces irregular behavior (Fig. 12), but the Neptune reso-
nance is preserved in the sense that continues to librate,w1at least over the span of our integration.

Regular circulating orbits (62 particles).ÈThe longitude
di†erence circulates throughout the integration, but the
orbits appear fairly regular (Fig. 13). Generally, the orbits
with larger eccentricity di†erences are more regular,
because the encounter velocity with Pluto is higher so the
perturbations from close encounters are smaller.

These classes represent a sequence in eccentricity di†er-
ence : the typical eccentricity di†erence is smallesto e[ eP o
for tadpoles and largest for orbits una†ected by Pluto.
Because the Plutino eccentricity is determined by the semi-
major axis at the time of resonant capture (eq. [5]), the
classes also reÑect the initial semimajor axes of the Plu-
tinos : the tadpoles and horseshoes all have initial semi-
major axes in the range 32.2È34.2 AU (i.e., close to PlutoÏs
initial semimajor axis of 33 AU). The transitional and
irregular circulating Plutinos mostly have initial semimajor
axes in the range 31.7È36 AU, and the regular circulating
Plutinos have initial semimajor axes concentrated in the
range 35È39 AU.

5. DISCUSSION

Test particles captured into the 3 :2 Neptune resonance
(Plutinos) have a complex range of dynamical interactions
with Pluto. The strength of the interaction depends on the
di†erence in eccentricity between the test particle and Pluto,
and thus on the di†erence in initial semimajor axis if the
initial orbits were circular and capture occurred through
outward migration of Neptune. Plutinos are stable only if
the eccentricity di†erence *e is small from Fig.(*e[ 0.02
6), in which case the Plutinos librate on tadpole or horse-
shoe orbits ; or if the eccentricity di†erence is large (*eZ
0.06), in which case the longitude di†erence circulates but
relative velocity at encounter is high enough that Pluto has
little e†ect. Unstable orbits at intermediate *e can be driven
out of the 3 :2 Neptune resonance by interactions with
Pluto and thereafter are short-lived because of close
encounters with Neptune. Thus we expect that the popu-
lation of Plutinos has decayed over time, although deter-
mining the survival fraction will require integrations over
the lifetime of the solar system using the full Neptune poten-
tial.

The long-term behavior of orbits in the 3 :2 Neptune
resonance is central to the origin of Jupiter-family comets.
The usual explanation is that slow chaotic di†usion and
collisional kicks drive Plutinos out of the 3 :2 resonance,
after which they are subjected to close encounters with the
giant planets and eventually evolve into Jupiter-family
comets (Morbidelli 1997). Our results suggest that Pluto-
induced evolution of Plutinos onto Neptune-crossing orbits
may contribute to or even dominate the Ñux of Jupiter-
family comets. Our results also enhance the motivation to
obtain accurate orbits for Kuiper belt objects.
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