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ABSTRACT
Box orbits in triaxial potentials are generically thin, that is, they lie close in phase space to a resonant

orbit satisfying a relation of the form between the three fundamental frequencies.lu1 ] mu2] nu3\ 0
Resonant orbits are conÐned for all time to a membrane in conÐguration space ; they play roughly the
same role in structuring the phase space of three-dimensional systems that periodic orbits play in two
dimensions. Stable resonant orbits avoid the center of the potential ; orbits that are thick enough to pass
near the destabilizing center are typically stochastic. Resonances in triaxial potentials are most important
at energies far outside the region of gravitational inÑuence of a central black hole. Near the black hole,
the motion is essentially regular, although resonant orbits exist in this region as well, including at least
one family whose elongation is parallel to the long axes of the triaxial Ðgure.
Key words : galaxies : structure

1. INTRODUCTION

This paper is concerned with a property of motion in
three-dimensional systems. Associated with each degree of
freedom of regular (quasi-periodic) motion is a frequency

the rate of change of the corresponding angle variable.u
i
,

The character of the motion depends critically on whether
the are independent, or whether they satisfy one or moreu

inontrivial linear relations of the form

;
i/1

N
m

i
u

i
\ 0 , (1)

with N the number of degrees of freedom (dof ) and inte-m
igers, not all of which are zero. Generally there exists no

relation like equation (1) ; the frequencies are incommensu-
rate, and the trajectory Ðlls its invariant torus uniformly
and densely in a time-averaged sense. When one or more
resonance relations are satisÐed, however, the trajectory is
restricted to a phase-space region of lower dimensionality
than N.

The importance of resonances for motion in two-
dimensional systems is well known: resonant toriÈ
periodic, or closed, orbitsÈare regions where the
independent motions are coupled together, leading to a
breakdown in perturbation expansions. When stable, reso-
nant tori generate families of regular orbits whose shapes
mimic that of the parent periodic orbit. Unstable resonant
tori are typically associated with a breakdown of integra-
bility and with chaos. In this sense, periodic orbits provide
the phase space of a 2 dof system with its structure.

In three dimensions, a single resonance relation like
equation (1) does not imply that an orbit will be closed ;
rather, it restricts the orbit to a space of dimension 2. An
orbit satisfying one such relation is therefore ““ thin,ÏÏ con-
Ðned for all time to a (possibly self-intersecting) membrane.
In order for an orbit in a three-dimensional system to be
closed, it must satisfy two such independent relations ; only
then is the motion conÐned to a one-dimensional curve.
One expects that orbits satisfying two resonance relations
will be rare compared with orbits satisfying just one, and
hence that thin orbitsÈrather than periodic orbitsÈare the
objects of fundamental importance in structuring the phase
space of 3 dof systems. We present evidence in support of
this hypothesis below.

The emphasis in the present paper is on three-
dimensional resonances, i.e., resonances for which each of
the integers in equation (1) is nonzero. Thin orbits gener-m

iated from a two-dimensional resonance have been widely
studied ; examples are the ““ thin tubes ÏÏ discussed by Bishop,
de Zeeuw, and collaborators (Bishop 1987 ; de Zeeuw &
Hunter 1990 ; Evans, de Zeeuw, & Lynden-Bell 1990 ; de
Zeeuw, Evans, & Schwarzschild 1996). Thin tube orbits
exist even in fully integrable potentials ; they are linked to
the 1 :1 resonant orbits in the principal planes of Sta� ckel
models (de Zeeuw 1985). By contrast, most of the resonant
orbits discussed here cannot be associated with any planar
orbit ; their existence is a consequence of a coupling between
all three degrees of freedom, and they have no analog in
two-dimensional or in potentials.Sta� ckel

The importance of resonant orbits in 3 dof systems was
suggested by a number of recent studies (Carpintero &
Aguilar 1998 ; Papaphilippou & Laskar 1998 ; Valluri &
Merritt 1998 ; Wachlin & Ferraz-Mello 1998) that applied
torus construction machinery to motion in triaxial poten-
tials. These studies noted that the phase space of box orbits,
i.e., orbits with a stationary point, is densely structured by
resonances, especially in models with central mass concen-
trations or nuclear ““ black holes.ÏÏ Valluri & Merritt (1998)
noted that a resonance relation like equation (1) implies a
reduction in the dimensionality of an orbit and presented an
illustration of a thin box orbit.

Here we study the properties of thin orbits in more detail.
Section 2 discusses the reduction in dimensionality that
follows from the existence of a resonance between the three
degrees of freedom. Section 3 presents the properties of thin
box orbits in a family of triaxial models with central density
cusps and nuclear black holes ; the emphasis is on the con-
ditions under which such orbits are stable and can give rise
to families of quasi-periodic orbits with Ðnite thickness.
Section 4 extends this discussion to the central regions of a
triaxial galaxy containing a black hole, where the potential
is nearly Keplerian. Some implications for galaxy dynamics
are presented in ° 5.

2. RESONANCES

In this section we discuss the e†ect of a resonance relation
like equation (1) on the motion of a regular orbit, and the
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di†erences between resonances in systems with two and
three degrees of freedom.

For a two-dimensional regular orbit with fundamental
frequencies and the angle variables areu1 u2,

h1\ u1 t , h2\ u2 t , (2)

which deÐne the surface of a torus. The constants indicating
phase on the torus have been set to zero without loss of
generality. Because of the quasi periodicity of the orbit, its
torus can be mapped onto a square in the plane, withh1-h2each side ranging from 0 to 2n (Fig. 1) ; the top and bottom
of the square are identiÐed with each other, as are the left
and right sides. In the general case, the frequencies andu1are incommensurate and the trajectory densely coversu2the entire plane after an inÐnite time. However, if theh1-h2ratio is a rational number, i.e., if andu1/u2\ om2/m1 o m1are integers, the orbit closes on itself after revo-m2 om2 o
lutions in and revolutions in and Ðlls only ah1 om1 o h2one-dimensional subset of its torus (Arnold 1973, p. 164). Its
dimensionality in conÐguration space is also 1. Such an
orbit has a single fundamental frequency u0\

with T the orbital period ; after anu1/m2\u2/m1\ 2n/T ,
elapsed time T , the trajectory returns to its starting point in
phase space.

The e†ect of resonances on the motion in two-
dimensional, nonintegrable potentials is well understood
(Arnold 1989 ; Lichtenberg & Lieberman 1992). Resonant
orbits, when stable to perturbations, are associated with
families of regular orbits, and when unstable generate
regions of stochasticity. Examples of resonant orbit families
in two-dimensional galactic potentials are the boxlets
(Miralda- & Schwarzschild 1989) that exist in theEscude�
principal planes of triaxial models. Two-dimensional reso-
nances in the meridional plane of axisymmetric systems
(Evans 1993) and in planar barred potentials (Contopoulos
& 1989) have also been treated in detail.GrosbÔl

FIG. 1.ÈA two-dimensional torus, shown here as a square with identi-
Ðed edges. The plotted trajectory satisÐes a 2 :1 resonance between the
fundamental frequencies, The trajectory repeats after oneu1 [ 2u2\ 0.
rotation in and two rotations in The corresponding orbit (e.g., ah1 h2.banana) is closed in conÐguration space and conÐned to a one-dimensional
curve.

FIG. 2.ÈA three-dimensional torus, shown here as a cube with identi-
Ðed sides. The shaded region is covered densely by a resonant trajectory for
which This trajectory is not closed, but it is2u1] u2 [ 2u3\ 0.
restricted by the resonance condition to a two-dimensional subset of the
torus. The orbit in conÐguration space is thin, i.e., conÐned to a membrane.

In the case of a three-dimensional regular orbit, the angle
variables are

h1\ u1 t , h2 \ u2 t , h3\ u3 t . (3)

The orbit may now be mapped into a cube whose axes are
identiÐed with the (Fig. 2). If the are incommensurate,h

i
u

ithis cube will be densely Ðlled after a long time. However, if
a single condition of the form

m1u1] m2 u2] m3u3\ 0 (4)

is satisÐed, with the integers (not all of which are zero),m
ithe motion is restricted for all time to a two-dimensional

subset of its torus (Born 1960, p. 91 ; Goldstein 1980, p. 470).
An example is illustrated in Figure 2, with (m1,m2,m3)\Such an orbit is not closed ; instead, as suggested(2, 1,[2).
by Figure 2, it is thin, restricted to a sheet or membrane in
conÐguration space, which it Ðlls densely after inÐnite time.

Just as in the two-dimensional case, this condition (eq.
[4]) may be used to reduce the number of independent
frequencies by one. DeÐning the two ““ base ÏÏ frequencies1

asu0(1), u0(2)
u0(1)\ u3/m1 , u0(2)\u2/m1 , (5)

we may write

u1 \ [m3u0(1)[ m2u0(2) ,

u2 \ m1u0(2) ,

u3 \ m1u0(1) . (6)

Since the motion is quasi-periodic, i.e.,

x(t) \ ;
k

X
k

exp i(l
k
u1] m

k
u2] n

k
u3)t , (7)

ÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈ
1 The term ““ base frequency ÏÏ is used here in a sense similar to, but more

general than, that in the study by Carpintero & Aguilar (1998), who con-
sidered only two-dimensional resonances.
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with integers, it will remain quasi-periodic when(l
k
,m

k
, n

k
)

expressed in terms of the two base frequencies :

x(t)\ ;
k

X
k
exp i[([l

k
m3] n

k
m1)u0(1)

] ([l
k
m2] m

k
m1)u0(2)]t

\;
k

X
k
exp i(l

k
@ u0(1)]m

k
@ u0(2))t

\;
k

X
k
exp i(l

k
@ h(1)]m

k
@ h(2)) ,

l
k
@ \ [l

k
m3] n

k
m1 , m

k
@ \ [l

k
m2] m

k
m1 ,

h(1)\u0(1) t , h(2)\u0(2) t . (8)

A Fourier transform of the motion will therefore consist of a
set of spikes whose positions in frequency space can be
expressed as linear combinations of just two frequencies.
The choice of base frequencies made here is clearly not
unique, a consequence of the fact that the orbit is not closed.

A relation like equation (4) will be called a ““ resonance ÏÏ
even though it does not imply that any frequency pair can
be expressed as a ratio of integers. The integer vector

is the order of the resonance ; the degeneracy of(m1,m2,m3)the resonance is deÐned as the number of independent reso-
nance relations that are satisÐed by the (see, e.g., Sagdeev,u

iUsikov, & Zaslavsky 1988, p. 34). In the case of twofold
degeneracy, two independent resonance relations apply :

m1u1] m2u2] m3u3\ 0 ,

n1u1] n2u2] n3u3\ 0 , (9)

and each frequency may be expressed as a rational frac-u
ition of any other :

u1
u3

\ m2 n3[ m3 n2
m1 n2[ m2 n1

\ l1
l3

,
u2
u3

\ m3 n1[ m1 n3
m1 n2[ m2 n1

\ l2
l3

(10)

with integers. The motion is therefore periodic(l1, l2, l3)with a single base frequency u0 \ u1/l1 \ u2/l2 \ u3/l3,and the trajectory is closed. In a system with N degrees of
freedom, N [ 1 such conditions are required for closure ;
only in the 2 dof case does a single resonance condition
imply closure.2

The reduction of the dimensionality of an orbit in the
presence of a resonance has been appreciated at least since
EinsteinÏs 1917 paper on rules for classical quantization
(e.g., Percival 1977 ; Contopoulos, Magnenat, & Martinet
1982), but the role of resonant orbits in structuring the
phase space of generic, three-dimensional systems is still not
well understood. Almost all discussions of resonances in the
galactic dynamics literature have focused on restricted
cases : on resonances between only two of the three degrees
of freedom (e.g., Carpintero & Aguilar 1998 ; Wachlin &
Ferraz-Mello 1998) ; on doubly degenerate, i.e., closed,
orbits (e.g., Pfenniger 1984 ; Contopoulos 1986) ; or on
special potentials in which the motion is globally resonant,
such as the Kepler potential.

3. RESONANT BOX ORBITS IN A FAMILY

OF TRIAXIAL MODELS

Here we explore the properties of resonant orbits in one
family of triaxial potentials. The mass density law from
which the potential was generated, via PoissonÏs equation,

ÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈ
2 J. D. Meiss (1998, private communication) makes a distinction

between ““ resonant,ÏÏ or closed, orbits and ““ commensurable ÏÏ orbits, which
satisfy fewer than N [ 1 relations like eq. (4).

has the form

o(m) \ (3[ c)M
4nabc

m~c(1] m)~(4~c) , 0¹ c\ 3 , (11)

with M the total mass and m\ [(x/a)2] (y/b)2] (z/c)2]1@2
the radius-like variable. This mass model is the gener-
alization to triaxial geometry of the spherical family
described by Dehnen (1993). The potential and forces in the
triaxial geometry may be expressed in terms of one-
dimensional integrals (Merritt & Fridman 1996). DehnenÏs
law has a power-law central density dependence that
approximates the observed luminosity proÐles of early-type
galaxies and bulges (Crane et al. 1993 ; Ferrarese et al. 1994 ;
Merritt & Fridman 1995 ; Gebhardt et al. 1996).

To this model was added a central point with mass M
h
.

Here and below, units are adopted such that a \ G\
M \ 1 ; is therefore deÐned as the mass of the centralM

hobject in units of the total galaxy mass. Following the usual
convention, the x- and z-axes are respectively identiÐed
with the long and short axes of the Ðgure.

The character of the motion in triaxial Dehnen models, at
radii well outside the gravitational radius of inÑuence of the
black hole (if present), has been discussed by Wachlin &
Ferraz-Mello (1998) and Valluri & Merritt (1998). As in
those studies, orbits were integrated from various starting
positions with zero initial velocity for D102 orbital periods
and their motion analyzed using LaskarÏs (1988, 1990) algo-
rithm, a Fourier technique for extracting the fundamental
frequencies of a regular orbit with high precision. Theu

iadditional techniques described in Valluri & Merritt (1998)
were used to Ðnd the integers associated with each(l

k
,m

k
, n

k
)

distinct peak in the frequency spectrum (eq. [7]). Foru
kstochastic orbits, LaskarÏs technique gives an approx-

imation, valid over the integration interval, of the true
(continuous) spectrum. Stochastic orbits were identiÐed by
integrating each trajectory for two contiguous time inter-
vals and comparing the ““ fundamental frequencies ÏÏ com-
puted over each interval. The change in the ““ fundamental
frequency ÏÏ associated with the largest amplitude term in
the spectrum, *u, was taken as a measure of the rate of
stochastic di†usion in phase space (Laskar 1993).

Figure 3 shows initial condition spaces for two triaxial
Dehnen models, the Ðrst with c\ 0.5 and theM

h
\ 0,

second with c\ 0.5 and Both models haveM
h
\ 0.003.

c/a \ 0.5 and b/a \ 0.791. The top panels (reproduced with
slight modiÐcation from Valluri & Merritt 1998) show one
octant of the equipotential surface, each located slightly
within the half-mass radius of the model (or at ““ shell 8 ÏÏ in
the notation of those authors). On this surface, a grid of
D104 orbits were begun with zero velocity and integrated
for 100 orbital periods. The density of the gray scale is
proportional to the logarithm of the stochastic di†usion
rate, as measured by *u over the integration interval.
Initial conditions for which the motion was found to be
regular are shown in white.

The model of Figure 3a is close to integrable, with a Ðnite
central force and a moderate central force gradient. Most of
the signiÐcant stochasticity in this model is conÐned to
initial conditions that lie between the short and interme-
diate axes, the ““ Y -Z instability strip ÏÏ Ðrst described by
Goodman & Schwarzschild (1981).

Elsewhere on the equipotential surface, one sees a
complex network of intersecting resonance zones, some
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FIG. 3.ÈProperties of box orbits in triaxial Dehnen models with c\ 0.5. L eft, right, (a, b) One octant of the equipotential surface onM
h
\ 0 ; M

h
\ 0.003.

which orbits were started with zero velocity. The top, left, and right vertices correspond to the z (short), x (long), and y (intermediate) axes. The gray scale is
proportional to the logarithm of the di†usion rate of orbits in frequency space ; initial conditions corresponding to regular orbits are white. The most
important resonance zones are labeled with their order (c, d) Pericenter distance * of orbits whose starting points lie along the heavy lines in (a)(m1,m2,m3).and (b). The most important stable resonances are again labeled. (e, f ) Degree of stochasticity of the orbits in (c) and (d), as measured by the change du in their
““ fundamental frequencies, ÏÏ where is the frequency of the long-axis orbit. Regular orbits haveu0 du/u0 \ 0.

regular (white) and some stochastic (black). The starting
points of the thin orbits lie along the centers of these zones.
Several of the most important resonance zones in Figure 3a
are labeled by their deÐning integers. Three of theseÈthe
(2, 0, [1) (x-z banana) resonance, the (4,[3, 0) (x-y
pretzel) resonance, and the (3, 0,[2) (x-z Ðsh) resonanceÈ

are families that connect smoothly to periodic orbits in one
of the principal planes, i.e., to ““ boxlets ÏÏ (Miralda-Escude�
& Schwarzschild 1989). OthersÈe.g., the (3,[1,[1),
(2, 1, [2), and (4,[2,[1) resonancesÈare not related to
any planar periodic orbit ; these resonances are character-
ized by nonzero values for each of the integers m

i
.
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Examples of thin orbits from each of these six families are
shown in Figures 4 and 5. Figure 4 plots intersections of the
orbits with the three principal planes ; because these orbits
are thin, their intersection with any plane deÐnes a curve or
set of curves, rather than a Ðnite area as in the case of a
volume-Ðlling orbit. None of the orbits passes precisely
through the center, although all of them come quite close.
Figure 5 presents views of the surfaces deÐned by the orbits.
These plots were generated using LaskarÏs algorithm to
extract the frequency spectra, equation (7), followed by
equation (8), which yields the Cartesian coordinates in
terms of the two reduced angle variables (h(1), h(2)). The
resulting (numerical) functions x(h(1), h(2)) deÐne a surface

that was plotted via the Mathematica routine
““ ParametricPlot3D.ÏÏ

When projected against the principal planes, the thinness
of these orbits is not readily apparent, and it is likely that
thin box orbits were seen but not identiÐed as such in many
earlier studies. A possible example is shown in Figure 6 of
Levison & Richstone (1987).

While there are initial conditions in Figure 3a that gener-
ate closed orbitsÈorbits restricted to a single curve in con-
Ðguration spaceÈthe majority of regular orbits are
identiÐable only with a singly degenerate resonance zone.
Further evidence for this interpretation is provided by
Figure 6, which shows the frequency spectra of two orbits,

FIG. 4.ÈIntersections with the principal planes of Ðve thin box orbits from the potential of Fig. 3a. Because the orbits are thin, their intersections with any
plane deÐne a curve or set of curves. Each of these orbits is stable and avoids the center, whose position is indicated with a plus sign.
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FIG. 5.ÈSurfaces Ðlled by the thin box orbits whose cross sections are shown in Fig. 4, as seen from vantage points on each of the three principal axes

computed by Fourier analysis of the z-component of the
motion. The Ðrst orbit is from the regular region that lies at
the intersection of the (2, 1, [2) and (4, [2,[1) resonance
zones in Figure 3a. The intersection of these zones deÐnes a
regular region of degeneracy 2, associated with the closed,
5 :6 :8 orbit at its center. The second orbit is from the
(2, 1, [2) resonance zone ; this orbit is not obviously
identiÐed with any closed orbit.

Many of the lines in the spectrum of the Ðrst orbit, Fig-
ure 6a, lie precisely at integer multiples of a single base
frequency, with This fre-u

k
\ n

k
u0(1), u0(1) \ 0.05997853.

quency is close to the (single) frequency of the 5 :6 :8 period-
ic orbit whose starting point lies nearby on the
equipotential surface. In addition, the spectrum of Figure 6a
contains pairs of lines that are o†set symmetrically from the
primary lines, at frequencies of andu

k
^ u0(2) u

k
^ u0(3),where and These twou0(2) \ 0.012007 u0(3) \ 0.016179.

additional frequencies may be interpreted as resulting from
the slow libration, in two independent directions, of the
orbit around the parent closed orbit (Binney & Spergel
1982 motivate this interpretation in the context of a two-
dimensional orbit). The spectrum of the orbit in Figure 6a is
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FIG. 6.ÈSchematic frequency spectra of the z-motion of two nonreso-
nant orbits from the potential of Fig. 3a. (a) An orbit that lies close to the
5 :6 :8 closed orbit ; (b) an orbit that lies close to a thin orbit from the (2, 1,
[2) resonance zone. The amplitudes of the frequency spikes have been set
to a constant value, and only the absolute values of the frequencies are
plotted. The ““ primary ÏÏ lines of each spectrum are plotted with heavy lines.
In (a), these lines lie at integer multiples of as indicated. In (b), theu0(1) ,primary lines lie at each such line is labeled byu

k
\ l

k
u0(1) ] m

k
u0(2) ; l

kand The majority of regular orbits in the potentials investigated herem
k
.

have spectra similar to (b), indicating that they are associated with a thin
(singly degenerate), rather than with a closed (doubly degenerate), orbit.

thus clearly recognizable as that of a perturbed, closed
orbit.

By contrast, the spectrum of the second orbit (Fig. 6b)
contains lines at integer multiples of two base frequencies.
These may be deÐned as the fre-u0(1) \ u

x
\ 0.29655554,

quency associated with the strongest line in the x-spectrum,
and the primary frequency of theu0(2)\ u

z
\ 0.48353497,

z-motion. The strongest line in the y-spectrum lies at u
y
\

consistent with the loca-[2u
x
] 2u

y
\ [2u0(1)] 2u0(2),tion of this orbit within the (2, 1, [2) resonance zone. If the

orbit whose spectrum is shown in Figure 6b were precisely
thin, all of its lines would be representable in terms of the
two base frequencies, as discussed above. However, one
observes a third frequency in the form of multiplets at fre-
quencies with Thel

k
u0(1)]m

k
u0(2) ^u0(3), u0(3) \ 0.010803.

““ splitting ÏÏ frequency is the same (within numericalu0(3)precision) for all of the multiplets of Figure 6b and in all
three (x, y, z) of the spectra. Thus, this orbit is clearly identi-
Ðable as a perturbed thin orbit rather than as a perturbed
closed orbit. Both spectra show additional, higher order
multiplets at low amplitude.

Examination of the spectra of a larger set of orbits sug-
gests that regular orbits whose starting points lie within a
(singly degenerate) resonant zone always have spectra like
that of Figure 6b, i.e., with two base frequencies and a single

splitting frequency, rather than like that of Figure 6a, with a
single base frequency and two splitting frequencies. In this
sense it is reasonable to state that the majority of regular
orbits at this energy are associated with thin orbits and not
with closed orbits.

A striking feature of Figure 3a is the large number of
distinct, and fairly narrow, resonance zones. The reason for
the narrowness of the zones is suggested by Figure 3c,
which shows the distance of closest approach to the poten-
tial center of a set of orbits whose initial conditions lie along
the heavy curve in Figure 3a. As one passes through a stable
resonance zone, the orbital pericenter distance reaches a
maximum on the resonance, where the orbit has zero thick-
ness. Initial conditions that lie to either side of the reso-
nance produce orbits with a Ðnite thickness ; as this
thickness increases, the pericenter distance falls, and even-
tually the orbit becomes thick enough to pass through the
center of the potential. Orbits with pericenter distances
close to zero are generally stochastic, as shown in Figure
3eÈa likely consequence of the steepness of the force gra-
dient near the center, which causes the trajectory to become
sensitive to small perturbations. The precise distance from
the center at which stochasticity sets in is di†erent for each
resonant family but is typically of order D0.005 at this
energy in this potential (the linear scale of the orbits is of
order 1 at this energy). The narrowness of the resonance
zones is therefore a consequence of the fact that only a slight
o†set of an orbitÏs starting point from resonance is sufficient
to force it into the destabilizing center.

The space between the primary resonance zones in Figure
3a appears to be crisscrossed by a large number of narrower
zones. Some of these additional zones are identiÐed in
Figure 3c with their integer vectors A further(m1,m2,m3).illustration of the dense packing of resonance zones is given
in Figure 7, which shows the transition between the (2, 1,
[2) and (4, [2,[1) resonant orbits along the heavy line of
initial conditions shown in Figure 3a. As one moves
between these two primary zones, one passes over the two
subsidiary zonesÈwith orders ([5, 4, 0) and (1, 3, [3)
Èthat can also be clearly seen in the pericenter plot, Figure
3c. But resonances of even higher order are apparent in
Figure 7. The only orbits in that Ðgure that appear to be
genuinely volume ÐllingÈNos. 11 and 16Èare slightly sto-
chastic, although weakly enough that their stochasticity
does not allow them to visit the full volume deÐned by the
equipotential surface over an integration interval of D102
oscillations. (The weak stochasticity is a consequence of the
low degree of central concentration of this model, c\ 0.5,
and the absence of a central ““ black hole. ÏÏ) Thus, essentially
every regular orbit in this set appears to be associated with
a resonance.

The denseness of the resonance zones is not surprising. In
an integrable potential, where the fundamental frequencies
vary smoothly with initial conditions, it is well known that
resonant tori are dense in the phase space, just as rational
numbers are dense in the space of real numbers. Even a
slight perturbation of the potential away from exact inte-
grability would be expected to radically change the motion
in the neighborhood of each of these resonances, in the
same way that the motion in perturbed two-dimensional
systems is strongly a†ected by the existence and stability of
closed orbits.

Some of the resonance zones in Figure 3a are present also
in Figure 3b, which shows an equipotential surface in the
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FIG. 7.ÈCross sections (x-y) of a set of orbits whose starting points lie equally spaced on the heavy line of Fig. 3a, between the (2, 1,[2) and (4,[2,[1)
resonance zones. This potential has no central ““ black hole ÏÏ and the cusp is shallow, c\ 0.5, making the motion at most weakly stochastic. Orbit 7 lies close
to the ([5, 4, 0) resonant orbit, and orbit 13 is close to the (1, 3, [3) resonance. Many of the other orbits (e.g., Nos. 9, 10, 14) can be assigned to higher order
resonances. Orbits 5, 11, and 16 are weakly stochastic.

model with an added central point mass, M
h

\ 0.003.
However, the higher order resonance zones [e.g., (6,[6, 1),
([5, 4, 0)] have disappeared ; the motion in the correspond-
ing regions is now chaotic. A second di†erence is thatÈ
within a given resonance zoneÈchaos sets in well before an
orbit is thick enough to sample the center (Figs. 3d, 3f ).

Evidently, an added central mass point can induce stochas-
ticity even in orbits that do not pass particularly close to the
center. Figure 8 shows the approximate pericenter distance
at which integrability is destroyed for three of the resonant
orbit families in Figure 3b, as a function of the central mass

in each of these potentials, the amplitude of the long-M
h
;
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FIG. 8.ÈApproximate pericenter distance at which orbits from three*
sresonant families become stochastic, as a function of the mass of aM

hcentral black hole. was found by moving along a line of initial condi-*
stions like that of Fig. 3b and recording the minimum pericenter distance at

which orbits from the resonant family were regular. The amplitude of the
long-axis orbit is roughly 2 at this energy. For the (4, [2,[1)M

h
Z 0.01,

family is fully stochastic ; the other two families are stochastic for M
h
Z

0.03.

axis orbit is about 2. When exceeds D1% the mass ofM
hthe galaxyÈtypical of the black holes in a number of early-

type galaxies (Ford et al. 1998)Èa pericenter distance of
D5% of the orbital amplitude is sufficient to induce sto-
chasticity for each of these families. The highest order reso-
nant family in Figure 8, the (4,[2,[1) family, has been
rendered completely chaotic for and the otherM

h
Z 0.01,

families disappear for M
h

Z 0.03.
Valluri & Merritt (1998) reported a transition to global

stochasticity in the phase space of box orbits when the mass
of a central point exceeded D1%[3% the galaxy mass.
Figure 8 suggests a simple explanation for this transition :
when the central mass is sufficiently great, even resonant
orbits are unable to avoid the center by a wide enough
margin to remain stable.

It was argued above that the majority of regular orbits in
these potentials are properly associated with thin orbits
rather than with closed orbits. Further evidence in support
of this claim is presented in Figure 9, which shows the varia-
tion of the splitting frequency deÐned above with initialu0(3)conditions as one moves across the (2, 1, [2) resonance
zone in the potential with c\ 0.5 and TheM

h
\ 0.0003.

variation in is generally smooth, peaking on the reso-u0(3)nance and falling o† to either side. This smooth variation
suggests a continuous dependence of orbital properties on
initial coordinates near the resonance. One also sees some
discontinuities ; inspection of the individual orbits reveals
the existence of additional resonances, i.e., closed orbits, at
these points. These closed orbits must in some sense be
dense in phase space. However, the generally smooth varia-
tion of with initial conditions suggests that the majorityu0(3)

FIG. 9.ÈVariation of the splitting frequency with starting point asu0(3)one moves across the (2, 1, [2) resonance zone in the potential with c\ 0.5
and The position of the resonant orbit is indicated by theM

h
\ 0.0003.

vertical line. Most orbits with numbers lying between 10 and 80 are
regular. Discontinuities occur when a second resonance condition is satis-
Ðed, producing a closed orbit.

of orbits in a singly degenerate resonance zone can be use-
fully associated with the resonance.

4. ORBITS NEAR THE CENTRAL BLACK HOLE

The character of the orbits, as well as the relative impor-
tance of thin orbits, might be expected to change as one
approaches the center of a triaxial potential containing a
nuclear black hole. Pfenniger & de Zeeuw (1989) and
Sridhar & Touma (1999) noted that the motion in the
neighborhood of the black hole, i.e., at radii such that the
mass of the black hole is comparable to or greater than the
enclosed mass in stars, should be approximately integrable,
and these authors presented the results of numerical inte-
grations in two-dimensional harmonic oscillator potentials
with added central point masses.

We begin by describing how the population of box orbits
changes as one moves from the half-mass radius into the
region where the forces are dominated by the black hole.
We chose a Dehnen model with c\ 0.5 and M

h
\ 0.003 ;

the latter value is typical of the black hole mass ratio in
early-type galaxies (Ford et al. 1998), and the weak cusp
speciÐed by c\ 0.5 is characteristic of bright elliptical gal-
axies (Gebhardt et al. 1996), in which the evolution time-
scales due to chaotic mixing are long enough that a triaxial
shape might maintain itself for roughly a Hubble time
(Merritt & Quinlan 1998 ; Valluri & Merritt 1998). Follow-
ing Merritt & Fridman (1996), the mass model without the
black hole was divided into 21 ellipsoidal shells of equal
mass ; thus the outer edge of shell 1 contains 1/21 of the
total mass and shell 21 lies at inÐnity. The energy corre-
sponding to each shell was deÐned as the value of the gravi-
tational potentialÈnow including the contribution from
the central black holeÈon the x-axis at the outer edge of
the shell. The ratio of to the stellar mass enclosed byM

hshell I, is then 21] 0.003/I\ 0.063/I.M
h
/M

I
,

At shell 8 the di†usion rate map is(M
h
/M

I
\ 0.0079),

given by Figure 3b. As the energy is reduced, the fraction of
the starting points on the equipotential surface that gener-
ate regular motion drops ; by shell 2 the(M

h
/M

I
\ 0.031),

motion is almost entirely chaotic, containing only small
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regular regions associated with the (2, 0, [1), (3, 0, [2), and
(3,[1,[1) resonances. At shell 1 the(M

h
/M

I
\ 0.063),

motion of box orbits is fully stochastic.
This transition to global stochasticity in the phase space

of box orbits as the energy is reduced is similar to the
change observed by Valluri & Merritt (1998), at a Ðxed
energy (shell 8), as was increased. Those authors foundM

hthat the motion of box orbits became almost completely
stochastic when the mass of the black hole increased past
D0.01 times the total mass of the model or, equivalently,
D0.02 times the enclosed mass. We speculate that a tran-
sition to global stochasticity in the phase space of box
orbits generically occurs at radii where the black hole con-
tains of order D1%È3% of the enclosed mass in triaxial
potentials.

Inside this radius, a zone of chaos was found to extend
inward, roughly to the radius at which the gravitational

force from the black hole begins to dominate the force from
the stars. To explore this central region, we deÐned a new
set of shells, denoted by the index J, which divide the pre-
viously innermost shell (I\ 1) again into 21 equal-mass
shells ; thus shell J \ 1 encloses (J/21)(1/21) \ 0.0023 of the
total stellar mass, etc. The ratio of the black hole mass to
the enclosed stellar mass within this region is therefore
M

h
/M

J
B 1.323/J.

Figure 10 illustrates the behavior of the box orbits as one
moves from the inner edge of the zone of chaos, at shell
J \ 7 into shell J \ 4(M

h
/M

J
B 0.189), (M

h
/M

J
B 0.331).

In addition to plots of the di†usion rate, as in Figure 3, we
show the ““ frequency maps ÏÏ deÐned by Papaphilippou &
Laskar (1998). The Ðrst regular orbits to appear inside of
the zone of chaos are associated with the (2, 0,[1) reso-
nance, the x-z banana orbit. Unlike the banana orbits at
higher energies, which lie close to the long (x) axis, this

FIG. 10.ÈProperties of boxlike orbits near the central black hole in a triaxial galaxy. The potential is that corresponding to a Dehnen model with c \ 0.5
and The left panels show one octant of the equipotential surface, with the gray scale indicating the degree of stochasticity. The top, left, andM

h
\ 0.003.

right vertices correspond to the z (short), x (long), and y (intermediate) axes. The right panels are the frequency maps. The most important resonance zones
are labeled with their order (a) Shell J \ 7 (b) shell 6 (c) shell 5 (d) shell 4(m1, m2, m3). (M

h
/M

J
\ 0.189) ; (M

h
/M

J
\ 0.221) ; (M

h
/M

J
\ 0.265) ; (M

h
/M

J
\

0.331).
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FIG. 10.ÈContinued

banana orbit has its stationary point near the short (z) axis
of the model. As one moves inward, a regular region
appears around the short axis and grows to include most of
the equipotential surface, with the exception of a strip con-
necting the x- and y-axes. A number of stable and unstable
resonances can be seen at each shell, but most of these are
important only over a very narrow range of energies ; the
only stable resonance that persists over a signiÐcant radial
range is the (1, [2, 1) resonance. The rapid variation in the
resonance zones as the energy is reduced corresponds to a
shift in the fundamental frequencies toward u

x
B u

y
Bu

z
,

the expected behavior as one approaches the Keplerian
potential of the black hole.

We note that passage through the ““ zone of chaos ÏÏ has
the e†ect of reversing the dynamical roles of the long and
short axes. At large energies, motion is stable (unstable) in
the vicinity of the long (short) axis, and an instability strip
extends from the short to the intermediate axis (Goodman
& Schwarzschild 1981 ; Fig. 3). Inside the zone of chaos,
motion near the short axis becomes stable, and the insta-
bility strip extends from the intermediate to the long axis

(Fig. 10). As noted above, the x-z banana orbit also changes
its direction of elongation, from the long to the short axis.
Sridhar & Touma (1999) noted, in their study of two-
dimensional motion in the vicinity of a black hole, that the
regular orbits are often elongated in the direction of the
shorter of the two axes ; our results suggest that the same is
true with regard to the minor axis of a triaxial galaxy, at
least in the case of the particular family of potentials investi-
gated here.

The two most important families of boxlike orbits near
the black hole are illustrated in Figure 11. The Ðrst family
(Fig. 11a) consists of regular orbits not associated with any
low-order resonance ; similar orbits in two dimensions were
called ““ lenses ÏÏ by Sridhar & Touma (1999). Those authors
noted that two-dimensional lens orbits could be approx-
imately described as precessing Keplerian ellipses with one
focus on the black hole. The orbits found here appear to be
straightforward generalizations, to three dimensions, of
Sridhar & ToumaÏs lenses, precessing independently in the
y-z and x-z planes. These orbits are essentially volume
Ðlling, although close inspection of their cross sections
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FIG. 11.È(a) Nonresonant and (b) resonant orbits near the center of a triaxial galaxy containing a nuclear black hole. The orbit in (b) is associated with the
(1,[2, 1) resonance. Both orbits are taken from the set whose properties are displayed in Fig. 10d. The top panels are projections along the principal axes,
and the bottom panels show intersections with the three principal planes. The nonresonant orbit (a) is volume Ðlling, while the resonant orbit (b) is thin. The
position of the ““ black hole ÏÏ is marked with a plus sign.

reveals that many are associated with a high-order reso-
nance.

The second major family consists of orbits associated
with the (1, [2, 1) thin box mentioned above. The resonant
orbits that give rise to this family (Fig. 11b) are elongated
parallel to the x-y plane ; the symmetric objects formed by
superposition of four such orbits, reÑected about the prin-
cipal planes, might be useful for self-consistently recon-
structing a triaxial Ðgure. The (symmetrized) lens orbits are

elongated parallel to the short axis of the triaxial Ðgure and
would probably not be very useful for this purpose, as noted
by Sridhar & Touma (1999).

5. SUMMARY AND DISCUSSION

Our principal conclusions follow:

1. Trajectories that satisfy a resonance relation between
the three fundamental frequencies (eq. [4]) are thin, con-
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Ðned for all time to a membrane in conÐguration space.
Stable resonant orbits generate families of regular orbits
whose shapes mimic that of the parent thin orbit.

2. The thickness of box orbits in realistic triaxial poten-
tials is limited by the requirement that they avoid the desta-
bilizing center ; orbits that pass too near the center are
generally stochastic. In triaxial mass models with central
““ black holes ÏÏ containing D0.1%È1% of the total mass, box
orbits become stochastic when their distance of closest
approach to the center is D0.05È0.1 times the half-mass
radius of the model.

3. Resonances in triaxial potentials are less important at
energies where the gravitational potential is dominated by
the central black hole. In these central regions, most of the
boxlike orbits are regular and associated with a single non-
resonant family. However, resonant orbits still exist, includ-
ing at least one family whose primary elongation is parallel
to the long axes of the galaxy Ðgure.

Our numerical results suggest many parallels between
periodic orbits in two-dimensional systems and thin orbits
in three-dimensional systems. It would be interesting to
explore these parallels in more detail. A Ðrst step might be
an investigation of the linear stability of thin orbits, to per-
turbations away from the orbital surface. Such a stability
analysis might give insights into the structure shown in
Figure 3a, where many of the stochastic regions seem to be
associated with resonance zones rather than with periodic
orbits.

Resonant orbits in triaxial potentials may be relevant to
the following problems of current interest :

1. The rates of many physical processes depend on the
efficiency with which stars are supplied to the very center of
a galaxy. Examples are tidal disruption (Rees 1992) and
accretion (Norman & Silk 1983) of stars by a black hole,
transfer of energy from stars to a binary black hole (Quinlan
1996), and interaction of stars with an accretion disk

(Ostriker 1983). In a triaxial galaxy, the rates of these pro-
cesses would depend sensitively on the fraction of stars
associated with resonant orbits.

2. It is sometimes argued that the e†ectiveness of central
density cusps or black holes at inducing changes in the
orbital structure of a triaxial galaxy should be lessened by
Ðgure rotation, because the Coriolis force in a rotating
potential tends to make the box orbits ““ centrophobic. ÏÏ As
shown here, the regular box orbits even in a nonrotating
potential are generically centrophobic ; hence, one might
not expect Ðgure rotation to have any great e†ect on their
behavior. In fact, a recent study (Valluri 1999) Ðnds that
stochasticity becomes more prevalent as the rate of Ðgure
rotation is increased, apparently because the Coriolis forces
tend to broaden orbits that would otherwise be thin, thus
driving them into the center.

3. As illustrated in Figure 8, one can compute fairly pre-
cisely the distance of closest approach to the potential
center at which a regular box orbit becomes stochastic. This
distance can be relatively large, of order 10% of the galaxyÏs
half-mass radius, when the black hole contains D1% the
mass of the galaxy. It follows that the e†ect of a central mass
on the orbital structure of a triaxial galaxy need not be
strongly dependent on the spatial scale of the mass distribu-
tion. In fact, N-body simulations reveal that the response of
an initially triaxial galaxy to a central accumulation of mass
is not strongly dependent on whether the mass is distributed
(e.g., Katz & Gunn 1991 ; Udry 1993 ; Dubinski 1994) or
concentrated in a point (Merritt & Quinlan 1998).
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