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ABSTRACT
An expansion of a density Ðeld or particle distribution in basis functions that solve the Poisson equa-

tion both provides an easily parallelized N-body force algorithm and simpliÐes perturbation theories.
The expansion converges quickly and provides the highest computational advantage if the lowest order
potential-density pair in the basis looks like the unperturbed galaxy or stellar system. Unfortunately,
there are only a handful of such bases in the literature that limit this advantage. This paper presents an
algorithm for deriving these bases to match a wide variety of galaxy models. The method is based on
efficient numerical solution of the Sturm-Liouville equation and can be used for any geometry with a
separable Laplacian.

Two cases are described in detail. First, for the spherical case, the lowest order basis function pair may
be chosen to be exactly that of the underlying model. The proÐle may be (1) cuspy or have a core and
(2) truncated or of inÐnite extent. Second, the method yields a three-dimensional cylindrical basis appro-
priate for studying galactic disks. In this case, the vertical and radial bases are coupled ; the lowest order
radial part of the basis function can be chosen to match the underlying proÐle only in the disk plane.
Practically, this basis is still a very good match to the overall disk proÐle and converges in a small
number of terms. The ease of combining several bases makes this force solver ideally suited to multi-
component simulations, such as those of disks embedded in halos.
Key words : celestial mechanics, stellar dynamics È galaxies : structure È Galaxy : structure È

methods : numerical

1. INTRODUCTION

The basis function N-body force solver is optimal for
studying the global response of galaxies to perturbations or
stability (Earn & Sellwood 1995). This technique was devel-
oped for astrophysical problems by Clutton-Brock (1972,
1973), Kalnajs (1976), Polyachenko & Shukmann (1981,
described in Fridman & Polyachenko 1984), and more
recently Hernquist & Ostriker (1992), who dubbed it the
self-consistent Ðeld (SCF) method. Fisher et al. (1995) apply
a related technique to infer the mass distribution from red-
shift catalogs.

Orthogonal function expansions are attractive Poisson
equation solvers for two reasons : (1) the expansions can be
chosen to Ðlter the structure over an interesting range of
scales and simultaneously suppress small-scale noise, and
(2) the algorithm is computationally efficient, scaling lin-
early with the number of particles. Mathematically, this
entire class of algorithms relies on the general properties of
the Sturm-Liouville equation (SLE), of which the Poisson
equation is a particular case. This same approach is
common in perturbation theories and so facilitates direct
comparison between N-body simulation and linear pertur-
bation theory. In addition, this approach is straightforward
to parallelize (e.g., Hernquist, Sigurdsson, & Bryan 1995) ;
we Ðnd that the algorithm scales linearly with the number of
processors with low overhead. If the basis set resembles the
equilibrium galaxy, most of the computational work is con-
centrated on resolving the perturbation rather than the
equilibrium.

This last point is also a disadvantage of this technique in
applications to date. If the equilibrium does not look like
the basis set, the technique becomes less efficient and noisy
because the expansion series must be sufficiently long to
represent the equilibrium even without the perturbation.
This paper describes a general method based on a numeri-

cal construction of orthogonal bases that remedies this situ-
ation. Solutions to the fundamental equation, the
Sturm-Liouville equation, are well understood and well
behaved. A number of recently published algorithms take
advantage of the special properties of this di†erential equa-
tion to yield high-accuracy solutions with low computa-
tional work. Harnessing these developments to our needs
leads to an algorithm for computing orthogonal bases
whose lowest order function matches any given regular
equilibrium; spherical and three-dimensional cylindrical
solutions are described in detail here. The basic algorithm
will be described in ° 2.

For the spherical case, the proposed algorithm is com-
petitive in performance with evaluation by the recursion
relation used for the published bases cited above and has
reproduced them with high accuracy as a check. The cylin-
drical basis is a bit more cumbersome: one may rely on the
same numerical solution to tailor the basis in the radial or
vertical direction, but not both simultaneously. Here I
choose to derive the radial basis numerically.1 The lowest
order radial basis functions then take the form
f (r) exp (^ikz).2 These may then be adapted to the back-
ground by principal component analysis. Although more
cumbersome to implement and more time consuming to
execute than the spherical case, it is still fast relative to
nonÈexpansion-based solvers. An important application of
this basis is the study of disks embedded in live halos and
was the primary driver for the work described here. For this

ÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈ
1 Brown & Papaloizou (1998) recently described a technique based on

the same overall philosophyÈnumerical solution of a Poisson-based
eigensystemÈwhich readers may also wish to consult.

2 Bases resulting from the other choice has been explored by Earn
(1996) using a di†erent approach.
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case especially, the expansion approach has several key
advantages over popular methods : (1) computational effi-
ciency and increased dynamic range for multiscale disk-
halo-spheroid systems due to expansion bases that are
tailored to the geometry and scale of each galactic com-
ponent ; (2) improved sensitivity to weak, global distortions
due to the explicit control of noise on small scales ; and (3)
the ability to manipulate the intercomponent interaction to
more fully explore evolutionary mechanisms ; e.g., one may
selectively include or exclude the back-reaction of a live
halo on disk structure. The details of the cylindrical basis
are given in ° 3.2.1.

2. THE ALGORITHM

2.1. Mathematical Background
Here I will explicitly describe the spherical and three-

dimensional disk cases, but all others are analogously
derived with little change.

The Poisson equation separates in any conic coordinate
system. The choice of separation constants gives a di†eren-
tial equation in the SLE form for each dimension. The sim-
plest solution employs the eigenfunctions of the Laplacian
directly. For example, consider an expansion in spherical
polar coordinates. Assuming that the density is proportion-
al to the potential, the solution to PoissonÏs equation takes
the form of an eigenfunction of the Laplacian :

d2R(r)
dr2 ] 2

r
dR(r)
dr

[ l(l] 1)
r2 R(r)\ 4nGjR(r) . (1)

The well-known full solution is the product of spherical
harmonics in h and / and Bessel functions in r. For a Ðnite-
radius mass distribution with an inner core, the inner
boundary condition is the usual and the out-dR/dr o0\ 0,
going solution to the radial Laplacian provides the outer
boundary condition
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where is the outer edge of the proÐle. Using these bound-r
tary conditions and the orthogonality relation of the Bessel
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Properties of solutions to the SLE ensure that this expan-
sion set is complete (e.g., Courant & Hilbert 1953). There-
fore, given a density distribution, the gravitational potential
and force can be found directly by expansion. The set (p

n
, d

n
)

are often called bi-orthogonal. A similar expansion obtains
for cylindrical polar coordinates.

This straightforward approach has Ñaws. Bessel functions
do not look like galactic proÐles, and therefore accuracy
demands high-order expansions. The required number of
functions increases for extended proÐles since Bessel func-
tions are only orthogonal over a Ðnite domain. To get
around this, one may map the radial coordinate from the
semi-inÐnite real axis to a Ðnite segment. The appropriate
choice of this transformation leads to new sets of bi-
orthogonal functions in both the spherical case (Clutton-
Brock 1973 ; Hernquist & Ostriker 1992) and the two-
dimensional (Clutton-Brock 1972 ; Kalnajs 1976) and three-
dimensional (Earn 1996) cylindrical cases. This small
number of choices results in a mismatch between the lowest
order basis functions and equilibrium proÐle. A poor Ðt
between the basis and the underlying density proÐle is a
source of noise in the force Ðeld that leads to relaxation (cf.
Weinberg 1998). This is the general situation unless oneÏs
galaxy fortuitously coincides with particular sets of orthog-
onal polynomials or functions analytically derived from
exact solutions of the Poisson equation.

The solution proposed here is a numerical solution of the
SLE using recently developed and published techniques
(Marletta & Pryce 1991 ; Pruess & Fulton 1993 ; see Pryce
1993 for a review). This allows adaptive construction of an
expansion basis that matches the underlying density proÐle
exactly and thereby removes one of the major limitations of
this approach. The details are described in the next two
sections.

Alternative solutions to the mismatch problem have been
described by Allen, Palmer, & Papaloizou (1990) and Saha
(1993). Both of these methods in their general form rely on
the orthogonalization of a covering but nonorthogonal
basis. There are two advantages to the approach developed
here. First, the background proÐle is represented in one
basis function with potentially rapid convergence in the per-
turbation. The basis evaluation is easily incorporated into
existing SCF codes. Second, the same bi-orthogonal series
may be used in linear perturbation analyses (e.g., Kalnajs
1976 ; Fridman & Polyachenko 1984 ; Weinberg 1990) and
coefficients directly compared with N-body simulation.

2.2. Reduction of the Poisson Equation to
Sturm-L iouville Form

We present the cylindrical polar case here to be explicit,
but again the others are analogous. The Laplace equation
separates into the following three equations for a potential
of the form ((r) \ R(r)Z(z)#(h) :

1
r

d
dr

r
d
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R(r) [
A
k2]m2
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B
R(r) \ 0 , (5a)

d2
dz2 Z(z) ] k2Z(z) \ 0 , (5b)

d2
dh2 #(h) ] m2#(h) \ 0 . (5c)

Following the authors cited in ° 2.1, we can look for a
solution to the Poisson equation whose potential and
density have the form

((r, z, h) \ (0(r)u(r)Z(z)#(h) , (6a)

o(r, z, h) \ o0(r)u(r)Z(z)#(h) . (6b)



No. 1, 1999 N-BODY FIELD EXPANSIONS 631

The Poisson equation then takes the form

1
r
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r
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A
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B
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together with equations (5b) and (5c) above, where j is an
unknown constant.

The general form of the SLE is usually quoted as

[ d
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C
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D

] q(x)u \ jw(x)u , (8)

where p(x), w(x)[ 0 over the domain of interest, [a, b]. The
eigenfunctions are orthogonal (see Courant & Hilbert
1953 for extensive discussion) and may be normalized :

Equation (7) is easily rewritten in this/
a
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where denotes the radial part of the Laplacian operator.+
rThe unknown constant j is the eigenvalue. Comparing with

the standard SLE form, we have

p(r)\ r(02(r) , (10)

q(r)\
C
k2(0(r)]

m2
r2 (0(r)[ +

r
2(0(r)

D
r(0(r) , (11)

w(r)\ [4nGr(0(r)o0(r) . (12)

These coefficient functions now provide the input to the
standard packaged SLE solvers in either tabular or sub-
routine form. The orthogonality condition for this case is
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In other words, equations (6a) and (6b) are potential-density
pairs. It is convenient to deÐne so that theo8 4 4nGo
bi-orthogonality relation becomes / drr(

r
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Analogous expressions obtain for the spherical polar case.
This development does not require that and solve the(0 o0Poisson equation, but they must obey the appropriate
boundary conditions at the center and at the edge (which
may be r \ O). If we choose and to be a solution of(0 o0the Poisson equation, then the lowest eigenvalue is unity
and the eigenfunction u(r) is a constant function.

3. EXAMPLES AND COMPARISONS

3.1. Spherical Solutions for Galactic Halos and Spheroids
3.1.1. Method

The boundary conditions must be appropriate for the
problem at hand. In the case of spherical symmetry, there is

a boundary at r \ 0 and The inner boundary condi-r \ r
t
.

tion may be the traditional (@\ 0 or that for a scale-free
cusp. The outer boundary condition for a distribution of
mass contained inside a radius r follows from the outgoing
solution to LaplaceÏs equation :

d((r)
dr

\ [l ] 1
r

((r) . (14)

We may have in which case equation (14) applies inr
t
] O,

this limit. Once the functions are tabulated, the force algo-
rithm proceeds as usual for an SCF code. Given and'0 o0,equations (10)È(12) deÐne the eigenvalue problem for the
SLE. For example, the Pruess & Fulton code returns the
eigenfunctions u(r), and the potential-density pairs follow
from equations (6a) and (6b). The basis functions can be
periodically recomputed to adaptively Ðt for a slowly evolv-
ing distribution ; we have not implemented this for the
spherical case here ; see Appendices AÈD for additional dis-
cussion.

3.1.2. Examples

To test the spherical implementation, I assigned and(0to the Hernquist model (Hernquist 1990) and comparedo0the SLE solution with the analytic recursion relations
(Hernquist & Ostriker 1992) for radial order n ¹ 16 and
m¹ 2. Performance of the spherical algorithm is well docu-
mented, so a comparison of potential pairs suffices. For
m\ 0, the numerically determined functions di†ered from
the results of the recursion relation by one part in 103 near
the center and one part in 106 elsewhere. This di†erence is
due to the extrapolation of the cusp at r \ 0. Here the
boundary condition for the cuspy proÐle Ðxes the asymp-
totic value of ratio as r ] 0. For m[ 0 the di†er-(0@ /(0ences are obtained to the speciÐed tolerance (one part in 106
for these tests). To recover the Clutton-Brock (1973) set, one
assigns and according to the Plummer law; in this(0 o0case, di†erences between the SLE solution and recursion
relations are obtained for all m to the desired tolerance. In
all cases, the orthogonality relation remains accurate, and
the potential density pair is an accurate solution of the
Poisson equation.

The background galactic proÐle need not have Ðnite mass
and may be cuspy. For example, a basis set tailored to the
singular isothermal sphere only requires one to specify
appropriate boundary conditions. Boundary conditions
corresponding to a disturbance not felt by in the singular
core and at large radii are

q
r
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(15)

as r ] 0, and
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for where These same boundaryr \ r
t
, ((r) \ (0(r)u(r).

conditions apply to the r1@4 proÐle. The l \ 0 boundary
conditions ensure that the potential-density pairs are
asymptotic to the spherical background at small and large
radii. The boundary condition at small radius is thel D 0
standard zero potential that ensures a single-valued func-
tion. At large radius, we choose the condition obtained for
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FIG. 1.ÈPotential and density pairs for l\ m\ 0 labeled by order,
n \ 1, . . . , 4 (upper and lower panels, respectively), whose lowest order
member (n \ 1) is the singular isothermal sphere. The density eigen-
functions are multiplied by r2.

an outer multipole. The four lowest order l\ 0 pairs are
shown in Figure 1. The density functions are multiplied by

and, again, the lowest order relative density func-r2P 1/o0,tion is constant as expected.
In addition, the background galactic proÐle need not

have an analytic form. For example, the spherically sym-
metric proÐle that results in the empirical r1@4 surface
density law may be numerically deprojected, tabulated, and
used as input to the SLE routines described above. A few of
the lowest order potential-density pairs are shown in Figure
2. The density functions are shown relative to the back-
ground density. Notice that the lowest order relative density
function is constant as expected.

3.2. T hree-dimensional Cylindrical Solutions for Disks
3.2.1. Method

For the cylindrical case, there are boundary conditions at
r \ 0, and Here the situation is a bit trick-r \ r

t
, z\^z

t
.

ier : the general solution requires matching outgoing bound-
ary conditions in two dimensions. However as ther

t
] O,

multipole expansion implies that equation (14) applies to
lowest order in 1/r with l replaced by m. This technical
simpliÐcation is strong motivation for adopting the radial
domain r ½ [0, O) as is done here. Implicit in equations
(5a)È(5c) and (7) is a separation constant chosen to give
oscillatory functions Z(z) appropriate for a region of
nonzero density. The functions match the outgoing Laplace
solution at the outer boundary. By choosing the outer
boundary of the ““ pill box ÏÏ sufficiently large (e.g., greater
than 10 scale heights), we obtain boundary conditions
appropriate for the isolated disk. The vertical bi-orthogonal
functions are then the sines and cosines of the discrete
Fourier transform, but over a vertical domain with twice
the height of interest. This ensures that the force from

FIG. 2.ÈPotential and density pairs for l\ m\ 0 labeled by order,
n \ 1, . . . , 4 (upper and lower panels, respectively), whose lowest order
member (n \ 1) is the spherical deprojection of the r1@4 surface brightness
law with To better represent the cuspy density proÐle graphically,Reff \ 1.
the density eigenfunctions are shown relative to the deprojected r1@4 law.

density images does not a†ect the potential (cf. Eastwood &
Brownrigg 1979).

Experimentation suggests that 26\ 64 wavenumbers are
sufficient to adequately resolve the vertical structure.
Separating real and imaginary parts (or, equivalently, sine
and cosine terms), this demands 128 coefficients per radial
basis function! Although this trigonometric basis does not
look like the underlying basis, we can Ðnd an orthogonal
transformation that rotates the basis into one that looks
like the desired equilibrium. We do this by an empirical
orthogonal function analysis that is equivalent to principal
component analysis (see Weinberg 1996 for details). In
short, let the vector be the potential basis func-(

i
\ Mp

ij
N

tions evaluated at the position of the ith particle. The sym-
metric matrix measures the weight ofSkl\ 1/N ;

i/1N p
ik p

ilthe particle distribution on the original basis. By diagonal-
izing this matrix, we determine an orthogonal transform-
ation to a new basis. The lowest order basis functionÈthe
one with the largest eigenvalueÈbest represents the under-
lying point distribution, followed in eigenvalue ranking by
next best, etc. The Ðrst few functions usually represent most
of the weight, and this allows us to reduce the 128 coeffi-
cients to between two and six.

Since the SLE solution is a good match to the radial
proÐles, we only need the empirical transformation in the
z-direction. As an example of these new functions, Figure 3
shows the Ðrst three two-dimensional orthogonal functions
for the two lowest radial orders based on a Monte Carlo
realization of the exponential disk with unit scale length
and scale height 1/10 using 105 particles. Following the
symmetry of the equilibrium model, the adaptive algorithm
creates the lowest order modes with even symmetry about
the disk midplane. However, the four or Ðve lowest order
functions represent enough of the odd component to follow
the evolution (cf. Fig. 3).
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FIG. 3.ÈSix orthogonal potential and density pairs (left and right panels, respectively) labeled by vertical index j and radial index n. Azimuthal order is
m\ 0. Five contour levels are linearly spaced from zero to the largest absolute peak value. Positive (negative) levels are shown as solid (dotted) lines.

To summarize, the algorithm for the N-body force calcu-
lation for the three-dimensional cylindrical basis is then as
follows :

1. Compute from the particle distribution using theSklbasis derived from equation (9) with Z(z) chosen as dis-
cussed above.

2. Compute the transformation to a new basis by solving
for the eigenvectors.

3. Retain the eigenvectors corresponding to the M
largest eigenvalues. The value of M may be either predeter-
mined or computed adaptively from the cumulative dis-
tribution of eigenvalues (see Weinberg 1996 for details).

4. Tabulate the new orthogonal set and use this to evalu-
ate force for some time interval on the order of a dynamical
time for the problem of interest.

5. Go to step 1.

The computational bottleneck in this procedure is the con-
struction of However, in most applications steps 1È3Skl.are performed only once or very infrequently at most (see
Appendices AÈD). The computational overhead required to
interpolate in two-dimensional tables makes the force
evaluation here 4È5 times more expensive than for the
spherical case. However, the overall force evaluation is still
very fast compared with other methods.

Although the underlying trigonometric basis is bounded
vertically from above and below, the boundary can be
chosen large enough to permit arbitrarily large vertical dis-
tortions. Large vertical boundaries require more wavenum-
bers to achieve a Ðxed resolution. In turn, more
wavenumbers a†ect the computational overhead in com-
puting the empirical basis but do not add to the CPU time
required for the force evaluation itself. Therefore, large ver-
tical boundaries remain practical as long as the transform
to the empirical basis described in the algorithm above can
be done infrequently.

3.2.2. Examples

Here we build a basis set that closely matches the typical
exponential disk proÐle. As described in ° 2.2, we adopt an
axisymmetric separable density proÐle, o(r, z)\ o

r
(r)o

z
(z),

chosen to match the background, For this test,o
r
(r) \ o0(r).takes care of the boundary condi-(04 [1/J1 ] (r/a)2

tions. Recall that and are not required to satisfy the(0 o0Poisson equation ; equation (7) guarantees that the resulting
basis functions will be orthogonal regardless. The results
are shown in Figure 4 for the four lowest radial terms for
m\ 0 and 1. The exponential scale length a \ 1 and verti-
cal boundary L \ 10 are chosen to represent a disk with a
scale lengthÈtoÈscale height ratio of 10 :1. The wavenum-



FIG. 3.ÈContinued

FIG. 4.ÈFirst Ðve density functions for m\ 0 (left) and m\ 1 (right) with k \ 2n/5 ordered from bottom to top. The dotted curve on the lower leftmost
panel shows the background exponential disk for comparison.
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FIG. 5.ÈExpansion coefficient amplitudes for an exponential disk with
a sech2 z vertical proÐle as a function of radial order and vertical wave-
number.

bers are k \ 2nj/L j, j\ 0, 1, . . . , for a pill box of half-jmaxheight L . The density functions in the Ðgure have k \ 2n/5
( j\ 2). The lowest order m\ 0 case is compared with the
exponential disk (dotted curve). For large k, the lowest order
radial function falls o† more rapidly than the exponential
disk. However, the series converges quickly in radial order
and wavenumber as demonstrated in Figure 5, which shows
the coefficients for an expansion of a Monte Carlo realiza-
tion of an exponential disk with Good agree-o

z
P sech2 z.

ment demonstrates that satisfactory results are obtained
without the exact Poisson solutions and Theo0 '0.bi-orthogonality condition (eq. [13]) is good to one part in
109.

The grid points for the Sturm-Liouville solution
described in Appendix A are chosen by mapping the semi-
inÐnite interval to the segment [[1, 1] using x \ (r [ 1)/
(r ] 1) and choosing points evenly spaced in x. The Pruess
& Fulton algorithm can estimate the grid automatically to
optimize accuracy, but this mapping provided sufficiently
high accuracy and rapid execution.

I checked the accuracy and consistency of the Ðnal basis
set by evaluating the gravitational force for a Monte Carlo
distribution of 105 bodies with the proposed method and
with a direct summation. Contours of constant force are
better than 1%, except where the direct summation evalu-
ation is badly a†ected by discreteness noise.

4. SUMMARY AND CONCLUSIONS

This paper presents a numerical algorithm for construc-
ting bi-orthogonal expansion bases for use in N-body force
calculation and linear perturbation theory and explores its
performance. The major results of this investigation are as
follows :

1. This algorithm removes one of the remaining limi-
tations of the self-consistent Ðeld (SCF) method by provid-
ing basis sets tailored to any background galactic proÐle.

2. The algorithm is applicable to any separable coordi-
nate system. This paper details and benchmarks its imple-
mentation for spherical and three-dimensional cylindrical
bases.

3. Sturm-Liouville equation solvers are publicly avail-
able (e.g., see Pruess & Fulton 1993 for FORTRAN code),
and a desired basis is readily obtained using equations (10)È
(12).

4. The main limitation of this method for N-body codes
is the necessity to tabulate the basis functions rather than to
derive them from the recursion relation on the Ñy (as in
Clutton-Brock 1973 and Hernquist & Ostriker 1992). On
the other hand, this is largely a programming inconve-
nience ; the algorithm is still easily parallelized, and the
table lookup is not a computational bottleneck.

5. For spherical expansions, the algorithm is concep-
tually equivalent to and computationally competitive with
the published SCF expansions. For three-dimensional
cylindrical expansions, the coupling of the vertical and
radial parts of the potential-density pairs requires an addi-
tional orthogonalization step. This increases the computa-
tional overhead by up to 50% but does not e†ect scaling
with particle number or parallelizability.

6. The use of these basis sets is not limited to N-body
simulation. They are easily used in semianalytic linear per-
turbation calculations and, moreover, facilitate the com-
parison between the N-body and perturbation theory.

I thank Lars Hernquist, Neal Katz, and Prasenjit Saha
for discussion and suggestions. This work was supported in
part by NSF grant AST 95-29328 and the Alfred P. Sloan
Foundation.

APPENDIX A

SOLUTION OF THE STURM-LIOUVILLE EQUATION

For our problem, the SLE is well conditioned and generally stable. Solutions may be straightforwardly obtained by
shooting methods and standard ordinary di†erential equation packages. Here, I used the Pruess method (Pruess 1973) as
implemented by Pruess & Fulton (1993) with excellent success. Rather than Ðnding an approximate solution to the exact
di†erential equation in the usual way, this approach approximates the di†erential equation by a piecewise continuous
functionÈa discrete gridÈand Ðnds an exact solution to the approximate problem. The grid may be successively reÐned to
ensure convergence to the desired tolerance. Additional numerical analysis provides the optimal choice of grid over the
domain (which, again, may be inÐnite) ; this procedure was not required for any of the cases described here. This choice of a
nonuniform grid is the numerical analog to the transformation of the inÐnite interval to a discrete segment, which plays a
deÐning role in Clutton-BrockÏs approach.

The resulting numerical eigenfunctions must be tabulated for future use. By contrast, the orthogonal polynomial schemes
yield explicit recursion relations, and this lack is the only practical disadvantage to this approach. On the other hand, the
numerical SLE approach gives us the Ñexibility to specify and arbitrarily. For example, we may use the density proÐle(0 o0from a previous N-body simulation.
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APPENDIX B

NUMBER OF TERMS IN EXPANSION

As with all SCF algorithms, the number of terms retained in the expansion series depends on the evolution rate and scale of
the dynamical interaction under study, and therefore no general truncation rules are possible. For example, in the case of
spherical or cylindrical expansions, the maximum harmonic order and radial order are coupled to the size of the feature to be
resolved. However, as described in Weinberg (1996), the signal-to-noise ratio for any coefficient is easily computed and gives a
measure of its weight in representing its overall contribution to the gravitational potential. SpeciÐcally, if is the coefficient,a

jthen (var is a measure of the inverse signal-to-noise ratio squared. When this quantity is of order 1 or larger, the particlea
j
)/a

j
2

distribution does not provide signiÐcant information on the value of Weinberg (1996) describes the application of aa
j
.

procedure (Hall 1981) based on this notion that automatically suppresses the contribution of noisy terms, but the computa-
tion of variance and the signal-to-noise ratio is also useful for choosing a truncation order initially.

For the examples of equilibria described here, Ðve to 10 terms are more than adequate to represent more than 0.1% of the
total variance. In addition to accurate representation of the background, one needs a truncation order that is sufficiently high
to represent structure on scales of interest. This method is currently being used to investigate satellite-halo interactions. For
these problems, 16È20 terms are more than sufficient. These determinations can be made by simple ab initio tests and Ðxed for
the entire computation. Because the variance var scales inversely as particle number N, the value of N required to resolvea

jsome desired structure given by some can be estimated from the noise level in the background as follows. Assume that thea
jquantity variance of this coefficient in the unperturbed equilibrium background is for particles andp02 \ var a

j
N0that we want to detect a feature represented by coefficient at signal-to-noise ratio We then require a simulation witha6

j
S
N
.

particles.N \N0] S
N

] p02/a6 j2

APPENDIX C

PRINCIPAL COMPONENT ANALYSIS

The principal component analysis (PCA) selects a linear combination of the original basis functions that best represents the
N-body particle distribution. For the spherical and the two-dimensional cylindrical cases, the Sturm-Liouville basis is best
with no changes. The PCA procedure is needed only for the three-dimensional cylindrical basis whose z-dimension
functionsÈsines and cosinesÈdo not look like a galaxy. This basis has three ““ quantum ÏÏ numbers : harmonic order m, radial
index n, and vertical wavenumber k. Although the PCA can span as many of the dimensions as desired, it is most economical
and desirable to preserve the parts of the original basis that reÑect expected symmetries in the physical problem. This suggests
preserving (1) the harmonic index m, which separates the axisymmetric from the nonaxisymmetric and couples to external
disturbances depending on m, and (2) the radial order n whose lowest order components look like the background density and
potential proÐles. The vertical basis alone is the most proÐtable candidate for principal component analysis. Each pair of
harmonic and radial indices are held Ðxed and PCA is performed over the vertical wavenumbers to get the new basis. The
diagonalization of variance matrix is easily performed with standard eigensystem algorithms ; both the Jacobi method andSklQL algorithm have led to equal success.

APPENDIX D

RECOMPUTATION FREQUENCY

The adaptive nature of the algorithm allows the basis to be recomputed to best match the underlying equilibrium as the
N-body system evolves. This should only be done, however, if the system is very slowly evolving and close to equilibrium. If
one recomputes the basis from an out-of-equilibrium conÐguration, transient features will be artiÐcially enhanced and
imposed. For many applications, the system will only be in equilibrium to start, in which case Ðxing the basis determined from
the initial equilibrium is the best strategy. This approach has been tested with excellent success and is also the least expensive
computationally. For a forced perturbation, the following strategy may be productive : adiabatically turn o† the forcing,
compute a new basis from the resulting equilibrium, and restart the simulation with the forced perturbation and the new basis.
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