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ABSTRACT
The solution of the nonlinear di†usive shock acceleration problem, where the pressure of the non-

thermal population is sufficient to modify the shock hydrodynamics, is widely recognized as a key to
understanding particle acceleration in a variety of astrophysical environments. We have developed a
Monte Carlo technique for self-consistently calculating the hydrodynamic structure of oblique, steady
state shocks, together with the Ðrst-order Fermi acceleration process and associated nonthermal particle
distributions. This is the Ðrst internally consistent treatment of modiÐed shocks that includes cross-Ðeld
di†usion of particles. Our method overcomes the injection problem faced by analytic descriptions of
shock acceleration and the lack of adequate dynamic range and artiÐcial suppression of cross-Ðeld di†u-
sion faced by plasma simulations ; it currently provides the most broad and versatile description of colli-
sionless shocks undergoing efficient particle acceleration. We present solutions for plasma quantities and
particle distributions upstream and downstream of shocks, illustrating the strong di†erences observed
between nonlinear and test particle cases. It is found that, for strong scattering, there are only marginal
di†erences in the injection efficiency and resultant spectra for two extreme scattering modes, namely
large-angle scattering and pitch-angle di†usion, for a wide range of shock parameters, i.e., for nonper-
pendicular subluminal shocks with Ðeld obliquities less than or equal to 75¡ and de Ho†mannÈTeller
frame speeds much less than the speed of light.
Subject heading : acceleration of particles È cosmic rays È di†usion È hydrodynamics È shock waves

1. INTRODUCTION

The importance of shocks as generators of highly non-
thermal particle distributions in heliospheric and astro-
physical environments has been well documented in the
literature (see, e.g., &Axford 1981 ; Vo� lk 1984 ; Blandford
Eichler & Ellison While direct detections1987 ; Jones 1991).
of high-energy particles are obtained via terrestrial observa-
tions of the cosmic-ray Ñux and spacecraft measurements of
nonthermal ions in the solar neighborhood and in environs
of planetary bow shocks and interplanetary travelling
shocks, the existence of abundant nonthermal particle
populations in a diversity of astrophysical locales can be
inferred from the prominence of nonthermal radiation
emitted by many cosmic objects. Understanding the details
of shock acceleration is of critical importance since many
such objects emit predominantly nonthermal radiation, and
indeed some sources are observed only because they
produce nonthermal particles (e.g., radio emission from
supernova remnants and extragalactic jets). The Ðrst-order
Fermi mechanism of di†usive shock acceleration is the most
popular candidate for particle energization at astrophysical
shocks. The test particle (i.e., linear) theory (Krymsky 1977 ;

Leer, & Skadron &Axford, 1977 ; Bell 1978 ; Blandford
Ostriker of this process is straightforward and yields1978)
the most important result, namely that a power law with a
spectral index that is relatively insensitive to the ambient
conditions is the natural product of collisionless shock
acceleration.

The equally important question of the efficiency of the
process can only be adequately addressed with a fully non-
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linear (and therefore complex) calculation. The inherent
efficiency of shock acceleration, which is evident in observ-
ations at EarthÏs bow shock (see, e.g., Mo� bius, &Ellison,
Paschmann and in modeling of plane-parallel (e.g.,1990b)
see & Eichler Jones, & ReynoldsEllison 1985 ; Ellison,

shocks, where the Ðeld is normal to the shock, and1990a)
oblique shocks (see, e.g., Ellison, & JonesBaring, 1993 ;

Baring, & Jones implies that hydrodynamicEllison, 1995),
feedback e†ects between the accelerated particles and the
shock structure are very important and therefore essential
to any complete description of the process. This has turned
out to be a formidable task because of the wide range of
spatial and energy scales that must be self-consistently
included in a complete calculation. On the one hand, the
microphysical plasma processes of the shock dissipation
control injection from the thermal population, and on the
other hand, the highest energy particles (extending to at
least 1014 eV in the case of galactic cosmic rays) with
extremely long di†usion lengths are dynamically signiÐcant
in strong shocks and feedback on the shock structure.
Ranges of interacting scales of many orders of magnitude
must be described self-consistently.

Additional complications stem from the fact that the
geometry of shocks, i.e., whether they are oblique or paral-
lel, strongly a†ects the acceleration efficiency (see, e.g.,

et al. even though the test particle result isEllison 1995),
independent of the geometry. Observations indicate that
interplanetary shocks, bow shocks (both planetary and
from jets), the solar wind termination shock, and supernova
remnant blast waves have a wide range of obliquities,
thereby rendering considerations of shock geometry salient.
It turns out that the angle between the upstream magnetic
Ðeld and the shock normal, is a decisive parameter in#

Bn1,
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determining all aspects of the shock, including the ability to
inject and accelerate particles, and therefore has obvious
observational consequences. For instance, di†use ions gen-
erated at quasi-parallel portions of EarthÏs bow shock di†er
radically in energy content, distribution function, etc., from
Ðeld-aligned beams generated at quasi-perpendicular por-
tions of the shock (see, e.g., et al. Further-Ipavich 1988).
more, the observed variation of radio intensity around the
rim of shell-like supernova remnants may be the result of
varying shock obliquity (see, e.g., & ReynoldsFulbright

and the acceleration of the anomalous cosmic-ray1990),
component at the solar wind termination shock may
depend on rapid acceleration rates obtained in highly
oblique portions of the shock Unfortunately,(Jokipii 1992).
in models that ignore the plasma microstructure as we do
here, oblique shocks are more complicated and require
additional parameters for a complete description than do
parallel (i.e., ones, primarily the degree of di†u-#

Bn1 \ 0¡)
sion perpendicular to the mean ambient magnetic Ðeld
direction.

In this paper we present our method for calculating the
structure of steady state, collisionless shocks of arbitrary
obliquity and with efficient particle injection and acceler-
ation. The method, a computer simulation using Monte
Carlo techniques, is an extension of our previous work on
modiÐed parallel shocks (see, e.g., & Ellison andJones 1991
references therein), where we explored the properties of the
nonlinear modiÐed shock scenario, and test particle oblique
shocks et al. Baring, Ellison, & Jones(Ellison 1995 ; 1993,

where we determined the dependence of acceler-1995a),
ation efficiency on obliquity These studies have been#

Bn1.successfully applied to Active Magnetospheric Particle
T racer Explorer (AMPT E) observations near the parallel
portion of EarthÏs bow shock et al. a high(Ellison 1990b),
Mach number shock with strong modiÐcation by the accel-
erated ions, and measurements by Ulysses at highly oblique
travelling interplanetary shocks in the heliosphere (Baring
et al. which generally have low Mach numbers1995b, 1996),
and therefore are well modeled by linear test particle simu-
lations. The impressive Ðts obtained to the spectral data
(i.e., ion distribution functions) from each of these experi-
ments underlines the importance of the Fermi mechanism
and the value of the Monte Carlo technique. The present
work represents the Ðrst self-consistent treatment of modi-
Ðed shocks that includes three-dimensional di†usion.

With the Monte Carlo simulation, we self-consistently
determine the average Ñow speed and magnetic Ðeld struc-
ture across the shock under the inÑuence of accelerated
particles, maintaining constant particle, momentum, and
energy Ñuxes at all positions from far upstream to far down-
stream of the shock. Particles are injected upstream of the
shock, propagated, and di†used in the shock environs until
they eventually leave the system. We calculate their orbits
exactly as in the works of & KirkDecker (1988), Begelman

and our recent test particle treat-(1990), Ostrowski (1991),
ment et al. and make no assumption relating(Ellison 1995)
to the particle magnetic moment. Our method does not
self-consistently calculate the complex plasma processes
responsible for dissipation but instead postulates that these
processes can be adequately described with a simple elastic
scattering relation that is assumed to be valid for all particle
energies ; thermal and nonthermal particles are treated iden-
tically. This simpliÐcation sacriÐces the details of wave-
particle interactions but permits simultaneous description

of the thermal plasma and the particle injection and acceler-
ation to the high energies associated with space plasma
shocks, thereby satisfying the aforementioned goal of broad
dynamic range. Cross-Ðeld di†usion is included via a para-
metric description but is fully three-dimensional, in contrast
to hybrid or full plasma simulations with one two ignor-or
able dimensions that su†er from artiÐcial suppression of
cross-Ðeld di†usion (see, e.g., Giacalone, & Ko� taJokipii,

Simulation output includes the ion distribution func-1993).
tion at all relevant positions in the shocked Ñow for a range
of obliquities and Mach numbers.

Results are compared (in for two extreme scattering° 4)
modes, namely large-angle scattering (LAS), where the
direction of a particle is isotropized in a single scattering
event, and pitch-angle di†usion (PAD), where small changes
in the angle a particleÏs momentum makes with the local
magnetic Ðeld occur at each time step. The former of these
extremes mimics particle motion in highly turbulent Ðelds,
while the latter is usually implemented in analytic treat-
ments of Fermi acceleration (see, e.g., & SchneiderKirk

but see also the Monte Carlo work of1987, Ostrowski
We Ðnd that in our application to nonrelativistic1991).

shocks, the choice of scattering mode is largely immaterial
to the resultant distributions as long as scattering is reason-
ably strong ; we expect this not to be so for weak scattering
or for relativistic shocks, where the modes generate vastly
di†erent particle anisotropies. We also compare nonlinear

results with test particle results where the nonthermal(° 4.2)
particles do not modify a discontinuous shock (° 4.1),
Ðnding that, as in our earlier work on plane-parallel shocks,
some spectral curvature arises in high Mach number shocks
in which a large fraction of the partial pressure resides in the
nonthermal population. An outline of the Monte Carlo
method is given in followed in by Ñux conservation° 2, ° 3
considerations and the associated scheme for iterative
determination of the modiÐed shock Ñow and Ðeld proÐles.
The spectral and Ñux results comprise culminating in a° 4,
presentation of acceleration efficiencies and discussion of
the results.

2. THE MONTE CARLO METHOD

The Monte Carlo technique for describing particle accel-
eration at plane shocks has been described in previous
papers (see, e.g., et al. & EllisonEllison 1990a ; Jones 1991 ;

et al. et al. and is essentially aBaring 1993 ; Ellison 1995)
kinematic model that closely follows approachBellÏs (1978)
to di†usive acceleration. The simulation follows individual
particles as they traverse a background ““ plasma ÏÏ consist-
ing of an average bulk Ñow and magnetic Ðeld ; the Ñow
velocity and magnetic Ðeld consist of a grid of values from
far upstream to far downstream with a subshock positioned
at x \ 0. Our subshock is a substructure of the overall
shock, deÐning the conventional boundary between
(inÐnite) upstream and downstream regions. Strictly, it
should be no sharper than the smallest di†usion scale (i.e.,
the gyroradius of thermal particles) ; however, in most cases,
we require it to be abrupt for the purposes of expedience in
the simulation. Particles are injected far upstream of the
shock with a thermal distribution at temperature mim-T1,icking, for example, solar wind ions (as in applications to
EarthÏs bow shock) and are allowed to convect in the Ñow
and scatter, crossing the shock a few or many times before
they eventually leave the system either far downstream or
beyond an upstream free escape boundary (FEB). They are
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moved one at a time according to a prescribed scattering
law, deÐned below, in a test particle fashion until they exit
the simulation. In cases in which efficient acceleration
arises, feedback of the accelerated population leads to sig-
niÐcant smoothing of the shock proÐle and heating of par-
ticles occurs in the foreshock region ; discussion of such
nonlinear aspects of the simulation are deferred to ° 3
below.

Following our previous treatments of oblique shocks
et al. Ellison et al. 1995), particle convection is(Baring 1993 ;

performed in the de Ho†mannÈTeller (HT) frame Hoff-(de
mann & Teller a frame in which the shock is station-1950),
ary, the Ñuid Ñow u is everywhere parallel to the local Ðeld
B, and the electric Ðeld is u ] B \ 0 everywhere. The HT
frame of reference is therefore particularly convenient
because of the associated absence of drift electric Ðelds :
particle trajectories are then simple gyrohelices, and the
description of convection is elementary. Furthermore, it
follows from the mere existence of an HT frame that the
so-called shock drift mechanism is inseparable from, and
intrinsically part of, the Fermi acceleration process (see, e.g.,

& Ellison and is therefore auto-Drury 1983 ; Jones 1991)
matically included in our Monte Carlo technique since par-
ticle motion is followed in the HT frame.

While Ðeld and Ñow directions in the HT frame are
uniquely deÐned downstream of the shock, the nonlinear
nature of this work yields a spatial variation of u and B
because of the compressive e†ects of the accelerated popu-
lation. This variation is accommodated using a grid zone
structure that was implemented in many earlier versions of
the Monte Carlo technique ; each zone contains uniform
Ðeld and Ñow, with discontinuities at the boundaries
satisfying the Rankine-Hugoniot conditions discussed in ° 3
below. The grid zone boundaries therefore mimic mini-
shocks, with the subshock deÐning a particular grid bound-
ary ; a depiction of this grid structure is given in Baring,
Ellison, & Jones The spatial resolution of the grid(1992).
can be adapted at will, but in our applications, we require it
to be Ðner at some distance upstream than the typical mean
free path of particles that penetrate to that distance from
the shock. Note that the ability to deÐne (for example, via
the Rankine-Hugoniot conditions) an HT frame with
u ] B \ 0 on both sides of a grid point implies, by spatial
extension, that the HT frame is uniquely deÐned through-
out the Ñow, regardless of Ñow and Ðeld compression and
deÑection upstream. In addition, note that even though the
u ] B electric Ðeld is transformed away by going to the HT
frame, charge separation electric Ðelds are not, and these
have not been included in our model, being beyond the
scope of the present work.

While particle transport is monitored in the HT frame, all
measured quantities such as particle distributions and
momentum and energy Ñuxes are output in the normal inci-
dence frame (NIF), which is the frame in which the shock is
also stationary but which is deÐned such that the Ñow far
upstream (i.e., where it is uniform to inÐnity) is normal to
the shock plane. A simple velocity boost with a speed of

parallel to the shock front e†ects trans-vHT\ u1 tan #
Bn1formation between the NIF and HT frames, where is#

Bn1the far upstream angle the magnetic Ðeld makes with the
shock normal and is the far upstream Ñow speed in theu1NIF. Note that hereafter, the index ““ 1 ÏÏ will indicate far
upstream values and the index ““ 2 ÏÏ will indicate far down-
stream values well away from the smooth shock transition.

A depiction of the NIF geometry is given in for theFigure 1
speciÐc case of unmodiÐed shocks ; modiÐed shock
geometry extends this to include piecewise increments of u
and B. In the normal incidence frame, the [x-axis deÐnes
the shock normal, and the senses of the other axes are as in

The results of this paper are restricted to highlyFigure 1.
subluminal cases where the speed of light, since ourvHT> c,
Monte Carlo technique has not yet been generalized to
include relativistic e†ects in oblique shocks.

The simulation is an orbit code, where particle propaga-
tion is performed by following the gyromotions exactly, as
in the test particle work of et al. and a diver-Ellison (1995)
sity of works in the literature (see, e.g., Decker 1988 ;

& Kirk & Tera-Begelman 1990 ; Ostrowski 1991 ; Takahara
sawa The position of particles is incrementally1991).
updated on a timescale dt, which is a small fraction of a
gyroperiod, i.e., where m and Q are thedt > q

g
\ mc/(QeB),

particleÏs mass and charge number respectively, and e is the
electronic charge. A particle in a particular grid zone is
moved in a helical orbit determined by the magnetic Ðeld
and bulk Ñow velocity for that grid position.

2.1. Particle Scattering
Having outlined the procedure for convection, here we

describe our prescription for particle scattering, which is
somewhat more involved. After each time step dt, a determi-
nation of whether the particle should ““ scatter ÏÏ or not is
made using a scattering probability where thePscat\ dt/t

c
,

collision time, is given by j/v, j is the mean free path, andt
c
,

v> c is the particle speed, both measured in the local Ñuid
frame. This prescription yields an exponential pathlength
distribution. The scatterings, presumably o† magnetic
irregularities in the Ñow, are assumed to be elastic in the
local plasma frame so that monotonic energy gains natu-

FIG. 1.ÈGeometry of a discontinuous plane shock in the normal inci-
dence frame (NIF), the frame where particle distributions and Ñuxes are
output from the simulation. The shock lies in the y-z plane, and all quan-
tities vary only in x. The geometry of the ““ smooth ÏÏ shock is similar except
that the magnetic Ðeld and Ñow make many small kinks instead of one
large one, i.e., the proÐles consist of a sequence of connected pieces like this
depiction.
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rally arise as a particle di†uses back and forth across the
shock because of the converging nature of the Ñow. The
assumption of elasticity of scattering is suitable when the
particle speed far exceeds the Alfve� n speed ; it is therefore
appropriate for all shocks with not very low Alfve� nic Mach
numbers. It proves convenient to scale the mean free path
by the gyroradius, introducing a model parameter g that is
the ratio of the two quantities (following Jokipii 1987 ;

et al.Ellison 1995) :

j \ gr
g

or i
A

\ 13gr
g
v , (1)

where is the di†usion coefficient parallel to the locali
Amagnetic Ðeld. It follows that the collision time satisÐes

t
c
\ j

v
\ gr

g
v

\ g
mc

QeB
. (2)

Generally, g is a function of energy ; however, in this paper,
it is assumed to be a constant independent of position and
energy (also following For this choice, theJokipii 1987).
collision time is independent of particle energy, a conve-
nient simpliÐcation that can be easily generalized to some
other dependence of j on (see et al. Noter

g
Ellison 1990b).

also that j is hence implicitly inversely proportional to B.
The assumed constancy of g is the most important

approximation we make, since all of the complicated
plasma physics of wave-particle interactions is incorporated
in Convenience aside, there are sound reasonsequation (1).
for choosing this simple relation. First of all, as long as
electrostatic e†ects are neglected (they are omitted from our
treatment), the gyroradius is the fundamental scale length of
a particle at a particular energy, and the mean free path can
be expected to be some function of this parameter. Second,
if the plasma is strongly turbulent with dB/BD 1, as is gen-
erally observed in space plasmas, the large-scale structures
in the magnetic Ðeld will mirror particles e†ectively on
gyroradii scales (i.e., for g B 1, the Bohm di†usion limit ;

Third, and most important, spacecraftZachary 1987).
observations suggest that in the self-generated turbu-j P r

glence near EarthÏs bow shock (see, e.g., et al.Ellison 1990b).
Fourth, hybrid plasma simulation results also suggest that
the mean free path is a moderately increasing function of r

gBurgess, & Schwartz et al.(Giacalone, 1992 ; Ellison 1993).
Note that while the exact form for j will surely have quanti-
tative e†ects on the injection rate and all other shock char-
acteristics, the most important qualitative e†ects should be
well modeled as long as a strongly energy dependent di†u-
sion coefficient is used. Employing a realistic with ai

Astrong energy dependence is essential because of the intrin-
sic efficiency of shock acceleration. If is indeed energyi

Adependent, the highest energy particles with large fractions
of energy and pressure have very di†erent scales from
thermal particles, which leads to the spectral curvature that
appears in the simulated distributions (see ° 4).

The simulation employs two complementary types of
scattering modes, namely large-angle scattering and pitch-
angle di†usion. For each mode, elasticity of scattering is
imposed, which amounts to neglecting any recoil e†ects of
wave production on the particles and hence that the back-
ground scattering centers (i.e., magnetic irregularities) are
frozen in the plasma. This approximation is generally quite
appropriate but becomes less accurate for low Afve� nic
Mach numbers when the Ñow speed does not far exceed the
Alfve� n wave speed. In large-angle scattering (LAS), a parti-

cleÏs direction is randomized in a single scattering event (on
a timescale of and the new direction is made isotropic int

c
)

the local plasma frame. Such quasi-isotropic scattering is
adopted in most of our earlier simulation work (e.g., see

& Ellison et al. et al.Jones 1991 ; Baring 1993 ; Ellison 1995)
and is intended to mimic the e†ect of large-amplitude Ðeld
turbulence on particle motions. Such turbulence is present
in both plasma simulations (see, e.g., Quest 1988 ; Burgess

et al. and observations of shocks in the1989 ; Winske 1990)
heliosphere (see, e.g., et al.Hoppe 1981).

The second scattering mode we employ is pitch-angle
di†usion (PAD), as used in the diverse works of &Decker
Vlahos & Schneider and(1985), Decker (1988), Kirk (1987),
Ostrowski In this mode, the direction of the(1988, 1991).
velocity vector is changed by a small amount after each¿
time step, dt, rendering the scattering process more
““ continuous ÏÏ than large-angle collisions and more appro-
priate to physical systems with small levels of Ðeld turbu-
lence. Here we adopt the procedure detailed in et al.Ellison

for determining the maximum amount the pitch(1990a)
angle can change after each dt ;h

B
\ arccos M¿ Æ B/o ¿ o o B o N

our procedure is summarized in the Appendix. A compari-
son of the simulation results for these two modes is one goal
of this paper, motivated by an expectation that they could,
in principle, produce di†erent injection efficiencies at modi-
Ðed shocks. This expectation is partly based on the spectral
di†erences observed between LAS and PAD applications to
unmodiÐed relativistic shocks (see, e.g., et al.Ellison 1990a),
where the two modes generate signiÐcantly di†erent particle
anisotropies ; distribution anisotropies are indeed relevant
to the injection problem considered here.

As a particle convects, the simulation tracks both its posi-
tion and the position of its gyrocenter. After a scattering
occurs and a new direction is obtained for its velocity
vector, a new gyrocenter is calculated. This shift of the gyro-
center means the particle is now gyrating around a di†erent
Ðeld line and di†usion across the Ðeld has occurred ; the new
Ðeld line is within of the one the particle was circling2r

gbefore the scattering. Such cross-Ðeld di†usion is an integral
part of di†usive acceleration at oblique shocks (see, e.g.,

et al. and its presence is requiredJokipii 1987 ; Ellison 1995),
in the Monte Carlo simulation in order to match spacecraft
observations of particle spectra associated with interplan-
etary shocks (Baring et al. see also &1995b, 1996 ; Jones
Kang et al. showed that this scheme for1995). Ellison (1995)
cross-Ðeld di†usion together with the assumption contained
in is equivalent to a kinetic theory descriptionequation (1)
of di†usion (see, e.g., Jokipii, &Axford 1965 ; Forman,
Owens where the di†usion coefficients perpendicular1974),
to and parallel to the Ðeld are related via(i

M
) (i

A
) i

M
\

The parameter g in then clearlyi
A
/(1] g2). equation (1)

determines the strength of the scattering and when g D 1,
the so-called Bohm limit, where particles di†usei

M
Di

A
,

across the magnetic Ðeld as quickly as they move along it.
The properties of highly oblique and quasi-parallel shocks
tend to merge when the scattering is strong.

2.2. Grid Zone, Free Escape, and Downstream
Return Boundaries

When a particle crosses a grid zone boundary, the values
of the bulk Ñow velocity and the magnetic Ðeld (both mag-
nitude and direction for these vector quantities) change, and
a new gyroradius, gyrocenter, and phase in the gyro-orbit
are determined, as outlined in the Appendix. The particle
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then acquires a new gyromotion with subsequent convec-
tion along the new Ðeld direction. At a crossing of a grid
zone boundary, we adopt the standard requirement (e.g., see

& Kirk inTerasawa 1979 ; Decker 1988 ; Begelman 1990)
orbit calculations that the momentum vector of the particle
is conserved in the de Ho†mannÈTeller frame, since there is
no electric Ðeld in the shock layer in this frame. While this
implies conservation of energy in the HT frame (i.e.,
between scatterings), particle energies do change at the dis-
continuity in the NIF (see, e.g., because ofToptyghin 1980)
the presence of drift electric Ðelds, a manifestation of the
transformation between frames. This transmission criterion
di†ers from the imposition of magnetic moment conserva-
tion that was made in earlier applications of our Monte
Carlo technique (see, e.g., et al. in the presentBaring 1993) ;
paper, we make no assumption concerning the magnetic
moment of a particle at a grid point or anywhere else. Par-
ticles may of course ““ reÑect ÏÏ at any zone boundary or be
transmitted depending on their phase and pitch angle after
a number of gyrations in the vicinity of the boundary.

There are two limiting boundaries to the simulation
region : the free escape boundary (FEB) and the down-
stream return boundary. Our introduction of an upstream
FEB facilitates modeling of the Ðnite extent, for example
through geometrical curvature, of real shocks. Escape is
naturally expected in real systems, since the region of inÑu-
ence of a shock on its environs is Ðnite, and the level of
shock-generated turbulence diminishes to background
levels at sufficient distances from the shock. An escape
boundary is most relevant to the upstream region (1)
because the direction of convection renders the downstream
region more spatially uniform and (2) because the upstream
region is usually on the convex side of the shock (e.g., super-
nova remnant shocks, the EarthÏs bow shock), although
particles can escape from the downstream side as well. The
inclusion of such a free escape boundary is also motivated
on theoretical grounds. The fundamental point is that for
Fermi acceleration in steady state shocks, escape must
occur for Mach numbers above some critical value. This has
been fully documented (see, e.g., Eichler 1984, 1985 ; Ellison
& Eichler & Ellison where it is observed1984 ; Jones 1991),
that within the context of the nonlinear acceleration model,
the Fermi acceleration/hydrodynamics coupling becomes
unstable for shocks of Mach numbers above a few and leads
to singularities in the energy density when particle escape is
suppressed. Finite solutions are achievable when an
upstream FEB is introduced, since its presence causes the
acceleration process to truncate at the highest energies. In
the case in which the di†usion coefficient increases with
energy, the FEB produces a distribution that falls o†
approximately exponentially at an energy at which the
upstream di†usion length is on the order of the distance
from the FEB to the shock. In the simulation, particles are
removed just before they scatter for the Ðrst time on the
upstream side of the FEB; this choice leads to a spatial
smearing of the e†ects of the FEB on the scale length of the
mean free path of the escaping particles, i.e., on length scales
comparable to the distance between the FEB and thedFEBshock.

In the results presented here, the FEB is chosen close
enough to the shock to guarantee that all particles in the
simulation remain nonrelativistic ; the domain of acceler-
ation to relativistic energies and also relativistic shock sce-
narios are deferred to future work. The dynamical

consequences of the FEB are discussed in detail in ° 4
below.

While the upstream region in the simulation is Ðnite,
delimited with a FEB, we model an inÐnite downstream
region with a probability of return calculation beyond a
downstream return boundary (DRB) ; this spatial border
renders the simulation Ðnite in time. Beyond the DRB,
which is maintained more than a scattering length down-
stream of the shock, the spatial di†usion properties are
treated using appropriate statistical probabilities. If the
position of a particle (as opposed to its guiding center) is
followed, then the probability of return to the upstream side
of the DRB assumes a simple form. If the Ñow is uniform
with a component of velocity perpendicular to the DRBu

x2(in our case, this direction is also perpendicular to the shock
plane) and particles of speed in the frame of the Ñowingv

Fplasma are also isotropic in that Ñuid frame, then the prob-
ability, that a particle which crosses some arbitrary y-zPret,plane will return to the upstream side of that plane, is

Pret \
Av

F
[ u

x2
v
F
] u

x2

B2
. (3)

While this calculation has been done many times (see, e.g.,
& Ellison et al.Bell 1978 ; Drury 1983 ; Jones 1991 ; Ellison

we emphasize that is fully relativistic1995), equation (3)
and holds regardless of the orientation of(Peacock 1981)

the magnetic Ðeld or the Ñow. The principal requirement for
the validity of is that the particles are isotropicequation (3)
in the local Ñuid frame, a condition that is satisÐed since the
DRB is at least a scattering length downstream of the
shock. Hence, while can be used downstreamequation (3)
where the Ñow is uniform for any it cannot be usedv

F
Z u

x2,at the shock where the Ñow speed changes unless u
x2 > v

F
.

The particle speed, must also remain constant during thev
F
,

time a particle spends downstream from the y-z plane, a
natural consequence of our elastic scattering assumption.
The decision of return (or otherwise) is made via a random
number generator. Particles that do return must be injected
back across the y-z plane with properly Ñux-weighted x-
components of velocity, pitch angles, and phases. The deter-
mination of these, along with a detailed derivation of

are given in the Appendix. Note that the DRBequation (3),
is not only a feature of our Monte Carlo simulation but is
also used in hybrid plasma simulations of shocks (Bennett
& Ellison 1995).

3. FLUX CONSERVATION RELATIONS AND

SHOCK MODIFICATION

Before presenting the results of our modiÐed shock simu-
lations, it is instructive to review the elements of nonlinear
shock hydrodynamics and our procedure for determining
the Ñuid Ñow and magnetic Ðeld spatial proÐles that simul-
taneously conserve all relevant Ñuxes and are also self-
consistent products of the Fermi acceleration mechanism.

3.1. Flux Conservation Relations
The starting point for these considerations is the well-

known one-dimensional, steady state, magnetohydro-
dynamic conservation relations (i.e., the Rankine-Hugoniot
[R-H] jump conditions) for an inÐnite, plane shock lying in
the y-z plane (see the geometry in Variations of allFig. 1).
quantities occur only in the x-direction, and these equations
are written in the normal-incidence frame (NIF). The nota-
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tion is that of with the square brackets rep-Decker (1988),
resenting di†erences between quantities far upstream (with
the ““ 1 ÏÏ subscript) and downstream (with the ““ 2 ÏÏ subscript)
of the shock ; however, the origin of the forms used here is
based on the presentation of & Sanderson p.Boyd (1969,
56). For a magnetic Ðeld strength of B, if u is the bulk speed
of the plasma, the purely electromagnetic equations (i.e.,
MaxwellÏs equations) are

[B
x
]12\ 0 , (4)

which deÐnes a divergenceless magnetic Ðeld (remember
that our system has andLB

y
/Ly \ 0 \ LB

z
/Lz),

[u
z
B

x
[ u

x
B
z
]12\ 0 , (5)

which expresses (since c+] E \ [LB/Lt \ 0) the uni-
formity of the tangential electric Ðeld across the shock. The
hydrodynamic equations are as follows : the mass Ñux equa-
tion corresponding to the x-direction is

[ou
x
]12\ 0 , (6)

where o is the mass density ; the equations for the Ñux in the
x-direction of the x and z components of momentum are

C
ou

x
2] P

xx
] B

z
2

8n
D
1

2\ 0 , (7)

and

C
ou

x
u
z
] P

xz
[B

x
B

z
4n
D
1

2\ 0 , (8)

respectively, where and are the appropriate com-P
xx

P
xzponents of the pressure tensor. Finally, the energy Ñux in

the x-direction satisÐes

C c
c[ 1

P
xx

u
x
] P

xz

G
u
z
] u

x
3(c[ 1)

A2B
x

B
z

] B
z

B
x

BH

] 1
2

ou
x
3] 1

2
ou

x
u
z
2] u

x
B

z
2

4n
[ u

z
B

x
B
z

4n
] Qesc

D
1

2\ 0 .

(9)

Here c is the ratio of speciÐc heats, which enters via the
thermal contribution to the energy density using the equa-
tion of state ; we set this equal to 5/3 in this paper, since only
nonrelativistic particles appear in the simulation results
presented. Equations neglect so-called gradient terms(7)È(9)
that are spatial di†usion contributions that arise from non-
uniformity of the Ñuid Ñow and magnetic Ðeld proÐles. Note
also that equations and approximate the respec-(7), (8), (9)
tive parallel shock relations for high Alfve� nic Mach
numbers (i.e., where the Ðeld is dynamically unimportant),
whereas remains important regardless of theequation (5)
Mach number.

In we have added the term, to modelequation (9), Qesc,the escape of particles at an upstream free escape boundary
(FEB). As mentioned above, a FEB causes the acceleration
process to truncate as particles leave the system, producing
important dynamical e†ects since the escaping energy, and
therefore pressure, results in an increase in the compression
ratio of the shock (see et al. for a discussion ofEllison 1990a
the e†ects of such a term in the R-H relations). The escaping
energy Ñux, is taken to be constant for the far down-Qesc,stream region and zero for the region far upstream (i.e.,
several mean free paths) of the FEB and varies most rapidly
in the neighborhood of the FEB. We assume that the con-

current escaping momentum and mass Ñuxes are small and
neglect them in equations and This is a good(6), (7), (8).
approximation if the particles that escape have speeds such
that (see a situation that is alwaysvesc ? u

x1 Ellison 1985),
realized in the simulation results presented here.

The appearance of di†erent components of the pressure
tensor in the Rankine-Hugoniot relations is requisite for the
Monte Carlo simulation since we do not assume that par-
ticles are isotropic in any frame. Normally, implementations
of the conservation equations in astrophysical or helio-
spheric applications (see, e.g., are restricted toDecker 1988)
scenarios in which the plasma is isotropic in the local Ñuid
frame, in which case and the o†-P

xx
\P

yy
\ P

zz
\ P

diagonal terms of the pressure tensor are zero. However,
our system generates anisotropic plasma in all frames of
reference because of the nonuniformity of the Ñow combined
with the self-consistently determined Fermi acceleration of
the particles. In this paper, for the sake of simplicity, we
assume that the plasma is gyrotropic but anisotropic in the
local Ñuid frame in the Ñux equations.

When an isotropic population of particles is convected
across a velocity discontinuity and then subjected to iso-
tropic scattering, compression of the plasma is close to, but
not perfectly, gyrotropic : asymmetric phase sampling at the
discontinuity yields nonuniform phase distributions prior
to scattering. Plasma isotropy in the new local Ñuid frame is
attained only after many scattering lengths ; in fact, adjust-
ment to true isotropy is never achieved in our nonlinear
Monte Carlo treatment because the scale length of velocity
(and directional) changes in the Ñuid Ñow is always compa-
rable to the mean free path of the particles comprising the
Ñow. Gyrotropy is a good approximation that is also expe-
dient because it yields a diagonal pressure tensor in theP

ijde Ho†manÈTeller and Ñuid frames for coordinate systems
with one axis aligned along the magnetic Ðeld ; since the
diagonal components generally di†er, oblique shocks lead
to nonzero o†-diagonal components : A dis-P

xz
\ P

zx
D 0.

cussion of the generation of such terms is presented in the
Appendix, speciÐcally focusing on the details of the deriva-
tion of the pressure terms of the energy Ñux in equation (9) ;
there the coefficient of is alternatively expressed in termsP

xzof pressure components parallel to and orthogonal to the
local Ðeld. Note that nonzero also arise inP

xy
\ P

yxhydrogenic plasma Ñows in conjunction with out-of-the-
plane components of the magnetic Ðeld (Jones & Ellison

such o†-diagonal terms apply only to quan-1987, 1991) ;
tities in the y-direction and therefore are irrelevant to the
considerations of this paper.

Note that in all of the examples described below, we have
expediently set the electron temperature equal to zero. We
assume, as is generally done in the literature, that the ions
dominate the shock structure and that the addition of elec-
trons has little e†ect on the dynamics other than changing
the Mach number. This follows from the fact that electrons
carry little momentum compared to protons. For most
acceleration models, electrons can be treated as test par-
ticles in the ion-determined Ñow. A Ðnite temperature of
electrons and their heating by the shock can be modeled in
a simple way with our procedure by treating the electrons
as a Ñuid and is necessary when Ðtting spacecraft observa-
tions ; this was done in applications to EarthÏs bow shock

et al. and interplanetary shocks et(Ellison 1990b) (Baring
al. In such heliospheric applications, shocks put far1996).
more energy into nonthermal ions than electrons, so the
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role of electrons is largely peripheral. In astrophysical set-
tings outside the solar system, the presence of nonthermal
electrons is generally inferred by the observations while the
existence of accompanying accelerated ion populations is
often unknown. It is unclear whether or not in such sources
as supernova remnants (SNRs), active galaxies etc., elec-
trons carry a sizable fraction of the total energy budget,
though efficiency considerations argue in favor of this.
Models of electron injection and acceleration in shocks are
difficult to develop because the electron di†usion depends
on the details of the microphysics. The Monte Carlo tech-
nique can be adapted to treat Fermi acceleration of elec-
trons if it is assumed that they follow some simple
prescription of scattering such as in this wasequation (1) ;
successfully performed in & Reynolds forEllison (1991)
plane-parallel shocks, with interesting observational conse-
quences in SNRs. This somewhat involved extension of the
Monte Carlo technique in oblique shock scenarios is
beyond the scope of the present paper and is deferred to
future work. Notwithstanding, the division of energy
between electrons and ions in shock acceleration remains
an important unresolved question.

3.2. Flux Scalings and Formalism
The Ñux equations are used in the simulation in dimen-

sionless form, scaling by relevant upstream quantities. In
the NIF, the far upstream Ñow is taken along the shock
normal, i.e., We deÐne the Ñow velocityu

z1 \ 0. u1 4 u1x,the magnitude of the far upstream magnetic Ðeld B14
and a far upstream plasma density(B1x2 ] B1z2 )1@2, o1.These specify a far upstream Alfve� nic Mach number :
or where the Alfve� nMA1\ u1/vA1 MA12 \ (4no1u12)/B12,speed is and a far upstream sonic MachvA1\ B1/(4no1)1@2,number, where is the farM

S12 \o1u12/(cP1), P1\ n1kBT1upstream (isotropic) pressure. Here and are then1 T1number density and temperature far upstream, and iskBBoltzmannÏs constant. These upstream parameters, along
with deÐne the key input for the simulation runs.#

Bn1,Using these deÐnitions, one can write equations and(5)
in a dimensionless form at any position x :(7)È(9)

u
z
@ (x)B

x1@ [ u
x
@ (x)B

z
@ (x) \ F

uB
@ , (10)

deÐnes the uniformity of tangential electric Ðeld,

u
x
@ (x)] P

xx
@ (x) ] B

z
@2(x)

2MA12
\ F

xx1@ , (11)

and

u
z
@ (x)] P

xz
@ (x) [ B

x1@ B
z
@ (x)

MA12 \ F
xz1@ , (12)

deÐne the momentum Ñux equations, and

c
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xx
@ (x)u

x
@ (x) ] P

xz
@ (x)

]
G
u
z
@ (x)] u
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@ (x)

3(c[ 1)
C2B
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B

z
@ (x)

] B
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@ (x)
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DH

] 1
2

u
x
@2(x) ] 1

2
u
z
@2(x) ]B

z
@ (x)

MA12
] [u

x
@ (x)B

z
@ (x) [ u

z
@ (x)B

x1@ ]] Qesc@ \ Fen1@ , (13)

rearranges the energy Ñux equation. All primed quantities
are dimensionless, using the notation u@ \ u/u1, B@\ B/B1,and Note that c\ 5/3 is aP@\ P/(o1u12), Qesc@ \ Qesc/(o1u13).

constant throughout the Ñow for the nonrelativistic appli-
cations here. The constancy of the x-component of mag-
netic Ðeld has been used to substitute and weB

x
@ (x)\B

x1@ ,
have also used mass Ñux conservation

o(x)u
x
(x) \ o1u1\ constant , (14)

in these equations. As mentioned above, the escaping
momentum and mass Ñuxes are of progressively smaller
orders in than and therefore are neglected. Theu

x1/vesc Qesc@
far upstream Ñuxes on the right-hand sides of equations

are constants determined by the input shock(10)È(13)
parameters :

F
uB
@ \ [B

z1@ ,

F
xx1@ \ 1 ] P1@ ] B

z1@2
2MA12 ,

F
xz1@ \ [B

x1@ B
z1@

MA12 ,

Fen1@ \ c
c[ 1

P1@ ] 1
2

] B
z1@2

MA12 . (15)

If and are both assumed to be zero at all x, theQesc@ P
xz
@

four unknowns in equations (10)È(13), u
x
@ (x), u

z
@ (x), P

xx
@ (x),

and can be obtained at every position x. This is justB
z
@ (x),

the standard situation of a discontinuous shock, and these
Rankine-Hugoniot relations are analytically solvable (e.g.,
see for the shock compression ratio, r 4Decker 1988)

However, in the modiÐed collisionless shocks con-u1/ux2.sidered here, the nonthermal component of the particle dis-
tribution that is generated by particles crossing the shock
more than once contributes signiÐcantly to the total pres-
sure of the system, and will not, in general, be zero. InQesc@
fact, will have di†erent values at various locations andQesc@
cannot be determined before the shock structure is known,
which makes a direct solution of equations impos-(10)È(13)
sible ; this is the inherent nonlinearity in the problem even if
isotropy is assumed, deÐned by the coupling between the
acceleration process and the Ñow hydrodynamics.

In our approach, we iterate to achieve a solution for the
velocity and Ðeld shock proÐles by varying u

x
@ (x), u

z
@ (x),

and the overall compression ratio for successive simu-B
z
@ (x),

lation runs (each accelerating particles and generating non-
thermal distributions) until equations are satisÐed(10)È(12)
at every x. The overall compression ratio depends on Qesc@
far downstream from the shock and is determined by our
solution. When this value is consistent with aequation (13),
complete solution to the nonlinear acceleration problem is
obtained, which satisÐes equations at all positions.(4)È(9)
The details of the iterative procedure follow.

3.3. Iteration of the Shock ProÐle
The iteration of the shock proÐle is done in two stages.

We Ðrst choose the overall compression ratio (normally the
R-H value for the Ðrst iteration), and, using this ratio, we
iterate the shape of the proÐle. As individual particles move
through the shock, the momentum and energy Ñuxes are
calculated at each grid zone boundary. We therefore obtain
the quantity

F
xx
@ (x) \ u

x
@ (x) ] P

xx
@ (x) ] B

z
@2(x)

2MA12
(16)

at each boundary, where and are the currentu
x
@ (x) B

z
@ (x)

values for the shock structure. From this we compute the
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pressure and calculate a new x-component of theP
xx
@ (x)

Ñow speed from equation (11),

u
x
@N(x) \ F

xx1@ [ P
xx
@ (x) [ B

z
@2(x)

2MA12 (17)

such that the momentum Ñux will equal the constant far
upstream value, at all x. Replacing with weF

xx1@ , u
x
@ (x) u

x
@N(x),

solve equations and for new values of and(10) (12) u
z
@ (x)

To speed convergence, before running the next iter-B
z
@ (x).

ation, we smooth this new proÐle, force it to be monotonic,
average it with the previous proÐle, and scale the proÐle by
setting values of the x-component of Ñow to foru

x2 x [ 1j0and the far upstream value to Since no wave physics isu1x.employed in our description, we do not attempt to model
anything other than a monotonic decrease in Ñow speed
and a monotonic increase in the magnitude and obliquity of
B from upstream to downstream. Alternatively, we can cal-
culate both and in the simulation and obtainP

xx
@ (x) P

xz
@ (x)

the new prediction for from but inu
x
@N(x) equation (13),

either case, our procedure rapidly and stably converges.
With this new shock proÐle, we repeat the simulation by

again injecting particles far upstream from the shock and
propagating them until they leave at either the FEB or the
probability of return plane. Our algorithm converges
rapidly (within a few steps : see the examples in below) to° 4
values of and which no longer changeu

x
@ (x), u

z
@ (x), B

z
@ (x),

signiÐcantly with subsequent iterations. However, in
general, this proÐle will not simultaneously conserve
momentum and energy Ñuxes unless a compression ratio
consistent with the escaping energy Ñux has beenQescchosen. The second stage of the iteration process is to
choose successively new overall compression ratios (larger
than the R-H value), each time repeating the iteration of the
proÐle shape, and continue until the momentum Ñuxes and
the energy Ñux (with added) are constant everywhere.Qesc@
Thus, within statistical limits, a shock proÐle and overall
compression ratio that are consistent with the Fermi accel-
eration process are obtained. While we have no formal
proof of the uniqueness of our solution, we have conÐrmed
in a large number of examples that the Ðnal shock structure,
for a given set of far upstream parameters, is independent of
the initial choice of shape and compression ratio.

4. RESULTS

Oblique shocks are highly complex, even in the steady
state and in plane geometry, and several parameters control
the dissipative processes as well as the injection from
thermal energies into the Fermi acceleration mechanism.
These far upstream parameters include the magnetic Ðeld
strength, the obliquity, the temperature, theB1, #

Bn1, T1,number density, and the shock speed, all of which aren1, u1,determined by the ambient upstream conditions and can, in
principle, be determined by observations of a given physical
system. The size of the acceleration region is also an observ-
able (for example, the radius of a supernova remnant
shock), and we model it using the distance between thedFEBupstream free escape boundary and the shock. However, the
““ size ÏÏ of the shock in units of mean free paths is very
important, and this will depend on the scattering law we
assume. This requires the introduction of another param-
eter, g, the ratio of the mean free path to the gyroradius, via

The value of g, which determines the amountequation (1).
of cross-Ðeld di†usion, depends on the highly complex

plasma interactions that occur in the shock environs ; the
prescription in is a simple but insightful way toequation (1)
model these plasma processes.

Another ““ variable ÏÏ results from the inclusion of two
extreme modes of scattering, namely large-angle scattering
(LAS) and pitch-angle di†usion (PAD). While more compli-
cated scattering models can be used, we believe these
contain the essential physics of plane shocks and yield
important information on the nonlinear processes linking
shock structure and particle acceleration. The type of scat-
tering we employ and g are free parameters and cannot be
determined in our model except by comparison with
observations of space plasma shocks or three-dimensional
plasma simulations. Hence (replacing and withB1 T1 MA1and there are seven parameters in our model :M

S1), MA1,and g, together with the choice ofM
S1, n1, #

Bn1, u1, dFEB,
the type of scattering (either LAS or PAD). In all of the
following examples, we use a shock speed of kmu1\ 500
s~1 and a far upstream number density of cm~3,n1\ 1
which deÐne physical scales for our system that are more or
less appropriate for astrophysical shocks. The spatial scales
of the results presented here are all in units of the ““ low-
energy mean free path ÏÏ which is deÐned as the mean freej0,path (see of a proton with speed in the upstreameq. [1]) u1magnetic Ðeld, i.e., where g (º1)j0\ gm

p
u1c/(eB1),remains an adjustable parameter for each simulation run.

4.1. T est Particle Examples
The simplest acceleration results obtainable from the

Monte Carlo simulation are for test particle cases in which
the shock proÐle is uniform on either side of the subshock ;
this limit corresponds to the Ðrst run in the iteration
sequence described in °° and and has been studied in3.2 3.3
detail in et al. Several interacting elements ofEllison (1995).
the code, including shock (or grid zone) crossings and the
probability of return calculation (which includes the Ñux-
weighting of momenta of the returning particles : see ° A3 in
the Appendix), must be implemented properly in order to
yield the well-known test particle acceleration power law.
The Fermi power law is achieved when particle speeds v far
exceed the HT Ñow speed From analytic cal-u

x1/cos #
Bn1.culations (see, e.g., & Ellison theDrury 1983 ; Jones 1991),

spectral index p of the power law then depends only on the
compression ratio regardless of the obliquity orr \ u1/u2xother plasma parameters. The compression ratio is deter-
mined from equations with (see also(4)È(9) Qesc \ P

xz
\ 0

For nonrelativistic particle energies andDecker 1988).
shock speeds, the test particle distribution is

dJ
dE

P E~p , p \ r ] 2
2(r [ 1)

, (18)

where dJ/dE is the number of particles in units of (cm2 s sr
eV)~1, i.e., is an omnidirectional Ñux (see & EllisonJones

The reproducibility of this form is a powerful tool for1991).
debugging the portions of the code that are directly related
to the transport and acceleration of particles. It is instruc-
tive to review test article distributions before proceeding to
our results for the nonlinear problem.

In we show spectra calculated with a discontin-Figure 2
uous shock for three di†erent sets of parameters and for
both large-angle scattering (solid lines) and pitch-angle dif-
fusion (dotted lines). Note that the examples labeled (c) are
multiplied by 0.01 for clarity of display. All spectra here and
elsewhere are omnidirectional, are calculated several (i.e.,j0
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FIG. 2.ÈTest particle omnidirectional, distribution functions measured
several downstream from a discontinuous shock in the normal incidencej0frame. All spectra here and elsewhere are normalized to one particle
per square centimeter per second injected far upstream. Each pair of
histograms has obliquity, Mach numbers and g as indicated according
to the labels (a), (b), and (c). The solid lines are results using large-angle
scattering, while the dotted lines are for pitch-angle di†usion. At energies
where applies, all spectra attain the canonical Fermiv? u

x1/cos #
Bn1power law (solid lines of arbitrary normalization). Note that the spectra

labeled (c) are multiplied by 0.01 for clarity. The similarities for the two
modes of scattering are striking in these strong cross-Ðeld di†usion exam-
ples.

““ thermal ÏÏ mean free paths) downstream from the shock in
the normal incidence frame, and are normalized to one par-
ticle per square centimeter per second injected far upstream.
In all cases we have used km s~1 andu1 \ 500 n1\ 1
cm~3 ; the (sonic and Alfve� nic) Mach number 20 cases here
use G and K, while theB1\ 1.15] 10~5 T1\ 4.54 ] 104
Mach number 3 case uses G andB1\ 7.64] 10~5 T1\
2.02] 104 K. The other parameters are given in the Ðgure.
No free escape boundary is included in these test article
cases, since it is necessary only for the nonlinear acceler-
ation problem.

Note that the compression ratio varies slightly between
the two high Mach number examples, being r \ 3.96 for the

case and r \ 3.94 for the 60¡ case ; this occurs#
Bn1 \ 30¡

because of a slight dependence of r on obliquity for nonin-
Ðnite Mach numbers. For the low Mach number example
(c), the shock is quite weak with r \ 2.5. The Fermi power
laws obtained from for these compressionequation (18)
ratios are shown as light solid lines in the Ðgure (with
adjusted normalization to aid visual distinction). Clearly
the most important feature of is that the simulationFigure 2
does reproduce the Fermi power-law index at high energies
for a wide range of shock parameters. Comparison of exam-
ples (a) and (b) with similar compression ratios but quite
di†erent supports the fact that the Fermi spectral#

Bn1index p is determined solely by r.
The next most striking feature of these plots is that the

two modes of scattering produce very little di†erence in the
spectra. This di†erence is largest for portions of the #

Bn1 \
60¡ spectrum (b) between thermal energies and about 100
keV. There the distribution for the LAS mode (the solid line

in [b]) is somewhat noisy because of comparatively poor
statistics in high-g, high-obliquity runs (i.e., weak injection :
see et al. and this noise may obscure someEllison 1995),
underlying structure that can arise from large energy boosts
in individual shock crossings. At these energies, the particle
speed does not far exceed the HT frame Ñow speed u

x1/cos
which leads to signiÐcant anisotropies in the parti-#

Bn1,cle population and, more importantly, to measurable di†er-
ences in the degree of anisotropy produced in PAD and
LAS modes. Since such di†erences in angular distributions
are responsible for observed di†erences between LAS and
PAD applications to unmodiÐed relativistic shocks (e.g., see

et al. for a comparison of the modes andEllison 1990a Kirk
& Schneider and for PAD cases), it is1987 Ostrowski 1991
not surprising that spectral di†erences should appear here
at suprathermal energies for highly oblique shocks. Clearly,

shows that for this intermediate-obliquity case, theFigure 2
mode of scattering has virtually no e†ect on the resultant
spectrum at either thermal or the highest energies and
therefore that the scattering mode plays little role here in
determining the efficiency of acceleration, i.e., the fractional
energy deposited in high-energy particles. This is not sur-
prising, because of the low value of g here : we naturally
expect that strong scattering (near the Bohm di†usion limit)
will destroy any sensitivity of the acceleration process to the
shock obliquity or distribution anisotropies and hence the
type of scattering. In very weak scattering (large g), large
di†erences between the scattering modes may occur even
for low obliquities.

Also evident in is the strong e†ect the inputFigure 2
parameters have on injection efficiency : the #

Bn
\ 60¡

spectra fall an order of magnitude below the #
Bn

\ 30¡
spectra at high energies even though they both obtain the
same power-law index. Increasing either or g will#

Bn1result in decreased injection efficiency. These e†ects were
detailed in et al. where an anticorrelationEllison (1995),
between acceleration time and efficiency of acceleration in
test article shocks was observed. We note that existing
analytic predictions for the transition between the thermal
peak and the high-energy power law, i.e., the injection effi-
ciency, require ad hoc parameters additional to and inde-
pendent of those made for the shock structure to connect
the thermal gas to the cosmic-ray population (see, e.g.,

Webb, & Donohue & JonesZank, 1993 ; Kang 1995 ;
& Vo� lk The advantage of our model is thatMalkov 1995).

the single relation controls the shock structure, the(eq. [1])
absolute injection efficiency, and, in fact, the entire shock
solution. This makes it straightforward to compare model
predictions to observations and to infer plasma properties
(such as the level of turbulence, the correctness of the elastic
scattering assumption, etc.) from these comparisons, an
attractive feature. Properties of upstream particle distribu-
tions are deferred to the discussion of nonlinear results in
the next subsection, though test particle spectra upstream of
oblique shocks were presented in Ellison, & JonesBaring,
(1994).

The di†erence in statistics seen in i.e., LASFigure 2,
spectra are noisier than PAD spectra, comes about because
changes in particle pitch angles, phases, and energies are
more frequent in the PAD case than for LAS, i.e., many
small pitch-angle changes versus a single isotropizing event.
Consequently, the acceleration process is more continuous
with PAD, and the spectra produced are smoother than for
LAS, where discreteness in the scattering can sometimes
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introduce spectral structure due to reÑection (see, e.g.,
et al. When scattering is strong, these twoBaring 1994).

modes give very similar statistics, but in weak scattering,
large di†erences can occur, particularly for large obliquities,
when poorer statistics inhibit the quality of the LAS spectra.

4.2. Examples Showing Iteration of Shock ProÐle
For our next examples, we compute the self-consistent

smooth shock proÐle beginning with a low Mach number
case, i.e., andMA1\M

S1 \ 3, #
Bn1 \ 30¡, dFEB \[50j0,g \ 2, yielding a plasma b of This corresponds tob1\ 1.2.

a weak shock, typical of interplanetary shocks observed in
the heliosphere (e.g., see et al. et al.Burton 1992 ; Baring

To reiterate, in the results that follow, all lengths are1995b).
measured in units of which is the mean free path of aj0, gr

g1proton of gyroradius i.e., with the speedr
g1 \m

p
u1c/(eB1),in the upstream magnetic Ðeld.u1In the left-hand panels of we depict the averageFigure 3,

Ñow speed, the Ñux of the x-component ofu
x
, F

xx
@ (x)

momentum, and the energy Ñux all normalized to farFen@ (x),
upstream values, for several iterations starting from a dis-
continuous shock (light solid line) and yielding the Ðnal
proÐle (heavy solid line). These iterations were done using

LAS and an overall compression ratio of r ^ 2.7 that was
determined in previous iterations on r. The Rankine-
Hugoniot compression ratio with is r \ 2.67,Qesc \ 0
which is equal (within errors) to our 2.7 value. The con-
vergence is quite rapid, and the heavy solid lines (fourth
iteration) show no further statistically signiÐcant change
with additional iterations. Except for a departure of about
5% near x \ 0, the Ñux of the x-component of momentum
(middle panels) is constant for all x after the Ðnal shock
proÐle has been obtained. The Ñux of the z-componentF

xz1@
of momentum is generally small and less interesting ; its
proÐle (and those of and is not displayed for reasonsu

z
B
z
)

of brevity. For the discontinuous shock (light solid lines), the
momentum Ñux was clearly not conserved and rose to
D140% of the far upstream value downstream from the
shock.

The escaping energy Ñux at the FEB (which is at [50j0and is not shown in the Ðgure) is less than 1% of the far
upstream value and does not inÑuence the overall compres-
sion ratio signiÐcantly. The check on the consistency of the
Ðnal proÐle is that the momentum Ñux and the energy Ñux,
including the escaping Ñux, must both be conserved. When
this is achieved (i.e., corresponding to the solid lines), we

FIG. 3.ÈFlow and Ñux proÐles for quantities in the x-direction for a weak shock with parameters g \ 2,MA1\ 3, M
S1 \ 3, #

Bn1 \ 30¡, dFEB\ [50j0,and a self-consistently determined compression ratio, r \ 2.7. The three left-hand panels show the x-component of the Ñow speed, the Ñux of theF
xx
@ (x)

x-component of momentum, and the energy Ñux for large-angle scattering. All quantities are measured in units of the far upstream values (UpS). The three
right-hand panels show the same quantities for pitch-angle di†usion. In all cases, four iterations are shown; the Ðrst with a light solid line, the second with a
dashed line, the third with a dot-dashed line, and the fourth with a heavy solid line (the Ñat dotted line indicates upstream values). After four iterations, all
quantities remain the same except for statistical variations. The momentum and energy Ñuxes are conserved everywhere to within 10%. Note that previous
iterations (not shown) were done to determine the compression ratio. The di†erent scattering modes produce identical results within statistics.
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have a unique, self-consistent solution. The D10% discrep-
ancy in the energy Ñux near x \ 0 is most likely the result of
the strong gradients in the shock and/or agyrotropic pres-
sure tensor terms in the Rankine-Hugoniot relations, which
we have neglected from our Ñux considerations. This dis-
crepancy decreases rapidly with increasing Mach number
and so is greatest for this present case.

also shows the shock structure obtained withFigure 3
pitch-angle di†usion PAD (right-hand panels), all other
shock parameters being the same as the LAS case. Within
statistics, the two scattering modes give identical results,
both for the shape of the proÐle and the overall compres-
sion ratio. This feature is not surprising, given that the test
particle results of the previous simulation bore this simi-
larity out.

In we show the distribution functions generatedFigure 4,
by the smooth shocks of The spectra are omnidi-Figure 3.
rectional, measured downstream from the shock, and calcu-
lated in the shock (i.e., NIF) frame. As with the shock
structure, the distribution functions obtained with the two
scattering modes are identical within statistics. This is to be
expected because g \ 2 is close to the Bohm di†usion limit
where, as mentioned above, isotropic di†usion will natu-
rally obscure the di†erences between PAD and LAS. There
is a large di†erence, however, between the smooth shock
results and the test particle, discontinuous shock (dotted
line), which was obtained using the same compression ratio
(r \ 2.7) computed in the self-consistent solution of the non-
linear LAS simulation. The light solid line is the Fermi
power law expected from r \ 2.7 ; the test particle spectrum
attains this result before the fallo† at D100 keV produced
by the FEB. The discontinuous shock produces more effi-
cient acceleration at low energies than the smooth shock,

FIG. 4.ÈDistribution functions measured downstream from the shock
in the shock (or normal incident) frame obtained from the proÐles shown in

The turnover at ED 200 keV is the result of particles leaving at theFig. 3.
upstream FEB. Apart from statistics, there are no discernible di†erences
between the large-angle scattering and pitch-angle di†usion scattering
modes. For comparison, the dotted line shows the test particle spectrum
obtained for the same shock parameters, and the light solid line is the
expected Fermi power law (arbitrary normalization) for r \ 2.7.

which follows from the nature of the smoothed shock
proÐle : low-energy particles feel the e†ect of the subshock,
whereas only the high-energy particles sample the full com-
pression ratio of r \ 2.7. This same property is responsible
for the upward curvature of the nonlinear spectra, which
never attain the Fermi power law, but Ñatten toward it
before falling o† because of the FEB.

We have also obtained solutions (not shown) using
exactly the same parameters as above except with a FEB at

The smaller shock system causes a cuto† atdFEB\ [10j0.a lower energy than seen in and the shock struc-Figure 4,
ture is correspondingly on smaller length scales. However,
the self-consistent compression ratio is still r D 2.7, consis-
tent with a as expected, since these low MachQesc \ 0,
number shocks put a small fraction of the available energy
into energetic particles regardless of the shock size.

As a more extreme example, we show in a highFigure 5
Mach number shock with a much larger(M

S1 \ MA1\ 20)
shock size, i.e., the FEB is at The otherdFEB\ [200j0.input parameters are km s~1, cm~3,u1\ 500 n1\ 1

g \ 2, G, and#
Bn1 \ 30¡, B1\ 1.15 ] 10~5 T1\ 4.54

] 104 K, yielding b \ 1.2. We show only the LAS scat-
tering mode since the PAD results are essentially identical.
Note that the self-consistent compression ratio used here is
r \ 5.2 (well above the R-H value of r \ 3.96), which has
been determined with previous runs not shown. The dis-
tance scale in is logarithmic for andFigure 5 x \[10j0linear for x [ [10j0.There are several important features of this shock solu-
tion. In the Ðrst iteration with no shock smoothing, the
momentum and energy Ñuxes are wildly nonconserved with
both of them obtaining downstream Ñuxes almost 15 times
as large as the upstream values. Despite this, the subsequent
iterations converge rapidly, and by the fourth iteration, the
momentum Ñux is conserved everywhere to within 5% of
the upstream value (the Ðrst, second, third, and fourth iter-
ations are shown by light solid, dashed, dashed-dot, and
heavy solid lines, respectively ; the Ñat dotted line indicates
the far upstream value). The e†ects from the anisotropic
terms in the momentum and energy Ñuxes are less notice-
able here than in the previous low Mach number examples.
As with the previous examples, the shock is smoothed out
to the FEB; however, the subshock here is considerably
more distinct, showing a sharp discontinuity between the
Ñow just upstream from the subshock and the downstream
Ñow. The width of the subshock is well within 1j0.As for the energy Ñux, it falls about 20% below the far
upstream value because of the particles lost at the FEB. The
escaping energy Ñux, which is zero far upstream, fallsQesc,rapidly around and then becomes approximately con-dFEBstant into the downstream region. This results in a compres-
sion ratio, obtained by iteration in previous runs, of r ^ 5.2,
compared to the R-H value of r \ 3.96. A compression ratio
of r \ 5.2 implies and a andQesc@ \ 0.098 Qesc@ /Fen1@ ^ 0.19,
when this is added to the energy Ñux shown in the bottom
panel of we have a self-consistent solution with allFigure 5,
Ñuxes constant at all x to within a few percent. Larger
escaping Ñuxes are expected for such high Mach number
shocks because their greater compression ratios enhance
the acceleration efficiency to the highest energies.

The complete shock structure is shown in whereFigure 6,
we have included along with the z-component of Ñowu

x
(x),

speed, the angle the local magnetic Ðeld makes withu
z
(x),

the shock normal, and the total magnetic Ðeld mag-#
Bn

(x),



1040 NONLINEAR OBLIQUE SHOCKS Vol. 473

FIG. 5.ÈThe top panel shows the x-component of Ñow speed vs. x. The
next two panels show the Ñux of the x-component of momentum,F

xx
@ (x)

and the bottom two panels show the energy Ñux. The shock parameters are
km s~1, cm~3,M

S1\ MA1\ 20, dFEB\[200j0, u1\ 500 n1\ 1
and g \ 2. In all cases, four iterations are shown: the Ðrst,#

Bn1 \ 30¡,
second, third, and fourth iterations are shown by light solid lines, dashed
lines, dashed-dot lines, and heavy solid lines, respectively, and the horizon-
tal scale is logarithmic for and linear for After fourx \ [10j0 x [ [10j0.iterations, no further changes occur in the proÐles, and momentum and
energy are conserved across the shock once the escaping energy Ñux

is accounted for. Note that previous iterations were per-(Qesc@ /Fen1@ ^ 0.19)
formed to obtain the self-consistent compression ratio, r ^ 5.2.

nitude, The solid lines show the Ðnal shock structure,Btot(x).
and this is compared to the initial structure shown by
dotted lines. As noted above, both the shape and the overall
compression ratio must be modiÐed to obtain a self-
consistent solution, and this translates to a change from the
R-H values in the downstream and as indi-u

z2, #
Bn2, B2cated by the dotted lines. The sharpness of the subshock in

at x \ 0 is partially an artifact of how we smoothFigure 6
and truncate the Ñow proÐle between iterations. As men-
tioned above, we average the predicted proÐle with the pre-
vious one, and, since we start with a discontinuous shock,
some sharpness persists. We also set all predicted values of

to at Despite this, the subshock is, in fact,u
x

u
x2 x [ 1j0.quite sharp as we discuss at the end of this section.

In we show (solid line) the downstream, shockFigure 7
frame distribution function obtained in the smooth shock
solution just described. It di†ers considerably from the test

FIG. 6.ÈComplete shock structure (solid lines) for the example shown
in again with a composite distance scale. The dotted lines show theFig. 5,
discontinuous shock structure with the initial R-H compression ratio,
r \ 3.96. The Ðnal shock has a overall compression ratio of r ^ 5.2.

particle solution (dotted line) in that the downstream
thermal peak is at a lower energy, the temperature is slightly
lower, and far fewer thermal particles become accelerated.
The straight line is the power-law slope expected from the
test particle Fermi solution with r \ 5.2 and matches our
test particle solution at energies well above thermal and
below where the FEB becomes important. The smooth
shock solution, however, does not attain the test particle
power law and remains considerably steeper. This can be
understood by examining the top panel of where itFigure 5
can be seen that at there is enough escap-dFEB\ [200j0,ing energy Ñux to smooth the shock further upstream from
this point. Particles leave the shock at the FEB before
feeling the full compression ratio.

To complete this example, we show in distribu-Figure 8
tion functions at various x-positions, i.e., (dottedx \ [50j0line), (dashed line), (light solid line),x \ [4j0 x \[0.5j0and (heavy solid line). At observation points farx \ ]j0upstream from the shock, only the unshocked thermal peak
is present since energetic particles from the shock are not
able to di†use against the background Ñow to reach the
observation point. As the upstream observation point
moves toward the shock, two things happen. First, the
highest energy particles begin to show their presence, and
second, the thermal peak from particles that have not yet
crossed the shock begins to shift to lower energy (see insert
where we have plotted the thermal peaks of the x \[50j0and spectra). Since we take the di†usionx \[0.5j0 j P r

g
,

length increases with energy, and higher energy particles
from the shock are able to stream farther upstream than
low-energy ones ; thus, as the observation point moves
toward the shock, the spectrum Ðlls in from high energy to
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FIG. 7.ÈThe downstream, shock frame distribution functions for the
smooth shock obtained in (heavy solid line) and a test particle shockFig. 5
(dotted line) with the same parameters including a compression ratio of 5.2.
Note the shift of the thermal peak to lower energy that occurs in the
smooth shock. The light solid line shows the test particle, power-law slope
expected from Fermi acceleration for a shock with r \ 5.2. This is obtained
by the discontinuous shock solution before the fallo† produced by the FEB
but not by the smooth shock solution.

low (this property was recognized, for test particle situ-
ations, by et al. The shift in the thermal peakBaring 1994).
arises because spectra calculated in the shock frame shift to
lower energy as the bulk Ñow speed falls as the shock is

FIG. 8.ÈShock frame distribution functions calculated at x \ [50j0(dotted line), (dashed line), (light solid line), andx \ [4j0 x \ [0.5j0(heavy solid line) for the smooth shock obtained in Thex \]j0 Fig. 5.
insert shows the thermal peaks for the and casesx \ [50j0 x \ [0.5j0on a linear energy scale. The thermal peak lies between these two.[4j0

approached. The slowing of the bulk Ñow in the shock pre-
cursor also heats the incoming particles somewhat before
they encounter the sharp subshock lowering the local Mach
number. These features are well-deÐned model predictions
that can be tested against observations.

In we show the upstream scale height for par-Figure 9
ticles of various energies. The ordinate is the ratio of the Ñux
at x over the Ñux at x \ 0 for a given energy. As expected,
the length scale (i.e., the distance at which the Ñux e-folds) is
largest for the highest energy particles, and the Ñuxes fall o†
exponentially with distance from the shock (a property of
di†usion against the convecting Ñow). It is also important to
note that low-energy particles (i.e., the 3 and 10 keV
examples) can have extremely short upstream precursors.
Particle detectors on spacecraft being overtaken by inter-
planetary shocks will see very di†erent time proÐles
depending on the particle energy sampled and may, depend-
ing on the time integration of the spectrometer (which is
usually long compared with typical gyroperiods), see a step
function increase in intensity at low energies simultaneously
with a slow rise in high energy particles. This e†ect may
explain some puzzling aspects of recent Ulysses observa-
tions that have led to the suggestion that a two-stage accel-
eration mechanism operates for pickup protons (Gloeckler
et al. 1994).

As our Ðnal example, we show in a highlyFigure 10
oblique shock with(#

Bn1\ 75¡) M
S1 \ MA1\ 10, dFEB\

g \ 5 and using large-angle scattering. For these[20j0,parameters, little acceleration occurs, and the shock proÐle
is nearly discontinuous. Nevertheless, the little smoothing
evident in the top panel of is enough to reduce theFigure 10
energy Ñux from being D20% above the far upstream value
to a constant value. Because of the inefficient acceleration,
few particles, carrying very little energy Ñux, escape at the
FEB, so there is no need to adjust the compression ratio.
The Ðnal ratio is r \ 3.74, e†ectively the R-H value. We
have done the same calculation with the same parameters
except using pitch-angle di†usion and Ðnd essentially the

FIG. 9.ÈRatio of the omnidirectional Ñux, dJ/dE, at position x to the
Ñux at x \ 0 for a given energy vs. distance upstream from the shock
shown in These are determined from the spectra shown in andFig. 5. Fig. 8
deÐne the scale heights for the several energies indicated on the Ðgure.
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FIG. 10.ÈThe three panels show the x-component of the Ñow speed, the
Ñux of the x-component of momentum, and the energy Ñux for aF

xx
@ (x)

shock with g \ 5, and large-#
Bn1\ 75¡, M

S1\ MA1\ 10, dFEB\[20j0,angle scattering. The proÐle for the PAD case is essentially the same and is
not shown. In all panels, the Ðrst, second, third, and fourth iterations are
shown by light solid lines, dashed lines, dashed-dot lines, and heavy solid
lines, respectively. Comparatively little acceleration takes place, and the
Ðnal shock proÐle is very nearly discontinuous with the R-H compression
ratio, r \ 3.74.

same proÐle (which is not shown), although some slight
di†erences do show up in the distribution functions.

The top two curves in are the distribution func-Figure 11
tion from the LAS example (solid line) along with the dis-
tribution produced in a shock with the same parameters as
that shown in only using PAD (dashed line). TheFigure 10,
main di†erence between the two cases is that the PAD dis-
tribution is somewhat smoother than the LAS one. The
PAD shock is also somewhat less efficient in accelerating
particles to the highest energies. In general, however, even
at this large obliquity, the choice of scattering mode does
not play a dominant role in determining the acceleration
efficiency. The lower two curves (multiplied by 0.01 for
clarity) are test particle results and are similar to the dis-
tribution functions produced by the smooth shock but are
slightly Ñatter, as expected. No portions of these examples
elicit the Fermi, test particle power-law slope (dotted line)
but are clearly Ñattening toward it before the FEB causes
the spectra to turn over.

Finally, we comment on the sharpness of the subshock
seen in all of the examples we have presented. As mentioned
above, part of this is due to the scheme we have for iterating
the proÐle and insuring rapid convergence. We average the
predicted proÐle with the previous one, make the predicted
proÐle monotonic, and set all predicted values of tou

x
(x)

for In we show the same Ðnalu
x2 x [j0. Figure 12, u

x
(x)

plots as shown in the top left-hand panel of theFigure 3,

FIG. 11.ÈDistribution functions for the highly oblique shock (#
Bn1\

75¡) shown in The top two curves are smooth shock solutionsFig. 10.
using LAS (solid line) and PAD (dashed line). The lower two curves are test
particle results. The straight dotted line shows the slope expected from the
standard Fermi power law. Unlike our examples at lower obliquities, clear
di†erences exist depending on the type of scattering, although these are not
great enough to produce noticeable di†erences in the shock proÐle.

FIG. 12.ÈComparison of predicted by the simulation (solidu
x
(x)/u1lines) with (dotted lines) plotted with a linear distance scale. The topSv

x
T

panel is the example shown in the top left-hand panel of the middleFig. 3,
panel is the shock shown in and the bottom panel is the shockFig. 5,
shown in While some sharpness of the shock proÐle is the result ofFig. 10.
our smoothing procedures, the subshock transition is less than wide in1j0all cases.
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top panel of and the top panel of exceptFigure 5, Figure 10,
here they are all plotted on an expanded linear distance
scale (solid lines). The dotted lines in are the calcu-Figure 12
lated obtained from distributions produced by theSv

x
T

simulation using the solid line shock proÐles. In all cases, a
clear subshock exists that is considerably less than inj0width, and the mean velocities are nearly as sharp as our
processed proÐles except for statistical Ñuctuations and the
truncation we impose at Outside the range shown,x [ j0.and are indistinguishable except for noise. Whileu
x

Sv
x
T

comparing and is somewhat artiÐcial since isu
x

Sv
x
T Sv

x
T

calculated using the small broadening of the Ñow speedu
x
,

around x D 0 does not have an appreciable inÑuence on the
momentum and energy Ñuxes. We have performed simula-
tions using instead of and the momentum andSv

x
T u

x
(x),

energy Ñuxes remain within D10% of the conserved values
at all x. For our purposes, since we do not attempt to model
scales less than a convected thermal ion gyroradius, there is
essentially no di†erence between the used in the simu-u

x
(x)

lation and Sv
x
T.

4.3. Injection and Acceleration Efficiency
A quantity that is central to the acceleration problem is

the efficiency of the Fermi mechanism. It can be deÐned in a
variety of ways : we deÐne the acceleration efficiency, v([E),
at or behind the shock as the downstream energy Ñux above
energy E divided by the incoming energy Ñux, i.e.,

v([E) \ fP([E)u
x2] Qesc([E)

fP1u1] o1u13/2 ] B
z12 u1/(4n)

, f\ c
c[ 1

, (19)

where P([E) is the downstream pressure and isQesc([E)
the escaping energy Ñux, both in particles with energies
greater than E. The pressure is obtained by taking 2/3 of the
energy density in the omnidirectional distribution, dJ/dE.

In we show v([E) for our three previous non-Figure 13
linear examples, i.e., curve (a) is for the LAS case shown in

(b) is for the case shown in and (c) is forFigure 4, Figure 7,
the LAS, smooth shock case shown in As isFigure 11.
apparent from the Ðgure, large di†erences in the efficiency
depending on the Mach number, g, and the distance#

Bn1,to the FEB occur. Examples (b) and (c) both accelerate
particles to above 1000 keV and have similar Mach
numbers, but the highly oblique shock (c) is much less effi-
cient. Examples (a) and (b) have the same but#

Bn1 \ 30¡
di†er considerably in Mach numbers (3 versus 20, respec-
tively), with (b) being more efficient because its higher Mach
number generates a larger compression ratio. At this stage
of our work, there appears to be no simple way to charac-
terize the injection and acceleration efficiency of oblique
shocks, but the trends with obliquity and Mach number are
quite clear. Note that the efficiency curves in haveFigure 13
been normalized to v([0) \ 1 to facilitate comparison. The
unnormalized curves di†er by small amounts (\10%) from
v([0) \ 1 due to simulation statistics.

Another point that should be made concerning Figure 13
is that we choose to deÐne our efficiency as a function of
energy. If we do not have an independent source of ener-
getic seed particles, all accelerated particles must originate
as thermal particles, and they will be drawn more or less
continuously from the thermal populationÈthere will be no
clear separation between thermal and energetic particles.
Our identical treatment of the thermal and nonthermal
populations is why we do not need to deÐne an ““ injection

FIG. 13.ÈThe acceleration efficiency, as deÐned in (i.e., the totaleq. (19)
energy Ñux in particles with energy above E), as a function of particle
energy. The solid curve (a) is calculated from the LAS spectrum shown in

the dashed curve (b) is calculated from the smooth shock spectrumFig. 4,
shown in and curve (c) is calculated from theFig. 7, MA1\M

S1 \ 20),
LAS, smooth shock solution shown in Fig. 11.

energy. ÏÏ However, there are ways to prescribe efficiencies
qualitatively that describe the overall distribution rather
than di†erent particle energies. For example, while all three
cases in have comparable efficiency at around 0.8Figure 13
keV, this energy does not deÐne the approximate juncture
between thermal and nonthermal populations for cases (a)
and (c), whereas it does for case (b). This juncture is roughly
represented by the upward kinks at energies 3 and 1.7 keV
for cases (a) and (c), respectively. Hence, the ratio of down-
stream nonthermal to thermal energy densities for the three
cases are roughly (a) 0.2, (b) 0.5, and (c) 0.15 ; these numbers
could be taken as an alternative measure of acceleration
efficiency.

5. DISCUSSION AND CONCLUSIONS

A host of observational evidence, both direct and indi-
rect, conÐrms that collisionless shocks in space accelerate
particles with high efficiency. Possibly a large fraction of all
nonthermal particle populations in di†use regions of space
are generated by shocks, which makes shock acceleration
one of the most important problems in high-energy astro-
physics. As a step toward a full understanding of shock
acceleration, we have developed a model that combines
nonlinear particle acceleration and di†usion with shock dis-
sipation and nonlinear hydrodynamics forming the shock
structure. This paper presents both the details of our simu-
lation technique and representative acceleration results as a
prelude to a more comprehensive survey of the parameter
space associated with modiÐed, oblique shocks. While our
model is still incomplete, with simplifying assumptions con-
cerning the microphysical processes involved, we believe it
is the most realistic current solution of the steady state
shock acceleration problem. We include (1) a strongly
energy-dependent di†usion coefficient (see whicheq. [1]),
models cross-Ðeld di†usion ; (2) the ability to model either
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large-angle scattering or pitch-angle di†usion ; (3) injection
from the thermal background with no additional free
parameters ; (4) the determination of the self-consistent,
average shock structure including the dynamic e†ects of
accelerated particles on the thermal shock ; (5) the dynamic
e†ects of particle escape from Ðnite shocks ; and (6) shock
drift and compressional acceleration simultaneously. Prin-
cipal results of this paper include downstream spectra (see
Figs. and properties of upstream populations (see4, 7, 11),
Figs. and and acceleration efficiencies The8 9), (Fig. 13).
Monte Carlo simulation does not treat (1) a self-consistent
determination of the di†usion coefficient from wave-particle
interactions, (2) time-dependent e†ects, (3) relativistic par-
ticles or Ñow speeds, (4) a cross-shock potential due to
charge separation, or (5) geometry other than a plane shock.

Clearly the most important omission is the self-consistent
determination of the di†usion coefficient. Our results hinge
on the energy-dependent form we have assumed for i,
which is motivated by previous theoretical analyses (see

et al. et al. andJokipii 1987 ; Giacalone 1992 ; Ellison 1995),
also observational constraints at parallel shocks (see Ellison
et al. & Reynolds However, the self-1990b ; Ellison 1991).
consistent determination of i requires knowledge of the
microphysics, and only plasma simulations where the elec-
tric and magnetic Ðelds are calculated directly from particle
motions (see, e.g., can give this information.Quest 1988)
These simulations are extremely demanding computa-
tionally and will not, in the foreseeable future, be able to
model particle acceleration in shocks adequately to astro-
physically important energies. The recent work of Jokipii et
al. et al. Jokipii, & Ko� ta(Jokipii 1993 ; Giacalone, 1994 ;

& Jones has shown that if a coordinateJokipii 1996)
is ignorable (as in one- or two-dimensional hybrid
simulations), cross-Ðeld di†usion e†ects are suppressed, and
since cross-Ðeld di†usion is an essential part of injection and
acceleration in shocks (certainly oblique ones), three-
dimensional simulations must be used to model shocks. No
existing computer is capable of running realistic three-
dimensional plasma simulations over dynamical ranges of
energies appropriate to astrophysical applications (see,
however, Mangeney, & MatthewsHellinger, 1996).

We emphasize that even though we model plane shocks
and our scattering operator is a gross simpliÐcation of the
complex plasma processes taking place in shocks, the oper-
ator is fully three-dimensional, includes cross-Ðeld di†usion,
and may well produce more realistic results than current
one- or two-dimensional plasma simulations. In fact, com-
parisons between our model and spacecraft observations of
highly oblique interplanetary shocks (IPSs) (Baring et al.

suggest that this is the case. The spacecraft1995b, 1996)
observations clearly show that highly oblique shocks inject
and accelerate thermal particles, a result we can model accu-
rately (see, e.g., Figs. and but one that, to our know-11 13),
ledge, all existing one- and two-dimensional plasma
simulations fail to show (see, e.g., Goldstein, &Liewer,
Omidi Rath, & Goldstein &1993 ; Liewer, 1995 ; Kucharek
Scholer 1995).

Virtually all analytic models of nonlinear shock acceler-
ation have been restricted to parallel shocks ; however,

& Kang have recently extended the cosmic-rayJones (1995)
di†usion-advection equation approach to oblique geometry
and have produced impressive Ðts to the Ulysses obser-
vations mentioned above (see, e.g., et al.Baring 1995b).
However, all models based on the di†usion approximation

(i.e., the requirement that particle speeds be large compared
to Ñow speeds) are limited in their ability to treat thermal
particles and must use additional free parameters to model
injection. For example, the parallel shock model of
Berezhko et al. (i.e., Yelshin, & KsenofontovBerezhko,

Ksenofontov, & Yelshin1994 ; Berezhko, 1995b ; Berezhko
et al. uses a source term for monoenergetic injection1995a)
at the gas subshock that is treated as a discontinuity. Here,
a small fraction v of incoming gas is transferred to cosmic
rays, the injected particles instantly obtaining a super-
thermal momentum, Both v and are free param-pinj. pinjeters, and the Ðnal results depend strongly on them.
Moreover, for simplicity, is usually kept Ðxed, whilepinjother parameters such as g vary (e.g., see & JonesKang

thereby avoiding a description of the strong depen-1996),
dence has on some of these parameters (g is a speciÐcpinjexample). The main advantage of our model is that the
Monte Carlo description is not restricted to superthermal
particles, and injection is treated self-consistently. Once a
scattering description such as is chosen, bothequation (1)
the injection rate and the e†ective injection momentum are
fully determined, as is the complete shock structure, by the
Monte Carlo solution without any additional parameters
such as v. In fact, there is no ““ injection momentum ÏÏ in our
solution since particles are drawn smoothly from the back-
ground thermal gas.

The parameters that determine the injection and acceler-
ation efficiency of shocks are the obliquity, the#

Bn1,strength of cross-Ðeld di†usion, g, the Mach numbers, M
S1and and the size of the shock system (i.e.,MA1, o dFEB o ).

These all inÑuence the shock in complex ways, and there is
no simple relationship between them. In general, we can
state that the acceleration efficiency (i.e., the fraction of
energy Ñux that ends up in high-energy particles) increases
with (1) decreasing (2) decreasing g (i.e., stronger#

Bn1,scattering), (3) increasing Mach number, and (4) increasing
shock size. We have found that the di†erences in the shock
structure and acceleration efficiency resulting from using
either large-angle scattering (LAS) or pitch-angle di†usion
(PAD) are generally small (e.g., see for the test particleFig. 2
regime and Figs. and for full nonlinear results) for the4 11
parameter regime we have investigated, namely strong scat-
tering and and can be neglected in the Bohm di†u-vHT > c,
sion limit. However, the di†erences between the nonlinear
results and the test particle ones are very large (see, e.g., Fig.

except for high obliquities (i.e., or very low Mach7) Fig. 11)
numbers where the acceleration efficiency is low(Fig. 4),
enough for the thermal gas to dominate the nonthermal
population dynamically, and the shock proÐles are very
sharp.

For the Ðrst time, we have been able to calculate the
absolute injection and acceleration efficiency of nonlinear
oblique shocks without the use of an ad hoc injection
parameter. Our results show how large di†erences(Fig. 13)
in efficiency can occur as parameters change ; however, we
have not yet explored the vast parameter regime oblique
geometry opens up. Our next step toward a more complete
solution of the shock acceleration problem will be a survey
intended to quantify the di†erences the various parameters
make in the distribution function and overall efficiency.
This will include determining the e†ect of varying equation

and will yield predictions for future spacecraft and(1)
plasma simulation results. The only way to constrain our g
parameter is by comparing our results with direct observ-
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ations of shocks or with three-dimensional plasma simula-
tions. Since, to our knowledge, no three-dimensional
simulation results showing signiÐcant acceleration exist, we
will concentrate on spacecraft observations as they become
available. As already mentioned, this work has begun with
spectral comparisons to Ulysses observations of nearby
interplanetary shocks (i.e., those not expected to encounter
pick-up ions), and our preliminary comparisons with data
from Ulysses have already indicated that strong scattering
accompanies highly oblique IPSs, constraining g to values
smaller than about 10 (Baring et al. Our simu-1995b, 1996).
lation produces particle distributions at di†erent distances
upstream and downstream of the subshock, thereby pro-
viding a wealth of model predictions for testing against
observations.

Once we are successful in constraining our parameters
with heliospheric shock observations, the next step will be
to apply our results to shocks with no in situ particle
observations, such as the termination shock and supernova
remnant blast waves. This is another useful aspect of our

model, and we expect to be able to make predictions for the
relative injection and acceleration efficiency as a function of
ionic composition for both thermal and pickup ions at the
termination shock and to calculate how efficiency varies
around the rim of a supernova remnant shock. Since rela-
tivistic particles are produced in these shocks, our model
will soon be generalized to include relativistic particle
energies.

The authors wish to thank B. Lembege, A. Mangeney,
and S. Reynolds for helpful comments. Our code runs on
massively parallel machines, and computing time for this
project was provided by the Cray T3Ds at CNRS IDRIS
and at C.E.A., Grenoble, France. This research was sup-
ported in part by the NASA Space Physics Theory
Program, and D. C. E. wishes to thank the Service
dÏAstrophysique, C.E. Saclay, Observatoire de ParisÈ
Meudon, and CNET/CETP (Issy-les-Moulineaux) for hos-
pitality during the time part of this work was performed.

APPENDIX

This Appendix describes four technical aspects of the Monte Carlo simulation, namely (1) our description of pitch-angle
di†usion, (2) how particles cross the shock and grid points (actually planes of discontinuity of the Ñow and Ðeld proÐles) in the
simulation, (3) the details of how the probability of particle return from beyond the downstream simulation ““ boundary ÏÏ is
determined, and (4) how we derive the form of the conservation of energy Ñux in equation (9).

A1. PITCH-ANGLE DIFFUSION

To summarize our implementation of pitch-angle di†usion (PAD), which has been given in detail in et al.Ellison (1990a),
we simulate small-angle scattering e†ects by allowing the tip of the particleÏs Ñuid frame momentum vector p to undergo a
random walk on the surface of a sphere. If the particle originally had a pitch angle, and after ah

B
O \ arccos Mp Æ B/o p o o B oN,

time dt undergoes a small change in direction of magnitude dh, its new pitch angle, is related to the old byh
B
N,

cos h
B
N \ cos h

B
O cos dh [ sin h

B
O sin dh cos / , (A1)

where / is the azimuthal angle of the momentum change dp measured relative to the plane deÐned by the original momentum
p and B. After each scattering, a new phase angle around the magnetic Ðeld, is determined from the old phase angle, by/

B
N, /

B
O,

/
B
N \ /

B
O ] arcsin

C sin / sin dh
sin h

B
N

D
. (A2)

dh is randomly chosen from a uniform distribution between 0 and and / is randomly chosen from a uniformdhmax,distribution between [n and n, so that the tip of the momentum vector walks randomly over the surface of a sphere of radius
p \ o p o.

If the time required to accumulate deÑections of the order of 90¡ is identiÐed with the collision time, using a di†usiont
c
,

analysis, the relation between and the mean free path j was shown by et al. to bedhmax Ellison (1990a)

dhmax\
S

6
dt
t
c

, (A3)

where Pitch-angle di†usion is then deÐned by the regime Clearly, using this approach implies a magnetict
c
\ j/v. dt > t

c
.

Ñuctuation correlation length smaller than the particle gyroradius ; this method then becomes an approximation that is
nevertheless still very convenient for implementation in Monte Carlo simulations. Note that in the limit of thisdhmax ] n,
prescription of PAD becomes equivalent to our scheme for large-angle scattering (see et al.Ellison 1990a).

Equations and then can be used to determine the coordinates of the new gyrocenter :(A1) (A2)

xgc\ x[r
g
cos h

B
N cos

A
/

B
N [ n

2
B

sin #
Bn

,

ygc \ y ] r
g
sin h

B
N sin

A
/

B
N [n

2
B

, (A4)

zgc\ z] r
g
sin h

B
N cos

A
/

B
N [ n

2
B

cos #
Bn

,
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where (x, y, z) is the position of the particle when it scatters. The phase o†set of n/2 represents the di†erences between position
and momentum vector phases. The gyroradius remains unchanged in the PAD event (true also for large-angle scattering)r

gsince o B o is Ðxed at the point of scattering, and our assumption of elastic scattering leaves the magnitude of the momentum
unchanged in the Ñuid frame. However, in contrast to the LAS case in which the particleÏs momentum vector is only updated
after on average, the momentum vector is updated after every dt for PAD.t

c
A2. SHOCK OR GRID ZONE BOUNDARY CROSSING

When a particle crosses a grid zone boundary (there is no distinction in our code between the shock and any other grid
boundary), its orbit is changed because the magnetic Ðeld changes direction and magnitude. The new values of the particleÏs
pitch angle and phase are obtained from the assumption that the momentum in the HT frame remains unchanged at the zone
boundary ; this follows from the absence of drift electric Ðelds in this frame. This method does not require that the magnetic
moment be conserved ; di†erences between gyrohelix computations at a Ñow interface and the adiabatic approximation are
discussed by Terasawa (1979).

The detailed calculation (see also & Kirk and & TerasawaDecker 1988 ; Begelman 1990 ; Ostrowski 1991 ; Takahara 1991)
is as follows (the geometry is illustrated in The component of the old momentum (i.e., the momentum before crossingFig. 14).
the grid zone boundary) in the y-direction is given by

p
y
\ p

M
O sin /

B
O , (A5)

and the component along the z@-direction is

p
z{\ p

M
O cos /

B
O , (A6)

where is the component of momentum perpendicular to and z@ is perpendicular to the plane. Note that all momentap
M
O B

i
, y-B

iin this section are measured in the HT frame. The component of momentum along the zA-direction (i.e., the axis perpendicular

FIG. 14.ÈThe geometry for calculating the gyroradius and phase of particles crossing a grid zone boundary. The boundary occurs at the kink in B.
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to the plane) is given byy-B
i`1

pz_\ p
z{ cos *#

Bn
[ p

B
O sin *#

Bn
, (A7)

where is the di†erence in across the grid zone boundary. The total momentum perpendicular to the new magnetic*#
Bn

#
BnÐeld direction, isB

i`1,
p
M
N\ Jp

y
2] p

z_2 , (A8)

and the new momentum parallel to the new magnetic Ðeld direction is

p
B
N \ p

B
O cos *#

Bn
] p

z{ sin *#
Bn

. (A9)

Finally, the new phase around is given byB
i`1

/
B
N \ arctan

p
y

p
z_

. (A10)

A3. THE PROBABILITY OF RETURN CALCULATION

The details of how particle return from the far side of the downstream return boundary (DRB) is e†ected are presented here ;
such return boundaries are found not only in our Monte Carlo technique but also in hybrid plasma simulations (see, e.g.,

& Ellison Assume a uniform Ñow with a component of velocity in the positive x-direction of and assumeBennett 1995). u
x2that particles in the local Ñuid frame are isotropic and of speed Quantities denoted by subscript F are measured in thisv

F
.

Ñuid (plasma) frame.
The Ñux of particles crossing a y-z plane that is parallel to, and downstream of, the subshock interface is proportional to

the x-component of particle speed in any frame in which the shock is at rest. Here (\0) for transmissions to thev
xsk

, v
xsk

[ 0
downstream (upstream) side of the DRB. The probability that particles return to the DRB after crossing it from the upstream
side is therefore simply (e.g., see & Ellison the ratio of the Ñux of particles moving upstream of the DRB to the ÑuxJones 1991)
of particles moving to the downstream side of this plane. Clearly deÐnes downstream crossings of the0 \ v

xsk
\ v

F
] u

x2DRB, while prescribes upstream crossings. We conÐne the discussion to cases with Inte-[v
F
] u

x2 \ v
xsk

\ 0 v
F
º u

x2.grating over the angle of the particle velocity relative to the shock normal, or alternatively over the probability of returnv
xsk

,
to the DRB for isotropic particles of speed isPret v

F

Pret \
K /~vF`ux2

0 v
xsk

dv
xsk

/0vF`ux2 v
xsk

dv
xsk

K
\
Av

F
[ u

x2
v
F
] u

x2

B2
. (A11)

This expression is valid for any shock obliquity and is relativistically correct It applies to all (for(Peacock 1981). v
F
º u

x2and the only requirements for its validity are that the particles be isotropic in the local Ñuid frame and thatv
F
\ u

x2, Pret \ 0),
they do not change speed in the region to the right of the return plane. To ensure isotropy, we apply only afterequation (A11)
particles have scattered at least once in the downstream region when LAS is used or that particles have di†used through 90¡ in
the downstream region when PAD is used. The decision for return, or otherwise, is made via a random number generator.

Now, consider only those particles that return back across the return plane. Both their pitch angle relative to the magnetic
Ðeld, and their phase around the magnetic Ðeld, must be determined in the Ñuid frame.h

B
\ arccos Mp Æ B/o p o o B oN, /

BDetermining these requires knowledge of for the returning particles, which can be computed by again noting that the Ñuxv
xskof particles returning across the return plane (moving in the negative x-direction) is proportional to This means that thev

xsk
.

number of particles returning with between and is proportional to So, for a particularv
xsk

v
xsk

v
xsk

] dv
xsk

v
xsk

dv
xsk

. v
F
,

returning particles are drawn from a distribution such that

2
(v

F
[ u

x2)2
P
0

~@vxsk@
v
xsk
@ dv

xsk
@ \

P
0

NR
dN

R
\ N

R
, (A12)

where is a random number uniformly distributed between 0 and 1, and the normalization factor is chosen so the integralN
Rbetween 0 and equals one. Therefore,[v

F
] u

x2
v
xsk

\ JN
R
([v

F
] u

x2) , (A13)

and from this the x-component of speed in the plasma frame

v
xF

\ v
xsk

[ u
x2 \ [v

F
JN

R
[ u

x2(1[ JN
R
) (A14)

can be obtained. Choosing a series of random numbers, between 0 and 1 gives the proper distribution of returningN
R
,

particles.
To determine and in the Ñuid frame, we assume that particles will return distributed symmetrically around theh

B
/

Bx-axis in the Ñuid frame, a consequence of isotropy. This symmetry appears also in a shock frame (see whereFig. 15),
the Ñow is orthogonal to the DRB, since phases are preserved in velocity transformations orthogonal to this plane. The
velocity vector of a returning particle will make an angle in the Ñuid frame with the x-axis, givenh

x
by cos h

x
\ v

xF
/v

F
\

If it also has an azimuthal angle about the x-axis of chosen randomly between 0 and 2n, then from(v
xsk

[ u
x2)/vF. r

x
, Figure

using spherical triangles, the values of the Ñuid frame pitch angle and phase can be expressed in terms of and15, h
B

/
B

h
x
, r

x
,
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FIG. 15a

FIG. 15b

FIG. 15.ÈThe velocity vectors of returning particles (Ðlled region in are symmetric about the x-axis. The vertical dashed line is at zero velocity inFig. 15a)
the shock frame, and the center of the vectors is displaced by the Ñow speed, shows the spherical triangle, abc, used to calculate andv

F
u
x2. Fig. 15b h

B
/
B
.

Points a and b lie in the x-z plane, while point c lies o† the plane.

i.e.,#
Bn2,

cos h
B
\ cos #

Bn2 cos h
x
] sin #

Bn2 sin h
x

cos (n [ r
x
) , (A15)

cos /
B
\ cos h

x
[ cos h

B
cos #

Bn2
sin h

B
sin #

Bn2
. (A16)

Subsequently, the returning particle is placed at the downstream return plane and, using the new Ñuid frame phase and
pitch angle (and also a new position for the guiding center), propagated upstream by transforming to the de Ho†mannÈTeller
frame. The statistical prescription in this subsection guarantees that our code e†ectively simulates an inÐnite region to the
downstream side of the probability of return plane.

A4. THE ENERGY FLUX CONSERVATION EQUATION

While the pressure terms in the momentum Ñuxes in equations and are elementary to write down, derivation of the(7) (8)
forms for the corresponding terms in the energy Ñux in involve some subtleties. As outlined we restrict theequation (9) ° 3.1,
analysis to gyrotropic particle distributions in local Ñuid frames in the interest of simplicity ; we believe that such an
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approximation is quite good and certainly better than the assumption of isotropy that is ubiquitous in Ñux conservation
equation usage in the literature.

In a local Ñuid frame somewhere in the shock environs, consider coordinate axes oriented so that the x-direction is aligned
with the local magnetic Ðeld but such that a single rotation about the y-axis produces an identical orientation to the system
depicted in In this coordinate system, a gyrotropic plasma has a diagonal pressure tensor, namely andFigure 1. P

xx
4 P

Awith otherwise. and are components of pressure parallel to and orthogonal to the ambient ÐeldP
yy

\ P
zz

4P
M

P
ij
\ 0 P

A
P
Mand for a thermal plasma are related to analogous temperature components by two equations of state. Rotating the axes into

alignment with the system in yields a nondiagonal pressure tensor P due to mixing of the components :Figure 1
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1P
A

0
0

0
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0

0
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2
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0
[sin #
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0
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sin #
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0
cos #

Bn

2
, (A17)

where R is the rotation matrix. This gives a speciÐc form for the pressure tensor of

P\
1P

A
cos2 #

Bn
] P

M
sin2 #

Bn
0

(P
M

[ P
A
) sin #

Bn
cos #

Bn

0
P
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0

(P
M

[ P
A
) sin #

Bn
cos #

Bn
0

P
A

cos2 #
Bn

] P
M

sin2 #
Bn

2
. (A18)

Since pressure represents the spread of velocities about the mean speed, the pressure tensor is invariant under bulk velocity
transformations. Hence, it follows that deÐnes the pressure in the normal incidence frame and therefore isequation (A18)
directly applicable to the Ñux conservation considerations. The above coordinate rotation therefore yields the relationships

P
A

\ P
xx

] P
xz

tan #
Bn (A19)

P
M

\ P
xx

] P
xz

cot #
Bn

,

which deÐne the components of the pressure tensor on the Ñuid frame in terms of normal incidence frame tensor components
that can be simply determined using the structure of our simulation. At this point, it becomes apparent that the assumption of
gyrotropy in the Ñuid frame is indeed expedient, since it enables complete speciÐcation of the Ñuid frame pressure tensor using
only Ñux quantities measured in the NIF in the x-direction : generalizing from the gyrotropic approximation would require
construction of coordinate grids in the other directions, thereby complicating the simulation immensely, with only marginal
gain in physical accuracy.

The energy Ñux equation can now be simply constructed from the formalism in & Sanderson p. 56). TheBoyd (1969,
convective contribution to the energy Ñux is simply The thermal-type (i.e., velocity spread) term is usuallyP

xx
u
x
] P

zz
u
z
.

written in the form for temperature T , where is BoltzmannÏs constant, and c is the ratio of speciÐc heats.okBT u
x
/(c [ 1) kBFor the nonthermal application here, prescribing the temperature is inappropriate, so we use an equation of state okBT \

Tr in order to generalize to nonthermal situations by converting to pressure formalism. It follows thatMPN\ P
A

] 2P
M

u
x

3(c[ 1)
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] 2P

M
) \ u

x
(c[ 1)

C
P

xx
] 1

3
P

xz
(tan #

Bn
] 2 cot #
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)
D

(A20)

is the nonconvective contribution to the energy Ñux in the x-direction that results from particle pressure. This applies to both
the nonrelativistic gases considered in this paper (with c\ 5/3) and also to more general cases with di†erent equations of state
(i.e., 4/3\ c \ 5/3), including relativistic plasmas. Using the magnetic Ðeld identity then results in the formB

z
/B

x
\ tan #

Bngiven in equation (9).
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