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ABSTRACT

We show how the level of turbulence in accretion disks can be derived from a self-consistency require-
ment that the associated effective viscosity should match the instantaneous accretion rate. This method is
applicable when turbulence has a direct energy cascade. Only limited information on the origin and
properties of the turbulence, such as its injection scale and anisotropy, is needed. The method is illus-
trated by considering the case of turbulence originating from the magnetic shearing instability. The cor-
responding effective kinematic viscosity coefficient is shown to scale as the 1/3 power of surface mass
density at a given radius in optically thick disks, and to be describable by a Shakura-Sunyaev law with
o ~ 0.04. Mass flow in disks fed at a localized hot spot is calculated for accretion regimes driven by such
turbulence, as well as passive magnetic field diffusion and dragging. An important result of this analysis
is that thin disks supported by turbulence driven by the magnetic shearing instability, and more gener-
ally any turbulence with injection scale of order of the disk thickness, are very low magnetic Reynolds
number systems. Turbulent viscosity-driven solutions with negligible field dragging and no emission of
cold winds or jets are natural consequences of such regimes. Disks of accreting objects that are magne-
tized enough to be shielded by a magnetopause, however, may not operate in their innermost regions in
the magnetic shearing instability regime. The possibility therefore remains to be explored of centrifugally

driven winds emanating from such regions.

Subject headings: accretion, accretion disks — diffusion — MHD — stars: mass loss — turbulence

1. INTRODUCTION

1.1. Role of Turbulence in Accretion Disks

Accretion or collapse of material usually requires the loss
of considerable amounts of angular momentum. Several
physical processes that might be effective in this transport
have been considered in the literature. Turbulence in an
accretion disk is one such possibility, another being the
escape of angular momentum in a magnetized rotating
magnetohydrodynamic (MHD) wind.

Molecular or radiative viscosity is insufficient to transfer
angular momentum on an adequate timescale. However, it
is conceivable that, due to the high value of the Reynolds
number, the flow is turbulent and that associated transport
mechanisms operate. The origin of the turbulence is still
uncertain. The variation with distance of the specific
angular momentum in a Keplerian disk is linearly stable,
but the flow might be unstable to finite-amplitude dis-
turbances and develop turbulence by the mere effect of dif-
ferential rotation (Zahn 1991; Dubrulle & Knobloch 1992).
Alternative possibilities are the development of turbulence
from convection (Lin & Papaloizou 1980) or from the mag-
netic shearing instability (Balbus & Hawley 1991; Hawley
& Balbus 1991).

In the past few years, the effect of turbulent transport on
the large-scale dynamics of accretion disks has usually been
represented by an effective “eddy ” viscosity. Transport by

403

eddies of small Rossby number or size larger than the disk
thickness, which are subject to the Coriolis force and suffer
two-dimensional dynamics, cannot be represented by effec-
tive local transport coefficients. Whether such large eddies
indeed develop remains an important issue to discuss in the
future. In this paper we restrict our investigation to situ-
ations in which local diffusive transport is an adequate rep-
resentation. It is encouraging to note that this assumption is
not grossly contradicted when turbulence is driven by
hydrodynamical shear (Dubrulle 1992), and it seems also
fair enough in the case of magnetic shearing instability.

In most earlier approaches, the effective viscosity has
been parameterized on the basis of an interesting, but bold,
argument, namely, that eddies should not be much larger
than the disk half-thickness h and that their motions should
not be very supersonic, for otherwise shocks would regulate
the plasma temperature and the velocity of turbulent
motions to almost sonic velocities. This qualitative argu-
ment is not entirely convincing, since the feeding of turbu-
lence by accretion might enforce a supersonic regime.
Nevertheless, it led Shakura & Sunyaev (1973) to propose
the well-known parameterization, according to which the
effective kinematic viscosity coefficient v, is written as

)

where H is the disk total thickness, H = 2h. Their argument
implies that o should be of order unity, whereas actual disk

v, =aHcg,
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models compare favorably with observations for lower «
values of the order of 0.1 (Duschl 1989). Therefore, the limi-
tation to sonic velocities by shocks is not physically reason-
able, and the above reasoning loses some of its strength.
Turbulence seems actually to be subsonic. Equation (1) may
still be regarded as a change of variable, however, with the
representation of viscosity passing from v, to a; but better
arguments, giving more precise clues to the value of «, are
desirable.

Several authors have attempted to elaborate on this
theme. The general purpose of their approaches has been to
incorporate in the disk model enough physics of the turbu-
lence that the value of the effective viscosity would result
from the model, rather than be assumed. Dubrulle (1992)
proposes a modeling of turbulence in terms of relations that
express the third-order moments of fluctuating quantities in
terms of Reynolds stresses, which are second-order
moments of the turbulent velocity. The choice of appropri-
ate relations is inspired from an ansatz used successfully in
modeling turbulent shear flows in geophysical and labor-
atory situations. Her modeling contains a few arbitrary
coefficients, but the main uncertainty rests on the appropri-
ate length scale of the turbulence, which implies that the
nature of its source needs to be made precise. In the case of
shear-driven turbulence, the scale of the largest turbulent
eddies is found to be of the order of the disk thickness and is
on the verge of being affected by the Coriolis force (Rossby
number of order one). Duschl (1989) used mixing-length
theory to calculate self-consistent disk models in which the
turbulence is due to convection in convectively unstable
regions of the disk. Elsewhere, another form of turbulence is
assumed to be present, which is still parameterized by
equation (1). More recently, Goldman & Wandel (1995)
have also discussed convection-driven turbulence, rep-
resenting its effects by an effective viscosity and using a
phenomenological model of turbulence by Canuto,
Goldman, & Chasnov (1987). They assume that the size of
the largest eddies, which determines the actual effective vis-
cosity, equals the thickness of the disk, and they take
account of their anisotropy by a parameter. Though these
approaches are different, their common goal is to deduce in
a self-consistent manner the turbulence level in the disk.

Any closure model of disk turbulence has to provide the
means to determine the constants that enter the theory, or
else to accept them as free parameters of the representation.
Often these constants have to be determined a posteriori by
calibrating the model with real experimental or numerical
results. Our approach is also of this general type. The turb-
ulence that develops is characterized by its injection scale,
the most appropriate value of which is discussed on the
basis of physical arguments below, but it is not deduced
mathematically. Indeed, this injection scale, a concept itself
of limited relevance since in reality there is likely to be an
injection range, must depend on the nature of the instability
feeding the turbulence. Therefore, this paper pays special
attention to the case in which turbulence is driven by the
magnetic shearing instability, since it may indeed be the
source of turbulence, but the philosophy of determining
self-consistently some of the properties of the turbulence
spectrum is of more general relevance. Indeed, our
approach introduces a macroscopic self-consistency argu-
ment to determine the level to which the turbulence builds
up at each point in the disk: namely, that the turbulence
level must be consistent with the instantaneous dissipation
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that necessarily accompanies accretion. Such a self-
consistency argument, discussed also by Zahn (1991), is of
quite general validity. It is very useful because it makes the
effective viscosity a function of the macroscopic properties
of the flow, and, within the limits of validity of the a-model,
which this approach partly justifies, it would give concep-
tually the value of . In practice, though, several uncer-
tainties and difficulties do not make it possible to reach this
goal quantitatively. Let us stress again that the identifica-
tion of the effective viscosity as that coefficient that appears
in the rate of dissipation of mechanical energy with the one
that appears in the momentum transport contains an
implicit assumption on the nature of turbulent transport. It
assumes that the turbulent eddies that cause the effective
momentum transport are small enough for the transport to
be describable by effective transport coefficients and that
they suffer a direct energy cascade, so that momentum
transport indeed results in associated dissipation.

Particular attention is given in this paper to the case in
which turbulence in the disk is fed by the magnetic shearing
instability (Balbus & Hawley 1991). When dealing with this
instability, we should take into account the effect of aniso-
tropies induced by differential rotation and partial two-
dimensionality, which is an important aspect revealed by
recent numerical calculations. This introduces further
parameters in the theory, some of which may be reasonably
chosen, but not determined precisely, by consideration of
recent results of numerical simulations relevant to this
instability.

The shape of the spectrum is taken to be a power law and
is subject to the condition that its small wavenumber cutoff
in the vertical direction be larger than n/h. Limitations that
result from assumptions on the shape of the spectrum are
less serious than those that result from uncertainties con-
cerning the turbulence characteristic scale and the role of
two-dimensional horizontal eddies, if any. Such difficulties
are implicit or explicit in any existing attempt to construct
self-consistent turbulent disk models. The effective viscosity
is dominated by the largest scales present in the spectrum,
so that its precise shape, Kolmogoroff or otherwise, is of
secondary importance, since spectral shape parameters
enter as numerical factors of order unity in the final results.
The actual value of the small wavenumber cutoff and spec-
trum anisotropies may have more serious numerical conse-
quences.

We discuss turbulence-feeding mechanisms and the
associated injection scale, which support the idea that, at
least in weakly magnetized accretion disks, the turbulence is
dominated by scale lengths of the order of the local disk
thickness. Then we illustrate, by showing a few explicit solu-
tions, how mass spreads in the process of accretion in the
presence of such a self-consistent viscosity. Finally, we turn
to the question of passive magnetic field diffusion through
thin turbulent disks.

1.2. Magnetic Field Diffusion in Accretion Disks

Magnetic field expulsion from collapsing matter has been
a long-standing (Mestel 1966; Mestel & Strittmatter 1967)
and important problem, since a gas cloud could only suffer
gravitational instability if the mass to magnetic flux ratio
exceeds a limit that is usually not reached initially in the
interstellar medium. Indeed, the mass to flux ratio of newly
born stars appears to be much larger than that of parent
clouds.



No. 1, 1996

The evolution of this ratio in star-forming clouds can be
driven by restrictive field diffusion, as considered first by
Mestel (1966) and Mestel & Strittmatter (1967), or by ambi-
polar diffusion, as suggested by Mestel & Spitzer (1956) and
developed later in some detail by many authors, in particu-
lar Nakano (1979), Lizano & Shu (1989), Fiedler & Mous-
chovias (1992), and Mouschovias & Morton (1992).
Ambipolar diffusion occurs in weakly ionized media and
operates most effectively in the cool, dense cores of molecu-
lar clouds. Its effect (Fiedler & Mouschovias 1992) is to
redistribute flux in the cloud in such a way that a central
portion of it becomes supercritical against the magnetic
Jeans instability and eventually collapses, while the
envelope remains magnetically supported (Mouschovias
1995). Ambipolar diffusion may be helped at large neutral
densities by the plasma microinstabilities that develop in
weakly ionized media (Norman & Heyvaerts 1985). Alto-
gether, star formation by ambipolar diffusion appears to be
a low-efficiency process, since little mass eventually col-
lapses from a much larger initial condensation. Angular
momentum also has to be lost in the process of star forma-
tion. This effect is usually attributed to magnetic braking.
The question should nevertheless be asked about the effect
of turbulence in a condensing protostellar disk on both
angular momentum loss and flux leakage.

Flux leakage and magnetic drag in accretion flows is also
a problem relevant to accretion disks around young stellar
objects, X-ray binaries, and active galactic nuclei. These
processes control the degree of magnetization of a disk and
bear on its ability to lose angular momentum in a centrifu-
gally driven cold wind (Blandford & Payne 1982; Pudritz &
Norman 1983). The problem of turbulent flux diffusion
through an accretion disk has been considered recently by
Lubow, Papaloizou, & Pringle (1994), who studied passive
field diffusion in a resistive disk, considering the magnetic
diffusivity as a parameter. We consider essentially the same
problem here, but we develop a theory to obtain a more
specific expression for the magnetic diffusivity, and we show
that, for thin disks, the system operates necessarily in the
low magnetic Reynolds number limit, provided the injec-
tion scale is not much smaller than the disk thickness. This
means that the field diffuses away much faster than it is
radially advected. We derive a slightly more elaborate form
of the integro-differential equation that governs field diffu-
sion in such systems and solve it analytically in the limit of
low effective magnetic Reynolds numbers.

A consequence is that this type of self-consistent tur-
bulent disk does not create favorable conditions for the
emission of cold centrifugally driven winds by which they
could also lose angular momentum to infinity. It seems
that the two modes of angular momentum loss advocated
above, i.e., turbulent viscous loss and torque from an MHD
rotating magnetized wind, are unlikely to coexist in the
turbulent regime associated with the magnetic shearing
instability. Another consequence is that flux loss by proto-
stellar clouds would probably be a lot more effective than
anticipated from laminar disk studies if they were
in a turbulence regime similar to the one described
in this paper. This, however, is not certain, since the mag-
netic field is thought to have an energy comparable to the
kinetic energy in such clouds, which makes the magnetic
shearing instability somewhat more unlikely, so that
the nature and level of turbulence could differ from
those discussed below. We return further to this point at
the end of § 2.5.
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2. SELF-CONSISTENT TURBULENCE LEVEL IN ACCRETION
DISKS

2.1. Self-Consistent Turbulence Level in General

That the turbulence level in an accretion disk should be a
self-consistent function of mass surface density basically
results from the fact that the turbulence adjusts to such a
level that the mass accretion rate M imposed by the macro-
scopic evolution of the system be possible. How this arises
can be understood as follows. Call v,(r) the yet-unknown
effective viscosity at radius r, the rotation law Q(r) being
Keplerian, say. The rate € of viscous heating per unit mass is

€ = v,(rdQ/dr)* . )

At a given radius, this heating rate € determines both the
vertical distribution of temperature T(r, z) and the density
in the disk, by vertical mechanical balance and energy
balance. So, for a given mass surface density a(r) and a given
effective viscosity v,(r), the local half-thickness of the disk
h(r) and its vertical temperature distribution are deter-
mined. This sets the stage at which the turbulence that
causes the effective viscosity and dissipation is going to
develop and, in fact, these macroscopic features, as we shall
show, determine its level. Actually, the injection scale in this
geometry has to be a function of the disk half-thickness h(r),
as discussed more precisely below. The effective viscosity
depends both on this injection scale and on the level of
turbulence, or, what is equivalent, on the rate of transfer of
energy in a direct cascade, which is also just the rate of
heating per unit mass, e. We assume the turbulent cascade
to be at any time and at any point in a stationary state (even
though the global hydrodynamical system may not be).
This is a reasonable assumption, since the cascade develops
in a large-eddy turnover time, which is of the order of the
dynamical time 1/Q and is much shorter than the matter
transit time (r/v,). So v, is a function of h and ¢, but € is also
related to v, by the “macroscopic” equation (2). Since h
depends indirectly on ¢ and v, by vertical equilibrium, the
turbulent viscosity will ultimately be expressed as a function
of itself and o. The solution of this self-consistency equation
will eventually give v, in terms of o, and of the external
parameters, if any. These relations are summarized in
Figure 1.

The idea that the turbulence level adapts such as to be
self-consistent with large-scale constraints that ultimately
cause the system to be in a turbulent state is quite general. It
applies, under some weakly restrictive conditions, whatever
the nature of the instability that feeds the turbulence. The
general scheme described above to calculate the turbulence
level works any time the effects of the turbulence can be
described on the “macroscopic ” scale by effective transport
coefficients. This general philosophy has also been used to
calculate the rate of heating in the turbulent corona of the
Sun by Heyvaerts & Priest (1992) and by Inverarity, Priest,
& Heyvaerts (1995). Application to the accretion disk situ-
ation is in fact easier because the nature and properties of
turbulence are becoming better understood thanks to
progress in numerical simulations of these systems.

In the following, we illustrate first the method in the
simple case in which the turbulence develops in the system
in the form of an isotropic Kolmogoroff spectrum. Then we
present a calculation of the effective viscosity in the particu-
lar case of turbulence fed by the magnetic shearing insta-
bility, a situation which, for accretion disks, is probably
more realistic than Kolmogoroff turbulence.
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F1G. 1.—The turbulence level in a thin accretion disk is established as a result of a self-consistency process controlled by the mass of the accreting star M,
and the accretion rate M. There is a feedback from the effective viscosity v, onto the local disk thickness h that partly controls the size of turbulent eddies
kg and so v, itself. The figure illustrates this feedback with arrows indicating the sense of the causal relations between various physical effects. The
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self-consistency process puts turbulent phenomena at the local microscale in relation to phenomena at the local or global macroscale.

2.2. Self-Consistency for Isotropic Kolmogoroff Turbulence

As a first illustration, consider a simple case in which
turbulence locally has a Kolmogoroff spectrum given by

E(k) = Cx e2Pk513 . 3)

More realistic turbulence will be considered later on. Here
Ck is the Kolmogoroff constant, whose value is near 1.4,
and the short wavenumber cutoff is denoted by k;,;. This
injection scale and the rate of energy transfer in the cascade
are functions of the radius r. Then, the associated effective
viscosity can be written as

Ve = A€ Pk )

where € is the usual energy transfer rate in the cascade. The
dimensional part of equation (4) is simply proportional to
the product lu(]) of the size of the largest eddies and the
typical velocity v(l) associated with them, which in three-
dimensional hydrodynamic turbulence is v(l) = (2¢l)!/3.
Here 4 is a dimensionless parameter that incorporates all
the quantitative aspects of momentum transport by this
turbulence spectrum. Its value is connected with the model
adopted to calculate it (Moffatt 1983). This evaluation is
complicated here by the fact that the turbulent medium is
inhomogeneous, even vertically. Also, the concept of a
sharp low-wavenumber cutoff and a precisely defined injec-
tion scale is an idealized representation, which Canuto et al.
(1987) have tried to overcome by developing a technique to
obtain the shape of the spectrum when cascading and injec-
tion are mixed. All these complications would affect the
actual value of A.

Therefore, we treat A as a parameter in this paper,
although it could be deduced mathematically by adopting
some specific model of momentum transport by the turbu-
lent flow. The nature of this parameter is then different from
the more basic parameters, such as the injection scale,
which cannot be determined precisely from the theory itself.
For definiteness, we adopt the usual expression

Ve = %Ulc P (5)

where v is the rms turbulent velocity and [, is the correlation
length. The former is given by

0 1/2
V= [J‘ E(k)dk] =i/ %CK 61/3ki;j1/3 . (6a)
Kinj

The correlation length can be defined as the weighted mean
of 2x/k, which gives

1 ([® 2% 4
l.== " = E(k)dk = ij . (6b)
After simple calculations we obtain in this case
4n  [3Ck
. 7
= 7 ™

The eddies that make the three-dimensional part of the
turbulence are not expected to be larger than the disk thick-
ness at the considered radius. Thus, the injection scale, [,;,
should be a fraction 1/f of the total disk thickness 2h:

linj = 2h/f, (83)
so that
T
kinj =f z . (8b)

Usually, f would be larger than unity. If it were to happen
that eddies larger than the disk thickness are excited and
still enter a direct cascade, then f might be smaller than
unity. Finally, the effective viscosity is written as

A
vV, =
* T W)
This can be turned into an expression for the level of turbu-

lence (as measured by the rate of energy transfer € in the
cascade) in terms of the effective viscosity. Such an expres-

e!3h3 ©
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sion reflects only properties of the underlying turbulence. It
expresses nothing more than the relation between the level
and scale of the turbulence and the associated effective vis-
cosity:

_ (@) vy
€ = /13 h4.

(10)

Now, express the fact that the rate of heating per gram, as
given in terms of effective viscosity by equation (2), is just
the same € as in equation (10), because the power that goes
into heating per gram is the energy that reaches the dissi-
pation range of the cascade per second. A similar idea has
been developed by Zahn (1991). Noting that for Keplerian
rotation r dQ/dr = 3Q/2, we obtain by equating expressions
(2) and (10)

9 nf)* v3

Zv*sz(/{s) h—j. (11)

Since h and f are implicitly functions of v, ¢, and possibly
external parameters, p say, v, appears to be a solution of the
equation

b = 3232 Qh*(v,, o, p)
* 2w v 0,p)

An important aspect of such a relation is that it determines
the effective viscosity self-consistently from the global
properties of the large-scale flow only. Indeed, equation (12)
is still no complete solution to our problem, since an expres-
sion should be obtained for h(r) and f(r) in terms of the
surface density ¢ and of v,. The profile of disk thickness
with radius A(r) results from mechanical balance and energy
balance, and f(r) is a property of the instability processes
that locally feed the turbulence. Our aim in this work is to
elaborate somewhat more on this connection between the
actual level of turbulence and the large-scale dynamics, and
to examine consequences for some MHD aspects of accre-
tion disks, such as field dragging by the accreting matter.

12)

2.3. Discussion of Injection Scale

We define the injection scale as the size of the eddies that
carry most spectral energy density and still feed energy into
a direct cascade, leading to dissipation. The physics of the
instability that feeds the turbulence determines an injection
scale, or an injection range.

Two-dimensional hydrodynamic turbulence does not
develop direct cascades (Kraichnan & Montgomery 1980)
because enstrophy can decay only in three-dimensional
hydrodynamical motions. Hence, those eddies, if any, that
are generated with a scale much larger than the disk thick-
ness cannot feed a direct cascade in a purely hydrodynami-
cal disk, but they do if the medium is embedded in a
turbulent magnetic field. It is known, indeed, that homoge-
neous two-dimensional MHD turbulence has a direct
cascade of energy and an inverse cascade of the square of
the vector potential of the two-dimensional magnetic field
(Fyfe, Joyce, & Montgomery 1977; Matthaeus & Montgo-
mery 1980). The fate of two-dimensional eddies in purely
hydrodynamical disks, and their effect on accretion, remain
to be discussed (Dubrulle & Valdetarro 1992). The inverse
cascade in a hydrodynamical disk must develop from those
unstable perturbations that have a scale larger than or of
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the order of the total disk thickness 2k or, which in practice
is almost equivalent, from perturbations associated with a
Rossby number smaller than unity.

Turbulence-feeding instabilities, depending on their
nature, may inject energy at scales smaller or larger than 2h.
In this paper, we consider a situation in which the turbulent
energy is injected at scales not much larger than the disk
thickness and suffers only direct cascading.

This point of view, which cannot be of general validity, is
supported by the following considerations. Our paper is
concerned with field diffusion in magnetized accretion disks.
Therefore, turbulence should in this case have a magnetic
component. If the disk is to be MHD turbulent, and we
know from the work of Balbus & Hawley (1991, 1992) that
it should be, then even eddies larger than the disk thickness
(if any are generated by the instability) would feed a direct
energy cascade. The limitation to direct cascading that
appears in hydrodynamical turbulence when the Rossby
number equals unity does not apply to MHD turbulence
(Dubrulle 1992).

We believe, nevertheless, that the primary excitation
should be concentrated anyway in this case on scales no
larger than the disk thickness scale for the following
reasons. The linear stability criterion (Balbus & Hawley
1991) indicates that perturbations that are to grow from a
vertical field component do so if their wavelength along the
rotation axis is larger than some critical minimum value.
Since the perturbation has to fit into the disk thickness, this
indicates that the instability is quenched when the field
exceeds a certain critical value and develops for any field
smaller than the threshold. When there is instability and
such a component normal to the disk is present, unstable
perturbations with scale no larger than the disk thickness
are generated.

The magnetic shearing instability develops also in purely
azimuthal initial fields, provided it is nonaxisymmetric
(Balbus & Hawley 1992; Foglizzo & Tagger 1994 ; Foglizzo
1994). In this case, the growth rate is reduced (Balbus &
Hawley 1992), but purely toroidal fields are exceptional and
constitute a singular case. Even if fields were initially like
this, magnetic buoyancy (Stella & Rosner 1984; Sakimoto
& Coroniti 1989) and the Parker instability, which differs
from the magnetic shearing instability only by its polariza-
tion (Foglizzo 1994), should turn them into fields emerging
randomly out of the disk or pushed to its periphery
(Torkelsson 1993). The idealized situation would then not
be maintained, and the azimuthal extent of segments of
purely toroidal magnetic field lines embedded in the disk
should be restricted, limiting, by lack of coherent enough
space, the development of very low azimuthal wavenumber
perturbations. In general, we expect actual fields to have a
significant nonzero vertical component, from which pertur-
bations with a nonzero k, would grow. This point of view is
supported entirely by the three-dimensional numerical cal-
culations of Hawley, Gammie, & Balbus (1995).

Differential rotation in the disk has an important effect
on nonaxisymmetric perturbations because such dis-
turbances suffer strong shearing from the differentially
rotating Keplerian flow, which causes the radial component
of the wavevector of any convected disturbance to grow
linearly in time at a rate given, for an azimuthal Fourier
component of order m, by dk,/dt ~ (m/r)d(Qr)/dr. This
results in a fast secular increase of the radial wavenumber
(Balbus & Hawley 1992; Foglizzo 1994), which limits the
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period of wave growth, although the increase of wave
amplitude remains large enough to allow us to speak of an
instability. It causes low radial wavenumber perturbations
to evolve into larger wavenumber ones.

To sum up, we expect the Balbus-Hawley instability
mostly to feed perturbations with a wavevector larger than
or equal to n/h and of course smaller than the value k,,, at
which instability is quenched by dissipation. The injection
scale for this instability, as defined above, should then be
some fraction (1/2 or 1/3, say) of 2h, even though the lin-
early most unstable k, is much larger than n/h. This is
because the instability acts up to k, = =/h, so that, as time
goes by, a significant noise is generated down to this wave-
number. Nevertheless, inhomogeneity effects will probably
limit the growth of eddies having a vertical size exactly
equal to the total disk thickness H, and we expect the actual
injection scale to be somewhat smaller. Numerical calcu-
lations by Hawley et al. (1995) indeed support the point of
view that the injection scale is much larger than the most
linearly unstable wavelength, while in the calculations by
Brandenburg et al. (1995) the vertical correlation length has
been found to be of order 0.16 for a disk thickness of order
1, in a box of vertical thickness 4. This shows that, at least
for the boundary conditions adopted by these authors, the
dominant eddy size is not exactly the total disk thickness,
but a fraction of it.

2.4. Anisotropic Spectrum for Shear-driven MHD
Turbulence

Hawley et al. (1995) show that in three dimensions the
magnetic shearing instability develops an anisotropic turb-
ulence spectrum, the excitations being the largest for wave-
vectors such that | k| is of order of the reciprocal vertical
size of the computation box, which in nature would corre-
spond to the disk thickness. They find that the extension of
cells in the azimuthal direction is larger than their extension
in meridional planes, which appears in wavevector space as
a smaller extension of the spectrum in the k,-direction. Sur-
faces of equal spectral energy in this space are similar to
flattened ellipsoids, slightly skewed in the k, — k, plane, as
expected for distributions that transport momentum.

These are the effects of differential rotation. Turbulence
appears in the form of cells, similar in shape to rolls elon-
gated in the f-direction, but covering in general a part of the
disk circumference only. This is still not two-dimensional
turbulence because azimuthal gradients remain, and these
flows have nonzero azimuthal components of field and
velocity perturbations and an azimuthal field component
produced by shear. The latter component couples motions
in the different meridional planes.

Except for the anisotropy of the spectrum, Hawley et al.
(1995) found the spectral shape not to differ very much
otherwise on each of the principal axes of the wavevector
space from a Kolmogoroff spectrum [for which the energy
spectral power in wavevector space W(k) scales as k~11/3].

Brandenburg et al. (1995) have performed similar simula-
tions, including effects of compressibility and stratification.
They imposed boundary conditions that forbid the presence
of an organized vertical magnetic field perpendicular to the
disk (the vertical flux is kept equal to zero at all times, but
not the azimuthal or radial flux). They too found that the
turbulence develops an anisotropic spectrum, but their dif-
ferent boundary conditions allowed a dynamo process to
develop, resulting in the generation of a rather large, but
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time-oscillating, azimuthal field component with even
parity in z. This component carries somewhat more energy
than turbulent kinetic motions and thermal motions. Their
simulation gives a smaller « value than the simulation by
Hawley et al. (1995), but the reason for this is not given
precisely by Brandenburg et al. (1995). It might be related to
the fact that the vertical coherence scale of the magnetic
field in their simulation is smaller, because the average ver-
tical magnetic field has been constrained to vanish by
Brandenburg, but not by Hawley.

2.5. Effective Viscosity of Turbulence Driven by the Magnetic
Shearing Instability

In order to take into account the anisotropy of the turbu-
lence spectrum revealed by these calculations, it is necessary
to derive an expression generalizing equation (9) for such
anisotropic Kolmogoroff-like spectra. Let us assume, as
suggested by the numerical results, that the turbulence spec-
trum can be represented by a “flattened” Kolmogoroff
spectrum. Such a spectrum is a function of the energy trans-
fer rate e, of the ratio g of small to large axes of ellipsoids in
k-space on which the power density is assumed constant,
and of a “modified” wavenumber K that parameterizes
these ellipsoids:

k2\1/2
K=<k§+k§+q—‘;> ) (13)

Turbulence would appear isotropic in the space of
“modified” wavevectors K but not in real wavevector
space. Modified and real wavevectors are related by k, =
Kra kz = Kza kﬂ = qu

It is easy to repeat in this case Kolmogoroff’s dimension-
al argument to find that the energy spectral power density
in real wavevector space W(k), which is assumed to depend
only on €, g, and K, must necessarily be expressible as

W(k) = C(q)e?*K 113 . (14)

Since g enters as a dimensionless parameter on which the
solution for the power spectrum depends, the dimensionless
factor in front of the right-hand side of equation (14)
depends on g and is no longer a universal constant, as in
three-dimensional isotropic Kolmogoroff turbulence.
Dimensional reasoning alone cannot tell how this factor
depends on g. An approximate value of C(q) can, however,
be found by requiring that the nonlinear energy transfer
time be, for eddies of any size, of order of their turnover
time. This idea is consistent with the spectrum having a
Kolmogoroff slope. It is a consistent assumption if the turn-
over time of the largest eddies is no longer than any other
appropriate evolution time, which we check in the
Appendix. It is found that the nonlinear transfer time given
by equation (150) can be written as

3 1
transfer = = 4 C 3/2 . (15)
T f \/; [ nq (q)] K\/@

By requiring that this time be of order of the eddy turnover
time,

1
K/<vg>

it is found that 4nqC(q) should be of order unity. For
isotropic turbulence, which corresponds to g = 1, the quan-

Tturn(K) X s (1 6)
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tity 4nC(1) equals the Kolmogoroff constant Cy which is
indeed of order unity. Here, however, the anisotropy
parameter q is not close to unity because the wavevectors
that carry the largest excitation should have k, of order n/h,
not very different from their radial wavenumbers, while
their azimuthal wavelength would be a fraction of the cir-
cumference of a circle of radius r. So g should be of order
h(r)/r. The value (of order unity) of 4nqC(q) in this regime is
then uncertain. For definiteness, we assume

4nqC(g) =1, 17

while our reasoning implies only a value of order unity. The
effective viscosity can then be deduced as in§ 2.2. This gives
_2x 3 el3f =413

== 18
* 1542 e (%)

v

identifying a specific value of the parameter A introduced in
equation (4), namely,

2n% [3

L 4 19

52 19)

As discussed in the preceding paragraph, the injection scale
for the magnetic shearing instability appears to be a frac-
tion of the total disk thickness 2h so that the injection wave-
number k;,; is fr/h, with f of order a few. To be specific, let
us adopt

f=2. (20)

Then the effective viscosity in turbulence driven by the mag-
netic shearing instability is given by equation (12), with
f = 2 approximately and A given approximately by equation
19).

This can be translated into a value of the Shakura-
Sunyaev parameter «. Comparing equation (1) with
equation (12), taking into account that H = 2h, Qh = ¢ (eq.
[28] below), f = 2, and that A is given by equation (19), we

find that
31312 3 [2n? [3)%?
= __- (== |/ = 21
"= 16n2(]5 \/;) 0.04 . 21

Note that this value is still subject to uncertainties in the
actual value of A (since eq. [17] is but an estimate) and that
the actual value of f need not be exactly 2. Only numerical
calculations carried out with representative boundary con-
ditions would make it possible to ascertain more precisely
the values of A and f. We believe, however, that the figures
adopted in equations (17) and (20) should not be uncertain
by more than a factor of approximately 2. This view is
indeed supported by the fact that the recent numerical
simulations by Stone et al. (1996), which take into account
the vertical stratification of the disk, a key aspect in our
view, indeed lead to numerically observed a-values of order
10~2, as implied by equation (21).

2.6. Consequences of Limitations to the Magnetic Shearing
Instability

When the vertical component of the magnetic field
becomes too large, the development of the magnetic shear-
ing instability is inhibited. This is because the instability can
grow only for vertical wavelengths larger than a certain
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minimum value: otherwise the restoring magnetic tension
force exceeds the destabilizing centrifugal and gravitational
forces. When this minimum wavelength becomes equal to
the disk thickness, the instability is quenched. This happens
(Balbus & Hawley 1991) for a vertically isothermal disk
when the ratio of gas pressure to magnetic pressure associ-
ated with the field component perpendicular to the disk
drops below 7?/3, ie., becomes of order unity. This is a
rather stringent condition, which is likely to be met only in
the regions of a disk that are near the accreting object, if the
latter is a sufficiently magnetized object. The pressure
exerted by a field having its sources in remote objects is
likely to be much smaller than the gas pressure. When the
field has become strong enough that this situation is rea-
lized, the magnetic field rigidity is large enough to two-
dimensionalize the turbulent motions in the disk, if they
remain subsonic. The problem of turbulent development in
disks would then be posed in entirely different terms. We do
not consider such a situation further in this paper.

It is interesting, though, to speculate on its possible con-
sequences. First, let us suppose that the flow is no longer
turbulent. Then nonlinear instabilities would remain a pos-
sible source of developing perturbations, as well as several
unstable situations that have been identified for strongly
magnetized disks of negligible thickness. Among them, we
should quote the magnetic interchange instability discussed
by Spruit & Taam (1990), Lepeltier & Aly (1996), and
Lubow & Spruit (1995) and more recently by Spruit, Stehle,
& Papaloizou (1995), and the spiral wave instability of mag-
netized disks discussed by Tagger et al. (1990). The mag-
netic interchange instability occurs if the field decreases
with distance to the axis, and only if there is a deviation
from Keplerian rotation due to the radial component of
Lorentz forces, so that the plasma is partly supported by the
field. This means that the instability operates only near the
disk-magnetosphere interface. Spruit et al. (1995) have
shown that such an instability operates in the quasi-
incompressible regime, and only in those regions in which
the field is dynamically significant. This means that B2/(2u,)
must be of the order of a fraction of pv?. By comparison, the
Balbus-Hawley instability is quenched when the magnetic
energy density becomes comparable to the thermal energy
density pc2, where c, is the sound speed. From the work of
Tagger et al. (1990), it is known that spiral magnetosonic
waves grow unstable due to differential rotation by the
swing mechanism. The favored azimuthal wavelength varies
with the degree of magnetization. At the radius of the disk
at which the magnetic shearing instability ceases to operate
(i.e., where the Alfvén speed and sound speed become
comparable), this most unstable wavelength is of the order
of the disk thickness, but it becomes much larger in the
region between this radius and the magnetopause, where
the degree of magnetization becomes larger. So the turbu-
lence that might develop in this region if there is such a
region as a result of such instabilities would consist of two-
dimensional vortices on a scale larger than the disk thick-
ness. It is not certain that any description of their effects in
terms of local transport would still be appropriate. If the
magnetic field that threads the disk is not open but
anchored in the accreting star, the random motion of field
footpoints in the disk would braid the field lines in the
region between disk and star, which would lead to some
heating of the tenuous medium in this region by a mecha-
nism similar to that which has been suggested to operate in
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the solar corona (Parker 1983; van Ballegooijen 1986;
Heyvaerts 1990).

2.7. Effective Viscosity as a Function of Surface Mass
Density

Adopting the results of equations (19) and (20), the value
of the effective viscosity becomes quite definite, and
equation (12) can be written as

3312
V* = 87752

Qn?, 2)

where A is given by equation (19) and f = 2. In order to turn
equation (41) into one for the effective viscosity, we need to
solve for the vertical force balance and the energetics. This
will eventually give the disk thickness in terms of the effec-
tive viscosity and surface mass density X and then v, as a
function of Z. Before actually doing this, it is useful to
switch to dimensionless quantities. Adopting some refer-
ence radius R, as a unit of length and the associated
Keplerian period in the field of the accreting mass M, as a
reference time, the natural reference value for diffusion coef-
ficients is

GM
The dimensionless viscosity v is therefore defined as
Ve = VyoV » (24)
where from equation (22)
313/2 RO 3/2 h2
= — — . 25
e ()R e

Let us now introduce some simplifying assumptions con-
cerning the vertical force balance and energy balance. The
plasma is assumed to be fully ionized hydrogen. The free
particle number density is 7, and the mass density is p = nm,
m being the average mass per free particle, (m, + m,)/2. The
equation of state is taken to be that of a perfect gas,

p=nkgT, (26)

where kg is the Boltzmann constant. The disk is assumed to
be optically thick and isothermal in the vertical direction.
This is a reasonable assumption because heat is efficiently
transported vertically by turbulent motions with eddy size
of order of the disk thickness.

The vertical force balance between a pressure gradient
and the vertical part of the gravitational force exerted by
the central star (we do not consider self-gravitating disks)
can then be solved easily, giving

GM, mz*
n(r, z) = ny(r) exp <— 2y TF ) . (27)
This identifies the disk half-thickness h(r) as
2kg T(r)r?
2 _ B
h*(r) = 7GM*m . (28)

To find the temperature T'(r), we need to solve the energy
equation. Neglecting the kinetic energy associated with the
radial and vertical components of the velocity, as well as the
thermal energy density and the enthalpy flux, which are
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small in thin disks, the height-integrated form of the energy
equation is

ol (@ 6M\] 10
a[2< 2 T r )]*?5
Q%r? M Q
x 41| Zo[ == _GM, —v*ErZQa— =—20T*.
2 r or

(29)

In this equation, o5 is the Stefan-Boltzmann constant. The
last term in the divergence is the viscous energy flux, while
the right-hand side of equation (29) represents losses by
blackbody radiation through the upper and lower faces of a
circular strip between r and r + dr. Radial force balance
between gravity and centrifugal forces imposes a Keplerian
azimuthal velocity. Using mass conservation, equation (29)
then takes the form

GM, [0z 10 3 (GM,
2 [at Y (’Z”)} e ar< 2 )

0 0Q
— Q0 —) = 4.
+ o <v* r 6r> 2rog T (30

The angular momentum conservation equation is deduced
from the azimuthal component of the equation of motion
by multiplying it by r. It can be written as

9 s+ L0 2 2 02\ | _
A (Zr°Q) + e |:r<r Qv — v, 2r ar >:| =0. (31

For a time-independent €, as is the case for Keplerian rota-
tion, it can be manipulated, using mass conservation, into
the form

ror or
Multiplying by Q, we obtain an expression for the viscous
flux that appears in equation (30), namely,
10 3 _ L[ 0Q\? o,
e <v*2r Q 6r> =V, 2r <6r> + 2ZvQ o Q). (33

Substituting this in equation (30), we finally obtain, for
Keplerian rotation,

v % (r*Q) — 19 <v* >3 G_Q) =0. (32)

op T = - —*. (34)

Let us introduce also a dimensionless form of the mass
surface density o by introducing a reference mass M, of the
order of the disk mass

M
E=027, (35)
0

in terms of which the temperature obtained in equation (34)
can be expressed as

IGM, M GM,\/R,\?
40 *x 70 * | 20 36
N C e CAT

Define a reference temperature T;, by

OGM, M GM
4 _ % 0 * 37
To <8rfBR8 vV RS)’ D
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we then have

R 3/4
T(r) = TO(TO) viagli+ (38)

Finally, from this and equation (28) we obtain the disk
half-thickness as

h*(r) _ 2kg Ty Ro r 9/4v1/401/4 (39)
R} GM,m J\R, ’

Inserting h(r) from this equation in the self-consistency
equation (25), we obtain an equation relating v to itself and
the surface mass density o'

V= 37 <M><L)3/4v”401/4 , (40)

~ 8n* \ GM,m )\R,
which can be solved to give
= —_— — . 41
v ( 87> GM,m R,)’ 1)

This expression for the effective viscosity is the final
outcome of our self-consistency argument. It applies
whether or not the disk is in a stationary state.

3. MASS DISTRIBUTION AND SPREADING

3.1. Stationary Mass Flow with Injection at a Given Radius

The mass distribution in the disk evolves according to a
diffusion-type equation, which is obtained easily (Pringle
1981) from the height-integrated form of the mass conserva-
tion equation

X 190

— +-—(@Zv)=0 42
ot + r or rzv) ’ “2)
and combining it with the angular momentum conservation
equation (31). Substituting 0X/0t from equation (42) in
equation (31) and assuming a Keplerian velocity profile, i.e.,
Q? = GM,,/r?, the angular momentum equation becomes

o, 0 5, 0Q
rZv o (r°Q) = o (v* zr 6r> . 43)
Equation (43) then gives, for Q Keplerian, the mass flux as
0
r¥v = —3./r o NLEPHE (44)

When this is used in the mass conservation equation (42),
the well-known mass diffusion equation results:

T 30 0
e ra(\/;v*Z)=0. 45)

This equation disregards the effect of any magnetic torque
on the matter. We shall check a posteriori that such a
torque is indeed negligible in the solutions we obtain.
Solutions of equation (45) have been found by Pringle
(1981) to illustrate matter spreading by the effect of effective
viscosity. The viscosity had been taken as constant for sim-
plicity. Here we consider a source term as well and use the
self-consistent expression derived in equation (41), which
gives quantitatively but not qualitatively different results,
still in analytical form. To illustrate specifically how matter
distributes itself in a turbulent disk, we set up a solution for
an accretion disk that receives matter from a donor at some
specific radius r, = x, R,, as illustrated in Figure 2. In that
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FI1G. 2—A self-consistently turbulent disk receives matter at a hot spot
situated at radius r,. The turbulent viscosity causes matter to diffuse away
from r, both inward and outward. At time ¢, the outer disk radius is 7 ,(t).

case, equation (45) has an extra source term. We model this
source by a Dirac function, which in the axisymmetric
model used here means that the source is concentrated on a
circle of radius r,. In reality, it is known (Horne 1990;
Marsh et al. 1990) that the mass enters the disk at a point,
the so-called hot spot, not along a circle. However, the
Keplerian period being much less than the time for matter
to diffuse from the mass injection radius to the accreting
star, this does not make any difference for radial motion
and radial mass distribution because the matter that enters
at the hot spot spreads all around a corresponding circle in
the disk in a time short compared to the radial diffusion
time. We then expect this simple model to be excellent for
this purpose. It is represented by the equation

0x 30

0
T (V1. Z) = S50 —r5) . (46)
A stationary solution to equation (46) exists only if S(t) is
independent of time. The injection radius r, separates an
inner from an outer region, labeled by subscripts “in” and
“out.” The total mass flux through a circle of radius r is,
from equation (44),

M =2mrZv = —6m/r % /2, 47)

and the rate of mass injection at r,, M, is the difference for
€ approaching zero between M(r, + €) and M(r, — ). Inte-
grating the source term in equation (46) between (r, — €)
and (r, + €), we obtain

M, = 27r, S . (43)

Similarly, since each gram of injected matter brings with it
the specific Keplerian angular momentum at r,
(GM . r)'/?, the rate of angular momentum injection at r,,
Jo, 18

Jo =2nry S GM,r, . (49)
In a stationary state, the total fluxes of angular momentum

are constant in the inner and outer regions. From equation
(31), the total angular momentum flux is

. 0Q
J= 2nr<r2§221) — v, 2r? E) . (50)
By equation (44), this transforms into

. 0 oQ
J = —6mr'iQ — (/1. Z) — 27y, T = - (1
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Let us introduce again the dimensionless quantities v and o,
and the variable

r
=— 52
x Ry’ (52)

and associate with R, the reference Kepler pulsation

GM
Q= [=3*. (53)
0 R(3)

The form of equation (46) for stationary injection then
becomes

0 10 0
P _ 28 L (x¥6*) = Co(x —x,).  (54)
ot x 0x 0x
The constant C is given in terms of S, itself related to the
total mass injection rate (eq. [48]), by

SR, (3,13/2 2k T, R0>—4/3 %)

3M,/GM/R3 \ 87> GM,m

and the dimensionless time is

GM,, (32372 2ky Ty Ry \*3
r=3 |Ma (P72 HRAT, (56
Ry \ 87 GM, m
The solution of the stationary form of equation (54) is
x3%¢*? = A /x + B, (57

where A and B are integration constants that take different
values A;,, B;,, A, and B, in the inner and outer regions.
Equations (44) and (51) show that the constants 4 and B are
related to the mass and angular momentum accretion rates,
respectively. Indeed, from equations (47), (41), (24), and (35),
we obtain

. 2312 2ky Ty R \*? 0
M = —6nM, QO<3 M) \/; P (x*26%3)

87> GM,m

(38)

and from equations (41) and (51) we obtain

. 3232 2ky T, Ry \*3

= 6nM QIR ——5 =2 °°

J = 6nMo o °< 822 GM,m
X 1 x32g*3 — x g (x32643) |. (59)

2 0x

For the solution (57), this reduces to

3432 2ky T, Ry \*3
ZB20Z0) 4
82 GM,m » (60)

M = —3zM, Qo<

and

87> GM,m

The mass input at r,, M,,, must be balanced by the mass
outflow in the disk, away from r:

MOZMout_Min, (62)

and the angular momentum input must be similarly bal-
anced:

(61)

: 3432 2ky Ty Ry \*/3
J=3nMOQgRg< B-0 °> B.

j0=jout_jin' (63)
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In equations (62) and (63), the mass and angular momen-
tum fluxes in the disk are defined as positive if oriented
outward, while M, and J, are positive, since injected mass
and angular momentum enter the disk. Equations (62) and
(63) relate the integration constants of equation (57) in the
inner and outer regions by

Ain - Aout = 2C-XO = AO ’ (64)
B,, — B;, = 2Cx3/* . (65)

Since the angular momentum is transported only by
matter in this model, it can be shown (Pringle 1981),
assuming the boundary layer near the star’s surface to be
thin, that the inward flux of angular momentum is approx-
imately J;, = M;, Q, RZ, so that in fact, defining x,, as the

value of the variable x atr = R,

Bin = _Ain\/z . (66)

Then from equation (65),

Bou = Ao/Xo = Ainr/% » 67
so that the stationary solution (eq. [57]) can be written as
X264 = A /x — /X)) X <X, (68)
X204 = — (Ao — Aul/x + (Ao /%o — Ainn/x4)
xX>x,. (69)

A physically consistent solution should bring matter to the
star in the inner region (M,, <0, ie., 4;, > 0) and away
from it in the outer region (4, — 4;, > 0), with an associ-
ated outward flux of angular momentum (4, \/x_o -
A /X, > 0).

The solution (69) then has outer mass and angular
momentum fluxes that, for the solution to be stationary,
must be absorbed by a sink at the outer edge of the disk.
This outer edge is where the density, as described by equa-
tion (69), vanishes. Its normalized radius x,,, is given by

Ay — A, 2
Xout = x0< ° A l: Ax*/xo> . (70)
0

Since x,, is larger than x,, and A,, is positive, x,,, is larger
than x,. The outer matter and angular momentum sink
might be identified with the edges of the Roche lobe of the
accreting star, where the axisymmetric picture of a flow
dominated by the gravitational pull of this star breaks
down.

As implied by the localized mass source that appears in it,
any solution of equation (54) must exhibit a jump of the
derivative with respect to x of x>2¢*3 at x, of amplitude
—C(x,)!/2. This general condition translates, for the solu-
tion (57), into equation (64). The more extended the outer
part of the disk, the smaller the derivative of x3/26*/® on the
right-hand side of the injection point, and the smaller the
mass flux to this outer region.

3.2. Spreading of Matter Away from the Injection Radius

Alternatively, if one were to insist that the space in which
the gravitation of the accreting star dominates is infinite,
then there would be no outer sink, and the situation could
not be steady until the outer edge of the disk has reached
infinity. This happens when A;,, = A,. In this case, the
injected matter is routed entirely toward the inner part of
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the disk, while the outer part has developed into an infi-
nitely extended mass distribution, with density o (x) given

by
o, (x) = AY* (/xo = /o)™ (71)

9/8

The mass of this infinitely extended disk is infinite, since the
mass integral diverges when ¢ scales as x~%/8. In this limit,
which is reached only when the accretion has been going on
for an infinite time, the outer disk has developed into a large
mass and angular momentum reservoir.

Since this represents only an asymptotic state, one would
rather like to calculate the time evolution of the structure of
the disk, which is described by equation (46). Let us then
consider this equation again and for a while interpret the
reference length R, as the total disk radius and the reference
mass M as the mass of the disk at time ¢. Then the dimen-
sionless variables x and ¢ are, at about that time, of order
unity. Equation (46) displays two different characteristic
times. The characteristic mass diffusion time is

2
Laier = <§> . (72)
*

Associated with mass injection, there is also a characteristic
mass-feeding time. As seen in the preceding subsection, only
a small part of the total mass injection goes into the outer
part of the disk, when the latter has become very extended.
Let us call M, (t) the rate of mass feeding to the outer disk
at time t. The characteristic time over which the mass of the
outer disk evolves is

Mout
tmass - M . (73)

out

The mass distribution will evolve in the outer disk region
in a quasi-static regime if

tdiff < tmass . (74)

Since the characteristic mass diffusion time depends on the
position in the disk, this inequality may be satisfied in
certain regions of the disk only, and not in others. To judge
the validity of inequality (74), we can estimate M, and
M, as given by the quasi-static solution (69), neglecting for
simplicity the unimportant term A;,(x,)"/*. From equations
(35), (52), and (60), we obtain for large x,,,

M, =2tM OJ xa(x)dx

0

5/4
~ 47'CM0 X(S)/4A(3)/4 A
AO - Ain

1
x f (u — u?)**du, (75)
(Ao — Ain)/ Ao
3232 2k, Ty R
M, = 3nQ, M0< 812 GMO O) (4o — 4;n) , (76)

while from equations (23), (24), and (41), we obtain

1 (3232 2 TyR,\ ¥ x
a3 872 GM,m o3(x)

(77
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With these approximations, the inequality ;s <t
be rewritten as

X 4x3* A4 A, S/4 [ N34
— du. (78
0'1/3(x) < Ay — Ay \Ao — 4iy o (=) u. (78)

Since x and ¢ are of order unity, we see that, when the outer
disk expands and A,, becomes closer to A,, the right-hand
side of this inequality overwhelms the left-hand side. As a
result, the quasi-static approximation becomes asymp-
totically more and more valid.

It is then easy to calculate the motion of the outer edge of
the disk. The quasi-static approximation allows us to calcu-
late the mass stored at time ¢ in the outer part of the disk,
which, from equations (35) and (52), can be written as

Mout(t) = MOJ

X0

an

mass

Xout

2nxo(x)dx . (79)

Let us recall that o is a function of time also, since the
parameter A, that enters in expression (69) changes with
time. Equations (58) and (64) give the rate of mass injection
in the expanding outer part of the disk as

3132 2kg To R
Ay — Ay) -

8 2 G M ( 0 m) (80)
Another independent equation for M, can be obtained by
inserting the expression (69) for ¢ in the expression (79) for
M, above and differentiating the result with respect to
time, noting that x_,, and A,, both depend on it. This gives
after a little algebra
M dA

out in

« J”‘“' ZEX(\/;— Xy )dx (81)
v X”P[(Aon/%o — Ainn/ %) — (Ao — Ainl /X1

Equating these two expressions of M_,,, we obtain an equa-

tion that describes the time-evolution of (4, — A4;,), namely,

d(4, — 43,) [ J 2mx(y/x — \/x:)dx}
dt o XV8(/X o _\/_)1/4

A32 2k, T, R
30 (38 : gM ) (Ao — 4)%* . (82)

The integral over x on the left-hand side is not simple,
which makes it difficult to express and solve this differential
equation in the most general case. Asymptotically, however,
the outer radius grows much larger than the injection radius
and the inner disk radius, so that the integral can be calcu-
lated easily, with the result that

[ J 2mx(y/x — \/x:)dx:|
ko X3/ Xou — /XM

~ 2mx8 f w(1 — Ju)™du. (83)

The value of the integral from 0 to 1 on the right-hand side
is 3/4. Inserting this result and the expression given by
equation (70) for x,,, in the equation (82) for (4, — 4;,)
gives

d 52 _ 4
dt (AO m) Q <

M, = 31M, QO<

3% 2k Ty Ro\*® o5 4—osa
87> GM,m o 70

(34)
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From this equation we obtain (4, — A,,), which is found to
decrease with time as ¢ ~*/%, and finally, still neglecting x,,
an expression for the asymptotic growth of the outer disk
radius:

3332 2y Ty Ry \*2]5
87> GM,m ) :|

x (5x3/8 A94)=4I5 . (85)

Xout = (QO t)4/5x0 A(2)|:4<

The disk radius is then seen to expand as t*/> asymp-

totically, with less and less of the accreted mass gathering in
the outer part, and more and more being routed toward the
star.

4. MAGNETIC FIELD DIFFUSION

4.1. Field Diffusion in a Slim Disk

Now we want to investigate the evolution of magnetic
fields threading the turbulent disk to understand, in particu-
lar, the diffusion of matter through it. The turbulence causes
diffusion of that part of the magnetic field that is organized
on the large scale. In this section only these large-scale fields
are considered explicitly. The effect of small-scale fields is
represented by the turbulent transport coefficients. We
ignore, for simplicity essentially, any dynamo effect.
Dynamo-generated fields in thin accretion disks are likely
to be on a scale not much larger than the thickness of the
disk (Pudritz 1981; Stepinsky & Levy 1989) and could poss-
ibly give rise to a similarly small-scale component in the
disk’s corona, although this question deserves further study
because the dynamics of these structures in the corona has
not yet been investigated in detail. The field evolution equa-
tion inside the disk is then

%—f:Vx(va)—VX[ﬂ*(VXB)], (86)

where 7, is the turbulent magnetic diffusivity, which scales
as v, (egs. [41], [23], [24], and [35]), unless some process
unrelated to MHD turbulence, for example ambipolar dif-
fusion, gives rise to a magnetic diffusivity much in excess of
v, Here we assume this not to be so. The magnetic Prandtl
number for turbulent transport coefficients, #,/v,., should
be of the order of unity, but not necessarily exactly equal to
it. Pouquet, Frisch, & Léorat (1976) find it equal to 5/7 in
their model. Therefore, we write

Ne = Vool = PtVgoV - (87)

Because of axisymmetry, the poloidal magnetic field can
be expressed in terms of a toroidal vector potential that can
be written conveniently as

By =V x [M eo] . (88)

r

We call the function A the flux function, since it is pro-
portional to the flux through a circle centred on the axis
and stretching out to the point (7, z). The components of B
are

104 104
Br=_;g’ Bz=+;ﬁ’ By =By(r,z). (89)
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Magnetic surfaces, generated by the rotation of field lines
about the axis, are surfaces of constant A(r, z). The velocity
field is represented by its components

v=10(r, z)e, + rQr)e, + v, e, . (90)

Some algebra shows that the poloidal components of
equation (86) can be gathered in the following equation:

04 0%A4 0104
which integrates to

0A 0’4 0104

The space-independent function A(z) can be taken to be zero
because it can be transformed away by the gauge transform-
ation

A=A+ f tA(t’)dt’ ) (93)
0

The equation that describes the evolution of the flux func-
tion is then

A A oA (#4014
ot " or 2oz 1\ 52 orr or

Since the disk is thin, all the terms in this equation are not
of comparable order of magnitude. The radial gradient scale
should be of order r, while the vertical one should not be
much smaller than the disk thickness h(r), but might be
much larger. The horizontal and vertical fluid velocity are
related by the mass conservation equation, which in a sta-
tionary state and for moderate compressibility implies that

>=0. (94)

v, v
N 95
293 ©3)
while the diffusivity v, is of the order of the Shakura-
Sunyaev value, in agreement with our own result (eq. [12]),

Ve X1, X QR (96)
An estimate of the radial velocity v, results from the angular
momentum equation (43),

~Vx

~

_ar
rooor

v 97

To compare terms in equation (94), we need an order-of-
magnitude estimate of (04/0r) and (0A4/0z). Obviously

0A A

o r’ (%8)
but 0A4/0z cannot be of order A/h because by equation (89)
the component B, would be much larger than B,. If such an
estimate were to be correct, the first diffusive term on the
right-hand side of equation (94) would be of order
N4 A/h* ~ Qh, much larger than all the other terms. As a
result, in a time no longer than the Keplerian period,
0%>A/0z* would relax to much smaller values, until it
becomes comparable to at least one of the other space
derivative terms. Straightforward estimates give

04 h? 0104 h*

—r AQ — ——— =~ AQ —.
Or or 72 M e o 2 %9)
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Let I, be the gradient scale for A in the vertical direction.
Then
04 h* h 0*4 h?

v, S~ AQ 2L Ny 5.2~ AQ - (100)
Since I, must be much larger than h, as discussed above, the
term v, 0A/0z is always negligible as compared to the other
terms in equation (99), and the second z-derivative term can
be challenged by them only if [, is of order r or larger.

Thus, A(r, z) can be very well approximated inside the
disk at fixed r by a parabolic function of z, and A does not
change very much over a disk thickness. So we can write
approximately

2
A(r, 2) = Ar, 0) + % 4, (101)

where A, is the value of 0%24/0z2 calculated at the center
plane of the disk at distance r from the center. Equation
(101) gives for the first-order derivative

04
0z

and the value of this quantity at the upper disk surface is
approximately

= A,[), (102)

04
<E>+ = h(r)A,(r) . (103)

The second derivative, almost uniform in this approx-
imation, can be expressed in terms of this upper surface

value by
0*A 1 (o4
A2 = <F>(7’, 0) ~ % <E>+ . (104)

Considering equation (104) and neglecting as suggested the
vertical advection term, equation (94) reduces to

04 0A 1[04 0104

ot ”*[h <6z>+ Ty 6r] =0, 105
where v,(r) and h(r) are to be taken from the hydrodynami-
cal solution, and the upper surface derivative (04/0z),
results from the structure of the magnetic field in the region
exterior to the disk. This region, in which equation (94) does
not apply because the coronal medium is not regarded as
dissipative, should be examined separately, which we do
later on.

4.2. Flux Diffusion in a Thin Disk Connected to an Open
Magnetic Structure

To be specific, let us assume that the magnetic field that
threads the disk has, in the outer medium, an open struc-
ture. The situation in which it is connected to a central
object is different and is dealt with in Bardou & Heyvaerts
(1996). The outer medium is assumed to consist of a nondis-
sipative plasma, an assumption that could require recon-
sideration because of possible turbulence in this region also.
The rotation of the disk generates in this outer medium an
azimuthal field component. It is conceivable that a wind
could be blown as a result of this interaction under certain
conditions (Blandford & Payne 1982; Ferreira & Pelletier
1993a), even if the disk plasma is cold. Describing it
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roughly, the process that imposes rotation in the outer
medium by tethering to the disk through the magnetic field
is similar to the emission of a torsional Alfvén wave from
the disk in the outer medium, though possibly a nonlinear
one. The twist of the field in the outer medium would then
be approximately one turn per Alfvén travel length in one
rotation period. We expect

By, Q)
Bz - Upext ‘

(106)

If the outer medium is very tenuous, this ratio is very small,
and we can treat the external field as potential. For com-
plete consistency, the density of the external medium should
be calculated from a modeling of the external zone incorp-
orating the heating and evaporation mechanisms that could
affect the disk—outer medium interaction, and taking into
account the possibility of a wind blowing off the disk.

When the external field is indeed potential, the currents
that create it are located at infinity or in the disk. The
currents at infinity create a permanent field, not affected by
flows in the disk, which we refer to as the external field. The
currents in the disk have a structure similar to surface cur-
rents, since the disk is thin. Their azimuthal surface current
density, i,, is supported by a jump in the radial component
of the field between the upper and lower disk surface.
Assuming a symmetry between upper and lower hemi-
spheres such that the vertical field components have the
same sign but the radial ones have opposite signs at sym-
metric point, we find from Ampére’s law

oo = 2B, , (107)

where B, . is the radial component of the field at the upper
disk surface

104
Br+(r) = Br[ra h(r)] = —-- <_> . (108)
r\oz/,
The flux function in the medium exterior to the disk can
then be separated into a part produced by currents at infin-
ity A, and a part produced by disk currents a:

A(r, z) = Ay(r, z) + a(r, z) . (109)

The function a(r, z) is the unknown of this problem. Since
the field is potential, a can be calculated from its value on
the disk, at z = 0. So the ultimate unknown is the function
a(r, 0). Solving a potential problem to express a(r, z) in terms
of a(r, 0) will eventually provide an expression of a Poisson
integral form for the upper disk surface derivative (0a/0z)
in terms of a(r, 0). Substituting this expression in equation
(105), we shall obtain an integro-differential equation for the
one-dimensional function a(r, 0). The effect of the variation
with z of a(r, z) in the disk will then have been integrated in
terms of a(r, 0) alone, the memory of this vertical structure
surviving by the presence of the disk thickness h(r) in equa-
tion (105) and in the final equation that we will now derive.

The flux function A(r, z) is related to the components of
the magnetic field by equations (89). From Ampére’s equa-
tion, we find that it satisfies the Poisson-like equation

DA = —pojo » (110)

where D is an elliptic operator that differs slightly from the
cylindrical Laplacian because A(r, z) is not exactly a com-
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ponent of the vector potential
010

0120

“wratmra (1)
In the region outside the disk, in which the field is potential,
the source term in equation (110) vanishes, and the function
a(r, z) is in this region the solution of

Da=0. (112)

The solution of equation (112) can be obtained in terms of
boundary values of a by an appropriate Poisson formula,
which can be obtained from the Green’s function of equa-
tion (110) with homogeneous boundary conditions (ie., a
function vanishing on the boundary and at infinity). Let
G(r, z|r, z') be that function, responding to a localized
source at r/, z'. It is the solution of

DG =(r —1)(z — 7). (113)

In the present problem, the domain Q of calculation is the
quarter-plane in which r and z are both positive. Its bound-
ary I' consists of positive - and z-axes. The Poisson
formula is deduced from the Green’s function in a standard
way, as described in the book by Courant & Hilbert (1937).
It is only necessary that the operator D obeys a Green’s
formula that ensures that for any pair of functions u and v,

Jf (uDv — vDu)drdz = j(g n,, - Vo — ;nout . Vu)ds ,
Q r

(114)

where n,,, is the outgoing normal to the domain Q and the
sense of integration on the boundary is defined by the usual
convention that the inside of the domain is on the left. The
validity of equation (114) in the present case can be proved
directly by integration by parts. If then g is the value of the
function a on the boundary, the solution of equation (112) is

alr, 7) = J % (Boy, - VG)ds . (115)

In the present particular case, this gives explicitly, since g
vanishes on the polar axis,

a(r, z) = — fwdx
o

where G, denotes the partial derivative of the Green’s func-
tion G(r, z| x, y) with respect to the last variable y.

The Green’s function is easily calculated explicitly by
noting that G as defined by equation (113) is the flux func-
tion produced by a current ring of intensity (—u,) and
radius r’ at altitude z'. The flux function must vanish on the
boundary I', a condition that can be taken care of by the
method of images. Using the Biot-Savart law to calculate
the flux function of a current ring (Jackson 1975), we obtain

rxF(k,)
n/(r+ %+ + y)
rxF(k_)
Cafr P te—y? 11D
where the variables k. and k_ are defined by

“(x; 0 G, z|x, 0,  (116)

G(r, z|x, y) =

_ 4rx 2 4rx
TP+ e+ T X+ -y
(118)

2
+
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and the function F(k) is defined in terms of the complete
elliptic integrals E(k) and K(k) by

2—k

F(k) = TZ K(k) — % E(k) . (119)

The function F(k) has an integral representation
™2 (2 sin? x — 1)

Fly=| 2 XxX—2)
® o 1 — k? sin? x

(120)

Using these results to make the solution obtained in
equation (116) explicit, we finally obtain

atr, 2) = J‘ ix 1 a(x, 0) z
o 2t x  Jor+x)?+22
x [k*F(k) + kK*F'(k)] , (121)
where now
4rx
2 _
(x4 22 122

When z approaches zero, the factor of a(x, 0) in equation
(121) approaches a Dirac function, as it should. Indeed,
some algebra shows that in this limit, equation (121)
becomes approximately

z ] . 123)

(r—x)? + 22

a(r, z) = f dx a(x, 0)|:l
0 TC
Equation (123) is sufficient to calculate da/dz on the bound-

ary. We find for small z

(r—x)?—2z°
al(r — x)* + z*]*°

% (r,2z)= Lwdx a(x, 0) (124)

The rational fraction on the right-hand side of equation
(124) is an even function of (r — x) that acquires for small z a
deep negative spike at x = r of width 2z and depth —1/
(nz?). The integral that appears in equation (124) is con-
vergent, even when a(x, 0) does not vanish at infinity. Let us
convert it into

(r—x)? — 22
al(r — x)* + z%]?
(r —x)* — z2
al(r — x)* + z2]*°

% .= | "dstats, 0~ atr. 01

+ a(r, O)dex (125)

The first integral approaches a principal part distribution
when z approaches zero. Indeed, in the vicinity of r, one can
separate, for small z, a symmetric interval, (r — ¢, r + €),
much larger than z, but much less than the characteristic
gradient scale of a(x, 0), such that [a(x, 0) — a(r, 0)] can be
approached by its first-order Taylor expansion. The
integral is then zero by parity on this interval. Outside
this interval, z can be neglected. As z — 0, the integral
then approaches a principal part. The second integral can
be evaluated explicitly. This finally gives, for vanishingly
small z,

oda ©
<a>+ - PL &

[a(x, 0) — a(r, 0)] a(r, 0)
alr—x?* o

(126)
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Fi1G. 3—The field line geometry for a uniform magnetic field suffering dragging and diffusion from an accretion disk in a turbulence regime driven by
magnetic shearing instability, or, more generally, by any turbulence having an injection scale comparable to the disk thickness. This geometry has been
calculated here according to eq. (132), matter being injected at r, = 10'° cm, with an accretion rate M, = 1078 M, yr~'. The magnetic Prandtl number P is

(@) 5/7 and () 0.1.

where P denotes the principal part. To be specific, let us
consider that the external field is a uniform one, with flux
function Ay(r, z) = B,r?/2. Then the field evolution
equation (105) can be written for the unknown function a as

a—a-l-rB v+va—a— ril@_a
ot 0 or T o o
’7_* ® [a(x9 0) - a(ra 0)] . ’1_* a(r9 0)
+ W PL dx [0 — %] b . (127)

Again, the disk thickness h(r, t), the radial velocity u(r, ?),
and the turbulent resistivity #,(r, t) are to be taken from the
hydrodynamical solution sketched before. Equation (127) is
an improved form of a similar equation derived by Lubow
et al. (1994).

4.3. Thin Disks Supported by Magnetic Shearing Turbulence
are Low Magnetic Reynolds Number Systems

An important aspect of the disks we have just discussed is
that they are low effective magnetic Reynolds number
systems. To see this, let us compare in equation (127) the
advection term v da/or with the resistive terms. The domi-
nant ones, namely, the second and third ones on the right,
are of order (1, a)/(rh). Note that it has been necessary to
carry out the calculation in § 4.2 to make sure of this, the
order of magnitude of these terms being smalller than the
incorrect estimate (n, a)/h* that would have resulted from
estimating 02a/0z? as being of order a/h?. The first term on
the right of equation (127) is of order (1, a)/r* and is much
smaller than the two following ones. Since 1, is of order Qh*
and the radial velocity v is of order Qh?/r (eq. [97]), we
estimate the effective magnetic Reynolds number of the disk
R, tobe

R, = Loaor b (128)
Nealhr v

This shows that the advection of the field self-created by the

disk is much smaller than its diffusion, a characteristic of a

low magnetic Reynolds number system. This is to be com-

m

pared to the Reynolds number R, associated with the effec-
tive viscosity, which from equation (97) can be estimated as
being of order

R,=—=~1. (129)

The magnetic Reynolds number is much smaller because
the vertical gradient plays a role in the resistive diffusion of
magnetic fields, which it does not do in the viscous diffusion
of matter. As a result of these estimates, we find that the
field diffusion equation (127) reduces to

[a(x, 0) — a(r, 0)] n, a(r, 0)
aer—x21 h w

(130)

This equation describes the resistive evolution of a magnetic
field associated with a disk current generated by the electro-
motive field vB, that results from the external field and the
radial velocity. In the present approximation, in which the
reaction of Lorentz forces on the plasma motion is
neglected, the latter is the result of a purely hydrodynamical
calculation. This means that the disk behaves in this limit
just as any laboratory dynamo: an electromotive force is
developed from its imposed motion in an externally
imposed field, which generates resistively an electric current.
This becomes very clear if we consider a stationary state.
Note that, by equations (126) and (108), the right side of
equation (130) is simply (—r#, B, /h). Defining an effective
turbulent electrical conductivity s, by s, = 1/(uon,) and
using equation (107), equation (130) can be reduced to the
simple form of Ohm’s law,

Here (—vB,) is the 8-component of the electromotive force
v x By, and i,/(2h) is the 6-component of the volume- (as
opposed to surface-) electric current density j,. Equation
(131) is simply the azimuthal component of the familiar
Ohm’s equation j = s, (v x B,). Since the current i, that
generates the magnetic field perturbation is obtained from

da
ot

+vrB0=n—;PJ‘ dx
0
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equation (131), the associated magnetic field can be calcu-
lated simply from Biot and Savart’s law with this known
source. This gives

_ 7] 2Bo hr o) rr'
a0 = - [ | 2 }m”"”

(132)

where k is the variable defined in equation (122).

We have, for illustration, calculated this magnetic field
for the flow pattern calculated in § 3a. The results are pre-
sented in Figure 3, where we have taken the magnetic
Prandtl number to be equal to 5/7, as suggested from the
work by Pouquet et al. (1976). It is seen that the external
field suffers completely negligible distortion by the advec-
tive radial flow. The angle of the magnetic field with the
vertical is similarly exceedingly small. The general results of
our calculations agree with those of Lubow et al. (1994). A
smaller Prandtl number would give rise to a stronger distor-
tion of the magnetic field, as seen in Figure 3b, which has
been calculated for a Prandtl number equal to 1/10. We do
not regard, however, Prandtl numbers that differ substan-
tially from unity as realistic when both viscosity and mag-
netic diffusivity originate from the turbulence. We could
envisage the magnetic Prandtl number to differ strongly
from unity when the ambipolar diffusion is more effective in
letting matter slip through the field than the turbulent mag-
netic diffusivity itself. But this would correspond to Prandtl
numbers larger, not smaller, than unity, and the distortion
of the field lines would be even smaller than calculated here.
Alternatively, the Prandtl number could be strongly
affected if the turbulent motion were predominantly in the
disk plane rather than three-dimensional. This could occur
if the external field were very strong. Another point worth
stressing is that the ratio h(r)v,(r)/n,(r) is found to be inde-
pendent of the parameter A defined in equation (4). This is
because the radial drift timescale is the viscous timescale, so
that rv,(r)/v(r) is necessarily independent of 4, as is h/r. So
our results are not sensitive to the precise way in which the
connection between the turbulence spectrum and the effec-
tive viscosity is modeled.

5. CONCLUSIONS

The small angle between the field and the vertical to the
disk has the important consequence that a cold centrifu-
gally driven MHD wind cannot be launched from such a
disk. Indeed, Blandford & Payne (1982) have shown that a
minimum angle of 30° between the field and the disk normal
is necessary for a wind to be blown merely by the centrifugal
effect, without the assistance of pressure. Hence, our neglect
of angular momentum loss by an MHD wind in evaluating
the radial velocity in our purely viscosity-driven inflow
model of § 3 has been a self-consistent assumption. Indeed,
since no wind is blown in the environment of the disk, the
external field is not loaded with plasma, and so there is no
field twist and consequently no radial surface current com-
ponent that could exert a torque of magnetic origin on the
disk. We conclude that an accretion disk supported by an
effective viscosity due to magnetic-shearing turbulence is a
low magnetic Reynolds number system, which accretes
because of angular momentum diffusion due to effective
viscosity and cannot blow any cold centrifugally driven
MHD wind.
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Our conclusions agree on this point with those of
Ferreira & Pelletier (1995), who have discussed in which
parameter regime a consistent disk-wind system, in which
accretion is dominantly driven by angular momentum loss
to a wind, could exist. They found this to be possible only if
the effective resistivity and the magnetization parameter are
such that the vertical scale of variation of the flux function is
much larger than the disk thickness, but not too much
larger, i.e., field lines have to emerge from the disk not too
perpendicular to the disk plane. They find that the most
viable magnetic configuration for MHD wind-driven accre-
tion is when this scale is of order [rh(r)]/2. Here this length,
which is defined as [(0%4/0z%)/A] /2, is seen from equa-
tions (104), (109), and (126) to be in fact larger by a factor
(Ao/a)'’?, which is a very large number. Our conclusions
also agree with the results of Lubow et al. (1994) and the
more recent study by Agapitou & Papaloizou (1995), who
have also found that when the magnetic Prandtl number of
the turbulence 7, /v, is not small, and the effective viscosity
of order of the Shakura-Sunyaev value, a thin disk is a low
magnetic Reynolds number system. These authors did not
calculate the actual value of effective viscosity and magnetic
diffusivity, but they stressed the fact that when the magnetic
Prandtl number of the turbulence is, as expected, of order
unity, flux diffusion should be so effective that the
Blandford-Payne criterion for blowing cold centrifugally
driven winds would not be satisfied at all, a conclusion that
is entirely supported by our own results. The numerical
illustration of the results of Lubow et al. (1994) has been
made, however, for magnetic Prandtl numbers that are, in
our view, unrealistically small, and that tend to hide the fact
that magnetic diffusivity is so effective.

We do not mean, though, that all accretion disks are
unable to launch cold centrifugally driven MHD winds.
Our conclusion applies only to those disks that are able to
develop turbulence having eddies as large as the disk thick-
ness itself. In this case, our analysis shows that a disk in
which accretion is supported by effective viscosity, no cold
wind being centrifuged away, is a consistent solution. It may
not be the unique solution, though. On the one hand, a
thermally driven wind could still be emitted by the disk. We
do not explore this possibility further because it calls for a
theory of the heating of the coronal region just above the
disk. On the other hand, it is a priori conceivable also that
solutions other than the one we have just described exist for
the same model parameters (magnetic field at infinity, mass
of the accreting star, accretion rate), in which a faster accre-
tion velocity, allowing for a much larger value of B, /B,,
would be supported by angular momentum loss to a cold
wind. We believe, though, that this is somewhat unlikely
because the effective Reynolds number in the regime we
have calculated is so small that the accretion velocity would
have to grow enormously larger in a wind-driven regime to
compensate. Ferreira & Pelletier (1993a, 1993b, 1995) have
shown that self-consistent stationary accretion-ejection
structures must be rather fine-tuned systems. Conditions for
such structures to exist are, according to Ferreira & Pelle-
tier (1995), that the effective viscosity scale as a,, v, b, i.e., be
proportional to the product of the Alfvén velocity associ-
ated with the global field and the disk thickness, and that
the magnetization parameter u = vi/Q?h?, which is of the
order of the inverse of the parameter beta of the plasma of
the disk, be of order unity. Another major constraint is that
their parameter I, which is proportional to 3/aZ, be of
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order unity, a condition that expresses the requirement that
the forces that propel the wind act near the surface of the
accretion disk. Altogether, these parameters must be such
that the three field components at the disk’s surface are
comparable. It is conceivable that such conditions could
result naturally, as claimed by these authors, from the satu-
ration of MHD instabilities. Further studies are necessary
to settle this issue. We note, however, that the condition
deduced by Ferreira & Pelletier (1995) concerning the mag-
netization parameter in wind-driven accretion disks is nec-
essarily violated when the turbulence results from the
magnetic shearing instability. As discussed in § 2.6, this
instability occurs only in high-beta systems. It is quenched
when f approaches unity. It is interesting to note that the
magnetic shearing instability taps the free energy of differ-
ential rotation. In some sense, as stressed also by
Brandenburg et al. (1995), the initial weak field is but a
catalyst that allows the instability to proceed, but the turbu-
lence level eventually reached is only very weakly related to
the initial amplitude of this field.

Our conclusions are illustrated in Figure 4. As discussed
at the end of § 2.6, different effective viscosity regimes are to
be expected if the field threading the disk is large enough to

thermal wind

FIG. 4a
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quench the magnetic shearing instability. Disks of objects
that have a magnetopause at the disk’s inner edge necessar-
ily have an inner zone that is not subject to this instability.
It is conceivable, but not yet proved, that such disks would
accrete by emission of an MHD wind from their innermost
regions, as also suggested by Lubow & Spruit (1995). This,
according to Ferreira & Pelletier (1995), implies, for station-
ary state, that in some inner disk region, the turbulence
would not be due to a hydrodynamically driven instability,
but would instead involve an MHD instability, with a char-
acteristic scale shorter than the disk thickness (otherwise
the magnetic Reynolds number would still be too small),
saturating at a level that effectively depends on the initial
magnetic field value.

Note finally that the field line structure outside the disk
should differ significantly if the external field is that of the
accreting star, and not that of remote sources. The study of
what happens in this case is treated in the paper by Bardou
& Heyvaerts (1996).

centrifugal
wind
jet
X \ T t
F1G. 4b

FI1G. 4—A schematic representation of the magnetic structure around a disk interacting with a uniform potential field. (a) The injection scale of the
turbulence is in this case comparable to the disk thickness. The disk is then a low magnetic Reynolds number system, and the magnetic field produced by
electric currents flowing in the disk is negligible. No centrifugally driven cold wind can be blown from such a disk. If a wind is emitted, it must be thermally
driven. (b) The injection scale of the turbulence is in this case much smaller than the disk thickness. The magnetic Reynolds number is larger than in (a), and
the magnetic field produced by currents flowing in the disk is not negligible to the potential field. A cold centrifugally driven wind could be emitted from such
a disk and control the angular momentum loss of accreted matter. A completely laminar situation may be impossible because a consistent stationary solution
for the disk-wind connection requires some dissipation (Ferreira & Pelletier 1995).

APPENDIX
The spectrum (14) gives rise to the following rms velocity {v?>1/%:
02y = jd3kW(k) = 6nqC(q)e* kx> . (133)
gVe have used the fact that the volume element in the modified wavevector space K is related to that in real wavevector space
y
dk.dk,dk, = qdK,dK,dK, . (134)

The turbulence is anisotropic, and in this particular case its correlation length in the #-direction is much larger than in the
poloidal directions. Since we are interested in transport properties in the radial direction, it is the correlation length in the
meridional plane that matters. Let us call it [, and define it as the weighted average value of 2n/k | :

_ 1 f 2n 1273
W ) Sk + k2

1 W(k)d*k = qC(q)e* k53 . (135)

5{v*>
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Using equation (133), this gives

212

5kinj .

(136)

lJ_ =
We calculate the effective viscosity as in§ 2.2, which gives
—l V24 R /67qu(q e Pkl (137)

If 1, is the meridional size of these largest eddies, their turnover time is

I

Tturn — ﬁ . (138)
We can think of several other characteristic times. First the rotation time
2
f =g (139)

second, the Alfvén detuning time, which is the time it takes an eddy to be destroyed because its extremities propagate at
different Alfvén speeds. Since the cells are anisotropic, one should consider two different Alfvén times, an azimuthal one

lu

=——— 140
] Vo) (149
and a poloidal one
I
TaP = 75— * (141)
1 1V(y <U./2§P>)|

The magnitude of the azimuthal field B, can be estimated by noting that its rate of creation by differential rotation from the
radial component, typically (B2»'/2, is balanced by its rate of dissipation by effective magnetlc d1ffusw1ty Since the poloidal
motions alone do not change B,, the relevant time for turbulence to change this component is [ /<v” 12 which is of order of

1,/<v*>/?, and so
Q/<{B}> = /<v*)(By/l)) . (142)

This is only valid insofar as the §-component of the magnetic field is not energetically dominant over the turbulent kinetic
energy, which, judging from Brandenburg et al.’s (1995) simulation, is in fact not very well satisfied. Still, accepting this as an
estimate only, we find that

B, ~ ./<{B \/Ql_' (143)

For I of order r, the local radius, and <v*)'/> comparable to the sound speed, itself of order QH, it is seen that B, grows much
larger that the random poloidal field. This is indeed seen in Brandenburg et al.’s (1995) calculations. From equation (143), we

find
v*)
N / (144)
A0~ 0\ (B o)

Since the poloidal part of the field is not very far from equipartition, the azimuthal Alfvén time is of the order of 7,,. The

poloidal Alfvén time is of order

rot*

oJran [
MR s N KB op)”

and it can also be comparable to z,,,. The Rossby number of the turbulence at this scale, which is proportional to the ratio of
the rotation time to the eddy turnover time, is

(145)

2
Roe_ Lt 1o 1HJGWH (146)

2’g}rtum 4n Tturn 2 lJ_ Cs

For slightly subsonic turbulence, the Rossby number may become somewhat smaller than unity. So our assumption that the
eddy turnover time is no larger than the rotation time is satisfied only marginally, as has been pointed out before (Dubrulle
1992). However, the consequences of this are less dramatic for MHD turbulence, which still has a direct energy cascade in
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two-dimensions, than they are for purely hydrodynamical turbulence. Similarly, we estimate

TAlfvP _ / <Uz> (147)
Tturn (<Bf>/ﬂ0 p '

For MHD turbulence approaching equipartition for the poloidal components, this ratio approaches unity, and again our
assumption of a shorter eddy turnover time is marginal. Hawley et al. (1995) find that the turbulence in their simulation is very
near equipartition, sometimes even slightly sub-Alfvénic, and Brandenburg et al. (1995) also find quasi equipartition for
poloidal components, but not for toroidal ones. It is found then that the nonlinear transfer time can be regarded as being of
order of the turnover time of poloidal eddies. It is possible to express this transfer time from the spectrum itself by the
following argument. In modified wavevector space, the turbulence spectrum looks almost isotropic, with a spectral energy
E(K)dK between K and K + dK. From equations (14) and (134),

E(K) = 4nqC(q)e** K373 . (148)
In the inertial range, this energy is transferred with a flux €(K), which satisfies a conservation equation
0E Oe
—+—==0. 149
o T oK 14

In a stationary state, €(K) reduces to a constant . Equation (149), however, is useful to show that, in order of magnitude, the
nonlinear transfer time 7., is about

EK
€

= 4dngC(g)e~1PK 23 . (150)

~
Tirans ~

The characteristic velocity of eddies of poloidal size 2n/K is obtained by integrating the spectrum from K to infinity, which
gives

® 12
(02D = J W(k)d*k = Tﬂ qCg)e*PK =23 . (151)
K
From this, we obtain the nonlinear transfer time as expressed in equation (15) of the paper. Taking 4nqC(q) = 1, the effective
viscosity can be obtained in the way described in § 2.2. This gives for v,, the result shown in equation (18), which happens to be
of the form of equation (4), with a value of the dimensionless parameter 4 given, for this anisotropic turbulence, as in equation

(19).
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