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ABSTRACT
We show how the level of turbulence in accretion disks can be derived from a self-consistency require-

ment that the associated e†ective viscosity should match the instantaneous accretion rate. This method is
applicable when turbulence has a direct energy cascade. Only limited information on the origin and
properties of the turbulence, such as its injection scale and anisotropy, is needed. The method is illus-
trated by considering the case of turbulence originating from the magnetic shearing instability. The cor-
responding e†ective kinematic viscosity coefficient is shown to scale as the 1/3 power of surface mass
density at a given radius in optically thick disks, and to be describable by a Shakura-Sunyaev law with
a B 0.04. Mass Ñow in disks fed at a localized hot spot is calculated for accretion regimes driven by such
turbulence, as well as passive magnetic Ðeld di†usion and dragging. An important result of this analysis
is that thin disks supported by turbulence driven by the magnetic shearing instability, and more gener-
ally any turbulence with injection scale of order of the disk thickness, are very low magnetic Reynolds
number systems. Turbulent viscosity-driven solutions with negligible Ðeld dragging and no emission of
cold winds or jets are natural consequences of such regimes. Disks of accreting objects that are magne-
tized enough to be shielded by a magnetopause, however, may not operate in their innermost regions in
the magnetic shearing instability regime. The possibility therefore remains to be explored of centrifugally
driven winds emanating from such regions.
Subject headings : accretion, accretion disks È di†usion È MHD È stars : mass loss È turbulence

1. INTRODUCTION

1.1. Role of Turbulence in Accretion Disks
Accretion or collapse of material usually requires the loss

of considerable amounts of angular momentum. Several
physical processes that might be e†ective in this transport
have been considered in the literature. Turbulence in an
accretion disk is one such possibility, another being the
escape of angular momentum in a magnetized rotating
magnetohydrodynamic (MHD) wind.

Molecular or radiative viscosity is insufficient to transfer
angular momentum on an adequate timescale. However, it
is conceivable that, due to the high value of the Reynolds
number, the Ñow is turbulent and that associated transport
mechanisms operate. The origin of the turbulence is still
uncertain. The variation with distance of the speciÐc
angular momentum in a Keplerian disk is linearly stable,
but the Ñow might be unstable to Ðnite-amplitude dis-
turbances and develop turbulence by the mere e†ect of dif-
ferential rotation & Knobloch(Zahn 1991 ; Dubrulle 1992).
Alternative possibilities are the development of turbulence
from convection & Papaloizou or from the mag-(Lin 1980)
netic shearing instability & Hawley(Balbus 1991 ; Hawley
& Balbus 1991).

In the past few years, the e†ect of turbulent transport on
the large-scale dynamics of accretion disks has usually been
represented by an e†ective ““ eddy ÏÏ viscosity. Transport by

eddies of small Rossby number or size larger than the disk
thickness, which are subject to the Coriolis force and su†er
two-dimensional dynamics, cannot be represented by e†ec-
tive local transport coefficients. Whether such large eddies
indeed develop remains an important issue to discuss in the
future. In this paper we restrict our investigation to situ-
ations in which local di†usive transport is an adequate rep-
resentation. It is encouraging to note that this assumption is
not grossly contradicted when turbulence is driven by
hydrodynamical shear and it seems also(Dubrulle 1992),
fair enough in the case of magnetic shearing instability.

In most earlier approaches, the e†ective viscosity has
been parameterized on the basis of an interesting, but bold,
argument, namely, that eddies should not be much larger
than the disk half-thickness h and that their motions should
not be very supersonic, for otherwise shocks would regulate
the plasma temperature and the velocity of turbulent
motions to almost sonic velocities. This qualitative argu-
ment is not entirely convincing, since the feeding of turbu-
lence by accretion might enforce a supersonic regime.
Nevertheless, it led & Sunyaev to proposeShakura (1973)
the well-known parameterization, according to which the
e†ective kinematic viscosity coefficient is written asl

t
l
t
\ aHc

s
, (1)

where H is the disk total thickness, H \ 2h. Their argument
implies that a should be of order unity, whereas actual disk
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models compare favorably with observations for lower a
values of the order of 0.1 Therefore, the limi-(Duschl 1989).
tation to sonic velocities by shocks is not physically reason-
able, and the above reasoning loses some of its strength.
Turbulence seems actually to be subsonic. mayEquation (1)
still be regarded as a change of variable, however, with the
representation of viscosity passing from to a ; but betterl

targuments, giving more precise clues to the value of a, are
desirable.

Several authors have attempted to elaborate on this
theme. The general purpose of their approaches has been to
incorporate in the disk model enough physics of the turbu-
lence that the value of the e†ective viscosity would result
from the model, rather than be assumed. Dubrulle (1992)
proposes a modeling of turbulence in terms of relations that
express the third-order moments of Ñuctuating quantities in
terms of Reynolds stresses, which are second-order
moments of the turbulent velocity. The choice of appropri-
ate relations is inspired from an ansatz used successfully in
modeling turbulent shear Ñows in geophysical and labor-
atory situations. Her modeling contains a few arbitrary
coefficients, but the main uncertainty rests on the appropri-
ate length scale of the turbulence, which implies that the
nature of its source needs to be made precise. In the case of
shear-driven turbulence, the scale of the largest turbulent
eddies is found to be of the order of the disk thickness and is
on the verge of being a†ected by the Coriolis force (Rossby
number of order one). used mixing-lengthDuschl (1989)
theory to calculate self-consistent disk models in which the
turbulence is due to convection in convectively unstable
regions of the disk. Elsewhere, another form of turbulence is
assumed to be present, which is still parameterized by

More recently, & Wandelequation (1). Goldman (1995)
have also discussed convection-driven turbulence, rep-
resenting its e†ects by an e†ective viscosity and using a
phenomenological model of turbulence by Canuto,
Goldman, & Chasnov They assume that the size of(1987).
the largest eddies, which determines the actual e†ective vis-
cosity, equals the thickness of the disk, and they take
account of their anisotropy by a parameter. Though these
approaches are di†erent, their common goal is to deduce in
a self-consistent manner the turbulence level in the disk.

Any closure model of disk turbulence has to provide the
means to determine the constants that enter the theory, or
else to accept them as free parameters of the representation.
Often these constants have to be determined a posteriori by
calibrating the model with real experimental or numerical
results. Our approach is also of this general type. The turb-
ulence that develops is characterized by its injection scale,
the most appropriate value of which is discussed on the
basis of physical arguments below, but it is not deduced
mathematically. Indeed, this injection scale, a concept itself
of limited relevance since in reality there is likely to be an
injection range, must depend on the nature of the instability
feeding the turbulence. Therefore, this paper pays special
attention to the case in which turbulence is driven by the
magnetic shearing instability, since it may indeed be the
source of turbulence, but the philosophy of determining
self-consistently some of the properties of the turbulence
spectrum is of more general relevance. Indeed, our
approach introduces a macroscopic self-consistency argu-
ment to determine the level to which the turbulence builds
up at each point in the disk : namely, that the turbulence
level must be consistent with the instantaneous dissipation

that necessarily accompanies accretion. Such a self-
consistency argument, discussed also by is ofZahn (1991),
quite general validity. It is very useful because it makes the
e†ective viscosity a function of the macroscopic properties
of the Ñow, and, within the limits of validity of the a-model,
which this approach partly justiÐes, it would give concep-
tually the value of a. In practice, though, several uncer-
tainties and difficulties do not make it possible to reach this
goal quantitatively. Let us stress again that the identiÐca-
tion of the e†ective viscosity as that coefficient that appears
in the rate of dissipation of mechanical energy with the one
that appears in the momentum transport contains an
implicit assumption on the nature of turbulent transport. It
assumes that the turbulent eddies that cause the e†ective
momentum transport are small enough for the transport to
be describable by e†ective transport coefficients and that
they su†er a direct energy cascade, so that momentum
transport indeed results in associated dissipation.

Particular attention is given in this paper to the case in
which turbulence in the disk is fed by the magnetic shearing
instability & Hawley When dealing with this(Balbus 1991).
instability, we should take into account the e†ect of aniso-
tropies induced by di†erential rotation and partial two-
dimensionality, which is an important aspect revealed by
recent numerical calculations. This introduces further
parameters in the theory, some of which may be reasonably
chosen, but not determined precisely, by consideration of
recent results of numerical simulations relevant to this
instability.

The shape of the spectrum is taken to be a power law and
is subject to the condition that its small wavenumber cuto†
in the vertical direction be larger than n/h. Limitations that
result from assumptions on the shape of the spectrum are
less serious than those that result from uncertainties con-
cerning the turbulence characteristic scale and the role of
two-dimensional horizontal eddies, if any. Such difficulties
are implicit or explicit in any existing attempt to construct
self-consistent turbulent disk models. The e†ective viscosity
is dominated by the largest scales present in the spectrum,
so that its precise shape, Kolmogoro† or otherwise, is of
secondary importance, since spectral shape parameters
enter as numerical factors of order unity in the Ðnal results.
The actual value of the small wavenumber cuto† and spec-
trum anisotropies may have more serious numerical conse-
quences.

We discuss turbulence-feeding mechanisms and the
associated injection scale, which support the idea that, at
least in weakly magnetized accretion disks, the turbulence is
dominated by scale lengths of the order of the local disk
thickness. Then we illustrate, by showing a few explicit solu-
tions, how mass spreads in the process of accretion in the
presence of such a self-consistent viscosity. Finally, we turn
to the question of passive magnetic Ðeld di†usion through
thin turbulent disks.

1.2. Magnetic Field Di†usion in Accretion Disks
Magnetic Ðeld expulsion from collapsing matter has been

a long-standing & Strittmatter(Mestel 1966 ; Mestel 1967)
and important problem, since a gas cloud could only su†er
gravitational instability if the mass to magnetic Ñux ratio
exceeds a limit that is usually not reached initially in the
interstellar medium. Indeed, the mass to Ñux ratio of newly
born stars appears to be much larger than that of parent
clouds.
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The evolution of this ratio in star-forming clouds can be
driven by restrictive Ðeld di†usion, as considered Ðrst by

and & Strittmatter or by ambi-Mestel (1966) Mestel (1967),
polar di†usion, as suggested by & Spitzer andMestel (1956)
developed later in some detail by many authors, in particu-
lar & Shu & Mous-Nakano (1979), Lizano (1989), Fiedler
chovias and & Morton(1992), Mouschovias (1992).
Ambipolar di†usion occurs in weakly ionized media and
operates most e†ectively in the cool, dense cores of molecu-
lar clouds. Its e†ect & Mouschovias is to(Fiedler 1992)
redistribute Ñux in the cloud in such a way that a central
portion of it becomes supercritical against the magnetic
Jeans instability and eventually collapses, while the
envelope remains magnetically supported (Mouschovias

Ambipolar di†usion may be helped at large neutral1995).
densities by the plasma microinstabilities that develop in
weakly ionized media & Heyvaerts Alto-(Norman 1985).
gether, star formation by ambipolar di†usion appears to be
a low-efficiency process, since little mass eventually col-
lapses from a much larger initial condensation. Angular
momentum also has to be lost in the process of star forma-
tion. This e†ect is usually attributed to magnetic braking.
The question should nevertheless be asked about the e†ect
of turbulence in a condensing protostellar disk on both
angular momentum loss and Ñux leakage.

Flux leakage and magnetic drag in accretion Ñows is also
a problem relevant to accretion disks around young stellar
objects, X-ray binaries, and active galactic nuclei. These
processes control the degree of magnetization of a disk and
bear on its ability to lose angular momentum in a centrifu-
gally driven cold wind & Payne &(Blandford 1982 ; Pudritz
Norman The problem of turbulent Ñux di†usion1983).
through an accretion disk has been considered recently by

Papaloizou, & Pringle who studied passiveLubow, (1994),
Ðeld di†usion in a resistive disk, considering the magnetic
di†usivity as a parameter. We consider essentially the same
problem here, but we develop a theory to obtain a more
speciÐc expression for the magnetic di†usivity, and we show
that, for thin disks, the system operates necessarily in the
low magnetic Reynolds number limit, provided the injec-
tion scale is not much smaller than the disk thickness. This
means that the Ðeld di†uses away much faster than it is
radially advected. We derive a slightly more elaborate form
of the integro-di†erential equation that governs Ðeld di†u-
sion in such systems and solve it analytically in the limit of
low e†ective magnetic Reynolds numbers.

A consequence is that this type of self-consistent tur-
bulent disk does not create favorable conditions for the
emission of cold centrifugally driven winds by which they
could also lose angular momentum to inÐnity. It seems
that the two modes of angular momentum loss advocated
above, i.e., turbulent viscous loss and torque from an MHD
rotating magnetized wind, are unlikely to coexist in the
turbulent regime associated with the magnetic shearing
instability. Another consequence is that Ñux loss by proto-
stellar clouds would probably be a lot more e†ective than
anticipated from laminar disk studies if they were
in a turbulence regime similar to the one described
in this paper. This, however, is not certain, since the mag-
netic Ðeld is thought to have an energy comparable to the
kinetic energy in such clouds, which makes the magnetic
shearing instability somewhat more unlikely, so that
the nature and level of turbulence could di†er from
those discussed below. We return further to this point at
the end of ° 2.5.

2. SELF-CONSISTENT TURBULENCE LEVEL IN ACCRETION

DISKS

2.1. Self-Consistent Turbulence L evel in General
That the turbulence level in an accretion disk should be a

self-consistent function of mass surface density basically
results from the fact that the turbulence adjusts to such a
level that the mass accretion rate imposed by the macro-M0
scopic evolution of the system be possible. How this arises
can be understood as follows. Call the yet-unknownl

*
(r)

e†ective viscosity at radius r, the rotation law )(r) being
Keplerian, say. The rate v of viscous heating per unit mass is

v\ l
*
(r d)/dr)2 . (2)

At a given radius, this heating rate v determines both the
vertical distribution of temperature T (r, z) and the density
in the disk, by vertical mechanical balance and energy
balance. So, for a given mass surface density p(r) and a given
e†ective viscosity the local half-thickness of the diskl

*
(r),

h(r) and its vertical temperature distribution are deter-
mined. This sets the stage at which the turbulence that
causes the e†ective viscosity and dissipation is going to
develop and, in fact, these macroscopic features, as we shall
show, determine its level. Actually, the injection scale in this
geometry has to be a function of the disk half-thickness h(r),
as discussed more precisely below. The e†ective viscosity
depends both on this injection scale and on the level of
turbulence, or, what is equivalent, on the rate of transfer of
energy in a direct cascade, which is also just the rate of
heating per unit mass, v. We assume the turbulent cascade
to be at any time and at any point in a stationary state (even
though the global hydrodynamical system may not be).
This is a reasonable assumption, since the cascade develops
in a large-eddy turnover time, which is of the order of the
dynamical time 1/) and is much shorter than the matter
transit time So is a function of h and v, but v is also(r/v

r
). l

*related to by the ““ macroscopic ÏÏ equation Since hl
*

(2).
depends indirectly on p and by vertical equilibrium, thel

*turbulent viscosity will ultimately be expressed as a function
of itself and p. The solution of this self-consistency equation
will eventually give in terms of p, and of the externall

*parameters, if any. These relations are summarized in
Figure 1.

The idea that the turbulence level adapts such as to be
self-consistent with large-scale constraints that ultimately
cause the system to be in a turbulent state is quite general. It
applies, under some weakly restrictive conditions, whatever
the nature of the instability that feeds the turbulence. The
general scheme described above to calculate the turbulence
level works any time the e†ects of the turbulence can be
described on the ““ macroscopic ÏÏ scale by e†ective transport
coefficients. This general philosophy has also been used to
calculate the rate of heating in the turbulent corona of the
Sun by & Priest and by Priest,Heyvaerts (1992) Inverarity,
& Heyvaerts Application to the accretion disk situ-(1995).
ation is in fact easier because the nature and properties of
turbulence are becoming better understood thanks to
progress in numerical simulations of these systems.

In the following, we illustrate Ðrst the method in the
simple case in which the turbulence develops in the system
in the form of an isotropic Kolmogoro† spectrum. Then we
present a calculation of the e†ective viscosity in the particu-
lar case of turbulence fed by the magnetic shearing insta-
bility, a situation which, for accretion disks, is probably
more realistic than Kolmogoro† turbulence.
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FIG. 1.ÈThe turbulence level in a thin accretion disk is established as a result of a self-consistency process controlled by the mass of the accreting starM
*and the accretion rate There is a feedback from the e†ective viscosity onto the local disk thickness h that partly controls the size of turbulent eddiesM0 . l

*and so itself. The Ðgure illustrates this feedback with arrows indicating the sense of the causal relations between various physical e†ects. Thekinj~1 l
*self-consistency process puts turbulent phenomena at the local microscale in relation to phenomena at the local or global macroscale.

2.2. Self-Consistency for Isotropic Kolmogoro† Turbulence
As a Ðrst illustration, consider a simple case in which

turbulence locally has a Kolmogoro† spectrum given by

E(k)\ CK v2@3k~5@3 . (3)

More realistic turbulence will be considered later on. Here
is the Kolmogoro† constant, whose value is near 1.4,CKand the short wavenumber cuto† is denoted by Thiskinj.injection scale and the rate of energy transfer in the cascade

are functions of the radius r. Then, the associated e†ective
viscosity can be written as

l
*

\ jv1@3kinj~4@3 , (4)

where v is the usual energy transfer rate in the cascade. The
dimensional part of is simply proportional toequation (4)
the product lv(l) of the size of the largest eddies and the
typical velocity v(l) associated with them, which in three-
dimensional hydrodynamic turbulence is v(l)\ (2vl)1@3.
Here j is a dimensionless parameter that incorporates all
the quantitative aspects of momentum transport by this
turbulence spectrum. Its value is connected with the model
adopted to calculate it This evaluation is(Mo†att 1983).
complicated here by the fact that the turbulent medium is
inhomogeneous, even vertically. Also, the concept of a
sharp low-wavenumber cuto† and a precisely deÐned injec-
tion scale is an idealized representation, which et al.Canuto

have tried to overcome by developing a technique to(1987)
obtain the shape of the spectrum when cascading and injec-
tion are mixed. All these complications would a†ect the
actual value of j.

Therefore, we treat j as a parameter in this paper,
although it could be deduced mathematically by adopting
some speciÐc model of momentum transport by the turbu-
lent Ñow. The nature of this parameter is then di†erent from
the more basic parameters, such as the injection scale,
which cannot be determined precisely from the theory itself.
For deÐniteness, we adopt the usual expression

l
*

\ 13vlc , (5)

where v is the rms turbulent velocity and is the correlationl
clength. The former is given by

v\
CP

kinj

=
E(k)dk

D1@2\ J32CK v1@3kinj~1@3 . (6a)

The correlation length can be deÐned as the weighted mean
of 2n/k, which gives

l
c
\ 1

v2
P
kinj

= 2n
k

E(k)dk \ 4n
5kinj

. (6b)

After simple calculations we obtain in this case

j \ 4n
15
S3CK

2
. (7)

The eddies that make the three-dimensional part of the
turbulence are not expected to be larger than the disk thick-
ness at the considered radius. Thus, the injection scale, linj,should be a fraction 1/f of the total disk thickness 2h :

linj \ 2h/f , (8a)

so that

kinj \ f
n
h

. (8b)

Usually, f would be larger than unity. If it were to happen
that eddies larger than the disk thickness are excited and
still enter a direct cascade, then f might be smaller than
unity. Finally, the e†ective viscosity is written as

l
*

\ j
(nf )4@3 v1@3h4@3 . (9)

This can be turned into an expression for the level of turbu-
lence (as measured by the rate of energy transfer v in the
cascade) in terms of the e†ective viscosity. Such an expres-
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sion reÑects only properties of the underlying turbulence. It
expresses nothing more than the relation between the level
and scale of the turbulence and the associated e†ective vis-
cosity :

v\ (nf )4
j3

l
*
3

h4 . (10)

Now, express the fact that the rate of heating per gram, as
given in terms of e†ective viscosity by is justequation (2),
the same v as in because the power that goesequation (10),
into heating per gram is the energy that reaches the dissi-
pation range of the cascade per second. A similar idea has
been developed by Noting that for KeplerianZahn (1991).
rotation r d)/dr \ 3)/2, we obtain by equating expressions
(2) and (10)

9
4

l
*

)2\ (nf )4
j3

l
*
3

h4 . (11)

Since h and f are implicitly functions of p, and possiblyl
*
,

external parameters, p say, appears to be a solution of thel
*equation

l
*

\ 3j3@2
2n2

)h2(l
*
, p, p)

f2(l
*
, p, p)

. (12)

An important aspect of such a relation is that it determines
the e†ective viscosity self-consistently from the global
properties of the large-scale Ñow only. Indeed, equation (12)
is still no complete solution to our problem, since an expres-
sion should be obtained for h(r) and f (r) in terms of the
surface density p and of The proÐle of disk thicknessl

*
.

with radius h(r) results from mechanical balance and energy
balance, and f (r) is a property of the instability processes
that locally feed the turbulence. Our aim in this work is to
elaborate somewhat more on this connection between the
actual level of turbulence and the large-scale dynamics, and
to examine consequences for some MHD aspects of accre-
tion disks, such as Ðeld dragging by the accreting matter.

2.3. Discussion of Injection Scale
We deÐne the injection scale as the size of the eddies that

carry most spectral energy density and still feed energy into
a direct cascade, leading to dissipation. The physics of the
instability that feeds the turbulence determines an injection
scale, or an injection range.

Two-dimensional hydrodynamic turbulence does not
develop direct cascades & Montgomery(Kraichnan 1980)
because enstrophy can decay only in three-dimensional
hydrodynamical motions. Hence, those eddies, if any, that
are generated with a scale much larger than the disk thick-
ness cannot feed a direct cascade in a purely hydrodynami-
cal disk, but they do if the medium is embedded in a
turbulent magnetic Ðeld. It is known, indeed, that homoge-
neous two-dimensional MHD turbulence has a direct
cascade of energy and an inverse cascade of the square of
the vector potential of the two-dimensional magnetic Ðeld

Joyce, & Montgomery & Montgo-(Fyfe, 1977 ; Matthaeus
mery The fate of two-dimensional eddies in purely1980).
hydrodynamical disks, and their e†ect on accretion, remain
to be discussed & Valdetarro The inverse(Dubrulle 1992).
cascade in a hydrodynamical disk must develop from those
unstable perturbations that have a scale larger than or of

the order of the total disk thickness 2h or, which in practice
is almost equivalent, from perturbations associated with a
Rossby number smaller than unity.

Turbulence-feeding instabilities, depending on their
nature, may inject energy at scales smaller or larger than 2h.
In this paper, we consider a situation in which the turbulent
energy is injected at scales not much larger than the disk
thickness and su†ers only direct cascading.

This point of view, which cannot be of general validity, is
supported by the following considerations. Our paper is
concerned with Ðeld di†usion in magnetized accretion disks.
Therefore, turbulence should in this case have a magnetic
component. If the disk is to be MHD turbulent, and we
know from the work of Balbus & Hawley that(1991, 1992)
it should be, then even eddies larger than the disk thickness
(if any are generated by the instability) would feed a direct
energy cascade. The limitation to direct cascading that
appears in hydrodynamical turbulence when the Rossby
number equals unity does not apply to MHD turbulence
(Dubrulle 1992).

We believe, nevertheless, that the primary excitation
should be concentrated anyway in this case on scales no
larger than the disk thickness scale for the following
reasons. The linear stability criterion & Hawley(Balbus

indicates that perturbations that are to grow from a1991)
vertical Ðeld component do so if their wavelength along the
rotation axis is larger than some critical minimum value.
Since the perturbation has to Ðt into the disk thickness, this
indicates that the instability is quenched when the Ðeld
exceeds a certain critical value and develops for any Ðeld
smaller than the threshold. When there is instability and
such a component normal to the disk is present, unstable
perturbations with scale no larger than the disk thickness
are generated.

The magnetic shearing instability develops also in purely
azimuthal initial Ðelds, provided it is nonaxisymmetric

& Hawley & Tagger(Balbus 1992 ; Foglizzo 1994 ; Foglizzo
In this case, the growth rate is reduced &1994). (Balbus

Hawley but purely toroidal Ðelds are exceptional and1992),
constitute a singular case. Even if Ðelds were initially like
this, magnetic buoyancy & Rosner(Stella 1984 ; Sakimoto
& Coroniti and the Parker instability, which di†ers1989)
from the magnetic shearing instability only by its polariza-
tion should turn them into Ðelds emerging(Foglizzo 1994),
randomly out of the disk or pushed to its periphery

The idealized situation would then not(Torkelsson 1993).
be maintained, and the azimuthal extent of segments of
purely toroidal magnetic Ðeld lines embedded in the disk
should be restricted, limiting, by lack of coherent enough
space, the development of very low azimuthal wavenumber
perturbations. In general, we expect actual Ðelds to have a
signiÐcant nonzero vertical component, from which pertur-
bations with a nonzero would grow. This point of view isk

zsupported entirely by the three-dimensional numerical cal-
culations of Gammie, & BalbusHawley, (1995).

Di†erential rotation in the disk has an important e†ect
on nonaxisymmetric perturbations because such dis-
turbances su†er strong shearing from the di†erentially
rotating Keplerian Ñow, which causes the radial component
of the wavevector of any convected disturbance to grow
linearly in time at a rate given, for an azimuthal Fourier
component of order m, by Thisdk

r
/dt B (m/r)d()r)/dr.

results in a fast secular increase of the radial wavenumber
& Hawley which limits the(Balbus 1992 ; Foglizzo 1994),
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period of wave growth, although the increase of wave
amplitude remains large enough to allow us to speak of an
instability. It causes low radial wavenumber perturbations
to evolve into larger wavenumber ones.

To sum up, we expect the Balbus-Hawley instability
mostly to feed perturbations with a wavevector larger than
or equal to n/h and of course smaller than the value atkmaxwhich instability is quenched by dissipation. The injection
scale for this instability, as deÐned above, should then be
some fraction (1/2 or 1/3, say) of 2h, even though the lin-
early most unstable is much larger than n/h. This isk

zbecause the instability acts up to so that, as timek
z
\ n/h,

goes by, a signiÐcant noise is generated down to this wave-
number. Nevertheless, inhomogeneity e†ects will probably
limit the growth of eddies having a vertical size exactly
equal to the total disk thickness H, and we expect the actual
injection scale to be somewhat smaller. Numerical calcu-
lations by et al. indeed support the point ofHawley (1995)
view that the injection scale is much larger than the most
linearly unstable wavelength, while in the calculations by

et al. the vertical correlation length hasBrandenburg (1995)
been found to be of order 0.16 for a disk thickness of order
1, in a box of vertical thickness 4. This shows that, at least
for the boundary conditions adopted by these authors, the
dominant eddy size is not exactly the total disk thickness,
but a fraction of it.

2.4. Anisotropic Spectrum for Shear-driven MHD
Turbulence

et al. show that in three dimensions theHawley (1995)
magnetic shearing instability develops an anisotropic turb-
ulence spectrum, the excitations being the largest for wave-
vectors such that o k o is of order of the reciprocal vertical
size of the computation box, which in nature would corre-
spond to the disk thickness. They Ðnd that the extension of
cells in the azimuthal direction is larger than their extension
in meridional planes, which appears in wavevector space as
a smaller extension of the spectrum in the Sur-kh-direction.
faces of equal spectral energy in this space are similar to
Ñattened ellipsoids, slightly skewed in the plane, ask

r
[ khexpected for distributions that transport momentum.

These are the e†ects of di†erential rotation. Turbulence
appears in the form of cells, similar in shape to rolls elon-
gated in the h-direction, but covering in general a part of the
disk circumference only. This is still not two-dimensional
turbulence because azimuthal gradients remain, and these
Ñows have nonzero azimuthal components of Ðeld and
velocity perturbations and an azimuthal Ðeld component
produced by shear. The latter component couples motions
in the di†erent meridional planes.

Except for the anisotropy of the spectrum, et al.Hawley
found the spectral shape not to di†er very much(1995)

otherwise on each of the principal axes of the wavevector
space from a Kolmogoro† spectrum [for which the energy
spectral power in wavevector space W (k) scales as k~11@3].

et al. have performed similar simula-Brandenburg (1995)
tions, including e†ects of compressibility and stratiÐcation.
They imposed boundary conditions that forbid the presence
of an organized vertical magnetic Ðeld perpendicular to the
disk (the vertical Ñux is kept equal to zero at all times, but
not the azimuthal or radial Ñux). They too found that the
turbulence develops an anisotropic spectrum, but their dif-
ferent boundary conditions allowed a dynamo process to
develop, resulting in the generation of a rather large, but

time-oscillating, azimuthal Ðeld component with even
parity in z. This component carries somewhat more energy
than turbulent kinetic motions and thermal motions. Their
simulation gives a smaller a value than the simulation by

et al. but the reason for this is not givenHawley (1995),
precisely by et al. It might be related toBrandenburg (1995).
the fact that the vertical coherence scale of the magnetic
Ðeld in their simulation is smaller, because the average ver-
tical magnetic Ðeld has been constrained to vanish by
Brandenburg, but not by Hawley.

2.5. E†ective Viscosity of Turbulence Driven by the Magnetic
Shearing Instability

In order to take into account the anisotropy of the turbu-
lence spectrum revealed by these calculations, it is necessary
to derive an expression generalizing for suchequation (9)
anisotropic Kolmogoro†-like spectra. Let us assume, as
suggested by the numerical results, that the turbulence spec-
trum can be represented by a ““ Ñattened ÏÏ Kolmogoro†
spectrum. Such a spectrum is a function of the energy trans-
fer rate v, of the ratio q of small to large axes of ellipsoids in
k-space on which the power density is assumed constant,
and of a ““ modiÐed ÏÏ wavenumber K that parameterizes
these ellipsoids :

K \
A
k
r
2 ] k

z
2] kh2

q2
B1@2

. (13)

Turbulence would appear isotropic in the space of
““ modiÐed ÏÏ wavevectors K but not in real wavevector
space. ModiÐed and real wavevectors are related by k

r
\

K
r
, k

z
\ K

z
, kh\ qKh.It is easy to repeat in this case Kolmogoro†Ïs dimension-

al argument to Ðnd that the energy spectral power density
in real wavevector space W (k), which is assumed to depend
only on v, q, and K, must necessarily be expressible as

W (k) \ C(q)v2@3K~11@3 . (14)

Since q enters as a dimensionless parameter on which the
solution for the power spectrum depends, the dimensionless
factor in front of the right-hand side of equation (14)
depends on q and is no longer a universal constant, as in
three-dimensional isotropic Kolmogoro† turbulence.
Dimensional reasoning alone cannot tell how this factor
depends on q. An approximate value of C(q) can, however,
be found by requiring that the nonlinear energy transfer
time be, for eddies of any size, of order of their turnover
time. This idea is consistent with the spectrum having a
Kolmogoro† slope. It is a consistent assumption if the turn-
over time of the largest eddies is no longer than any other
appropriate evolution time, which we check in the

It is found that the nonlinear transfer time givenAppendix.
by can be written asequation (150)

qtransfer\
S3

5
[4nqC(q)]3@2 1

KJSvK2T
. (15)

By requiring that this time be of order of the eddy turnover
time,

qturn(K) B
1

KJSvK2T
, (16)

it is found that 4nqC(q) should be of order unity. For
isotropic turbulence, which corresponds to q \ 1, the quan-
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tity 4nC(1) equals the Kolmogoro† constant which isCKindeed of order unity. Here, however, the anisotropy
parameter q is not close to unity because the wavevectors
that carry the largest excitation should have of order n/h,k

znot very di†erent from their radial wavenumbers, while
their azimuthal wavelength would be a fraction of the cir-
cumference of a circle of radius r. So q should be of order
h(r)/r. The value (of order unity) of 4nqC(q) in this regime is
then uncertain. For deÐniteness, we assume

4nqC(q) \ 1 , (17)

while our reasoning implies only a value of order unity. The
e†ective viscosity can then be deduced as in This gives° 2.2.

l
*

\ 2n2
15
S3

2
v1@3kinj~4@3 , (18)

identifying a speciÐc value of the parameter j introduced in
namely,equation (4),

j \ 2n2
15
S3

2
. (19)

As discussed in the preceding paragraph, the injection scale
for the magnetic shearing instability appears to be a frac-
tion of the total disk thickness 2h so that the injection wave-
number is fn/h, with f of order a few. To be speciÐc, letkinjus adopt

f\ 2 . (20)

Then the e†ective viscosity in turbulence driven by the mag-
netic shearing instability is given by withequation (12),
f\ 2 approximately and j given approximately by equation
(19).

This can be translated into a value of the Shakura-
Sunyaev parameter a. Comparing withequation (1)

taking into account that H \ 2h,equation (12), )h \ c
S
(eq.

below), f \ 2, and that j is given by we[28] equation (19),
Ðnd that

a \ 3j3@2
4n2f2 \ 3

16n2
A2n2

15
S3

2
B3@2 \ 0.04 . (21)

Note that this value is still subject to uncertainties in the
actual value of j (since is but an estimate) and thateq. [17]
the actual value of f need not be exactly 2. Only numerical
calculations carried out with representative boundary con-
ditions would make it possible to ascertain more precisely
the values of j and f. We believe, however, that the Ðgures
adopted in equations (17) and should not be uncertain(20)
by more than a factor of approximately 2. This view is
indeed supported by the fact that the recent numerical
simulations by et al. which take into accountStone (1996),
the vertical stratiÐcation of the disk, a key aspect in our
view, indeed lead to numerically observed a-values of order
10~2, as implied by equation (21).

2.6. Consequences of L imitations to the Magnetic Shearing
Instability

When the vertical component of the magnetic Ðeld
becomes too large, the development of the magnetic shear-
ing instability is inhibited. This is because the instability can
grow only for vertical wavelengths larger than a certain

minimum value : otherwise the restoring magnetic tension
force exceeds the destabilizing centrifugal and gravitational
forces. When this minimum wavelength becomes equal to
the disk thickness, the instability is quenched. This happens

& Hawley for a vertically isothermal disk(Balbus 1991)
when the ratio of gas pressure to magnetic pressure associ-
ated with the Ðeld component perpendicular to the disk
drops below n2/3, i.e., becomes of order unity. This is a
rather stringent condition, which is likely to be met only in
the regions of a disk that are near the accreting object, if the
latter is a sufficiently magnetized object. The pressure
exerted by a Ðeld having its sources in remote objects is
likely to be much smaller than the gas pressure. When the
Ðeld has become strong enough that this situation is rea-
lized, the magnetic Ðeld rigidity is large enough to two-
dimensionalize the turbulent motions in the disk, if they
remain subsonic. The problem of turbulent development in
disks would then be posed in entirely di†erent terms. We do
not consider such a situation further in this paper.

It is interesting, though, to speculate on its possible con-
sequences. First, let us suppose that the Ñow is no longer
turbulent. Then nonlinear instabilities would remain a pos-
sible source of developing perturbations, as well as several
unstable situations that have been identiÐed for strongly
magnetized disks of negligible thickness. Among them, we
should quote the magnetic interchange instability discussed
by & Taam & Aly andSpruit (1990), Lepeltier (1996),

& Spruit and more recently by Stehle,Lubow (1995) Spruit,
& Papaloizou and the spiral wave instability of mag-(1995),
netized disks discussed by et al. The mag-Tagger (1990).
netic interchange instability occurs if the Ðeld decreases
with distance to the axis, and only if there is a deviation
from Keplerian rotation due to the radial component of
Lorentz forces, so that the plasma is partly supported by the
Ðeld. This means that the instability operates only near the
disk-magnetosphere interface. et al. haveSpruit (1995)
shown that such an instability operates in the quasi-
incompressible regime, and only in those regions in which
the Ðeld is dynamically signiÐcant. This means that B2/(2k0)must be of the order of a fraction of ov2. By comparison, the
Balbus-Hawley instability is quenched when the magnetic
energy density becomes comparable to the thermal energy
density where is the sound speed. From the work ofoc

s
2, c

set al. it is known that spiral magnetosonicTagger (1990),
waves grow unstable due to di†erential rotation by the
swing mechanism. The favored azimuthal wavelength varies
with the degree of magnetization. At the radius of the disk
at which the magnetic shearing instability ceases to operate
(i.e., where the Alfve� n speed and sound speed become
comparable), this most unstable wavelength is of the order
of the disk thickness, but it becomes much larger in the
region between this radius and the magnetopause, where
the degree of magnetization becomes larger. So the turbu-
lence that might develop in this region if there is such a
region as a result of such instabilities would consist of two-
dimensional vortices on a scale larger than the disk thick-
ness. It is not certain that any description of their e†ects in
terms of local transport would still be appropriate. If the
magnetic Ðeld that threads the disk is not open but
anchored in the accreting star, the random motion of Ðeld
footpoints in the disk would braid the Ðeld lines in the
region between disk and star, which would lead to some
heating of the tenuous medium in this region by a mecha-
nism similar to that which has been suggested to operate in
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the solar corona Ballegooijen(Parker 1983 ; van 1986 ;
Heyvaerts 1990).

2.7. E†ective Viscosity as a Function of Surface Mass
Density

Adopting the results of equations and the value(19) (20),
of the e†ective viscosity becomes quite deÐnite, and

can be written asequation (12)

l
*

\ 3j3@2
8n2 )h2 , (22)

where j is given by equation (19) and f \ 2. In order to turn
into one for the e†ective viscosity, we need toequation (41)

solve for the vertical force balance and the energetics. This
will eventually give the disk thickness in terms of the e†ec-
tive viscosity and surface mass density & and then as al

*function of &. Before actually doing this, it is useful to
switch to dimensionless quantities. Adopting some refer-
ence radius as a unit of length and the associatedR0Keplerian period in the Ðeld of the accreting mass as aM

*reference time, the natural reference value for di†usion coef-
Ðcients is

l
*0\ R02

SGM
*

R03
. (23)

The dimensionless viscosity l is therefore deÐned as

l
*

\ l
*0 l , (24)

where from equation (22)

l\ 3j3@2
8n2

AR0
r
B3@2Ah2

R02
B

. (25)

Let us now introduce some simplifying assumptions con-
cerning the vertical force balance and energy balance. The
plasma is assumed to be fully ionized hydrogen. The free
particle number density is n, and the mass density is o \ nm,
m being the average mass per free particle, The(m

p
] m

e
)/2.

equation of state is taken to be that of a perfect gas,

p \ nkB T , (26)

where is the Boltzmann constant. The disk is assumed tokBbe optically thick and isothermal in the vertical direction.
This is a reasonable assumption because heat is efficiently
transported vertically by turbulent motions with eddy size
of order of the disk thickness.

The vertical force balance between a pressure gradient
and the vertical part of the gravitational force exerted by
the central star (we do not consider self-gravitating disks)
can then be solved easily, giving

n(r, z)\ n0(r) exp
A
[ GM

*
mz2

2kB Tr3
B

. (27)

This identiÐes the disk half-thickness h(r) as

h2(r) \ 2kB T (r)r3
GM

*
m

. (28)

To Ðnd the temperature T (r), we need to solve the energy
equation. Neglecting the kinetic energy associated with the
radial and vertical components of the velocity, as well as the
thermal energy density and the enthalpy Ñux, which are

small in thin disks, the height-integrated form of the energy
equation is

L
Lt
C
&
A)2r2

2
[GM

*
r
BD

] 1
r

L
Lr

]
G
r
C
&v
A)2r2

2
[ GM

*
r
B

[ l
*

&r2) L)
Lr
DH

\ [2 pB T 4 .

(29)

In this equation, is the Stefan-Boltzmann constant. Thep
Blast term in the divergence is the viscous energy Ñux, while

the right-hand side of represents losses byequation (29)
blackbody radiation through the upper and lower faces of a
circular strip between r and r ] dr. Radial force balance
between gravity and centrifugal forces imposes a Keplerian
azimuthal velocity. Using mass conservation, equation (29)
then takes the form

GM
*

2
CL&

Lt
] 1

r
L
Lr

(r&v)
D

] r&v
L
Lr
AGM

*
2r
B

] L
Lr
A
l
*

&r3) L)
Lr
B

\ 2rpB T 4 . (30)

The angular momentum conservation equation is deduced
from the azimuthal component of the equation of motion
by multiplying it by r. It can be written as

L
Lt

(&r2)) ] 1
r

L
Lr
C
r
A
r2)&v[ l

*
&r2 L)

Lr
BD

\ 0 . (31)

For a time-independent ), as is the case for Keplerian rota-
tion, it can be manipulated, using mass conservation, into
the form

&v
L
Lr

(r2)) [ 1
r

L
Lr
A
l
*

&r3 L)
Lr
B

\ 0 . (32)

Multiplying by ), we obtain an expression for the viscous
Ñux that appears in namely,equation (30),

1
r

L
Lr
A
l
*

&r3) L)
Lr
B

\ l
*

&r2
AL)

Lr
B2] &v)

L
Lr

(r2)) . (33)

Substituting this in equation (30), we Ðnally obtain, for
Keplerian rotation,

pB T 4\ 9
8

l
*

&
r2

GM
*

r
. (34)

Let us introduce also a dimensionless form of the mass
surface density p by introducing a reference mass of theM0,order of the disk mass

&\ p
M0
R02

, (35)

in terms of which the temperature obtained in equation (34)
can be expressed as

T 4(r)\
A9GM

*
M0

8 pBR03
SGM

*
R03
BAR0

r
B3

lp . (36)

DeÐne a reference temperature byT0

T 04\
A9GM

*
M0

8 pBR03
SGM

*
R03
B

, (37)



No. 1, 1996 MAGNETIC FIELD DIFFUSION 411

we then have

T (r) \ T0
AR0

r
B3@4

l1@4p1@4 . (38)

Finally, from this and we obtain the diskequation (28)
half-thickness as

h2(r)
R02

\
A2kB T0R0

GM
*

m
BA r

R0

B9@4
l1@4p1@4 . (39)

Inserting h(r) from this equation in the self-consistency
equation we obtain an equation relating l to itself and(25),
the surface mass density p :

l\ 3j3@2
8n2

A2kB T0R0
GM

*
m
BA r

R0

B3@4
l1@4p1@4 , (40)

which can be solved to give

l\
A3j3@2

8n2
2kB T0R0
GM

*
m
B4@3A r

R0

B
p1@3 . (41)

This expression for the e†ective viscosity is the Ðnal
outcome of our self-consistency argument. It applies
whether or not the disk is in a stationary state.

3. MASS DISTRIBUTION AND SPREADING

3.1. Stationary Mass Flow with Injection at a Given Radius
The mass distribution in the disk evolves according to a

di†usion-type equation, which is obtained easily (Pringle
from the height-integrated form of the mass conserva-1981)

tion equation

L&
Lt

] 1
r

L
Lr

(r&v) \ 0 , (42)

and combining it with the angular momentum conservation
equation Substituting L&/Lt from in(31). equation (42)
equation (31) and assuming a Keplerian velocity proÐle, i.e.,

the angular momentum equation becomes)2\ GM
*
/r3,

r&v
L
Lr

(r2)) \ L
Lr
A
l
*

&r3 L)
Lr
B

. (43)

then gives, for ) Keplerian, the mass Ñux asEquation (43)

r&v\ [3Jr
L
Lr

(Jrl
*

&) . (44)

When this is used in the mass conservation equation (42),
the well-known mass di†usion equation results :

L&
Lt

[ 3
r

L
Lr

Jr
L
Lr

(Jrl
*

&) \ 0 . (45)

This equation disregards the e†ect of any magnetic torque
on the matter. We shall check a posteriori that such a
torque is indeed negligible in the solutions we obtain.

Solutions of have been found byequation (45) Pringle
to illustrate matter spreading by the e†ect of e†ective(1981)

viscosity. The viscosity had been taken as constant for sim-
plicity. Here we consider a source term as well and use the
self-consistent expression derived in whichequation (41),
gives quantitatively but not qualitatively di†erent results,
still in analytical form. To illustrate speciÐcally how matter
distributes itself in a turbulent disk, we set up a solution for
an accretion disk that receives matter from a donor at some
speciÐc radius as illustrated in In thatr0\ x0R0, Figure 2.

FIG. 2.ÈA self-consistently turbulent disk receives matter at a hot spot
situated at radius The turbulent viscosity causes matter to di†use awayr0.from both inward and outward. At time t, the outer disk radius isr0 rout(t).

case, equation (45) has an extra source term. We model this
source by a Dirac function, which in the axisymmetric
model used here means that the source is concentrated on a
circle of radius In reality, it is knownr0. (Horne 1990 ;

et al. that the mass enters the disk at a point,Marsh 1990)
the so-called hot spot, not along a circle. However, the
Keplerian period being much less than the time for matter
to di†use from the mass injection radius to the accreting
star, this does not make any di†erence for radial motion
and radial mass distribution because the matter that enters
at the hot spot spreads all around a corresponding circle in
the disk in a time short compared to the radial di†usion
time. We then expect this simple model to be excellent for
this purpose. It is represented by the equation

L&
Lt

[ 3
r

L
Lr

Jr
L
Lr

(Jrl
*

&) \ S(t)d(r [ r0) . (46)

A stationary solution to exists only if S(t) isequation (46)
independent of time. The injection radius separates anr0inner from an outer region, labeled by subscripts ““ in ÏÏ and
““ out.ÏÏ The total mass Ñux through a circle of radius r is,
from equation (44),

M0 \ 2nr&v\ [6nJr
L
Lr

(Jrl
*

&) , (47)

and the rate of mass injection at is the di†erence forr0, M0 0,v approaching zero between and Inte-M0 (r0 ] v) M0 (r0[ v).
grating the source term in equation (46) between (r0 [ v)
and we obtain(r0] v),

M0 0\ 2nr0 S . (48)

Similarly, since each gram of injected matter brings with it
the speciÐc Keplerian angular momentum at r0,the rate of angular momentum injection at(GM

*
r0)1@2, r0,isJ00,

J00\ 2nr0SJGM
*

r0 . (49)

In a stationary state, the total Ñuxes of angular momentum
are constant in the inner and outer regions. From equation

the total angular momentum Ñux is(31),

J0 \ 2nr
A
r2)&v[ l

*
&r2 L)

Lr
B

. (50)

By this transforms intoequation (44),

J0 \ [6nr5@2) L
Lr

(Jrl
*

&) [ 2nl
*

&r3 L)
Lr

. (51)
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Let us introduce again the dimensionless quantities l and p,
and the variable

x \ r
R0

, (52)

and associate with the reference Kepler pulsationR0

)0\
SGM

*
R03

. (53)

The form of for stationary injection thenequation (46)
becomes

Lp
Lq

[ 1
x

L
Lx

Jx
L
Lx

(x3@2p4@3) \ C d(x [ x0) . (54)

The constant C is given in terms of S, itself related to the
total mass injection rate by(eq. [48]),

C\ SR0
3M0JGM

*
/R03

A3j3@2
8n2

2kB T0R0
GM

*
m
B~4@3

, (55)

and the dimensionless time is

q\ 3
SGM

*
R03

A3j3@2
8n2

2kB T0R0
GM

*
m
B4@3

t . (56)

The solution of the stationary form of isequation (54)

x3@2p4@3 \ AJx ] B , (57)

where A and B are integration constants that take di†erent
values and in the inner and outer regions.Ain, Bin, Aout, BoutEquations and show that the constants A and B are(44) (51)
related to the mass and angular momentum accretion rates,
respectively. Indeed, from equations and(47), (41), (24), (35),
we obtain

M0 \ [6nM0)0
A3j3@2

8n2
2kB T0 R0
GM

*
m
B4@3

Jx
L
Lx

(x3@2p4@3) ,

(58)

and from equations (41) and (51) we obtain

J0 \ 6nM0)02R02
A3j3@2

8n2
2kB T0R0
GM

*
m
B4@3

]
C1
2

x3@2p4@3[ x
L
Lx

(x3@2p4@3)
D

. (59)

For the solution this reduces to(57),

M0 \ [3nM0)0
A3j3@2

8n2
2kB T0R0
GM

*
m
B4@3

A , (60)

and

J0 \ 3nM0 )02R02
A3j3@2

8n2
2kB T0 R0
GM

*
m
B4@3

B . (61)

The mass input at must be balanced by the massr0, M0 0,outÑow in the disk, away from r0 :

M0 0\ M0 out[ M0 in , (62)

and the angular momentum input must be similarly bal-
anced :

J00\ J0 out[ J0 in . (63)

In equations and the mass and angular momen-(62) (63),
tum Ñuxes in the disk are deÐned as positive if oriented
outward, while and are positive, since injected massM0 0 J00and angular momentum enter the disk. Equations (62) and
(63) relate the integration constants of in theequation (57)
inner and outer regions by

Ain[ Aout\ 2Cx0 \ A0 , (64)

Bout [ Bin\ 2Cx03@2 . (65)

Since the angular momentum is transported only by
matter in this model, it can be shown (Pringle 1981),
assuming the boundary layer near the starÏs surface to be
thin, that the inward Ñux of angular momentum is approx-
imately so that in fact, deÐning as theJ0 in\ M0 in)

*
R

*
2 , x

*value of the variable x at r \ R
*
:

Bin\ [AinJx
*

. (66)

Then from equation (65),

Bout \ A0 Jx0[ AinJx
*

, (67)

so that the stationary solution can be written as(eq. [57])

x3@2p4@3 \Ain(Jx [ Jx
*
) x \ x0 , (68)

x3@2p4@3 \ [(A0 [ Ain)Jx ] (A0Jx0[ AinJx
*
)

x [ x0 . (69)

A physically consistent solution should bring matter to the
star in the inner region i.e., and away(M0 in\ 0, Ain[ 0)
from it in the outer region with an associ-(A0[ Ain[ 0),
ated outward Ñux of angular momentum (A0 Jx0[
Ain Jx

*
[ 0).

The solution then has outer mass and angular(69)
momentum Ñuxes that, for the solution to be stationary,
must be absorbed by a sink at the outer edge of the disk.
This outer edge is where the density, as described by equa-
tion (69), vanishes. Its normalized radius is given byxout

xout \ x0
AA0[ AinJx

*
/x0

A0[ Ain

B2
. (70)

Since is larger than and is positive, is largerx0 x
*
, Ain xoutthan The outer matter and angular momentum sinkx0.might be identiÐed with the edges of the Roche lobe of the

accreting star, where the axisymmetric picture of a Ñow
dominated by the gravitational pull of this star breaks
down.

As implied by the localized mass source that appears in it,
any solution of must exhibit a jump of theequation (54)
derivative with respect to x of x3@2p4@3 at of amplitudex0This general condition translates, for the solu-[C(x0)1@2.tion into The more extended the outer(57), equation (64).
part of the disk, the smaller the derivative of x3@2p4@3 on the
right-hand side of the injection point, and the smaller the
mass Ñux to this outer region.

3.2. Spreading of Matter Away from the Injection Radius
Alternatively, if one were to insist that the space in which

the gravitation of the accreting star dominates is inÐnite,
then there would be no outer sink, and the situation could
not be steady until the outer edge of the disk has reached
inÐnity. This happens when In this case, theAin\ A0.injected matter is routed entirely toward the inner part of
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the disk, while the outer part has developed into an inÐ-
nitely extended mass distribution, with density givenp=(x)
by

p=(x) \ A03@4
(Jx0[ Jx

*
)3@4

x9@8 . (71)

The mass of this inÐnitely extended disk is inÐnite, since the
mass integral diverges when p scales as x~9@8. In this limit,
which is reached only when the accretion has been going on
for an inÐnite time, the outer disk has developed into a large
mass and angular momentum reservoir.

Since this represents only an asymptotic state, one would
rather like to calculate the time evolution of the structure of
the disk, which is described by Let us thenequation (46).
consider this equation again and for a while interpret the
reference length as the total disk radius and the referenceR0mass as the mass of the disk at time t. Then the dimen-M0sionless variables x and p are, at about that time, of order
unity. Equation (46) displays two di†erent characteristic
times. The characteristic mass di†usion time is

tdiff\
A r2
3l

*

B
. (72)

Associated with mass injection, there is also a characteristic
mass-feeding time. As seen in the preceding subsection, only
a small part of the total mass injection goes into the outer
part of the disk, when the latter has become very extended.
Let us call the rate of mass feeding to the outer diskM0 out(t)at time t. The characteristic time over which the mass of the
outer disk evolves is

tmass\
Mout
M0 out

. (73)

The mass distribution will evolve in the outer disk region
in a quasi-static regime if

tdiff > tmass . (74)

Since the characteristic mass di†usion time depends on the
position in the disk, this inequality may be satisÐed in
certain regions of the disk only, and not in others. To judge
the validity of inequality we can estimate and(74), Moutas given by the quasi-static solution neglecting forM0 out (69),
simplicity the unimportant term From equationsAin(x*

)1@2.
and we obtain for large(35), (52), (60), xout

Mout \ 2nM0
P
x0

xout
xp(x)dx

B 4nM0 x05@4A03@4
A A0
A0[ Ain

B5@4

]
P
(A0~Ain)@A0

1
(u [ u2)3@4du , (75)

M0 out \ 3n)0M0
A3j3@2

8n2
2kB T0R0
GM

*
m
B4@3

(A0[ Ain) , (76)

while from equations and we obtain(23), (24), (41),

tdiff\
1

3)0

A3j3@2
8n2

2kB T0R0
GM

*
m
B~4@3 x

p1@3(x)
. (77)

With these approximations, the inequality cantdiff > tmassbe rewritten as

x
p1@3(x)

>
4x05@4A03@4
A0[ Ain

A A0
A0[ Ain

B5@4P
0

1
(u [ u2)3@4 du . (78)

Since x and p are of order unity, we see that, when the outer
disk expands and becomes closer to the right-handAin A0,side of this inequality overwhelms the left-hand side. As a
result, the quasi-static approximation becomes asymp-
totically more and more valid.

It is then easy to calculate the motion of the outer edge of
the disk. The quasi-static approximation allows us to calcu-
late the mass stored at time t in the outer part of the disk,
which, from equations and can be written as(35) (52),

Mout(t) \ M0
P
x0

xout
2nxp(x)dx . (79)

Let us recall that p is a function of time also, since the
parameter that enters in expression changes withAin (69)
time. Equations and give the rate of mass injection(58) (64)
in the expanding outer part of the disk as

M0 out \ 3nM0)0
A3j3@2

8n2
2kB T0R0
GM

*
m
B4@3

(A0[ Ain) . (80)

Another independent equation for can be obtained byM0 outinserting the expression (69) for p in the expression for(79)
above and di†erentiating the result with respect toMouttime, noting that and both depend on it. This givesxout A0 inafter a little algebra

M0 out
M0

\ dAin
dt

]
P
x0

xout 2nx(Jx[Jx
*
)dx

x9@8[(A0Jx0[AinJx
*
)[(A0[Ain)Jx]1@4

. (81)

Equating these two expressions of we obtain an equa-M0 out,tion that describes the time-evolution of namely,(A0[ Ain),
d(A0[ Ain)

dt
CP

x0

xout 2nx(Jx [ Jx
*
)dx

x9@8(Jxout [ Jx)1@4
D

\ [3n)0
A3j3@2

8n2
2kB T0R0
GM

*
m
B4@3

(A0[ Ain)5@4 . (82)

The integral over x on the left-hand side is not simple,
which makes it difficult to express and solve this di†erential
equation in the most general case. Asymptotically, however,
the outer radius grows much larger than the injection radius
and the inner disk radius, so that the integral can be calcu-
lated easily, with the result that

CP
x0

xout 2nx(Jx [ Jx
*
)dx

x9@8(Jxout [ Jx)1@4
D

B 2nxout9@8
P
0

1
u3@2(1 [ Ju)~1@4 du . (83)

The value of the integral from 0 to 1 on the right-hand side
is 3/4. Inserting this result and the expression given by

for in the forequation (70) xout equation (82) (A0 [ Ain)gives

d
dt

(A0[ Ain)~5@2 \ 4
5

)0
A3j3@2

8n2
2kB T0 R0
GM

*
m
B4@3

x0~9@8A0~9@4 .

(84)
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From this equation we obtain which is found to(A0[ Ain),decrease with time as t~2@5, and Ðnally, still neglecting x
*
,

an expression for the asymptotic growth of the outer disk
radius :

xout \ ()0 t)4@5x0A02
C
4
A3j3@2

8n2
2kB T0R0
GM

*
m
B4@3D4@5

] (5x09@8 A09@4)~4@5 . (85)

The disk radius is then seen to expand as t4@5 asymp-
totically, with less and less of the accreted mass gathering in
the outer part, and more and more being routed toward the
star.

4. MAGNETIC FIELD DIFFUSION

4.1. Field Di†usion in a Slim Disk
Now we want to investigate the evolution of magnetic

Ðelds threading the turbulent disk to understand, in particu-
lar, the di†usion of matter through it. The turbulence causes
di†usion of that part of the magnetic Ðeld that is organized
on the large scale. In this section only these large-scale Ðelds
are considered explicitly. The e†ect of small-scale Ðelds is
represented by the turbulent transport coefficients. We
ignore, for simplicity essentially, any dynamo e†ect.
Dynamo-generated Ðelds in thin accretion disks are likely
to be on a scale not much larger than the thickness of the
disk & Levy and could poss-(Pudritz 1981 ; Stepinsky 1989)
ibly give rise to a similarly small-scale component in the
diskÏs corona, although this question deserves further study
because the dynamics of these structures in the corona has
not yet been investigated in detail. The Ðeld evolution equa-
tion inside the disk is then

LB
Lt

\ $ Â (¿ Â B)[ $ Â [g
*
($ Â B)] , (86)

where is the turbulent magnetic di†usivity, which scalesg
*as (eqs. and unless some processl

*
[41], [23], [24], [35]),

unrelated to MHD turbulence, for example ambipolar dif-
fusion, gives rise to a magnetic di†usivity much in excess of

Here we assume this not to be so. The magnetic Prandtll
*
.

number for turbulent transport coefficients, shouldg
*
/l

*
,

be of the order of unity, but not necessarily exactly equal to
it. Frisch, & Le� orat Ðnd it equal to 5/7 inPouquet, (1976)
their model. Therefore, we write

g
*

\ l
*0 g \ p

t
l
*0 l . (87)

Because of axisymmetry, the poloidal magnetic Ðeld can
be expressed in terms of a toroidal vector potential that can
be written conveniently as

B
P
\ $ Â

CA(r, z)
r

eh
D

. (88)

We call the function A the Ñux function, since it is pro-
portional to the Ñux through a circle centred on the axis
and stretching out to the point (r, z). The components of B
are

B
r
\ [ 1

r
LA
Lz

, B
z
\ ] 1

r
LA
Lr

, Bh \ Bh(r, z) . (89)

Magnetic surfaces, generated by the rotation of Ðeld lines
about the axis, are surfaces of constant A(r, z). The velocity
Ðeld is represented by its components

¿\ v(r, z)e
r
] r)(r)eh ] v

z
e
z
. (90)

Some algebra shows that the poloidal components of
can be gathered in the following equation :equation (86)

$
CLA

Lt
] (¿ Æ $)A[ g

*
AL2A

Lz2 ] r
L
Lr

1
r

LA
Lr
BD

\ 0 , (91)

which integrates to

LA
Lt

] (¿ Æ $)A[ g
*
AL2A

Lz2 ] r
L
Lr

1
r

LA
Lr
B

\ "(t) . (92)

The space-independent function "(t) can be taken to be zero
because it can be transformed away by the gauge transform-
ation

AŒ \ A]
P
0

t"(t@ )dt@ . (93)

The equation that describes the evolution of the Ñux func-
tion is then

LA
Lt

] v
r
LA
Lr

] v
z
LA
Lz

[ g
*
AL2A

Lz2 ] r
L
Lr

1
r

LA
Lr
B

\ 0 . (94)

Since the disk is thin, all the terms in this equation are not
of comparable order of magnitude. The radial gradient scale
should be of order r, while the vertical one should not be
much smaller than the disk thickness h(r), but might be
much larger. The horizontal and vertical Ñuid velocity are
related by the mass conservation equation, which in a sta-
tionary state and for moderate compressibility implies that

v
r
r

B
v
z
h

, (95)

while the di†usivity is of the order of the Shakura-l
*Sunyaev value, in agreement with our own result (eq. [12]),

l
*

B g
*

B )h2 . (96)

An estimate of the radial velocity results from the angularv
rmomentum equation (43),

v
r
B

l
*
r

B
)h2
r

. (97)

To compare terms in we need an order-of-equation (94),
magnitude estimate of (LA/Lr) and (LA/Lz). Obviously

LA
Lr

B
A
r

, (98)

but LA/Lz cannot be of order A/h because by equation (89)
the component would be much larger than If such anB

r
B
z
.

estimate were to be correct, the Ðrst di†usive term on the
right-hand side of equation (94) would be of order

much larger than all the other terms. As ag
*

A/h2B )h,
result, in a time no longer than the Keplerian period,
L2A/Lz2 would relax to much smaller values, until it
becomes comparable to at least one of the other space
derivative terms. Straightforward estimates give

v
r
LA
Lr

B A)
h2
r2 , g

*
r

L
Lr

1
r

LA
Lr

B A)
h2
r2 . (99)
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Let be the gradient scale for A in the vertical direction.l
zThen

v
z

LA
Lz

B A)
h2
r2

h
l
z
, g

*
L2A
Lz2 B A)

h2
l
z
2 . (100)

Since must be much larger than h, as discussed above, thel
zterm is always negligible as compared to the otherv
z
LA/Lz

terms in and the second z-derivative term canequation (99),
be challenged by them only if is of order r or larger.l

zThus, A(r, z) can be very well approximated inside the
disk at Ðxed r by a parabolic function of z, and A does not
change very much over a disk thickness. So we can write
approximately

A(r, z) \ A(r, 0) ] z2
2

A2 , (101)

where is the value of L2A/Lz2 calculated at the centerA2plane of the disk at distance r from the center. Equation
gives for the Ðrst-order derivative(101)

LA
Lz

\ A2(r) , (102)

and the value of this quantity at the upper disk surface is
approximately

ALA
Lz
B
`

\ h(r)A2(r) . (103)

The second derivative, almost uniform in this approx-
imation, can be expressed in terms of this upper surface
value by

A2\
AL2A

Lz2
B
(r, 0) B

1
h(r)

ALA
Lz
B
`

. (104)

Considering and neglecting as suggested theequation (104)
vertical advection term, reduces toequation (94)

LA
Lt

] v
r
LA
Lr

[ g
*
C1
h
ALA

Lz
B
`

] r
L
Lr

1
r

LA
Lr
D

\ 0 , (105)

where and h(r) are to be taken from the hydrodynami-v
r
(r)

cal solution, and the upper surface derivative (LA/Lz)
`results from the structure of the magnetic Ðeld in the region

exterior to the disk. This region, in which equation (94) does
not apply because the coronal medium is not regarded as
dissipative, should be examined separately, which we do
later on.

4.2. Flux Di†usion in a T hin Disk Connected to an Open
Magnetic Structure

To be speciÐc, let us assume that the magnetic Ðeld that
threads the disk has, in the outer medium, an open struc-
ture. The situation in which it is connected to a central
object is di†erent and is dealt with in & HeyvaertsBardou

The outer medium is assumed to consist of a nondis-(1996).
sipative plasma, an assumption that could require recon-
sideration because of possible turbulence in this region also.
The rotation of the disk generates in this outer medium an
azimuthal Ðeld component. It is conceivable that a wind
could be blown as a result of this interaction under certain
conditions & Payne & Pelletier(Blandford 1982 ; Ferreira

even if the disk plasma is cold. Describing it1993a),

roughly, the process that imposes rotation in the outer
medium by tethering to the disk through the magnetic Ðeld
is similar to the emission of a torsional Alfve� n wave from
the disk in the outer medium, though possibly a nonlinear
one. The twist of the Ðeld in the outer medium would then
be approximately one turn per Alfve� n travel length in one
rotation period. We expect

Bh
B
z
B

r)(r)
vAext

. (106)

If the outer medium is very tenuous, this ratio is very small,
and we can treat the external Ðeld as potential. For com-
plete consistency, the density of the external medium should
be calculated from a modeling of the external zone incorp-
orating the heating and evaporation mechanisms that could
a†ect the diskÈouter medium interaction, and taking into
account the possibility of a wind blowing o† the disk.

When the external Ðeld is indeed potential, the currents
that create it are located at inÐnity or in the disk. The
currents at inÐnity create a permanent Ðeld, not a†ected by
Ñows in the disk, which we refer to as the external Ðeld. The
currents in the disk have a structure similar to surface cur-
rents, since the disk is thin. Their azimuthal surface current
density, is supported by a jump in the radial componentih,of the Ðeld between the upper and lower disk surface.
Assuming a symmetry between upper and lower hemi-
spheres such that the vertical Ðeld components have the
same sign but the radial ones have opposite signs at sym-
metric point, we Ðnd from AmpèreÏs law

k0 ih\ 2B
r`

, (107)

where is the radial component of the Ðeld at the upperB
r`disk surface

B
r`

(r) \ B
r
[r, h(r)]\ [ 1

r
ALA

Lz
B
`

. (108)

The Ñux function in the medium exterior to the disk can
then be separated into a part produced by currents at inÐn-
ity and a part produced by disk currents a :A0

A(r, z) \ A0(r, z) ] a(r, z) . (109)

The function a(r, z) is the unknown of this problem. Since
the Ðeld is potential, a can be calculated from its value on
the disk, at z\ 0. So the ultimate unknown is the function
a(r, 0). Solving a potential problem to express a(r, z) in terms
of a(r, 0) will eventually provide an expression of a Poisson
integral form for the upper disk surface derivative (La/Lz)

`in terms of a(r, 0). Substituting this expression in equation
we shall obtain an integro-di†erential equation for the(105),

one-dimensional function a(r, 0). The e†ect of the variation
with z of a(r, z) in the disk will then have been integrated in
terms of a(r, 0) alone, the memory of this vertical structure
surviving by the presence of the disk thickness h(r) in equa-
tion (105) and in the Ðnal equation that we will now derive.

The Ñux function A(r, z) is related to the components of
the magnetic Ðeld by From AmpèreÏs equa-equations (89).
tion, we Ðnd that it satisÐes the Poisson-like equation

DA\ [k0 jh , (110)

where D is an elliptic operator that di†ers slightly from the
cylindrical Laplacian because A(r, z) is not exactly a com-
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ponent of the vector potential

D\ L
Lr

1
r

L
Lr

] L
Lz

1
r

L
Lz

. (111)

In the region outside the disk, in which the Ðeld is potential,
the source term in vanishes, and the functionequation (110)
a(r, z) is in this region the solution of

Da\ 0 . (112)

The solution of can be obtained in terms ofequation (112)
boundary values of a by an appropriate Poisson formula,
which can be obtained from the GreenÏs function of equa-
tion (110) with homogeneous boundary conditions (i.e., a
function vanishing on the boundary and at inÐnity). Let
G(r, z o r@, z@ ) be that function, responding to a localized
source at r@, z@. It is the solution of

DG\ d(r [ r@ )d(z[ z@ ) . (113)

In the present problem, the domain Q of calculation is the
quarter-plane in which r and z are both positive. Its bound-
ary ! consists of positive r- and z-axes. The Poisson
formula is deduced from the GreenÏs function in a standard
way, as described in the book by & HilbertCourant (1937).
It is only necessary that the operator D obeys a GreenÏs
formula that ensures that for any pair of functions u and v,

PP
Q
(uDv[ vDu)dr dz\

P
!

Au
r

nout Æ $v[ v
r

nout Æ $u
B
ds ,

(114)

where is the outgoing normal to the domain Q and thenoutsense of integration on the boundary is deÐned by the usual
convention that the inside of the domain is on the left. The
validity of in the present case can be provedequation (114)
directly by integration by parts. If then g is the value of the
function a on the boundary, the solution of equation (112) is

a(r, z)\
P
!

g
r

(nout É +G)ds . (115)

In the present particular case, this gives explicitly, since g
vanishes on the polar axis,

a(r, z) \ [
P
0

=
dx

a(x, 0)
x

G
y
(r, z o x, 0) , (116)

where denotes the partial derivative of the GreenÏs func-G
ytion G(r, z o x, y) with respect to the last variable y.

The GreenÏs function is easily calculated explicitly by
noting that G as deÐned by is the Ñux func-equation (113)
tion produced by a current ring of intensity and([k0)radius r@ at altitude z@. The Ñux function must vanish on the
boundary !, a condition that can be taken care of by the
method of images. Using the Biot-Savart law to calculate
the Ñux function of a current ring we obtain(Jackson 1975),

G(r, z o x, y) \ rxF(k
`
)

nJ(r ] x)2] (z] y)2

[ rxF(k~)

nJ(r ] x)2] (z[ y)2
,

(117)

where the variables and are deÐned byk
`

k~
k2̀ \ 4rx

(r ] x)2] (z] y)2 , k~2 \ 4rx
(r ] x)2 ] (z[ y)2 ,

(118)

and the function F(k) is deÐned in terms of the complete
elliptic integrals E(k) and K(k) by

F(k) \ 2 [ k2
k2 K(k) [ 2

k2 E(k) . (119)

The function F(k) has an integral representation

F(k) \
P
0

n@2 (2 sin2 x [ 1)

J1 [ k2 sin2 x
dx . (120)

Using these results to make the solution obtained in
explicit, we Ðnally obtainequation (116)

a(r, z) \
P
0

=
dx

1
2n

a(x, 0)
x

z

J(r ] x)2] z2

] [k2F(k) ] k3F @(k)] , (121)

where now

k2\ 4rx
(r ] x)2] z2 . (122)

When z approaches zero, the factor of a(x, 0) in equation
approaches a Dirac function, as it should. Indeed,(121)

some algebra shows that in this limit, equation (121)
becomes approximately

a(r, z) \
P
0

=
dx a(x, 0)

C1
n

z
(r [ x)2 ] z2

D
. (123)

is sufficient to calculate La/Lz on the bound-Equation (123)
ary. We Ðnd for small z

La
Lz

(r, z) \
P
0

=
dx a(x, 0)

(r [ x)2[ z2
n[(r [ x)2] z2]2 . (124)

The rational fraction on the right-hand side of equation
is an even function of (r [ x) that acquires for small z a(124)

deep negative spike at x \ r of width 2z and depth [1/
(nz2). The integral that appears in equation (124) is con-
vergent, even when a(x, 0) does not vanish at inÐnity. Let us
convert it into

La
Lz

(r, z) \
P
0

=
dx[a(x, 0) [ a(r, 0)]

(r [ x)2[ z2
n[(r [ x)2] z2]2

] a(r, 0)
P
0

=
dx

(r [ x)2[ z2
n[(r [ x)2] z2]2 . (125)

The Ðrst integral approaches a principal part distribution
when z approaches zero. Indeed, in the vicinity of r, one can
separate, for small z, a symmetric interval, (r [ v, r ] v),
much larger than z, but much less than the characteristic
gradient scale of a(x, 0), such that [a(x, 0) [ a(r, 0)] can be
approached by its Ðrst-order Taylor expansion. The
integral is then zero by parity on this interval. Outside
this interval, z can be neglected. As z] 0, the integral
then approaches a principal part. The second integral can
be evaluated explicitly. This Ðnally gives, for vanishingly
small z,

ALa
Lz
B
`

\ P
P
0

=
dx

[a(x, 0) [ a(r, 0)]
n[(r [ x)2] [ a(r, 0)

nr
, (126)
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FIG. 3a FIG. 3b

FIG. 3.ÈThe Ðeld line geometry for a uniform magnetic Ðeld su†ering dragging and di†usion from an accretion disk in a turbulence regime driven by
magnetic shearing instability, or, more generally, by any turbulence having an injection scale comparable to the disk thickness. This geometry has been
calculated here according to matter being injected at cm, with an accretion rate yr~1. The magnetic Prandtl number P iseq. (132), r0\ 1010 M0 0\ 10~8 M

_(a) 5/7 and (b) 0.1.

where P denotes the principal part. To be speciÐc, let us
consider that the external Ðeld is a uniform one, with Ñux
function Then the Ðeld evolutionA0(r, z) \B0 r2/2.

can be written for the unknown function a asequation (105)
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=
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[a(x, 0) [ a(r, 0)]
n[(r [ x)2] [ g

*
h

a(r, 0)
nr

. (127)

Again, the disk thickness h(r, t), the radial velocity v(r, t),
and the turbulent resistivity t) are to be taken from theg

*
(r,

hydrodynamical solution sketched before. isEquation (127)
an improved form of a similar equation derived by Lubow
et al. (1994).

4.3. T hin Disks Supported by Magnetic Shearing Turbulence
are L ow Magnetic Reynolds Number Systems

An important aspect of the disks we have just discussed is
that they are low e†ective magnetic Reynolds number
systems. To see this, let us compare in theequation (127)
advection term v La/Lr with the resistive terms. The domi-
nant ones, namely, the second and third ones on the right,
are of order Note that it has been necessary to(g

*
a)/(rh).

carry out the calculation in to make sure of this, the° 4.2
order of magnitude of these terms being smalller than the
incorrect estimate that would have resulted from(g

*
a)/h2

estimating L2a/Lz2 as being of order a/h2. The Ðrst term on
the right of equation (127) is of order and is much(g

*
a)/r2

smaller than the two following ones. Since is of order )h2g
*and the radial velocity v is of order )h2/r we(eq. [97]),

estimate the e†ective magnetic Reynolds number of the disk
to beR

m

R
m

\ v La/Lr
g
*

a/hr
B

h
r

. (128)

This shows that the advection of the Ðeld self-created by the
disk is much smaller than its di†usion, a characteristic of a
low magnetic Reynolds number system. This is to be com-

pared to the Reynolds number associated with the e†ec-R
vtive viscosity, which from equation (97) can be estimated as

being of order

R
v
\ vr

l
*
B 1 . (129)

The magnetic Reynolds number is much smaller because
the vertical gradient plays a role in the resistive di†usion of
magnetic Ðelds, which it does not do in the viscous di†usion
of matter. As a result of these estimates, we Ðnd that the
Ðeld di†usion equation (127) reduces to
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] vrB0 \ g
*
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=
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[a(x, 0) [ a(r, 0)]
n[(r [ x)2] [ g

*
h

a(r, 0)
nr

.

(130)

This equation describes the resistive evolution of a magnetic
Ðeld associated with a disk current generated by the electro-
motive Ðeld that results from the external Ðeld and thevB0radial velocity. In the present approximation, in which the
reaction of Lorentz forces on the plasma motion is
neglected, the latter is the result of a purely hydrodynamical
calculation. This means that the disk behaves in this limit
just as any laboratory dynamo: an electromotive force is
developed from its imposed motion in an externally
imposed Ðeld, which generates resistively an electric current.
This becomes very clear if we consider a stationary state.
Note that, by equations and the right side of(126) (108),

is simply DeÐning an e†ectiveequation (130) ([rg
*

B
r`

/h).
turbulent electrical conductivity by ands

*
s
*

\ 1/(k0 g
*
)

using equation (130) can be reduced to theequation (107),
simple form of OhmÏs law,

ih\ 2hs
*
([vB0) . (131)

Here is the h-component of the electromotive force([vB0)and is the h-component of the volume- (as¿ Â B0, ih/(2h)
opposed to surface-) electric current density jh. Equation

is simply the azimuthal component of the familiar(131)
OhmÏs equation Since the current thatj \ s

*
(¿ Â B0). ihgenerates the magnetic Ðeld perturbation is obtained from
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equation (131), the associated magnetic Ðeld can be calcu-
lated simply from Biot and SavartÏs law with this known
source. This gives

a(r, z) \ [
P
0

=
dr@
C2B0 h(r@ )v

r
(r@ )

ng
*
(r@ )

D rr@
J(r ] r@ )2] z2

F(k) ,

(132)

where k is the variable deÐned in equation (122).
We have, for illustration, calculated this magnetic Ðeld

for the Ñow pattern calculated in The results are pre-° 3a.
sented in where we have taken the magneticFigure 3,
Prandtl number to be equal to 5/7, as suggested from the
work by et al. It is seen that the externalPouquet (1976).
Ðeld su†ers completely negligible distortion by the advec-
tive radial Ñow. The angle of the magnetic Ðeld with the
vertical is similarly exceedingly small. The general results of
our calculations agree with those of et al. ALubow (1994).
smaller Prandtl number would give rise to a stronger distor-
tion of the magnetic Ðeld, as seen in Figure 3b, which has
been calculated for a Prandtl number equal to 1/10. We do
not regard, however, Prandtl numbers that di†er substan-
tially from unity as realistic when both viscosity and mag-
netic di†usivity originate from the turbulence. We could
envisage the magnetic Prandtl number to di†er strongly
from unity when the ambipolar di†usion is more e†ective in
letting matter slip through the Ðeld than the turbulent mag-
netic di†usivity itself. But this would correspond to Prandtl
numbers larger, not smaller, than unity, and the distortion
of the Ðeld lines would be even smaller than calculated here.
Alternatively, the Prandtl number could be strongly
a†ected if the turbulent motion were predominantly in the
disk plane rather than three-dimensional. This could occur
if the external Ðeld were very strong. Another point worth
stressing is that the ratio is found to be inde-h(r)v

r
(r)/g

*
(r)

pendent of the parameter j deÐned in This isequation (4).
because the radial drift timescale is the viscous timescale, so
that is necessarily independent of j, as is h/r. Sorv

r
(r)/l

*
(r)

our results are not sensitive to the precise way in which the
connection between the turbulence spectrum and the e†ec-
tive viscosity is modeled.

5. CONCLUSIONS

The small angle between the Ðeld and the vertical to the
disk has the important consequence that a cold centrifu-
gally driven MHD wind cannot be launched from such a
disk. Indeed, & Payne have shown that aBlandford (1982)
minimum angle of 30¡ between the Ðeld and the disk normal
is necessary for a wind to be blown merely by the centrifugal
e†ect, without the assistance of pressure. Hence, our neglect
of angular momentum loss by an MHD wind in evaluating
the radial velocity in our purely viscosity-driven inÑow
model of has been a self-consistent assumption. Indeed,° 3
since no wind is blown in the environment of the disk, the
external Ðeld is not loaded with plasma, and so there is no
Ðeld twist and consequently no radial surface current com-
ponent that could exert a torque of magnetic origin on the
disk. We conclude that an accretion disk supported by an
e†ective viscosity due to magnetic-shearing turbulence is a
low magnetic Reynolds number system, which accretes
because of angular momentum di†usion due to e†ective
viscosity and cannot blow any cold centrifugally driven
MHD wind.

Our conclusions agree on this point with those of
& Pelletier who have discussed in whichFerreira (1995),

parameter regime a consistent disk-wind system, in which
accretion is dominantly driven by angular momentum loss
to a wind, could exist. They found this to be possible only if
the e†ective resistivity and the magnetization parameter are
such that the vertical scale of variation of the Ñux function is
much larger than the disk thickness, but not too much
larger, i.e., Ðeld lines have to emerge from the disk not too
perpendicular to the disk plane. They Ðnd that the most
viable magnetic conÐguration for MHD wind-driven accre-
tion is when this scale is of order [rh(r)]1@2. Here this length,
which is deÐned as [(L2A/Lz2)/A]~1@2, is seen from equa-
tions and to be in fact larger by a factor(104), (109), (126)

which is a very large number. Our conclusions(A0/a)1@2,
also agree with the results of et al. and theLubow (1994)
more recent study by & Papaloizou whoAgapitou (1995),
have also found that when the magnetic Prandtl number of
the turbulence is not small, and the e†ective viscosityg

*
/l

*of order of the Shakura-Sunyaev value, a thin disk is a low
magnetic Reynolds number system. These authors did not
calculate the actual value of e†ective viscosity and magnetic
di†usivity, but they stressed the fact that when the magnetic
Prandtl number of the turbulence is, as expected, of order
unity, Ñux di†usion should be so e†ective that the
Blandford-Payne criterion for blowing cold centrifugally
driven winds would not be satisÐed at all, a conclusion that
is entirely supported by our own results. The numerical
illustration of the results of et al. has beenLubow (1994)
made, however, for magnetic Prandtl numbers that are, in
our view, unrealistically small, and that tend to hide the fact
that magnetic di†usivity is so e†ective.

We do not mean, though, that all accretion disks are
unable to launch cold centrifugally driven MHD winds.
Our conclusion applies only to those disks that are able to
develop turbulence having eddies as large as the disk thick-
ness itself. In this case, our analysis shows that a disk in
which accretion is supported by e†ective viscosity, no cold
wind being centrifuged away, is a consistent solution. It may
not be the unique solution, though. On the one hand, a
thermally driven wind could still be emitted by the disk. We
do not explore this possibility further because it calls for a
theory of the heating of the coronal region just above the
disk. On the other hand, it is a priori conceivable also that
solutions other than the one we have just described exist for
the same model parameters (magnetic Ðeld at inÐnity, mass
of the accreting star, accretion rate), in which a faster accre-
tion velocity, allowing for a much larger value of B

r`
/B

z
,

would be supported by angular momentum loss to a cold
wind. We believe, though, that this is somewhat unlikely
because the e†ective Reynolds number in the regime we
have calculated is so small that the accretion velocity would
have to grow enormously larger in a wind-driven regime to
compensate. Ferreira & Pelletier have(1993a, 1993b, 1995)
shown that self-consistent stationary accretion-ejection
structures must be rather Ðne-tuned systems. Conditions for
such structures to exist are, according to & Pelle-Ferreira
tier that the e†ective viscosity scale as i.e., be(1995), a

m
vA h,

proportional to the product of the Alfve� n velocity associ-
ated with the global Ðeld and the disk thickness, and that
the magnetization parameter which is of thek \ vA2/)2h2,
order of the inverse of the parameter beta of the plasma of
the disk, be of order unity. Another major constraint is that
their parameter !, which is proportional to be of3/a

m
2 ,
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order unity, a condition that expresses the requirement that
the forces that propel the wind act near the surface of the
accretion disk. Altogether, these parameters must be such
that the three Ðeld components at the diskÏs surface are
comparable. It is conceivable that such conditions could
result naturally, as claimed by these authors, from the satu-
ration of MHD instabilities. Further studies are necessary
to settle this issue. We note, however, that the condition
deduced by & Pelletier concerning the mag-Ferreira (1995)
netization parameter in wind-driven accretion disks is nec-
essarily violated when the turbulence results from the
magnetic shearing instability. As discussed in this° 2.6,
instability occurs only in high-beta systems. It is quenched
when b approaches unity. It is interesting to note that the
magnetic shearing instability taps the free energy of di†er-
ential rotation. In some sense, as stressed also by

et al. the initial weak Ðeld is but aBrandenburg (1995),
catalyst that allows the instability to proceed, but the turbu-
lence level eventually reached is only very weakly related to
the initial amplitude of this Ðeld.

Our conclusions are illustrated in As discussedFigure 4.
at the end of di†erent e†ective viscosity regimes are to° 2.6,
be expected if the Ðeld threading the disk is large enough to

quench the magnetic shearing instability. Disks of objects
that have a magnetopause at the diskÏs inner edge necessar-
ily have an inner zone that is not subject to this instability.
It is conceivable, but not yet proved, that such disks would
accrete by emission of an MHD wind from their innermost
regions, as also suggested by & Spruit This,Lubow (1995).
according to & Pelletier implies, for station-Ferreira (1995),
ary state, that in some inner disk region, the turbulence
would not be due to a hydrodynamically driven instability,
but would instead involve an MHD instability, with a char-
acteristic scale shorter than the disk thickness (otherwise
the magnetic Reynolds number would still be too small),
saturating at a level that e†ectively depends on the initial
magnetic Ðeld value.

Note Ðnally that the Ðeld line structure outside the disk
should di†er signiÐcantly if the external Ðeld is that of the
accreting star, and not that of remote sources. The study of
what happens in this case is treated in the paper by Bardou
& Heyvaerts (1996).

FIG. 4a FIG. 4b

FIG. 4.ÈA schematic representation of the magnetic structure around a disk interacting with a uniform potential Ðeld. (a) The injection scale of the
turbulence is in this case comparable to the disk thickness. The disk is then a low magnetic Reynolds number system, and the magnetic Ðeld produced by
electric currents Ñowing in the disk is negligible. No centrifugally driven cold wind can be blown from such a disk. If a wind is emitted, it must be thermally
driven. (b) The injection scale of the turbulence is in this case much smaller than the disk thickness. The magnetic Reynolds number is larger than in (a), and
the magnetic Ðeld produced by currents Ñowing in the disk is not negligible to the potential Ðeld. A cold centrifugally driven wind could be emitted from such
a disk and control the angular momentum loss of accreted matter. A completely laminar situation may be impossible because a consistent stationary solution
for the disk-wind connection requires some dissipation & Pelletier(Ferreira 1995).

APPENDIX

The spectrum gives rise to the following rms velocity Sv2T1@2 :(14)

Sv2T \
P

d3kW (k) \ 6nqC(q)v2@3kinj~2@3 . (133)

We have used the fact that the volume element in the modiÐed wavevector space K is related to that in real wavevector space
by

dk
r
dkh dk

z
\ q dK

r
dKh dK

z
. (134)

The turbulence is anisotropic, and in this particular case its correlation length in the h-direction is much larger than in the
poloidal directions. Since we are interested in transport properties in the radial direction, it is the correlation length in the
meridional plane that matters. Let us call it and deÐne it as the weighted average value ofl

M
2n/k

M
:

l
M

\ 1
Sv2T

P 2n
Jk

r
2] k

z
2

W (k)d3k \ 12n3
5Sv2T qC(q)v2@3kinj~5@3 . (135)
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Using this givesequation (133),

l
M

\ 2n2
5kinj

. (136)

We calculate the e†ective viscosity as in which gives° 2.2,

l
*

\ 1
3

l
M
JSv2T \ 2n2

15
J6nqC(q)v1@3kinj~4@3 . (137)

If is the meridional size of these largest eddies, their turnover time isl
M

qturn \ l
M

JSv2T
. (138)

We can think of several other characteristic times. First the rotation time

qrot \
2n
)

; (139)

second, the Alfve� n detuning time, which is the time it takes an eddy to be destroyed because its extremities propagate at
di†erent Alfve� n speeds. Since the cells are anisotropic, one should consider two di†erent Alfve� n times, an azimuthal one

qAlfh \ l
A

l
M

o+(vAh) o
, (140)

and a poloidal one

qAlfP \ l
M

l
M

o+(JSvAP2 T) o
. (141)

The magnitude of the azimuthal Ðeld can be estimated by noting that its rate of creation by di†erential rotation from theBhradial component, typically is balanced by its rate of dissipation by e†ective magnetic di†usivity. Since the poloidalSB
r
2T1@2,

motions alone do not change the relevant time for turbulence to change this component is which is of order ofBh, l
A
/Sv

A
2T1@2,

and sol
A
/Sv2T1@2,

)JSB
r
2T BJSv2T(Bh/lA) . (142)

This is only valid insofar as the h-component of the magnetic Ðeld is not energetically dominant over the turbulent kinetic
energy, which, judging from et al.Ïs simulation, is in fact not very well satisÐed. Still, accepting this as anBrandenburg (1995)
estimate only, we Ðnd that

Bh B JSB
r
2T )l

A
JSv2T

. (143)

For of order r, the local radius, and Sv2T1@2 comparable to the sound speed, itself of order )H, it is seen that grows muchl
A

Bhlarger that the random poloidal Ðeld. This is indeed seen in et al.Ïs calculations. From weBrandenburg (1995) equation (143),
Ðnd

qAlfh B
1
)
S Sv2T

(SB
r
2T/k0 o)

. (144)

Since the poloidal part of the Ðeld is not very far from equipartition, the azimuthal Alfve� n time is of the order of Theqrot.poloidal Alfve� n time is of order

qAlfPB
1
)

)l
M

JSv2T
S Sv2T

(SB
r
2T/k0 o)

, (145)

and it can also be comparable to The Rossby number of the turbulence at this scale, which is proportional to the ratio ofqrot.the rotation time to the eddy turnover time, is

Ro \ 1
2)qturn

\ 1
4n

qrot
qturn

\ 1
2

H
l
M

JSv2T
c
S

. (146)

For slightly subsonic turbulence, the Rossby number may become somewhat smaller than unity. So our assumption that the
eddy turnover time is no larger than the rotation time is satisÐed only marginally, as has been pointed out before (Dubrulle

However, the consequences of this are less dramatic for MHD turbulence, which still has a direct energy cascade in1992).
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two-dimensions, than they are for purely hydrodynamical turbulence. Similarly, we estimate

qAlfvP
qturn

\
S Sv2T

(SB
r
2T/k0 o

. (147)

For MHD turbulence approaching equipartition for the poloidal components, this ratio approaches unity, and again our
assumption of a shorter eddy turnover time is marginal. et al. Ðnd that the turbulence in their simulation is veryHawley (1995)
near equipartition, sometimes even slightly sub-Alfve� nic, and et al. also Ðnd quasi equipartition forBrandenburg (1995)
poloidal components, but not for toroidal ones. It is found then that the nonlinear transfer time can be regarded as being of
order of the turnover time of poloidal eddies. It is possible to express this transfer time from the spectrum itself by the
following argument. In modiÐed wavevector space, the turbulence spectrum looks almost isotropic, with a spectral energy

between K and K ] dK. From equations andE1 (K)dK (14) (134),

E1 (K)\ 4nqC(q)v2@3K~5@3 . (148)

In the inertial range, this energy is transferred with a Ñux v(K), which satisÐes a conservation equation

LE1
Lt

] Lv
LK

\ 0 . (149)

In a stationary state, v(K) reduces to a constant v. however, is useful to show that, in order of magnitude, theEquation (149),
nonlinear transfer time is aboutqtrans

qtransB
E1 K
v

\ 4nqC(q)v~1@3K~2@3 . (150)

The characteristic velocity of eddies of poloidal size 2n/K is obtained by integrating the spectrum from K to inÐnity, which
gives

Sv
K
2T \

P
K

=
W (k)d3k \ 12n

5
qC(q)v2@3K~2@3 . (151)

From this, we obtain the nonlinear transfer time as expressed in of the paper. Taking 4nqC(q) \ 1, the e†ectiveequation (15)
viscosity can be obtained in the way described in This gives for the result shown in which happens to be° 2.2. l

*
equation (18),

of the form of with a value of the dimensionless parameter j given, for this anisotropic turbulence, as inequation (4), equation
(19).
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