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ABSTRACT
We present a new method to add long-wavelength power to an evolved N-body simulation, making

use of the Zeldovich approximation to change positions and velocities of particles. We describe the theo-
retical framework of our technique and apply it to a P3M cosmological simulation performed on a cube
of 100 Mpc on a side, obtaining a new ““ simulation ÏÏ of 800 Mpc on a side. We study the e†ect of the
power added by long waves by means of several statistics of the density and velocity Ðeld, and we
suggest possible applications of our method to the study of the large-scale structure of the universe.
Subject headings : large-scale structure of universe È methods : numerical

1. INTRODUCTION

Computer simulations of large-scale structure play a fun-
damental role in cosmology by providing a better under-
standing of the many issues related to structure formation.
The usual setup of an N-body simulation can be sum-
marized as follows. One generates some initial conditions
for the simulation by placing N3 particles in a cubic box of
side L . The recipe for assigning an initial position and veloc-
ity to each particle is usually the approx-Zeldovich (1970)
imation. This approximation lets one distribute the
particles in the box so that they trace some initial Ñuctuat-
ing density Ðeld with power spectrum P(k). If the density
Ñuctuations form a Gaussian random Ðeld, as is usually
assumed, then P(k) together with the evolution of the
expansion scale factor speciÐes uniquely the cosmological
model of the simulation. One then evolves this self-
gravitating system by integrating numerically the trajec-
tories of all the particles under their mutual gravitational
attraction.

Periodic boundary conditions are commonly imposed on
the box. Since a periodic function has a discrete Fourier
transform, the periodic boundary conditions on the box
imply a discrete sampling of P(k) : the only density Ñuctua-
tions present in the evolution are those with wavelength
j \ 2n/k satisfying the usual periodicity requirement : k2\
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The two parameters L and N determine the dynamical

resolution of the simulation. The box size L Ðxes the force
resolution at large scales, since Ñuctuations on scales j [ L
are not included in the simulation and so are missed. It
determines also the sampling resolution of the power spec-
trum P(k) : a larger L means a denser sampling of Ñuctua-
tions at all scales, as *k P L~1. The particle number N3
instead determines the force resolution at small scale
because, for a given L , it Ðxes the minimum wavelength of
the Ñuctuations present in the initial conditions, via the
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N values also mean more particles per object of interest,
and therefore a better resolution in mass.

The ideal conÐguration is of course a large box size L and
a large number of particles N3. Unfortunately, even with the
current supercomputer power, computer memory and CPU
time impose severe limitations to the values of N3 one can
reasonably take. Given the maximum number N3 of par-
ticles one can a†ord, the choice generally made is therefore
to specialize the size L of the box to a speciÐc purpose. For
example, for a study of the general properties of a cosmo-
logical model, in which the identity and structure of single
objects is of secondary importance compared to the overall
large-scale structure and motions produced in the model,
one will take a large box, i.e., with size L B few] 100 Mpc,
to the detriment of the small-scale resolution in force and in
mass. On the other hand, when the interest is focused on the
internal structure of the class of objects under investigation
(e.g., galaxies or galaxy clusters), the box size L is taken
much smaller, of the order of Bfew] 10 Mpc. In this case,
there are two kinds of disadvantages. First, the missed Ñuc-
tuations on scales larger than the box are still very impor-
tant for the formation of structure. Second, since there are
only three independent Fourier modes associated with
density Ñuctuations of scale equal to the box size L , sta-
tistical Ñuctuations in the density and velocity Ðelds are not
negligible.

The missing power on large scales will cause a sort of
cosmic bias (in the statistical sense of the term) because the
number of high-density regions, the strength of the clus-
tering, and the amplitude of the peculiar velocities will be
systematically lower than in the ideal case of inÐnite N and
L . The statistical Ñuctuations in di†erent realizations of the
same initial P(k) on scale j ^ L will instead introduce a
cosmic variance in the simulation because the measures per-
formed on the density and velocity Ðeld will Ñuctuate
around their statistical mean value. Both e†ects can be dra-
matic if the volume L3 is too small for the statistic one is
considering, and they are particularly evident if one is inter-
ested in the peculiar velocity Ðeld, which receives important
contributions from linear density Ñuctuations of very large
scale. For example, in a standard cold dark matter (CDM)
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universe with a dimensionless Hubble parameter h \ 0.5,
and a linear P(k) normalized to an rms mass density Ñuctua-
tion (in spheres of radius 8 h~1 Mpc) the linear rmsp8\ 1,
bulk velocity of a cube of side 100 Mpc is still well over 500
km s~1. However, a simulation of 100 Mpc on a side will
have zero bulk Ñow on the same scale because by deÐnition
the box is at rest. The missing power on scale j [ 100 Mpc
is responsible for this cosmic bias. A good example of
cosmic variance concerns the measure of the Hubble con-
stant itself. This can assume quite di†erent values locally
because di†erent patches of the universe are expected to
expand at di†erent local rates. Turner, Cen, & Ostriker
(1992) have shown that, for a cold dark matter universe with
true Hubble constant h \ 0.8, the local Hubble constant
measured out to 30 h~1 Mpc in regions comparable to the
north Galactic cap has an estimated value h \ 0.5È1.28 at
the 95% conÐdence level.

The problems listed so far are well known in the literature
of cosmological simulations of large-scale structure.
However, attempts to solve them by inserting in a small-
scale simulation the missing large-scale power have until
now been limited to corrections applied to the mean values
of the statistics [like P(k) or the bulk velocity] (Couchman
& Carlberg Cen, & Ostriker or to the1992 ; Strauss, 1993),
velocity Ðeld only et al. but not individually(Strauss 1995),
to the velocity and density Ðeld. In this paper we propose a
new method to cure these large-scale limitations. This
method is applicable if the cosmic bias caused by the
missing large-scale power is produced by density Ñuctua-
tions that are still in the linear regime. The idea is then to
use standard linear theory and the approx-Zeldovich (1970)
imation to add to each individual particle of an evolved
simulation of size L a random realization of the power
coming from wavelengths larger than the original box size
L . From this idea we named our method by the acronym
MAP (mode adding procedure). The MAP corresponds to
embedding the simulated cube in a much larger (and poss-
ibly inÐnite) one, therefore increasing the volume sampled
and decreasing the cosmic bias and variance associated with
it. Although there is virtually no upper limit to the scale of
the added Ñuctuations, let us call the scale of the largestL bigÑuctuations one reasonably wants to introduce.

A Ðrst straightforward application of this new method is
the construction of di†erent realizations of a very large scale
simulation (e.g., 3000 Mpc on a side) from just one evolved
medium scale (e.g., 200 Mpc) simulation. From this, one
could extract artiÐcial redshift surveys of size comparable to
the real surveys completed or in program, e.g., the Las
Campanas Redshift Survey et al. the ESO(Landy 1996),
Slice Project et al. the Sloan Digital Sky(Vettolani 1994),
Survey & Weinberg and others. The resulting(Gunn 1994),
simulations would have at the same time a scale sufficient to
address the issue, and enough resolution on small scale to
identify properly galactic halos. The artiÐcial surveys can be
used to calibrate the di†erent sources of uncertainties
present in the real data (sparse sampling, redshift errors,
etc.), to estimate the scientiÐc impact expected from the new
data, and to compare them with the predictions of di†erent
cosmological models, via a number of statistics. Other pos-
sible applications include the dynamical study of the role
played in the structure formation process by linear density
Ñuctuations on very large scale. Do they couple with non-
linear modes during time evolution? How do they trigger
the formation of cosmic structure on all scales? How impor-

tant are they when studying the velocity Ðeld or super-
clustering phenomena?

The paper is organized as follows. is a descrip-Section 2
tion of our method. In ° 2.1 we discuss the Fourier space
manipulation required to apply our method to a simulation.
Section 2.2 describes the corresponding steps performed in
position space : a mode removing step and a mode adding
step. In ° 2.3 Lagrangian and Eulerian ways of implement-
ing the technique are considered and discussed. In we° 3
apply the method to an N-body simulation and compare
some statistics of the density and velocity Ðeld obtained
from the MAP simulation with the same statistics applied
to a real N-body simulation performed on large scale.

gives a summary of the results and presents someSection 4
conclusions.

2. METHOD

2.1. Fourier Space Manipulation
The Fourier space of a periodic simulation can be

thought as a cubic lattice. The sampling of the initial isPd(k)
made on a regular cubic grid centered on k \ 0, (o k o4
2n/j), with intergrid size and the exten-*k \ k& \ (2n/L )
sion in every direction determined by the number N3 of
particles used, via the Nyquist relation : k'\ nN/L .

The diagram in shows the central region of thisFigure 1a
sampling. The dots correspond to the positions at which

is evaluated, and the regular grid divides the FourierPd(k)
space in cubes of equal side *k. Each cube is associated with
a discrete Fourier component of the density Ñuctuationdü

kÐeld d(x) : the intensity of density Ñuctuations of wavenum-
ber k is the mean power per mode So dü

k
o2T B Pd(k)(*k)3.

Including in the simulation density Ñuctuations on scales
j [ L corresponds to improving the sampling of Pd(k)
around k \ 0. Our scheme is thus a kind of mesh-
reÐnement algorithm implemented in Fourier space.

Our approach is the following. First we remove, around
k \ 0, the power associated with the Fourier modes of the
original sampling. This means deleting the power of a
number of cubes each of side *k \ (2n/L ) in the central
region of Fourier space. Then we add back new power by
Ðlling the same region with a larger number of smaller
cubes, each of side *k@\ (2n/mL ) (with m a positive integer).
The power per mode of these new cubes is assigned with a
random realization of the (Rayleigh distributed) linear
power spectrum at the corresponding positions ; thisPd(k)
ensures that the correct amount of power is added to the
simulation. The procedure is sketched in for theFigure 1b
case m\ 4 : a grid 4 times Ðner is substituted for the original
one in Fourier space, out to an extension inr

k
4 k/k&\ 1

each direction. Subtracting a cubic region of extension r
kcorresponds to removing cubes of side 2n/L from(2r

k
] 1)3

the Fourier space.
Our method adds long-wavelength power to a simulation

at the end of time evolution. To ensure that the result is
dynamically consistent, we must remove and add only
power associated with Ñuctuations that are still in the linear
regime. The linearity constraint may be interpreted in di†er-
ent ways. The most general requirement is that the root
mean square density Ñuctuation associated with linear
waves must be smaller than unity : Another straight-pd \ 1.
forward characteristic of linear waves is that they evolve in
agreement with the equations of linear theory. A third
requirement is that linear waves should not couple dynami-
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FIG. 1.È(a) Pictorial representation of the Fourier space for a periodic simulation on a cubic box with side L . The plot shows one plane of a
three-dimensional distribution. Each small Ðlled square corresponds to a position at which the power spectrum is sampled by the initial conditionsPd(k)
given to the simulation. The dashed grid divides the space in cubes of equal volume (*k)3, where k \ (2n/L ), and each cube is associated with a mean power
per mode (b) Pictorial representation of the Fourier space of a MAP simulation : adding power from wavelengths larger than the original LPd(k)(*k)3.
corresponds to placing a Ðner sampling of the power spectrum around k \ 0. See text for further discussion.

cally with any other wave. This issue has been explored by
& Bertschinger who Ðnd that for a cold darkJain (1994),

matter spectrum of density perturbations mode coupling
can transfer signiÐcant power to shorter waves from long
wavelengths still nearly in the linear regime. We can
monitor this by checking that the longest mode in our orig-
inal box has linearly growing amplitude, but even this is not
a rigorous limit because longer waves absent from the box
might have caused the amplitude already to depart from
linear growth. For now, we adopt the practical viewpoint of
trying the method and testing later for e†ects of nonlinear
coupling. We will discuss this issue further in the summary
at the end of this paper.

Whichever linearity requirement we choose, this will put
a limit on the region of Fourier space in which we can
perform the power substitution. In the example of Figure 1,
we manipulate the power in a cube of extension r

k
\ 1 ;

depending on the simulation, we may extend the substituted
region up to higher k.

2.2. T he MAP idea : Mode Removing and Mode Adding
To remove and add the power as described in we° 2.1,

decided to use the displacement Ðeld and to perform the
power manipulation by mean of the Zeldovich (1970)
approximation. In this approximation, each Ñuid element
moves along a straight line with a velocity extrapolated
linearly from its initial velocity.

We will work in comoving coordinates with andq
i

x
ibeing respectively the initial (Lagrangian) and Ðnal

(Eulerian) position of the ith particle of the original simula-
tion, i \ 1, 2, . . . , N. We will denote by x@ the Ðnal particle
positions after the mode removing step and xA the Ðnal
positions after the mode adding step.

Before describing how we perform the mode substitution
in practice, we will review brieÑy some relations between the
density, velocity, and displacement Ðelds that will be used
later. The relation between the Eulerian and Lagrangian
position of a Ñuid element at x is given by the displacement
Ðeld w : x(q, t) \ q ] w(q, t). By applying mass conservation

and assuming that x(q) is one to one (no orbit mixing), we
can write the exact relation

d(x) \
KK Lx

Lq
KK~1[ 1 \ [$

q
Æ w(q) ] O(t2) . (1)

Note that w is the full, nonlinear displacement. This relation
is still mixing Lagrangian and Eulerian coordinates ;
however, in the linear approximation we may consider the
displacement to be a function of x and write

d(1)(x) \ [$
x

Æ w(1)(x) , (2)

where now both d(1)(x) and w(1)(x) are Ðrst-order quantities.
We see how the time dependence of the linear displacement
Ðeld is that of d(1)(x, t), that is, considering only the growing
mode Using this result and taking theD

`
(t) : w(1)(t)P D

`
(t).

time derivative of the mapping q ] x(q), we obtain to Ðrst
order the linear relation between the comoving peculiar
velocity and the displacement Ðeld at time t :¿4 dx/dt

¿(1)(x) \ H0 f ())w(1)(x) , (3)

where In particular, iff ()) \ d log D
`
/d log a B )0.6.

)\ 1, the linear displacement Ðeld and the linear peculiar
velocity Ðeld coincide if units of km s~1 are used. Zeldovich

approximation is then written as(1970)

x(q) \ q ] D
`
(t)w(1)(q)\ q ] D

`
(t)

H0 f ())
¿(1)(q) . (4)

The steps we follow in practice are the following (all
equations are meant at a given time t) :

1. Starting with a simulation performed with N particles
on a cubic volume L3, we compute the comoving displace-
ments as i\ 1, . . . , N. We use these displace-w

i
\ x

i
[ q

i
,

ments to deÐne a displacement Ðeld w on a regular grid in
position space. This can be done in di†erent ways, as we will
see in the next subsection.

2. Mode Removing.ÈWe decompose the displacement
Ðeld into the contributions wlong, due to the modes that we
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are going to subtract from the simulation, and wshort due to
all the other modes : w\ wlong ] wshort. We subtract, the
long-wavelength power from the simulation by inter-
polating wlong to the Eulerian position of each particle and
subtracting it, changing in this way each particleÏs position.
The velocities are changed in the same way, by taking
advantage of the linear relation between them and the dis-
placements in equation (3) :

x
i
@\ x

i
[ wlong(x

i
) ; ¿(x

i
@)\ ¿(x

i
) [ H0 f ())wlong(x

i
) ;

i \ 1, 2, . . . , N . (5)

Another way to subtract the large-scale contribution to
the velocities would be to decompose directly the velocity
Ðeld as we did for the displacement, instead of using the
linear relation between the two. We expect the two pro-
cedures to give the same result, as long as the basic assump-
tion of removing only linear modes holds. Note that we did
not subtract the displacements wlong at the q (Lagrangian)
positions of the particles. If we did that, we would disrupt
the nonlinear structures that formed during the evolution of
the simulation and smear out the power on small scales. So
far the change in positions does not make use of the Zeldo-
vich approximation because the subtracted displacement is
the actual one and not the initial one times the growth
factor We are, however, assuming linear theory in theD

`
.

relation between the velocity and displacement Ðelds, which
is only approximate even for long waves.

3. Mode Adding.ÈWe generate a new set of initial condi-
tions consisting of random long-wavelength displacements

. . . , in a cube of side mL , by sampling randomly thew1`, w
N
`

power spectrum only at those positions around k \ 0Pd(k)
corresponding to the long-wavelength modes we are going
to add. These displacements are then evolved linearly up to
the present time, interpolated again to the Eulerian position
of each particle, and added to the positions and velocities as
prescribed by the Zeldovich approximation :

x
i
A\ x

i
@] D

`
(t)w`(x

i
@) ;

¿(x
i
A) \ ¿(x

i
@) ] D

`
(t)H0 f ())w`(x

i
@) ;

i \ 1, 2, . . . , N . (6)

The Ðnal result is a set of particle positions and velocities
that now include the e†ect of density Ñuctuation waves as
long as mL .

We stress the importance of adding the long-wave power
by interpolating w` to the new positions x@, not at the
original positions x. In fact, in the MAP view the x values
are just some wrong Eulerian positions at which the par-
ticles stand due to the missing large-scale power. Consider-
ing only the waves we subtract and add, we can identify x

i
@

with the Lagrangian position q. The correct way to apply
the approximation isZeldovich (1970) x \ q ] D

`
w`(q),

which indeed corresponds to As a check,equation (6).
we also tried the alternative formulation : x

i
A\ x

i
@

As expected, the results do not reproduce] D
`
(t)w`(x

i
).

satisfactorily the linear long-wave power one is introducing.

2.3. L agrangian versus Eulerian Approach
As sketched in we need to deÐne a displacement° 2.2,

Ðeld on a regular grid. This can be performed in two ways.
Starting from a set of N displacements . . . , we canw1, w

N
,

assign each displacement to its initial positionw
i

q
i
: w

i
4

and writew(q
i
)

wL(q) \ ;
i/1N w

i
dD(q [ q

i
)

;
i/1N dD(q [ q

i
)

, (7)

where is a Dirac delta function. The subscript L standsdDfor L agrangian because the resulting displacement Ðeld is
deÐned on a regular grid of initial positions.

Alternatively, we can assign every displacement to thew
icorresponding Ðnal position and interpolatex

i
: w

i
4 w(x

i
)

such displacements onto a regular grid of Ðnal positions x
gby means of a suitable window function W ; the resulting

displacement Ðeld will be called Eulerian and indicated by a
subscript E :

wE(xg
) \;

i/1N w
i
W (x

g
, x

i
)

;
i/1N W (x

g
, x

i
)

. (8)

In subtracting the longest waves from the parent simula-
tion, we used the Eulerian displacement Ðeld with awE(x),
window function W corresponding to a triangular shaped
cloud (TSC) interpolation on a regular cubic grid with 323
mesh points. The mode adding part was performed instead
using the Lagrangian Ðeld because we assigned thewL(x)
displacements generated by the long waves to a grid of
initial positions q as is usually done when generating stan-
dard initial conditions for a simulation. However, we do not
expect the choice between and to be fundamental towL wEthe Ðnal result. In fact, the displacement Ðelds we are con-
sidering are due only to long, linear waves ; at a(wL [ wE)given position is a second-order quantity.

In practice, the displacements employed by equations (5)
and are computed by interpolating the displacement(6)
Ðeld from the grid points to the Eulerian particle position :

w(x) \;
xg

w(x
g
)W (x, x

g
)

;
xg

W (x, x
g
)

, (9)

where w may be either or and x is the particle posi-wL wE,tion. The sum is extended over all the grid points in thex
gsimulation. If is used, the grid points stand of coursewL x

gfor the initial positions i \ 1, . . . , N.q
i
,

3. APPLICATION TO A SIMULATION : MAP 8 ] 144

As a Ðrst application of our technique, we will take a
medium range, high-resolution N-body simulation, evolved
originally in a periodic cube of side L , replicate it m3 times
in a larger cube, and add to it the missing power from the
long wavelengths not sampled in the original cube, up to
j \ mL . We use a P3M N-body cosmological simulation of
an EinsteinÈde Sitter cold dark matter universe, with a
dimensionless Hubble constant h \ 0.5, evolved in a cube of
side L \ 100 Mpc & Bertschinger The simula-(Gelb 1994).
tion was run with 1443 collisionless particles, each with
mass 2.3 ] 1010 and a Plummer softening radius of 65M

_kpc. We chose the output of the simulation corresponding
to a linear normalization We will refer to thisp8\ 0.7.
simulation as P3M144. This simulation has high mass and
force resolution and is particularly suited for studying the
dynamics of cold dark matter halo formation and the small-
to medium-scale structure. On the other hand, its size is too
small to allow a study of the velocity Ðeld on large scales
through statistics like the bulk Ñow or the velocity corre-
lation tensor. We will compare statistics of the density and
velocity Ðeld for P3M144, both before and after applying
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the MAP, and for a reference N-body simulation evolved on
a much larger scale. The latter, which we call P3M256, was
run with identical cosmological parameters as P3M144, but
it has 2563 particles in a cube of side L \ 640 Mpc and a
Plummer softening radius of 160 kpc.

One way to verify the assumption of large-scale linearity
for the Ðelds in P3M144 is to measure the rms power associ-
ated with the long waves that are removed from and added
back to it. The rms density Ñuctuation and displacement are
deÐned directly in Fourier space respectively as

pd\ J; Pd(k)(*k)3 and trms \
S

; Pd(k)
(*k)3
k2 ,

(10)

where the sums are extended over the modes under investi-
gation. Referring to the picture of Fourier space in Figure 1,
we tried the mode substitution on P3M144 in a cubic region
of extension This corresponds to removing ther

k
\ 1.

power associated with the 27 central cubes of side *k \
(2n/100) Mpc~1 each. The displacement Ðeld associated
with the removed region of Fourier space is what we called
wlong in Its root mean square value computedequation (5).
from P3M144 as in results in Mpc.equation (10) trmslong\ 7.1
The rms displacement due to all the wavelengths present in
the simulation is Mpc, showing how most of thetrms \ 11.2
displacement is due to the long waves present in the simula-
tion. This is in agreement with what we said earlier about
the peculiar velocities : both the velocity and displacement
Ðelds receive the biggest contribution from large-scale
density Ñuctuations. This fact, however, does not invalidate
our linear theory approximation because the long-
wavelength displacement and velocities correspond to
nearly uniform (bulk) motions for the particles, with no
creation of nonlinear structures such as pancakes. This is
conÐrmed also by the value of the rms density Ñuctuation
due to the removed modes : is less than one, aspdlong\ 0.55
we would expect if the linear approximation applies. We
will see if this is small enough when we compare with a
larger simulation below.

We computed from the simulation at di†erent time-Pd(k)
steps and plot in the growth rates of the lowestFigure 2a
modes, normalized to the value of at a(t) \ 0.1. FigurePd(k)
2b shows the analogous plot for P3M256, for comparison.
Note that in this case the plot is normalized to a scale factor
a(t) \ 0.2, and the most evolved output of the simulation
corresponds to a(t) \ 0.7. From Figure 2 we deduce that all
the modes of P3M144 up to are approximately inr

k
(3)1@2

the linear regime because their growth rate departs from the
linear prediction by less than 20% even at the latest times.
On the basis of these two tests, we conclude that is ar

k
\ 1

good choice for the region of Fourier space of P3M144, in
which we will carry out our mode substitution.

We recall that the new sampling of the power spectrum
around k \ 0 will have a resolution m times the initial one :
*k@\ *k/m, as shown in We estimated that m\ 8,° 2.1.
twice the resolution of the example in is a reason-Figure 1b,
able choice. In terms of wavelength, this corresponds
roughly to removing linear displacements generated by
density Ñuctuations of scale j \ 100 Mpc and to adding
back displacements associated with scales j ½ [67,800]
Mpc. However, since the geometry of Fourier space forced
us to remove and add power in cubic regions, there are

FIG. 2.ÈRate of growth for the density Ñuctuation power spectra of (a)
P3M144 and (b) P3M256. Growth is plotted as a function of k and is
normalized to the growth predicted by linear theory. Deviations from the
linear approximation show as departures of the curve from a unity value.

some shorter wavelengths removed and added as well, cor-
responding to the edges of the cube. SpeciÐcally, we remove
modes up to a minimum Mpc and add modes upj&\ 58
to a minimum Mpc. Considering a maximumj&\ 38
Ñuctuation scale of 800 Mpc guarantees that we are includ-
ing most of the power driving the velocity Ðeld for a stan-
dard cold dark matter model. In fact, a cube of side 800
Mpc has an rms bulk Ñow of roughly 150 km s~1 for p8\
1, much lower than the bulk Ñow of the original box.
Taking 83 replicas of the original simulation blows up the
total number of particles to more than 1.5 ] 109, too many
for us to retain. We chose to keep a di†erent random sub-
sample of 32,000 particles from each of the 512 replicas of
the original simulation, for a total of 16,384,000 particles
over the (800 Mpc)3 volume. We will refer to this simulation
as MAP8] 144.

The rms displacement and density Ñuctuation due to the
added modes and computed as in areequation (10) trms` \
10.1 Mpc and (we recall that the linear normal-pd` \ 0.63
ization for P3M144 is We Ðnd, as expected, thatp8\ 0.7).
the added power is larger than the power we subtracted
from the simulation : and However,trms` [ trmslong pd`[ pdlong.the extra power has been added in a way consistent with the
power spectrum underlying the simulation and satisfying
the requirements of the linear approximation.

The Ðgures quoted for the rms density Ñuctuations
associated with the removed and added modes might look
high when compared to the normalization of the original
simulation. In particular, one might wonder how the long
waves can introduce an rms density contrast as large as

if The answer to this question is foundpd`\ 0.63, p8\ 0.7.
in the di†erent ways that were used to compute the density
contrast. While refers to a spherical top-hat Ðlter,p8\ 0.7
the Ðgures associated with the long waves were computed
with which gives direct summations of theequation (10),
power of each mode with no Ðlter function to smooth it.
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FIG. 3.ÈMAP applied to a Lagrangian slice of particles originally on a grid. We placed 200] 200 test particles on a regular two-dimensional lattice of
side 800 Mpc and displaced them by mean of the (three-dimensional) long-wave displacement Ðeld described in the text. The Ðeld has beent

`
(x) t

`
(x)

generated using the same Fourier modes that will be added to P3M144, i.e., using only the power coming from scales between 800 Mpc and roughly 50 Mpc.
L eft : A projection of the entire slice ; right : a blowup of 200 Mpc on a side taken from the left panel.

Equivalently, the Ðlter function for the spherical top hat is
sufficiently di†erent from the Ðlter function corresponding
to the discrete mode distribution we are dealing with that a
direct comparison of the two is not possible.

Throughout this section, we will compare the results and
statistics from MAP8 ] 144 with those from P3M144 and
P3M256. We divide the analysis in two parts. The Ðrst part
is dedicated to the study of the density Ðeld : we will show
the e†ect of adding long wavelengths on both the morphol-
ogy and the statistics. In the second part, we will study the
velocity Ðeld.

3.1. T he Density Field
To give a Ðrst visual impression of the e†ect of long waves

on a distribution of matter, we applied the MAP to a two-
dimensional sheet of regularly spaced particles. The result is
shown in the modulation produced by the longFigure 3 :
waves is evident. The displacement Ðeld has moved the par-
ticles from their grid positions, creating density Ñuctuations
on the required scales ; the shortest Ñuctuations are of the
order of 40 Mpc. In the most crowded regions, the particle
trajectories are relatively close to shell crossing but have not
yet reached it, as can be seen clearly in the right panel,
which shows a blowup of the part of the slice enclosed by
the square imprinted on top of the left panel. The magniÐed
region, 200 Mpc on a side, is subdivided into four equal
parts, each of which has the same size as P3M144. One can
see how the e†ect of long waves on di†erent replicas of the
original simulation changes the global distribution of
matter, modulating the preexisting structure in di†erent
ways on di†erent copies.

Next we want to make sure that the small-scale, nonlin-
ear clustering present in P3M144 is not changed or dis-
rupted when we add the extra long-wavelength power. We
tested this expectation by applying the MAP to a two-
dimensional network of Ðlaments, shown in AfterFigure 4.

the action of the MAP, the network is still connected, i.e.,
the topology of the structure has not been modiÐed by
long-wave Ñuctuations. However, the Ðlaments have been
stretched here and compressed there, along all three dimen-
sions, with di†erent strength and e†ect in di†erent places.
We can measure how much ““ stretching ÏÏ or ““ compression ÏÏ

FIG. 4.ÈIn a box of 800 Mpc on a side, particles were laid in order to
mimic a two-dimensional network of one-dimensional structures. The par-
ticles were initially distributed in the x-y plane along 8 ] 8 Ðlaments
stretching across the box in both the x and y directions, as indicated by the
dashed lines. The Ðlaments have uniform density along their axis ; each
contains 5000 particles. The broken solid line shows how this network of
particles has been modulated by the action of the long waves depicted in

The cut refers to a slice of thickness 20 Mpc. The sections of networkFig. 3.
apparently missing are just displaced along the line of sight (z-axis), enough
to make them fell out of the slice shown here.
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the long waves produced on the structure at di†erent posi-
tions by looking at the derivative of the displacement Ðeld
along the Ðlaments. We chose randomly one of the 16 Ðla-
ments shown in Figure 4 and computed the three com-
ponents of the displacement Ðeld along it. These are shown
in the Ðrst panel of Figure 5.

The displacements plotted in are continuousFigure 5
functions as expected, meaning that there is no ““ stripping ÏÏ
of two nearby particles due to the long waves. The total
three-dimensional displacement of a particle is shown in the
second panel. Its derivative tells us how much two initially
close particles can be taken apart by the long waves. The
steepest part of the function is blown up in the third panel.
The derivative on the slope between x \ 500 Mpc and
x \ 520 Mpc is approximately constant and has a value

If we take this as a Ðgure representative of theds/dx0B 0.5.
whole displacement Ðeld, it tells us that particles originally
in a structure of size R will be taken apart at most by an
amount equal to R/2, that is, half the size of the structure.
Hence, the identity of, e.g., dark matter halos is preserved by
the MAP if the mean interhalo separation is greater than
the size of each individual halo. As this is usually the case,
we do not expect the small structures of the halo to be
disturbed appreciably by the action of the long linear waves
of the MAP, although the Ðnal word on this issue can be
given only by direct analysis of the halos through some
group Ðnding algorithm, which we have not yet done.

In we compare MAP8] 144 and P3M256 byFigure 6
showing slices of 640] 640 ] 10 Mpc3. The linear power
spectrum normalization is for all slices. In thisp8\ 0.7
Ðgure, we sampled the particles of the three simulations so
that the number of particles shown in each slice is approx-
imately equal. Figure 6a shows a slice from the original
P3M144, replicated over such a volume, prior to any mode
substitution ; the cut shows regions with structure as large
as the whole original simulation P3M144, and the period-
icity over 100 Mpc is evident. Figure 6b shows the same
Eulerian slice after we performed the mode substitution. In

most of the periodicity has been disrupted : theFigure 6b
long waves have stretched here and compressed there the
original pattern of clustering and voids, resulting in a more
varied structure. New patterns have developed with a char-
acteristic scale much larger than the original box size.
Figure 6c shows a slice from the P3M256 N-body simula-
tion. It is relatively easy for the eye to see the richer range in
patterns of this true simulation when compared to Figure
6b. Such a comparison shows the residual periodicity of
MAP8] 144, in the form of cell-like structure of about the
size of the original simulation, P3M144. Cells of similar size

TABLE 1

DENSITY AND VELOCITY MOMENTS

Parameter P3M144 MAP8] 144 P3M256

Sd2T1@2 . . . . . . . . . . . . . . . . 1.96 1.94 2.00
S o ¿ o T(km s~1) . . . . . . . . 655 722 699
Sv2T1@2 (km s~1) . . . . . . 768 827 804

appear also in Figure 6c, but they are less evident due to
their more irregular distribution. Although the Ðgures give
an idea of the performance of the MAP on large scales, they
are also slightly misleading in that they do not show how
much better MAP8] 144 actually is on small scales owing
to its better resolution when compared to P3M256. This
can be shown only by speciÐc tests, like the ones we are
going to present in the next sections. On the whole, the
largest structures which can be identiÐed in Figures 6b and
6c have roughly the same size, of the order of about 150
Mpc. The relatively emptier regions seen in Figure 6b, in
comparison with Figure 6c, are due to the sparse sampling
we had to apply to P3M144 (roughly one particle in 90) in
order to reduce the total number of particles in the (800
Mpc)3 box to 16 ] 106.

In we plot the logarithm of the one-point densityFigure 7
Ñuctuation distribution function f (d) obtained by comput-
ing the density Ðeld on a regular lattice with 5 Mpc spacing
using the TSC interpolation scheme. We also computed the
rms density Ñuctuation for our various simulations ; the
values obtained are listed on the Ðrst row of We seeTable 1.
that MAP8] 144 has a larger number of grid points with
no particles and a longer tail of high overdensities. The
abundance of empty grid points is due to the sampling
problem noticed already in In order to produceFigure 6b.
MAP8] 144, we took only 32,000 particles from each copy
of P3M144. This corresponds to an average of 32 particles
contributing to the density value of each grid point ; such a
number is evidently too low to allow a good sampling of
very underdense regions, which turn out completely empty.
This does not happen for P3M144, in which the average
number of particles contributing to a grid point is about
3000. As for P3M256, the Ðgure shows that 64 particles per
grid point seem enough for a good sampling, but this is
probably due to the larger particle mass of this simulation.

shows for P3M144, both before and afterFigure 8 Pd(k)
removing the long waves, as well as for MAP8] 144Pd(k)
and P3M256. The spectra have been computed using a 5123
regular grid (1283 for P3M144 after the mode removing) ;
they include both a deconvolution from the interpolating
scheme and a shot noise subtraction. The di†erent starting

FIG. 5.ÈDisplacement exerted by the MAP (in Mpc) on one of the Ðlaments of L eft : Three components of the displacement Ðeld vs. the coordinateFig. 4.
along the Ðlament. Middle : Amplitude of the total displacement along the Ðlament. Right : blowup of the steepest part of the middle panel.
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FIG. 6.ÈEulerian slice taken from (a) P3M144, (b) MAP8] 144, and (c) P3M256. Each slice is 640] 640 ] 10 Mpc3. Only subsamples of particles from
P3M144 are replicated in (a) ; in (b), the same Eulerian slice in (a) is shown, after long waves have been added up to a scale of 800 Mpc. In (c), a comparable
slice from the true N-body simulation P3M256 is shown, performed in a volume of 640 Mpc on a side. Note that since in (c) only one particle of every two
from P3M256 is plotted, a pattern appears as if particles were aligned along chains. This is just due to the grid used in the initial conditions.

and ending point for the curves are a consequence of the
di†erent scales of the simulations.

If our assumption of linearity is correct, we should see in
the same change in power that we performed on thePd(k)

displacement Ðeld. In fact, we do see that the amplitude of
the power spectrum after mode removing has decreased by
a factor of about 40 in the Ðrst bin, corresponding to modes
with 1.5]. We note, however, that the power*k/k& ½ [0.5,
spectrum after mode removing seems to be slightly lower
than the original one : deÐning whereb2(k) 4 Pd(k)/Pd~(k),

is the power spectrum of P3M144 after the modePd~(k)
removing step, we found that b(k) B 1.15 for high k. This
may be due to some mode coupling between small and large
k, caused by the fact that some of the subtracted waves are
not evolving in a sufficiently linear way. If this is the case,
then our tolerance of D20% departures from linearity
shown in would not be enough to ensure accuracyFigure 2

to better than 15%. To test this possibility, one could apply
the mode removing to a larger simulation, e.g., twice the
linear size of P3M144, and see if the e†ect is still there. On
the other hand, the fact that P3M256 also has a power
spectrum amplitude that is little lower than that of P3M144
on small scales suggests that the explanation of these di†er-
ences could be more complicated.

As a check of our method, we tried also to subtract from
P3M144 a larger number of modes, corresponding to cubes
of extension 3, and 4 in Fourier space. We found thatr

k
\ 2,

removing shorter and shorter waves from the displacement
Ðeld does not correspond to removing the equivalent power
from the density Ñuctuations because the linear relation
between the displacement and density Ñuctuation Ðeld
breaks down for small scales.

The spikes shown by the power spectrum of the MAP
simulation at log k ½ [[1, [0.6] are an artifact due to the
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FIG. 7.ÈDensity Ñuctuation distribution functions for P3M144 (solid
line), MAP8] 144 (dot-dashed line), and P3M256 (long-dashed line). Di†er-
ential (a) and cumulative (b) distributions are plotted. In each case, the
density has been calculated by interpolating the particle positions on a
regular cubic lattice with intergrid spacing of 5 Mpc. A TSC interpolating
scheme was used. See the text for discussion.

uneven sampling of power (as shown in This wasFig. 1b).
not taken into account in the way is evaluated numeri-Pd(k)
cally because the power summation is made in spherical
shells with constant width *k \ (2n/800) Mpc~1. The e†ect
shows up at values of k at which the old and new power
sampling mix together, and it disappears at higher wave-
numbers due to the higher number of modes present in each
shell.

The global agreement of the power spectra of P3M144,
MAP8] 144, and P3M256 should imply an equally good
agreement of the corresponding mass autocorrelation func-
tions. Indeed, we found that this statistic di†ers by less than
35% (or 0.13 in logarithm) between the three simulations

FIG. 8.ÈDensity Ñuctuation power spectra for the three simulations.
The plotted curves have been corrected for shot noise and have had the
mass assignment scheme deconvolved.

over a range of pair separations not inÑuenced by small-
scale force softening or by border e†ects.

3.2. T he V elocity Field
We would like to test the MAP performance on the

velocity Ðeld in the same way as we tested the density Ðeld.
Unlike the density, the velocity has the advantage of being
deÐned (for single particles) without any smoothing,
enabling us to study directly the distribution function of the
raw particle velocities. In we plot the distributionFigure 9
function f (v) of the velocity modulus for the three simula-
tions. The gain in peculiar velocities due to the power
associated with long waves is evident. lists the ÐrstTable 1
and second moment of the distributions for easy compari-
son. Besides increasing the peculiar velocities, long waves
add coherence to the velocity Ðeld, so that the average
velocity of a region of size 100 Mpc is roughly zero for the
P3M144 simulation, but is of a few hundred km s~1 for the
MAP simulation.

We would like to measure the velocity power spectrum
for the simulations. Unfortunately, this is not a veryP

v
(k)

well deÐned quantity. In fact, in order to deÐne a velocity
Ðeld on a regular grid, one needs to take the ratio between
the momentum and the density Ðelds. If there are no par-
ticles in the neighborhood of a grid point, the density and
the momentum will be zero there, and the velocity will be
undetermined. Therefore, in order to deÐne a velocity Ðeld
at all grid points, one has to smooth the Ðelds on a larger
scale, so that some particles contribute to the density and
momentum Ðeld of every grid point. However, in doing so
information is lost on the velocity Ðeld at all scales smaller
than the smoothing scale. Unlike the case of the density
Ðeld, in which we could subtract the e†ect of the smoothing
scheme by deconvolving in Fourier space, here we dealPd(k)
with a ratio of convolved Ðelds, which does not correspond
to a simple multiplication in Fourier space. Hence, the
deconvolution from the interpolating scheme is not possible

FIG. 9.ÈDi†erential and cumulative distributions for the magnitude of
the peculiar velocities in P3M144, MAP8] 144, and P3M256. Note the
increasing of velocities with the box size. Velocities in MAP8] 144 are
even larger than those in P3M256, suggesting that nonnegligible contribu-
tions come from scales beyond 640 Mpc even for a standard CDM cosmo-
logical model.
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FIG. 10.ÈPower spectra for the longitudinal component of the velocity
Ðeld, for the three simulations. A Gaussian smoothing Ðlter of size 7 Mpc
was applied to every Ðeld to deÐne the velocity Ðeld also in underdense
regions. The slight amplitude di†erence between MAP8] 144 and
P3M144 at high frequencies is not signiÐcative, as the velocity power
spectrum is not well deÐned on small scales. Unlike here no shotPd(k),
noise subtraction or window deconvolution has been applied.

for the velocity Ðeld. This sets a limit on the resolution of
the velocity power spectrum at small scales.

In our case, to deÐne the velocity Ðelds of our simulations
we evaluated the density and momentum density Ðelds
using TSC interpolation onto a 5 Mpc grid, followed by
Gaussian smoothing of each with a kernel of size 7 Mpc
before the ratio of Ðelds is taken. Since in linear theory only
the longitudinal component of the velocity Ðeld (deÐned¿

Aby the irrotationality condition : is related to$ Â ¿
A

\ 0)
the density Ñuctuation Ðeld d(x), we considered only the
power spectrum of compares for¿

A
. Figure 10 P

v
(k)

P3M144, P3M256, and MAP8] 144, superimposed on the
linear prediction. The di†erence in amplitude between the

FIG. 11.ÈParallel component of the pairwise velocity dispersion of the
particles in the simulations.

latter and the power spectra of the three simulations at high
wavenumbers is an e†ect of the Ðltering of the velocity Ðeld
of the former.

We can see from the Ðgure how for the MAP simu-P
v
(k)

lation shows some amplitude di†erence over the spectra of
both P3M144 and P3M256 on scales smaller than about 25
Mpc. This may again be related to the sampling problem
discussed before, or to the invalidity of the linear approx-
imation, but our current understanding of the e†ects of
smoothing on the velocity Ðeld is too limited to allow a
deÐnite interpretation.

From the simulations, we also evaluated the pairwise
velocity dispersion as a function of pair separation.p

v,12This is deÐned as the second central moment of the velocity
Ðeld : given pairs of particles with velocities and¿1 ¿2,separated by a distance the parallel component of ther12,
pairwise velocity dispersion is

p
v,12A \ S[(¿2 [ ¿1) Æ rü 12]2T1@2 , (11)

where rü 124 r12/o r12 o .
Since the value of is determined by the powerp

v,12A2 (r)
associated with density Ñuctuations on scales thej [ 1/r,
pairwise velocity dispersion is a suitable statistic to estimate
the small-scale velocity power of a simulation. Figure 11
plots for our three simulations ; the three curves agreep

v,12Awith each other to better than 10%. From this Ðgure, our
conclusion is that the MAP has not changed the velocity
Ðeld signiÐcantly on small scales. Small di†erences between
the curves are found also for P3M256 and may just reÑect
statistical Ñuctuations. The global agreement of this statistic
contrasts somewhat with the di†erent amplitudes of
the velocity power spectrum between P3M144 and
MAP8] 144. This di†erence is not explained fully, but it
could again be due to nonlinear e†ects in the MAP: the
original simulation (L \ 100 Mpc) might still be too small
to guarantee a sufficient linear evolution for its fundamental
modes, with j \ L . Mode coupling would then propagate
to small scales any change in the large-scale power. Put
another way, the pairwise velocity seems more robust than
the velocity power spectrum in measuring the small-scale
power.

4. SUMMARY AND CONCLUSIONS

We have proposed a new method to add to an N-body
simulation the large-scale power associated with scales
larger than the volume in which the simulation is per-
formed. We made use of the Zeldovich approximation

to change each particleÏs position and(Zeldovich 1970)
velocity according to the extra power introduced. We tested
the method using a simulation of standard cold dark
matter, which we called P3M144. It had been evolved in a
cube of 100 Mpc on a side by means of a P3M code within
1443 collisionless particles. We replicated the simulation to
Ðll a cube of side 800 Mpc and added to it the power associ-
ated with Ñuctuations up to scales j \ 800 Mpc. We com-
pared this enlarged simulation, named MAP8] 144, with
the original P3M144 simulation and with a larger simula-
tion in a volume of 640 Mpc on a side called P3M256.

We showed both visually and by means of several sta-
tistics how the density and velocity Ðeld are modiÐed by the
addition of long waves : velocities are increased and struc-
tures are created with characteristic scales larger than the
original box size. The rms velocity of a particle is vrms \ 768
km s~1 in P3M144, km s~1 for MAP8] 144,vrms \ 827
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and km s~1 for P3M256. The equivalent Ðguresvrms \ 804
for the density Ðeld show that the MAP enhances slightly
the preexisting clustering.

Our analysis of several statistics shows the e†ects of long
waves in nonlinear simulations. The MAP procedure
assumes that long and short waves evolve independently
and that the former are describable by the Zeldovich
approximation. However, our results suggest that there
may be some transfer of power between long and short
wavelengths in our simulations, for example, in the power
spectra. If so, for accurate results our method may require
stronger conditions than those met in our simulations.
While a detailed study of this problem is beyond the scope
of this paper, we can try to shed more light on this point by
examining which refers to the simulationFigure 2b,
P3M256, performed on a cube of 640 Mpc on a side.

We can identify three intervals of wavenumbers corre-
sponding to di†erent behaviors of the growth rates. The Ðrst
interval corresponds to Ñuctuations with log (k Mpc)º
[0.8 (i.e., j ¹ 40 Mpc) ; these grow faster than linear in all
plotted outputs, and their growth becomes faster at later
times, deÐning what is usually called the nonlinear regime.
A second intermediate interval is approximately
[1.5¹ log (k Mpc)¹ [0.8 (corresponding to scales
between 200 Mpc and 40 Mpc) ; Ñuctuations in this range
grow slightly more slowly than the linear theory prediction,
the e†ect becoming most visible at the latest time a \ 0.7.
Finally, Ñuctuations with wavenumber log (k Mpc)¹ [1.5

Mpc) maintain a strict linear growth (to within 1%)(j Z 200
at all times. The analogous plot for P3M144 (shown in Fig.

may suggest a similar behavior at least for a \ 0.7, but2a)
unfortunately the growth rates are much more unstable due
to the smaller size of the simulation, so that a deÐnite inter-
pretation is not possible.

The existence of these three regimes suggests that some
coupling exists between the modes in the intermediate inter-
val of wavenumbers and the modes in the nonlinear regime,
with a transfer of power from the former to the latter.
Transfer of power between long- and short-wavelength
modes is consistent with the results of & BertschingerJain

using second-order perturbative calculations for a(1994) :
CDM-like spectrum, they found that mode coupling cause a
slight suppression of P(k) at small k, and a signiÐcant
enhancement at high k compared to the linear prediction,
with the transition region occurring where the spectral
slope is (that is, Mpc~1), respectively. If thisn [[1 k Z 0.1
interpretation is correct, then the size of P3M144 (100 Mpc
on a side) is slightly too small to perform the mode substi-
tution because the longest waves in the simulation are still
weakly coupled with shorter wavelengths. Therefore, by
subtracting the longest waves from P3M144 using our dis-
placement Ðeld technique, we have also subtracted some
power in the density Ðeld from small, nonlinear scales. The
small-scale power, however, is not given back with the addi-
tion of long waves up to In fact, the new large-scaleL big.power was not present during the simulation, but it is added

randomly at the end of time evolution, and so it has no
chance to enhance dynamically or suppress small-scale
waves. Fortunately, even if some mode coupling a†ects the
present example, it does not represent a limit of the method
but just of the simulation we used to apply the MAP, so the
conclusions we drew on the method are still valid. One
obvious way to verify this hypothesis is to run the MAP
starting with a simulation performed originally on a larger
volume, for example, 200 Mpc on a side. In this case, we
would expect to see no signiÐcant power transfer.

On a completely di†erent issue, we would like to stress
the point that our end product is not equivalent to a real
simulation evolved from initial conditions on a comparable
scale. In fact, outside the substituted region of Fourier space
the MAP8 ] 144 simulation samples high wavenumbers
exactly like P3M144. That is, the density of Fourier modes
there is not as high as in an N-body simulation actually
performed on 800 Mpc on a side. Moreover, some small-
scale periodicity may still be present in the Ðnal result, even
if modulated by the large-scale waves.

The MAP can also be applied to any catalog of dark
matter halos, or to any class of objects that can be deÐned in
a simulation. In that case, however, one cannot trace back
the Lagrangian position of the objects because they contain
di†erent particles and are deÐned during, or after, time evo-
lution. What one does instead is to apply in equations (5)
and the displacement Ðeld obtained by the original parti-(6)
cle distribution, which is parent to the halo catalog. That is,
the displacement Ðeld of equations and is obtained(7) (8)
from the particles.

Finally, the application of the MAP described in this
paper concerns the study of very large scale density and
velocity Ðelds. However, other applications are possible,
with focus on di†erent aspects. In fact, the procedure that
we have described here does not require at all the use of a
box as large as the longest added wavelengths. Once the
mode removing step is performed, one can interpolate
the added displacement Ðeld to an arbitrary volume of the
simulation. For example, in a study that does not require
using a very large simulated volume, one can introduce the
large-scale power in the original simulation without taking
any replica. In such a case, all the particles of the original
simulation may be used, to preserve the initial high deÐni-
tion and resolution.
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