
THE ASTROPHYSICAL JOURNAL, 471 :673È682, 1996 November 10
1996. The American Astronomical Society. All rights reserved. Printed in U.S.A.(

MAPPING THE GAS TEMPERATURE DISTRIBUTION IN EXTENDED X-RAY SOURCES
AND SPECTRAL ANALYSIS IN THE CASE OF LOW STATISTICS: APPLICATION TO

ASCA OBSERVATIONS OF CLUSTERS OF GALAXIES

E. AND M.CHURAZOV GILFANOV

Space Research Institute (IKI), Profsouznaya 84/32, Moscow 117810, Russia

AND

W. AND C.FORMAN JONES

Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138
Received 1995 October 20 ; accepted 1996 May 29

ABSTRACT
A simple method for mapping the temperature distribution in extended sources is developed for appli-

cation to ASCA observations of galaxy clusters. Unlike the conventional approach to spatially resolved
spectral analysis, this method does not require nonlinear minimization and is computationally fast and
stable. Therefore, it can be implemented for a large number of regions or on a Ðne spatial grid. Although
based on a Taylor expansion over the nonlinear parameter, the method is found to be accurate in many
practical situations, the relative error for the temperature estimate being less than 2%È4% when the
plasma temperature exceeds D2 keV. This method is not intended to replace conventional spectral
analysis but to supplement it, providing relatively fast and easy construction of temperature maps, which
may be used as a guide to further detailed analysis of particularly interesting regions using conventional
spectral Ðtting.

Conventional spectral analysis in the case of moderate and low numbers of counts is discussed. A
practical recipe for unbiased parameter estimation is suggested and veriÐed in Monte Carlo simulations
for commonly used spectral models. A simple modiÐcation of the s2 statistic (calculation of weights
based on the smoothed observed spectrum) yields nearly unbiased parameter estimates and correct con-
Ðdence interval determination with no need for regrouping (binning) the energy channels even in the case
of low statistics (D50È100 counts in the observed spectrum with several hundred channels).
Subject headings : galaxies : clusters : general È methods : data analysis È methods : statistical È

X-rays : galaxies

1. INTRODUCTION

The instruments on the ASCA satellite et al.(Tanaka
provide sufficiently powerful imaging and spectro-1994)

scopic capabilities so that, for the Ðrst time, it is possible to
map the temperature and iron abundance distributions in
the intracluster medium in clusters of galaxies. However,
three serious problems are associated with analysis of
ASCA cluster observations :

1. In practice, spatially resolved spectral analysis can be
performed only on a rather coarse grid with cells of large
angular size because iterative minimization procedures,
required in conventional spectral analysis, are usually time
consuming and not always stable, especially in the case of
low statistics.

2. Very often observed spectra contain only few (or even
zero) counts per bin in high-energy channels, and special
care must be taken to avoid biased parameter estimates
while Ðtting the data with the model.

3. The point-spread function (PSF) of the ASCA mirrors
has broad, energy-dependent wings, which lead to an
energy-dependent redistribution of counts over the image
and consequently can lead to a distortion of the derived
spectral parameter map.

Problems (1) and (2) are common in the analysis of X-ray
data, while (3) is speciÐc to X-ray telescopes with nested
conical mirrors like those used for ASCA. Because of (1),
various quantities like hardness ratios or X-ray colors are
often used to characterize the properties of observed spa-
tially resolved spectra. The disadvantage of these methods is

that usually they are not ““ optimally sensitive ÏÏ and do not
provide a direct measure of the physical parameter of inter-
est (e.g., gas temperature). To overcome problem (2), a con-
ventional approach is to use maximum likelihood Ðtting or
to group the data into broad energy channels. However,
sometimes neither of these solutions is acceptable. In this
paper we describe two practical methods for addressing (1)
and (2) and describe their application to ASCA obser-
vations of galaxy clusters. In we describe a method of° 2
mapping the temperature distribution in extended sources,
which is as fast as hardness ratio calculations but has the
advantage of providing a direct measure of the gas tem-
perature with nearly the minimum possible uncertainty on
the value of the Ðtted parameter. In we discuss a simple° 3
modiÐcation to the conventional s2 Ðtting technique
leading to unbiased parameter estimates. Although devel-
oped and tested in application to ASCA observations of
galaxy clusters, these methods can be easily applied to the
analysis of observations from other imaging missions (e.g.,
ROSAT ). Possible ways to account for the energy-
dependent ASCA PSF (problem 3) will be discussed in a
subsequent paper.

2. MAPPING THE TEMPERATURE DISTRIBUTION IN

EXTENDED SOURCES

One of the common tasks in X-ray studies of extended
sources is constructing a temperature map. An obvious and
direct approach is to perform spatially resolved spectral Ðts
to the data. In practice, however, conventional spatially
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Thermal bremsstrahlung
Response: ASCA SIS0 CCD0
Data: F(6 keV)
Model: K1*F(3 keV) + K2*F(8 keV)

Raymond & Smith, ab=0.3
Response: ASCA SIS0 CCD0
Data: F(6 keV)
Model: K1*F(3 keV) + K2*F(8 keV)
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resolved spectral analysis can be implemented only for a
limited number of regions or on a rather coarse spatial grid
because of the very time consuming nature of the mini-
mization procedure and because the minimization is not
always stable, especially in the case of moderate and low
statistical precision data. For this reason various quantities
characterizing the spectral shape, such as hardness ratios,
X-ray colors, and average photon energies, are used instead.
These alternatives are usually easy to calculate and are
applicable for almost any type of spectrum, e.g., the hard-
ness ratios or average photon energies are higher for regions
having harder spectra. However, they often are not the
““ most sensitive ÏÏ (i.e., the dispersion of the parameter esti-
mate is larger than can be obtained using conventional
spectral Ðtting) and they do not directly give the value of the
physical quantity of interest (e.g., hardness ratio must be
converted to temperature).

On the other hand, for many classes of extended sources
we almost always have in mind a particular spectral model
(e.g., emission from an optically thin plasma with some
admixture of heavy elements), and, in fact, for each particu-
lar source, we even frequently know a priori the reasonable
dynamic range for the interesting physical parameter, such
as temperature (e.g., 2È10 keV for a typical, rich galaxy
cluster). Using this a priori knowledge one can replace con-
ventional spectral analysis with a method which is (1) com-
putationally fast and stable (similar to hardness ratio
calculations) and therefore can be implemented for any
number of regions or on a Ðne spatial grid, (2) directly gives
the value of the physical quantity, and (3) the parameter
estimate dispersion of which is nearly optimal and
approaches that of direct spectral Ðtting.

2.1. Method of L inearized Parameter Estimation
Consider for simplicity a spectral model with one nonlin-

ear parameter p : M(A, p, E) \ Af (p, E), where E is the
energy and A is the normalization. We choose reference
values of and such that bounds the expectedp1 p2 [p1, p2]range of the interesting physical parameter p. Any spectrum
characterized by the physical parameter p can then be
approximated by a linear combination of the two reference
spectra andf (p1) f (p2) :

M(A, p, E)B L (K1, K2, E)

\ K1 f (p1, E)] K2 f (p2, E) , (1)

where and are the relative normalizations of the twoK1 K2reference spectra. Examples for an optically thin thermal
bremsstrahlung and optically thin thermal plasma emission
models, convolved with the ASCA SIS0 response, are
shown in and demonstrate that a spectrum withFigure 1
temperature kT \ 6 keV can be reasonably well approx-
imated as a weighted sum of spectra with keV andkT1\ 3

keV.kT2\ 8
Obviously, an unambiguous relation exists between

values of and the physically interestingK1, K2, p1, p2parameter p. In the above example for the thermal bremss-
trahlung model, the coefficients and correspond toK1 K2the emission measures of two components at temperatures

and which approximate the spectrum for emissionT1 T2appropriate to a temperature T . A reasonable expression
for the temperature T would be : T B (EM1T1Similarly, in general, the sim-] EM2 T2)/(EM1] EM2).plest form of such a relation giving the exact values of

FIG. 1.ÈApproximation of spectra for thermal bremsstrahlung (top)
and thermal emission from an optically thin plasma (bottom) with kT \ 6
keV as a linear combination of two reference spectra keV and(kT1\ 3

keV). The spectra were convolved with the response of ASCA SIS0kT2\ 8
CCD0 (s0c0g0234p40e1–512v0–8i.rmf in standard ASCA GOF notation).
The dotted lines show the absolute value of the residuals. The fraction of
the photons incorrectly characterized by the model [i.e., ; abs(DataÈ
Model)] is 0.58% for bremsstrahlung and 0.74% for optically thin thermal
plasma emission.

parameter p at the endpoints of the interval [i.e., for[p1, p2]M(A, p, E) E), i \ 1, 2] would be\ Af (p
i
,

p B
K1 p1] (K2 p2

K1] (K2
, (2)

with a free coefficient (. A possible (but not unique) way to
choose the value of ( is to require that equation (2) give an
exact value for p at some arbitrary third point [i.e.,p \ p

mfor M(A, p, E) E)] with a natural choice of\ Af (p
m
, p

m

FIG. 2.ÈMonte Carlo simulations of the error estimates according to
the algorithm described in the text. The chosen reference spectra were

keV, keV, keV. A total of 10,000 spectra with T \ 5T1\ 2 T2\ 12 T
m

\ 7
keV have been simulated for each value of the total number of counts in
the spectrum. The shaded area shows the 1 p uncertainty of the Monte
Carlo simulations. The two solid lines are 68.3% and 95.45% levels.
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Reference spectra: thermal bremsstrahlung

 meka model, ab=0.3
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FIG. 3.ÈApplication of the method of temperature estimation
described in to various emission models : optically thin thermal bremss-° 2
trahlung (top) and thermal emission from an optically thin plasma with
heavy element abundances a \ 0.3 (middle) and a \ 0.7 (bottom). The
energy response of the ASCA SIS0 (s0c0g0234p40e1–512v0–8i.rmf in stan-
dard ASCA GOF notation) was used. The choice of reference spectra were

keV, keV, keV. The vertical axis represents theT1\ 2 T2\ 12 T
m

\ 7
expected relative error of the temperature estimate, in percent. The tem-
perature, calculated from the linear approach described in the text,Tcalc,provides a remarkably accurate estimate of the true temperature overTtruea wide temperature range with errors of only a few percent.

lying midway between and If we then Ðt the mea-p1 p2.1sured spectrum C(E) with the linear model E)L (K1, K2,deÐned by equation (1), where are parameters of theK1, K2model and are Ðxed, then equation (2), with a properp1, p2choice of (, provides an estimate of the parameter p. This
transforms the nonlinear iterative Ðtting of the parameter p
into the straight forward determination of the coefficients

and at each desired spatial location.K1 K2There are several important points worth noting about
the parameter estimation method described above :

1. This method of parameter estimation is equivalent to
a Ðrst-order Taylor expansion over the nonlinear parameter
to be Ðtted and therefore, in the general case, does not give
an exact value of the parameter. We found, however, that in
many practical cases it is sufficiently accurate (see examples
in the next section).

2. The particular choice of values and is determinedp1 p2by the expected range of the parameter p in the data. In
general, the smaller the range, the more accurate the param-
eter estimate.

1 In fact, the method of nonlinear parameter estimation deÐned by eqs.
(1) and (2) is based on the Ðrst order Taylor expansion of the model over
the nonlinear parameter p :

M(A, p, E)\ Af (p, E) \ A[ f (p1, E) ] (df/dp)(p1, E)(p [ p1)]

and further approximation of the Ðrst derivative by (df/dp)(p1, E) \ [ f (p2,The choice of ( described in the text correspondsE)[ f (p1, E)]/(p2[ p1).to the minimization of the contribution of the second derivative (d2f )/(dp2),
with the second derivative being estimated using the function values at
points p1, p

m
, p2.

FIG. 4.ÈApplication of the method of temperature estimation
described in to the case of a ““ wrong model ÏÏ : the reference spectrum° 2
(optically thin thermal bremsstrahlung, the ““ measured ÏÏ spectrum for
which the temperature is to be determined) thermal emission from an
optically thin plasma with heavy element abundances of a \ 0.3, 0.5, and
0.7. The choice of reference spectra were keV, keV,T1\ 2 T2\ 12 T

m
\ 7

keV.

3. Since the coefficients and are determinedK1 K2through the data approximation by the linear model, these
coefficients are linear combinations of the data, and an ana-
lytical expression for their calculation can be easily derived.

4. Fitting the measured spectrum with the linear model
(eq. [1]) must be done in ““ count space ÏÏ toL (K1, K2, E)

account for the energy response of the instrument. The s2
statisticss2\ ; M[C(E

i
)[ K1 f (p1,Ei

) [ K2 f (p2,Ei
)]N2/w

i
t

can be used to determine the best-Ðt values of and AK1 K2.modiÐcation of the s2 technique, described in the next
section, is fully applicable to moderate and low statistic
observations and yields unbiased results.

5. A practical way to implement this method for
mapping the parameter p (e.g., temperature) distribution for
an extended source is to calculate and store maps of andK1All further calculations can be performed by manipulat-K2.ing these and maps. The reconstruction of theK1 K2parameter map on any coarser grid (or smoothed param-
eter map) reduces to regrouping (or smoothing) the andK1maps and the relatively simple application of equationK2(2).

6. The algorithm described above was developed and
veriÐed in the context of ASCA observations of relatively
hot clusters with kT º 2 keV, and it should be used with
caution in the case of lower temperatures, when the contri-
bution from emission lines may be dominant.

7. This method is not intended to be a substitute for
conventional spectral analysis. It is intended rather for rela-
tively fast and easy construction of temperature maps and
as a guide to further detailed analysis of regions of particu-
lar interest using conventional spectral Ðtting.

2.2. Error Calculation
One important aspect of any method of parameter esti-

mation is the determination of conÐdence intervals. The
expression for the parameter estimate given by equation (2)
is, in fact, a ratio of two linear combinations of the observed
counts (summation is over detector channels) :

p \ ; a
i
C

i
; b

i
C

i
, (3)
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FIG. 5.ÈApplication to ASCA GIS observations of the Perseus cluster
(sequence Nos. 80007000, 80008000, and 80009000). Comparison with
results of direct spectral Ðtting shows the excellent agreement between the
two approaches. The spatial grid was centered on NGC 1275 and had a
pixel size of 6@. For each cell the temperature has been determined using
conventional spectral Ðtting in XSPEC and using the method described in

Both for direct spectral Ðtting and linear estimation, the optically thin° 2.
thermal bremsstrahlung emission model was used. The choice of reference
spectra were keV, keV, keV. Note that the dataT1\ 2 T2\ 12 T

m
\ 7

shown are not corrected for the e†ects produced by the telescope PSF and
are shown to demonstrate that standard spectral Ðtting and the method
described here yield equivalent results.

the numerator and denominator being, obviously, corre-
lated. The coefficients of these linear combinations cana

i
, b

ibe explicitly expressed in terms of the known values and
functions (.f1(p1, Ei

), f2(p2, Ei
), p1, p2,A simple and also sufficiently accurate way to calculate

the conÐdence interval for p is based on the fact that the
conÐdence region for the pair of linear parameters (q1\

can be easily determined as the inte-; b
i
C

i
, q2\ ; a

i
C

i
)

rior of the ellipse deÐned in the plane by the equa-(q1, q2)tion

a(q1[q1m)2] b(q2[ q2m)2] c(q1[ q1m)(q2[ q2m) \*s2
2

,

(4)

where and are the measured values of and [i.e.,q1m q2m q1 q2is the estimated value of p] and the coefficients(q2m/q1m) \ pm
a, b, c can be derived from The con-Sq12T, Sq22T, Sq1q2T.
Ðdence interval for corresponding to the givenp \ q2/q1,conÐdence region in the plane, is obviously(q1, q2)restricted by the two tangents to the ellipse (eq. [4]) and can
be found by solving the quadratic equation

C
1 [ Sx12T

(q1m)2 *s2
DA p

pm

B2[ 2
A
1 [ Sx1 x2T

q1m q2m
*s2
B

]
A p
pm

B
]
C
1 [ Sx22T

(q1m)2 *s2
D

\ 0 , (5)

where Since we wish tox1\ q1[ Sq1T, x2\ q2 [ Sq2T.
determine the conÐdence interval for one parameter p, *s2
in equation (5) should be set to 1, 4, or 9 for 1, 2, or 3 p
conÐdence regions.

Although p is a nonlinear function of the linear param-
eters and and the above consideration is not exactlyq1 q2correct, as our simulations have demonstrated, the
approach described above does provide sufficiently accu-
rate estimates of the conÐdence intervals. The results of
Monte Carlo simulations of the conÐdence interval deter-
mination are shown in In these simulations, weFigure 2.
generated 10,000 spectra for each value of the total number
of counts with kT \ 5 keV (thermal bremsstrahlung model)
in the 0.5È9.0 keV energy range and with channel width 0.01
keV. For each simulated spectrum, the temperature was
estimated according to the algorithm described in the pre-
vious subsection with keV, keV, keVT1\ 2 T2\ 12 T

m
\ 7

(eq. [2]), and the 1 p and 2 p conÐdence intervals were
estimated by solving equation (5) with Sx12T, Sx22T, Sx1 x2Testimated from the simulated spectrum (i.e., Sx12T \ ; a

i
2 C

i
,

It is clear fromSx22T \; b
i
2C

i
, Sx1 x2T \ ; a

i
b
i
C

i
).

that this method of conÐdence limit determinationFigure 2
works quite well even if the total number of counts in the
spectrum is quite small, D20È30 counts.

2.3. Application to ASCA Data
To verify the method described above we have chosen

the energy response of the ASCA SIS0 CCD0
(s0c0g0234p40e1–512v0–8i.rmf in standard ASCA GOF
notation). In the results of the application of theFigure 3,
method to two emission models (optically thin thermal
bremsstrahlung and thermal emission from an optically
thin plasma with various heavy element abundances) are
shown. For each emission model and each value of the
temperature in the speciÐed range we generated the
expected count spectrum and determined the temperature
using the method described above. The weights in thew

iexpression for s2 (see previous paragraph) used for determi-
nation of the best-Ðt values of and were set to unity.K1 K2(More realistic weights together with true simulations
which account for Poisson statistics are considered in the
next section.) As is seen from despite the quiteFigure 3,
large temperature range (2È12 keV), the accuracy of the
temperature estimate is satisfactory for most practical cases,
the relative error being less than 2%È4%. illus-Figure 4
trates a more complicated situation where we are Ðtting the
““ wrong model ÏÏ ; we determine the temperature of a thermal
optically thin plasma model by Ðtting a thermal bremss-
trahlung spectrum. As this Ðgure shows, the method still
gives quite accurate parameter estimates with the relative
error being below 3%È5% for most of the temperature
range and for a wide range of heavy element abundances.

Finally, the scatter plot in compares our methodFigure 5
with the results of conventional spectral Ðtting using the
ASCA GIS observations of the Perseus cluster (sequence
Nos. 80007000, 80008000, and 80009000). Each point corre-
sponds to an individual cell (6@ on a side) located on the
spatial grid centered on NGC 1275. The abscissa of each
point is the temperature determined by direct spectral
Ðtting using XSPEC, while the ordinate is the temperature
determined using the method described above. The weights

in the expression for s2 for both methods were deter-w
imined according to the algorithm described in the next

section. Note that the data plotted in were notFigure 5
corrected for the e†ects induced by the energy-dependent
ASCA PSF and are shown here only to demonstrate that
standard spectral Ðtting and the method described here
yield equivalent results.



divided by 10

No. 2, 1996 MAPPING GAS TEMPERATURE DISTRIBUTION 677

FIG. 6.ÈComparison of various Ðt statistics (see text for detailed description of the statistics used). Monte Carlo simulations (9000 runs for each value of
the total number of counts) for an optically thin thermal bremsstrahlung spectrum with kT \ 3 keV, assuming an ideal instrument with a diagonal energy
response, a 0.5È9.0 keV energy range, and a channel width of 0.01 keV. T op panels : relative bias (in percent) of temperature estimates for various statistics as a
function of total number of counts in the spectrum. Note that the curve in the rightmost top panel is scaled down by a factor of 10. Bottom panels : ratio of
dispersion of the parameter estimate with respect to that obtained in the maximum likelihood method for the same parameter estimation methods as in the
corresponding top panels.

2.4. Distinguishing Multi-T emperature from
Single-T emperature Emission

The rather good single-temperature Ðt to the two-
temperature model raises another question : how(Fig. 1)
long an exposure do we need to reliably distinguish between
single-temperature and multi-temperature plasma emission?
We have found that over the ASCA energy range, the di†er-
ence between one- and two-temperature models starts to
be signiÐcant at B105 source counts. For example, the
approximation of a SIS spectrum with 105 counts (sum of 3
and 8 keV bremsstrahlung components with the same Ñux
at 1 keV) by a single-temperature model in the 0.5È9 keV
energy range (290 channels) gives an increase of s2 due to an
inadequate model of *s2B 13. Adding emission lines from
heavy elements (abundance 0.3 of the cosmic value) some-
what improves the sensitivity : the increase of s2 (when
Ðtting 2T meka simulation with 1T meka model) is *s2B 27.
Note that the value of *s2 scales linearly with the number
of counts in the spectrum (e.g., for 3] 104 counts *s2 is D4
and 9, respectively). Note also that for as many as B105
counts the calibration uncertainties might become impor-

tant. Of course, if the temperatures of the two components
di†er very strongly (e.g., 1 and 10 keV) the situation
becomes much better for the case considered above.

3. MODIFICATION OF THE s2 FITTING TECHNIQUE

The aim of this section is to derive and verify by Monte
Carlo simulations a simple and practical recipe for unbiased
parameter estimation in X-ray spectral analysis when sta-
tistics are poor and only moderate or low numbers of
counts are available. It is all too common that all or part of
the observed spectrum has few or even zero counts per
energy bin (especially in the high-energy bins) even when
the total number of counts in the spectrum is quite large. In
this case special attention must be paid to avoid biased
parameter estimates. A similar problem has been recently
considered by & Kearns and et al.Primini (1995) Wheaton

In the discussions below, we present the arguments(1995).
which are particularly relevant to ASCA data analysis.
Although the justiÐcations are not all presented in detail,
they can be found in standard textbooks or are transparent.

In considerations throughout this section the variables
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FIG. 7.ÈSame as for a temperature of T \ 8 keV (1000 Monte Carlo runs for each value of the total number of counts)Fig. 6

refer to the model, data, and true model (i.e.,M
i
, C

i
, M

i
0

expectation value) counts in the ith spectral bin, i \ 1, N ; p
kis kth parameter of the model, k \ 1, L . Unless stated other-

wise, we consider linear models As weM
i
(p) \ ;

k
p
k
F
i
k.

demonstrate through extensive Monte Carlo simulations
(see below), the main conclusions formulated in this section
for linear models hold for typical nonlinear models, com-
monly used in X-ray data analysis.

A reasonable set of requirements for any spectral Ðtting
technique used in X-ray data analysis includes (in order of
decreasing priority, as viewed by the authors) :

a) The parameter estimates should be bias-free (at least
for linear models) ;

b) The parameter estimates should be the most accurate
(ideally, the method should provide a minimal dispersion of
the best-Ðt parameters with respect to their true values) ;

c) The method should allow straight forward construc-
tion of conÐdence intervals for the parameters ;

d) The method should provide a goodness-of-Ðt cri-
terion.

Typically, spectral Ðtting packages search for a minimum
of the function :

S(M) \;
i

N (M
i
[ C

i
)2

w
i

, (6)

where are the inverse weights assigned to the ith energyw
i

bin. For the linear model, the minimum of equation (6) can
be explicitly found :

p
k
\;

i

N a
i
k C

i
, (7)

where are functions of l \ 1, L , and j \ 1, N.a
i
k F

j
l , w

j
,

If all are Gaussian distributed with mean andC
i

M
i
0

standard deviation then with the value of S(M0)p
i
, w

i
\p

i
2

will follow a s2 distribution with N degrees of freedom. In
practice, has either a Gaussian or Poisson distribution orC

iis a linear combination of them (e.g., when background sub-
traction is performed). For Poisson-distributed one ofC

i
,

the commonly used recipes for the determination of the
weights in equation (6) isw

i

w
i
\
GC

i
1

if C
i
[ 0 ,

if C
i
\ 0

. (8)

As is well known, parameter estimation based on the above
formula will be strongly biased (e.g., if isCash 1979) M

i
0

small in even only a portion of the spectrum since higher
weights (lower are assigned to the spectral bins wherew

i
)

the number of counts is smaller due to statistical Ñuctua-
tions.

Two commonly implemented solutions are the following :
1. Use of the maximum likelihood (ML) statistic (see, e.g.,
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FIG. 8.ÈComparison of various Ðt statistics (see text for detailed description of the statistics used). Monte Carlo simulations (1000 runs for each value of
the total number of counts) for an optically thin thermal bremsstrahlung spectrum (kT \ 8 keV) with a K-edge keV, q\ 1) absorption, assuming(Eedge \ 7.1
an ideal instrument with a diagonal energy response, 0.5È9.0 keV energy range, and channel width of 0.01 keV. Relative bias (in percent) of parameter
determination for various statistics as a function of total number of counts in the spectrum is shown. T op, results for temperature ; middle, results for edge
energy ; bottom, results for optical depth of the edge. Note that the curve in the rightmost top panel is scaled down by a factor of 10.

instead of S(M) deÐned by equation (6). The MLCash 1979)
statistic satisÐes requirements (a), (b), and (c) above, but fails
with (d) ; it provides no goodness-of-Ðt test. The major diffi-
culty is connected with its practical implementation with
more complicated (than Poisson) statistical distributions of

(e.g., especially for background subtracted spectra).2C
i2. Grouping the detector channels into broader energy

bins until each bin contains more than D20 counts followed
by minimization of S(M) with weights deÐned by equation
(8). Although all requirements (a)È(d) above are satisÐed,
this recipe is not always acceptable, with the primary objec-
tion being an obvious loss of spectral information when
signiÐcant regrouping is necessary.

2 Note, however, that if background is known with ““ sufficient accu-
racy,ÏÏ one can Ðt measured counts (not background subtracted) with a
model consisting of the source model spectrum ] the background spectrum.
In this case, the ML statistic can be easily applied, provided the measured
counts follow a Poisson distribution.

Below we describe an alternative approach which, in
addition to its simplicity, meets the requirements (a)È(c)
listed above for many practical cases.

3.1. Unbiased Estimates with Minimal Dispersion
As can be easily demonstrated, there must be an absence

of statistical correlation between the weights and thew
imeasured counts if a spectral Ðtting technique based onC

iminimization of S(M) is to yield unbiased parameter esti-
mates. Indeed, recalling that the in equation (7) are func-a

i
k

tions of and only, if and are uncorrelated, we canF
j
l w

j
w

i
C

iwrite

Sp
k
T \

T
;
i

N a
i
k C

i

U
\ ;

i

N a
i
k SC

i
T \;

i

N a
i
kM

i
0\ p

k
0 (9)

since by deÐnition. Therefore, an arbitrarySC
i
T 4M

i
0

choice of which are uncorrelated with the Ñuctuations ofw
ithe measured counts (e.g., or any other function of i)w

i
4 1
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FIG. 9.ÈVeriÐcation of the method for determination of weights w
ifrom the smoothed measured spectrum (as described in the text) for the

ASCA SIS energy response. Monte Carlo simulations (500 runs for each
value of the total number of counts) for emission from an optically thin
plasma with T \ 3 keV and a heavy element abundance of 0.3 (of the
cosmic value). Both temperature and abundance were allowed to vary
during minimization (see for abundance results). T op : the relativeFig. 10
bias in the temperature estimate. Middle : the fractional error (68%
conÐdence) on the temperature. Bottom : the fraction of those runs for
which the 68% conÐdence interval determined by XSPEC using the con-
ventional algorithm (*s2\ 1) includes the mean value (shown in the top
panel).

provides unbiased estimates of The deÐnitions of weightsp
k
.

according to equation (8) obviously does not satisfy this
requirement ; the and therefore in equations (7) and (9)w

i
a
i
k

are strongly correlated with the Ñuctuations in for smallC
ivalues of C

i
.

The accuracy of the parameter estimates, i.e., the disper-
sion of the estimates with respect to depends critically,p

k
p
k
0,

however, upon the choice of It can be easily demon-w
i
.

strated that to achieve a minimal dispersion in the estimates
for for any distribution of having variance thep

k
C

i
v
i
,

weights should be chosen as w
i
\ v

i
.3

In the simplest case where follows a Poisson distribu-C
ition, the variance of is equal to and the best choiceC

i
M

i
0,

for weights in equation (6) is Unfortunately, thew
i
\ M

i
0.

are unknown, but a reasonable approximation to themM
i
0

can be made from the observed spectrum.4 One possible
solution based on the iterative determination of has beenw

iconsidered recently & Kearns(Primini 1995).
We propose another practical recipe for determining the

weights which is to smooth the observed spectrum withw
i
,

3 Indeed, requiring that the weights maximize the change inw
iS(M) [ S(M0) for any deviation of the parameter from its true valuep

k
p
k
0,

compared to the root mean square Ñuctuations of S(M) [ S(M0), one
immediately Ðnds w

i
\ v

i
.

4 Note that if there is a priori knowledge of the spectral shape one can
generate without recourse to the observed counts. For example, for thew

iCrab Nebula observations with ASCA, choosing proportional to aw
ipower-law distribution with photon index !B 2 and convolved with the

ASCA energy response, would provide an acceptable estimate of AsM
i
0.

one can see from eq. (6), to satisfy requirements (a) and (b) above, the
absolute normalization of is not important.w

i

a sliding window having a variable size which is adjusted to
have more than counts within the window. TheCminweights can then be set equal to the values of thew

ismoothed spectrum. Note that the smoothing of the spec-
trum is performed only to calculate the weights while thew

i
,

Ðtting procedure is applied to the original unsmoothed
spectrum. As the Monte Carlo simulations described below
conÐrm, a choice of counts gives satisfactoryCmin\ 30
results by sufficiently suppressing the correlation between

and and by simultaneously providing a good approx-w
i

C
iimation to M

i
0.

Extending this algorithm to spectral Ðtting where back-
ground has been subtracted is straightforward. If the spec-
trum to be Ðtted is then the weights forC

i
\ C

i
tot[ C

i
bkg,

equation (6) should be chosen as wherew
i
\ w

i
tot ]w

i
bkg,

both and are calculated according to the algorithmw
i
tot w

i
bkg

described above.
For linear models, the above algorithm guarantees an

almost unbiased estimation of parameters (the remaining
bias being of the same order as for regrouping the original
spectrum into broader channels with more than countsCminin each channel). In addition, as long as the number of
counts in the observed spectrum is large enough, so that the
smoothed spectrum roughly reproduces the shape of the
true spectrum, the above algorithm also provides minimal
error estimates of the parameters and correct determination
of the conÐdence intervals. In practice and as we show
below, these same properties are found when the approach
described above is applied to those typical nonlinear
models commonly encountered in X-ray spectral analysis.

3.2. Error Estimation and Goodness of Fit
Let us now investigate the properties of conÐdence inter-

vals determined from conventional parameter estimation as
applied to the new method described above. We refer to
conventional conÐdence interval determination as that
given by where * is deÐned such that for n param-Smin] *,
eters of interest yields the desired conÐdence level/0* s

n
2(p)dp

(e.g., 0.67, 0.95). We investigate the distribution of
*S \ S(M0) [ S(Mmin), where S(Mmin) is the minimum
value of the function. Without reducing the generality, we
can rewrite the model as a function of another set of param-
eters k \ 1, where are an ortho-M

i
(p

k
, L ) \ ;

k
L p8

k
F3

i
k w

i
, F3

i
k

normal set of vectors. The value of *S, of course, remains the
same. Now it is easy to Ðnd an explicit expression for *S :

*S \ S(M0) [ S(M) \ ;
k

L
(*p8

k
)2 , (10)

where are the deviations from the true*p8
k
\ p8

k
min[ p8

k
0

parameter values. If are Gaussian distributed andC
i

w
i
4

then all have normal distributions, and thereforeM
i
0, *p8

k*S is distributed as s2 with L 4 number of Ðtted parameters
degrees of freedom. The expression of as a*p8

kfunction of remains the same for either a Gaussian or*C
iPoisson distribution. Therefore, *S will be distributed as s2

as long as is normally distributed. But are linear*p8
k

*p8
kfunctions of and, even if each individual has a*C

i
, *C

iPoisson distribution, the sum of many with almost the*C
isame weight may have a Gaussian distribution. Thus, we

can intuitively state that *S is distributed as as long as thes
L
2

total number of photons in those channels which contribute
signiÐcantly to is much larger than unity. Our simula-*p8

ktions (see below) have shown that for many cases about
100È200 source photons in the ASCA energy band are suffi-
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cient to yield correct error estimates when derived with
standard procedures.

It is easy to show that the mean value of S(Mmin) will be
N [ L , i.e., the same either for Gaussian or Poisson dis-
tributions of if In practice, for spectra sharplyC

i
w
i
BM

i
0.

decreasing at high energies and with very low background,
if is derived from the smoothed observed spectrum, thenw

imay be overestimated signiÐcantly at high energies andM
i
0

the average value of S(Mmin) can be artiÐcially reduced. The
width of the distribution of S(Mmin) also can be narrower
than that of Therefore, it is not possible to use thes

N~L
2 .

absolute value of S(Mmin) as a reliable goodness of Ðt estima-
tor. Note, however, that the distribution of S(Mmin) will
remain much closer to and will at least retain thes

N~L
2

correct mean value compared with that calculated using the
conventional choice of according to equation (8).w

i
3.3. Monte Carlo Simulations

We performed a series of Monte Carlo simulations to
compare various choices of weights in equation (6) and tow

iverify the validity of the algorithm for the determination of
proposed above. The following statistics were tested forw

itotal numbers of counts varying from 10 to 106 :
a) Maximum likelihood, i.e., ;

i
N M

i
[ ;

i
N C

i
ln M

i
;

b) S(M) given by equation (6), with w
i
4 M

i
0 ;

c) S(M) given by equation (6), with equal to thew
iobserved spectrum smoothed with a sliding window the size

of which is adjusted to contain more than counts ;Cmin\ 30
d) S(M) given by equation (6), with w

i
4 1 ;

e) S(M) given by equation (6), with deÐned by equa-w
ition (8).

The results for a thermal bremsstrahlung spectrum with
T \ 3 and 8 keV (assuming an ideal instrument with a
diagonal energy response) are shown in Figures and6 7.
One can see that methods (a)È(d) give nearly unbiased
parameter estimates with counts as few as D50È100, while
method (e) produces a strong bias even when the total

FIG. 10.ÈSame as for the heavy element abundanceFig. 9

FIG. 11.ÈVeriÐcation of the method for temperature determination,
described in for the ASCA SIS energy response. Monte Carlo simula-° 2
tions (9000 runs for each value of the total number of counts) for optically
thin thermal bremsstrahlung spectrum with kT \ 3 keV. T op : the relative
bias in the temperature estimate. Middle : the ratio of the 68% error for the
temperature determination in this method to that for conventional spectral
analysis. Bottom : the fraction of runs for which the 68% conÐdence interval
determined according to eq. (5) includes the mean value (shown in the top
panel).

number of counts is large (D104) and only converges to the
true value when the number of counts approach D105
counts. As expected, methods (a) and (b) give the most accu-
rate parameter estimates, method (c) gives only slightly
larger errors, and method (d), although unbiased, results in
signiÐcantly larger dispersion of the best-Ðt parameter.

shows the results of simulations for a bremss-Figure 8
trahlung spectrum (T \ 8 keV) including K-edge absorp-
tion keV, All four parameters of the(Eedge \ 7.1 qedge\ 1).
model were allowed to vary during minimization. The
extremely nonlinear nature of the model (due to the absorp-
tion component) leads to a strong bias in parameter estima-
tion by all Ðve methods even with moderate numbers of
counts. Nevertheless, method (c) is not signiÐcantly more
biased than (a) or (b) and is apparently less biased than (e).

Figures and demonstrate the validity of method (c)9 10
for determining weights for spectral Ðtting as applied to the
ASCA SIS (s0c0g0234p40e1–512v0–8i.rmf in standard
ASCA GOF notation) for emission from an optically thin
plasma. In the Monte Carlo simulations the best-Ðt param-
eters and conventional conÐdence interval determination
for each simulated spectrum were made using XSPEC with

substituted for the errors. Displayed in the upper panel ofw
ieach graph is the relative bias of the parameter estimate

versus total number of counts. The middle panel shows the
fractional 68% error determined as a fractional half-width
*p of the interval [SpT [ *p, SpT ] *p], symmetric with
respect to the mean SpT and including 68% of the best-Ðt
values obtained in individual Monte Carlo runs. The
bottom panel illustrates the applicability of the convention-
al method for conÐdence interval determination ; the frac-
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tion of the runs in which the 68% conÐdence interval
determined by XSPEC using the conventional method
(with *s2\ 1) includes the mean parameter value.

Finally, shows the results of Monte CarloFigure 11
simulations for the method of temperature determination
described in with weights (used for determination of° 2 w

icoefficients and calculated according to method (c).K1 K2)The energy response and energy channels were those of the
ASCA SIS CCD0. The top panel is the same as in Figure 9.
The middle panel shows the ratio of 68% error of the tem-
perature determination in this method to that of the con-
ventional spectral analysis (i.e., the ratio of actual widths of
68% intervals, determined as described in the previous
paragraph). The bottom panel demonstrates the validity of
the method for determination of conÐdence intervals from
equation (5), the fraction of the runs in which the 68%
conÐdence interval includes the mean value of the param-
eter. Clearly, systematic biases are no larger than those for
conventional spectral analysis, and the accuracy of the tem-
perature determinations are also similar to conventional
techniques.

4. CONCLUSIONS

The advent of powerful X-ray observatories capable of
obtaining high-quality spatially resolved spectral data have
necessitated the development of new approaches to data
analysis. We have presented a novel approach to the
mapping of the spectral properties of extended sources. This
approach employs two features ; the use of a linear com-
bination of two spectra to characterize the spectrum at any
desired spatial position and the approximation of the
inverse weight, in the standard s2 minimization by the
smoothed observational data.

The Ðrst feature of our approach, the determination of a
spectral parameter from the coefficients of the linear com-
bination of two spectra which bound the expected range of

the parameter, has two important characteristics. First,
because it is a linear process, it obviates the need for time-
consuming, iterative Ðtting typical of spectral analysis in
X-ray astronomy. Therefore, it is rapid and allows the pro-
duction of spectral parameter maps on Ðne spatial scales.
Second, because the process is linear, it permits, through
simple calculations, the generation of conÐdence levels.

The second feature of our approach, the use of the
smoothed data to approximate the inverse weights in the
standard s2 expression, is important for the optimal use of
the data. This use of the smoothed data reduces the bias
inherent in low count situations where the weights would
otherwise be correlated with the data. Furthermore, as the
simulations show, even for very sparse data the parameter
estimates have very small bias and the parameter estimates
are nearly optimal, i.e., the uncertainties on the Ðtted
parameters are as small as the statistics permit.

This technique was developed for application to ASCA
observations of clusters of galaxies. In particular, we are
interested in studying the temperature distributions in clus-
ters. For regular clusters, a few judiciously selected spatial
regions can be analyzed in detail. For irregular systems,
which are very common and in which we are particularly
interested, the approach described above provides an
overall view of the cluster and is a guide to the selection of
spatial regions for more detailed analysis. We report on the
results of our analysis of ASCA observations of extended
X-ray emission from clusters of galaxies in subsequent
papers.
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