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ABSTRACT 

Digital spectra of point sources can be extracted with maximum signal-to-noise ratio by applying 
appropriate weights across the profile of the object. The first stage in computing these weights 
involves determination of the fraction of the flux of the object which falls into each pixel. The 
published methods differ at this stage, and none can cope with some commonly available types of 
data. We present an improved method for fitting the object profile which is particularly suited to the 
extraction of tilted and distorted spectra, as produced by data taken with cross dispersers and image 
tubes. 
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1. Introduction 

During the past two decades linear detectors of high 
quantum efficiency have been developed which enable 
accurate background subtraction even when the object is 
considerably fainter than the sky. Several authors have 
developed algorithms to extract such spectra with the 
optimum signal-to-noise ratio (Horne 1986; Robertson 
1986; Urry and Reichert 1988). The same algorithms 
reduce the errors caused by poor flat-field correction and 
sky subtraction and can be used to identify cosmic-ray 
hits. In each case the first step is to compute the fraction of 
flux that falls into each pixel across the spectrum at every 
wavelength. In the second step these values are used to 
derive the optimum weights and, thus, to extract the 
spectrum. 

The first step is the most difficult, and the published 
methods have all differed at this stage. Assuming that the 
spectra run parallel with the columns of a detector, 
Robertson (1986) used the fraction averaged over each 
column as the fraction at every wavelength. This fails if 
there is any tilt on the spectrum, for which Robertson 
suggested taking the average in several blocks in each of 
which the tilt was relatively small. However, this method 
leads to discontinuities between the blocks where the 
estimated fractions, and therefore the extraction weights, 
suddenly change. The more complex algorithm of Horne 
(1986) avoids this problem by fitting low-order polynomi- 
als along the columns. Besides coping with small tilts, the 
fitted profiles can then be used to detect bad pixels (e.g., 
cosmic-ray hits). For highly tilted spectra, which cross 
many columns, Horne’s method fails because each 
column contains only a small slice of the spectrum and yet 
requires a high-order polynomial to fit it. 

A third method was developed by Urry and Reichert 

(1988) to extract IUE spectra by fitting a Gaussian to 
several sections of the profile. The fitted widths and 
centroids were then smoothly interpolated for the entire 
spectrum. This method can cope with highly tilted spec- 
tra, but it is not clear that the profile will have a Gaussian 
shape, and, if not, accurate profile weights can never be 
computed. 

In this paper I present an improved method which is 
the most direct extension of Horne’s polynomial fitting 
method for tilted spectra. In the next section I summarize 
the optimal extraction method and discuss the current 
profile-fitting methods and the conditions under which 
they fail. I then describe the improved algorithm and I 
show its application to highly tilted data taken with a cross 
disperser and a CCD. 

2. Optimal Extraction 

We start by summarizing the equations which describe 
optimal extraction (following Horne 1986) and, hence, 
show the prime importance of fitting the fraction of flux 
that falls in every pixel. We assume that the image of the 
slit lies parallel to the rows of the detector and that the 
dispersion direction is roughly parallel to the columns. At 
a particular row of the detector let the amount of flux (with 
any background already subtracted) that falls into the i th 
pixel be D¿. If F is the true flux that we wish to estimate 
and Pi is the fraction which falls into pixel i, then 2¿F¿ = 1 
and the expected value of D¡ is given by E (D¿) = F¿F. 

We estimate F by forming a weighted sum of the Dt 

across the profile, and so the estimate F is given by 

F = SWA , (1) 
i 

and, assuming that the weights are not correlated with the 
pixel fluxes, the expected value of our estimate is there- 
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fore 

£(F) = 2Wi£(Di) = F^WiPi . (2) 
i i 

We impose the condition that our estimate is unbiased 
and therefore 2fWiPi = 1. Since 2fP, = 1, the normal 
extraction method with unit weight for all pixels gives an 
unbiased estimate as expected; however, in general it is 
not the estimate of minimum variance. The variance of 
our estimate is given by 

V(F) = 2XV* , (3) 
i 

where we denote by V¿ the variance on pixel i. This 
expression can be minimized subject to the normalizing 
conditions using Lagrangian multipliers and we find 

As expected, pixels of larger uncertainty and containing a 
smaller fraction of flux are given the lowest weights. 
When the variance is dominated by the flux of the object 
then Vt Df oc p.? and the weights are uniform. Optimal 
extraction is useful if background noise is significant. 
Horne (1986) discusses the determination of the variance 
of each pixel which requires a model for the noise pro- 
duced by the detector. For example, once flat-field varia- 
tions are removed the noise produced by CCDs is well 
described by a readout noise component plus photon 
noise. 

Assuming that the variances V, are uncorrelated with 
the signal D¿, the weights derived above automatically 
satisfy the normalization condition for an unbiased esti- 
mate regardless of the variances. Therefore, although 
incorrect variances will degrade the signal-to-noise ratio, 
they do not bias the estimate. On the other hand, if the P¿ 
are estimated incorrectly as P', say, then 2/WCP' = 1, but 
in general 2/VViFi A 1 and therefore there will be some 
bias. This is only avoided if the weights are all equal, but 
since the optimum weights are not normally equal, cor- 
rect estimation of the P{ is the most important step. 

We now examine two of the current methods for fitting 
the profile. As remarked above, fitting an analytic func- 
tion such as a Gaussian to the profile is a possible method, 
and it has been used with some success in the past (Urry 
and Reichert 1988). This method is simple to apply to 
tilted spectra since one needs only to know how the 
spectrum position perpendicular to the dispersion 
changes as a function of position along the spectrum. With 
this approach it is always possible that the function used is 
not a faithful representation of the true profile. This 
would occur if the spectrum had trailed along the slit, for 
example. An obvious extension would be to add in an- 
other function such as a Lorentzian profile. However, the 

more complex function may still fail, and one is faced with 
a series of ad hoc choices of functions which may need to 
be altered from spectrum to spectrum. 

Horne’s (1986) method removes this difficulty by fitting 
low-order polynomials along the columns and, therefore, 
makes no assumptions about the shape of the profile 
except that it varies smoothly with wavelength. This 
method is effective when the spectra are nearly parallel to 
the columns and when they do not suffer any short-scale 
displacements perpendicular to the dispersion. If these 
conditions hold, typically only three or four coefficients 
are needed for each column. While a particular profile 
shape is not assumed, this method does not extend as 
easily as fitting analytic functions to highly tilted spectra. 

Consider the raw data frame displayed in Figure 1. This 
is cross-dispersed data which will be described in more 
detail in the next section. The spectra cross many 
columns, and a single column only covers a small section 
of each spectrum. It is especially difficult to fit data at the 
top end of the spectra where the signal is weak and only 
significant in a very few rows for any one column.. In this 
region it is likely that the number of fit coefficients will be 
of the same order as the number of data points, which 

Column number, i 

Fig. 1—A grey-scale image of three spectra with the FOS and WHT on 
La Palma. Only a section of the 400 X 590 frame is plotted. The middle 
star of the three is the eclipsing dwarf nova, HT Cas. A polynomial fit to 
the centroid of the spectrum has been plotted over it. 
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causes correlation between the data values and the esti- 
mated weights. The same problem occurs with image- 
tube spectra which, even if they include hardware to 
reduce distortion, typically show very short-scale distor- 
tion at either end of the spectrum. 

We need a method which retains the advantages of 
Horne’s method but also allows us to cope with tilted 
spectra. I present one such method in the next section, 
However, before proceeding I briefly consider an obvious 
technique that in fact cannot work. 

If we can measure the tilt of the spectrum, then we 
could clearly remove it by resampling the data while 
applying the correct shifts at each wavelength. A spec- 
trum could then be extracted from the straightened data 
frame. If the resampling algorithm conserves flux, then 
this method works for normal extraction. However, for 
optimal extraction it fails for two reasons. First, any re- 
sampling method leads to correlation between adjacent 
pixels and, therefore, we can no longer assume statistical 
independence during the extraction. Even without this 
effect, resampling always fails when the spectrum profile 
is undersampled. For example, consider a narrow profile 
which falls into a single pixel. In the absence of any other 
information, if such a profile were to be shifted by half a 
pixel, it must be divided equally between two pixels. 
However, although unavoidable, this is not necessarily 
the correct solution since the profile may not have been 
centered in the original pixel. The effect of this in practice 
is to cause short scale oscillations along the columns which 
are easy to miss in low signal-to-noise data but which 
cause periodic modulation of the extracted spectrum. I 
now consider a method which does not require resam- 
pling the data. 

3. Fitting the Spectrum Profile 

Variations with wavelength in the fraction of flux falling 
in a given column can come from true variations of the 
profile shape, as may be caused by a varying focus, or 
because of the changing position of the spectrum. For 
cross-dispersed and image-tube data, the latter is the 
most important, which suggests that since it is easy to fit 
the position of the spectrum we may be able to use the 
position to reduce the total number of fitting coefficients 
that we need. 

This is the basis of the method. We start by fitting a 
polynomial to the position of the spectrum as a function of 
pixel number in the dispersion direction. A variety of 
methods are possible at this stage. We measure the posi- 
tion at each wavelength by cross correlation with a Gauss- 
ian (Schneider and Young 1980), a method which is less 
sensitive to noise than a simple centroid. The positions 
are then fitted with a polynomial on the assumption that 
the spectrum position varies smoothly. We will denote 
the spectrum position at row j by Xj9 a smooth function of 
h 

Extending the notation of the previous section to in- 
clude variation with wavelength or equivalently row 
number j, an initial, noisy estimate of the fraction of flux 
in the pixel in column i, row j is given by the signal in the 
pixel divided by the total flux in the row 

(5) 

We now imagine a set of polynomials which cover the 
object profile as in Horne’s (1986) method with the differ- 
ence that the polynomials are now evaluated on lines 
parallel to the fitted position of the spectrum rather than 
the columns. This means that the coefficients of one 
polynomial can be influenced by data in several columns 
and that an interpolation scheme is needed to translate 
the polynomial values into the object profile. Also in 
contrast to Horne’s method, the same data may influence 
several polynomials, and so the fits to the polynomials 
cannot be made independently. Assume that there are K 
polynomials which are functions of the row number, are 
equally spaced along the rows, and are interpolated onto 
the correct position of the spectrum for any given row. 
The fitted fractions are then given by 

P, = , (6) 

where Gkj is the polynomial k at row j and Qhj is an 
interpolation coefficient that determines the contribution 
of polynomial k to pixel (ij). The coefficients are fixed by 
the position of the spectrum and by the interpolation 
method chosen. They are not altered by the fit. The fit is 
made by minimizing the \2 between the model and the 
data 

2 
(£« - P*? 

oî (7) 

where is the variance on the estimate Etj and can be 
evaluated from equation (5) and the variances Vtj on each 
pixel. The sum is carried out over all pixels with signifi- 
cant object flux. Accounting for the spectrum position 
removes most of the profile variation, but in case of true 
shape changes, we still need to allow for some variation in 
the dispersion direction and so Gkj is given by a polyno- 
mial with N terms 

Gkj= jUdkT1 > (8) 
n - 1 

where the NK coefficients A are the coefficients that we 
wish to fit. The advantage of this method is that N can 
remain small even for highly tilted spectra since most of 
the tilt is accounted for by the centroid fit included in the 
computation of Qkij (see below). Solving for the coeffi- 
cients A requires the minimization of equation (7), which 
is straightforward since the polynomials are linear in A, 
and we merely need to solve NK simultaneous equations 
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to find the A. The algebra demonstrating this is contained 
in the Appendix. 

We now discuss the computation of the interpolation 
coefficients, Qkij. The polynomials are intended to repre- 
sent the profile before it is binned into pixels; to find the 
observed, binned profile, we must integrate the polyno- 
mials profile. The polynomials only give a finite number 
of samples of the unbinned profile and so some form of 
interpolation must be defined. Finally, when integrated, 
we can deduce the interpolation coefficients Q, which 
enter in equation (6). We now go through the scheme 
explicitly for the simplest interpolation method. 

The polynomials are equally spaced along the rows 
parallel to the fitted position of the spectrum and so let 
polynomial k at row j be centered on 

xhi = Xj+Sk + C , (9) 

where S is the spacing between the polynomials, Xj the 
position of the spectrum, and C an added constant to 
ensure that the polynomials cover the correct range 
across the profile. The spacing between the polynomials 
should be small enough to recover the unbinned profile. 
Therefore, it must be less than one to cope with under- 
sampled data. We consider nearest-neighbor interpola- 
tion for the unbinned profile. In this case the unbinned 
profile is given by 

p* = Én(x-*#,s)G# , (io) 
k=i 

where the “top-hat” function II(x,S ) is equal to 1 for Ix I < 
S/2 and equal to 0 otherwise. The binned profile Ptj is the 
function Pxj integrated between i — 0.5 and i + 0.5. 
Carrying out this integration we find 

pn = - \xkj - i\))Gkj , (11) 
k= 1 Z 

where max(a,b) returns the maximum value of its two 
arguments and min(a,b) returns the minimum. Compar- 
ing this expression with equation (6), we can identify the 
values of Qkij. For this method of interpolation, the values 
of Qkij for a given column i and polynomial k change 
continuously with Xj, but their derivatives with respect to 
Xj are not continuous, which causes gradient discontinu- 
ities in the fitted profile. Therefore, in practice we use 
linear interpolation of the unbinned profile according to 

r* = ¿A(*-*tt,S)G# , (12) 
k= 1 

where A(x,S) equals 0 for Ix I > S, 1 at x = 0 and is linear 
between x = 0 and x = ±S. The Q coefficients can be 
evaluated by integration as above. 

For stability the first fit is made with equal variances on 
each pixel. In succeeding fits the previous fit is used to 
derive accurate variances, and so at least two fits are 
required. At the same time, deviant pixels can be de- 

tected by their deviation from the fit, and subsequently 
ignored. It normally takes five or six fits to eliminate all 
such pixels. This procedure is analogous to the outlier 
rejection method discussed by Horne (1986). 

We now apply the method to data taken with a CCD 
and cross disperser. 

4. Application to Data 

The tilted profile fitting was designed for extraction of 
faint object spectrograph (FOS) data from the William 
Herschel telescope (WHT) on La Palma. We have also 
applied it to image-tube data taken with the 2-D Frutti on 
the 200" (5-m) Hale telescope and to IPCS data taken on 
the Isaac Newton telescope on La Palma—each of which 
show short-scale distortion. 

We now show the application to the FOS data. The 
FOS is a fixed-format instrument designed for high effi- 
ciency. Two orders separated by a cross disperser cover a 
wavelength range from 3500 A to 9800 A. We examine 
data taken during a run in July 1988. For these data the 
blue order was blocked with a filter, but since the cross- 
dispersing prisms are fixed in place, the red order (4900 A 
to 9800 A) remains strongly curved. The targets were 
cataclysmic variable stars which have orbital periods be- 
tween 2 and 10 hours and, therefore, required short 
exposures to avoid smearing out orbital variations. Thus, 
the faintest parts of the spectrum are dominated by read- 
out noise, and optimal extraction is useful. 

Figure 1 shows the data which will be used to illustrate 
the profile fit. The middle star of the three on the slit is the 
eclipsing dwarf nova HT Cassiopeiae. The prominent 
emission lines of Ha at row 185 and He I 5876 at row 225 
are clearly visible as are numerous night sky lines. The 
smooth line drawn through the data is the polynomial fit 
to the centroid of the spectrum at each wavelength. We 
used eight coefficients and the reduced x2 = 1.07. The 
spectrum is tilted by 33 columns and low-order polyno- 
mial fits are inadequate. More details of the fits can be 
found in Table 1. 

In Figure 2 we show the estimated fraction of flux 
falling into all rows of selected columns along with the fit 
based on linear interpolation plotted as solid lines over 
the top. We have not shown all the columns for clarity; the 
columns used are indicated by numbers which can be 
related to the X ordinate of Figure 1. Columns on the 
right-hand side cross the most tilted region of the spec- 
trum and subsequently show more rapid variation than 
columns on the left. The maximum flux falls onto a given 
column when the spectrum is centered on it. In Figure 2 
the maximum fraction in a column increases from left to 
right, which shows that the spectrum is best focused at 
the top of the image in Figure 1. This is the true profile 
variation which requires the number of polynomial terms 
N to be greater than 1. 

Details of the fits can be found in the table. As can be 
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TABLE 1 

Parameters of the Profile and Centroid Fits 

Number of terms in each 3 
polynomial 
Spacing, S 0.4 pixels 
Number of polynomials, K 34 
Rejection threshold 3tr 
Reduced x2 1.05 
Points rejected 87 
Total number of points 6905 

Number of polynomial 8 
terms 
Reduced x2 1-07 
RMS deviation 0.11 pixels 

Profile fit Centroid fit 

Row number, j 
Fig. 2-The estimated fractions of flux falling in each pixel of selected 
columns are plotted along with the fit using the method of this paper. 
The stars are points rejected during the fit. 

seen from Figure 2 and the reduced x2 in the table, the fit 
is excellent and provides a good estimate of the fractional 
flux in each pixel. The improvement over independent 
fits to each column is especially important for columns on 
the right-hand side, where the data are very noisy and 
could not be fitted without the information provided by 
other parts of the spectrum. The fitted profiles can now be 
used to extract the optimal spectrum, which requires only 
simple modifications to earlier algorithms. Figure 3 
shows the optimal extraction based on the fit of Figure 2 
compared to the normal extraction (unit weights) over the 
same region. The improvement in signal-to-noise ratio is 
evident in many parts of the spectrum. 

5. Conclusion 

Apart from the profile fitting, the new method is the 
same as Horne’s (1986) method and, therefore, can be 
used to identify bad pixels on the spectrum in exactly the 
same way. In contrast to Horne’s method, the more com- 
plex fitting presented here can allow the fit from one 

5000 6000 7000 8000 9000 
Wavelength (Â) 

Fig. 3-The optimally and normally extracted spectrum of HT Cas from 
the frame of Figure 1 after applying flux and wavelength calibration and 
correcting for atmospheric absorption. Improvements to the signal-to- 
noise ratio are evident in many regions. The estimated 1 ct uncertainties 
are plotted along the bottom. 

profile to be shifted onto another, since it only requires 
changing the fit to the spectrum position which is used in 
equation (9). This may be useful for optimal extractions of 
faint targets using profile fits from a bright target shifted 
to the new position. 

In effect the fit is able to remove the effect of aliasing by 
using the many samples of the profile at different posi- 
tions provided by the tilt. Recovery of spatial frequencies 
which give whole numbers of cycles within one pixel is 
not possible, of course, but this does not matter since it is 
the binned fit (which does not contain such frequencies) 
that is required for the optimal extraction. 

I have written the algorithm as a set of VAX FOR- 
TRAN-77 subroutines, designed to run under the spectral 
reduction package FIGARO. Both the subroutines and 
the FIGARO programs which run them are available on 
request from the author. 

I thank the Director of the Space Telescope Science 
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Appendix 

In this Appendix I derive the explicit expressions 
needed to compute the coefficients A which minimize x2 

in equation (7). We first differentiate equation (7) with 
respect to Ank and set the result equal to 0: 

dAnk 22 
(Eg - Pu) W* 

c)A nk 
(Al) 

and after substitution for Ptj from equation (6) and for the 
polynomials G from equation (10), and avoiding the repe- 
tition of symbols for unrelated indices, we find 

2A»/2 
ml ij 

QkuQuJ 
VÎ 2 O’« 

(A2) 

The indices l and k range from 1 to K, the number of 
polynomials, and the indices m and n range from 1 to N, 
the number of coefficients for each polynomial. By defin- 
ing two new indices, p and q, which uniquely specify all 
combinations of the four old indices, l, k, m, and n, we can 
transform the equation above into a standard matrix ex- 
pression: 

p = N(l — 1) + m , 

q = N (k — 1) + n , 

Bp = Aml , 

and 

X - V EiiQbaf 1 

" “Z a? ’ 

Ç /ct;C hi] 
“A „2 

With these definitions equation A2 becomes 

2 c,A = xq, 
p 1 

for 

(A3) 

q = 1,2,...,2VK , (A4) 

which can be solved for the polynomial coefficients in B 
provided that the matrix C has an inverse. There are 
many algorithms available for the solution of simulta- 
neous equations like equation (A4). Pixels can be ignored 
during the fit by leaving them out of the sum over i and j. 

The computation of the matrix C takes the most time as 
it requires of order (NK)2 X NP multiplications and addi- 
tions where NP is the number of pixels. This number can 
easily reach 108 although substantial savings are possible 
since many of the interpolation coefficients Q equal zero 
and since C is symmetric. 
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