PHOTOMETRY OF STARS IN THE $u v g r$ SYSTEM*

STEPHEN M. KENT
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street
Cambridge, Massachusetts 02138
Received 1984 July 23, revised 1984 November 17

Abstract

Photoelectric photometry is presented for over 400 stars using the $u v g r$ system of Thuan and Gunn. Stars were selected to cover a wide range of spectral type, luminosity class, and metallicity. A mean main sequence is derived along with reddening curves and approximate transformations to the $U B V R$ system. The calibration of the standard-star sequence is significantly improved.

Key words: photometry-stellar classification

I. Introduction

The uvgr system (Thuan and Gunn 1976, hereafter TG) was developed as a four-color intermediate-to-wideband photometric system which was designed to avoid a number of pitfalls of the standard UBV system. The four bands are nonoverlapping and exclude the strongest night-sky lines. The u and v filters lie in a region of strong line blanketing in late-type stars and measure the Balmer jump in early-type stars; the g and r filters lie in less-affected regions and hence provide a measure of stellar temperature. All filters have closed bandpasses and hence the system is not sensitive to the wavelength cutoff of the particular detector being used. The uvgr system has become somewhat popular for use with new imaging devices such as CCDs where the darkness and well-defined bandpasses of the g and r filters are especially appreciated. Results in the $u v g r$ system published thus far include studies of globular clusters by Zinn (1980) and Searle, Wilkinson, and Bagnuolo (1980), firstranked galaxies in clusters by Hoessel, Gunn, and Thuan (1980), and surface photometry of M31 by Hoessel and Melnick (1980).

In this paper, the photometry of over 400 field and cluster stars is reported. An attempt has been made to observe stars with a wide diversity of types in order to establish the ability of the system to distinguish stars of different classes. Types observed include main-sequence stars, giants and supergiants, subdwarfs, white dwarfs, globular-cluster stars, galactic-cluster stars, and a few other miscellaneous stars. A mean main sequence is defined and reddening curves are derived. The ability of the system to separate stars of different luminosities and metallicities is demonstrated. Finally, improved magnitudes and color indices are given for most of the fundamental standard stars.

[^0]
II. Observations

The observations were made during several runs from 1976 through 1978 on the Palomar 60 -inch ($1.5-\mathrm{m}$) telescope. The instrumentation and equipment were identical with that used by TG. A two-channel pulse-counting S20 photometer allowed for the simultaneous measurement of object and sky. Each star was observed in both apertures except for the globular-cluster stars, where it was necessary to go off the cluster to measure sky. This redundancy was useful in eliminating errant observations (as might be caused by a star in the sky hole). An aperture size of $15^{\prime \prime}$ was used at all times. Integration times were typically 5 or 10 seconds on bright stars and proportionately longer on faint ones. Each channel and each night was reduced independently. Errors on bright objects $(g<12)$ are estimated to be $<0.02 \mathrm{rms}$. On the faint globular-cluster stars, errors are estimated to be somewhat larger, perhaps $0^{\mathrm{m}} .05$ in the u filter and $0^{\mathrm{m}} .03$ in the others. Crowded fields also contribute to this error.

During one night of observations it was discovered part way through the night that the infamous 60 -inch dome (which operates under computer control) was partially occulting the telescope. Normally one would take the data from such a night and deposit it in the nearest trash can. However, it was found subsequently upon reducing the standard-star observations that, while the magnitudes were indeed rubbish, the color indices gave quite reasonable solutions. Hence the reduced color indices from this night have been retained, and such objects are marked in the tables by having a blank in the magnitude column.

Stars were selected from a wide variety of sources which are described in the succeeding sections. In general, all objects have $U B V$ observations available as well.

III. Standard Stars

Early on it became evident that the accuracy of the standard stars originally measured by TG could be im-
proved. A recalibration of the standards was therefore undertaken. In the first step, twelve stars in the fall sky which were observed simultaneously on four nights were reduced by standard techniques using the original magnitudes and color indices given by TG. Using the residuals derived from the least-squares solutions, a mean correction was applied to each star. After applying these corrections, the rms residuals in the least-squares solutions were reduced to 0 m 007 per observation. This new set of magnitudes and color indices defined a new primary set of standards. Additional standard-star observations were then reduced directly to this fundamental set.
The revised set of standard stars is listed in Table I. Not all original standard stars were reobserved sufficiently, and for these the original TG values are retained. One star, Wilson 12754, has been dropped, as it was in a very crowded field. Another, Ross 451, has also been dropped since it became clear that the published color indices are in error, but not enough new observations were made to derive better values. Two new stars (GL745A and B) have been added; both are quite red subdwarfs. The coordinates for Ross 786 in TG were given for epoch 1950 by mistake; the correct 1900 coordinates are given here.

With this new calibration, +174708 no longer defines the zero-point of the magnitudes and color indices

TABLE I
Standard Stars

Object	α (1900)	$\delta(1900)$	g	v-g	u-v	g-r
BD +7131	$00^{\mathrm{h}_{37} \mathrm{~m}_{1}}$	+71038	10.21	-0.04	0.01	-0.03
HD 19445	0302.5	+25 59	8.088	-0.008	-0.087	0.018
Ross 374	0321.1	+23 26	10.851	0.096	0.000	0.079
Ross 34	0322.3	+37 03	11.523	1.257	0.397	0.937
BD +21 607	0408.6	+22 06	9.241	-0.011	-0.036	-0.016
BD +54 1216	0811.7	+5425	9.727	0.019	-0.053	0.002
BD +25 1981	0838.5	+25 10	9.277	-0.089	0.102	-0.159
Ross 683	0845.1	+08 00	11.40	0.46	-0.01	0.25
Ross 889	0935.6	+0129	10.45	-0.08	0.01	-0.08
HD 84937	0943.5	+1414	8.34	-0.06	0.01	-0.06
Feige 34	1033.8	+43 37	10.893	-0.825	-0.755	-0.787
BD +29 2091	1041.8	+28 57	10.330	0.068	-0.106	0.080
Ross 453	1205.8	+00 58	11.119	-0.007	-0.062	0.015
Feige 67	1239.2	+17 49	11.534	-0.829	-0.749	-0.792
Ross 484	1313.8	-02 32	11.092	0.915	0.231	0.571
BD +262606	1444.6	+26 08	9.759	-0.019	-0.032	0.006
BD +23375	1734.8	+02 28	9.987	0.002	-0.042	0.040
HD 171164	1828.1	+28 48	8.376	1.080	0.501	0.518
Ross 711	1831.4	+28 38	11.437	-0.039	-0.039	0.010
GL 745A	1902.8	+20 44	11.359	1.438	0.477	1.205
GL 745B	1902.8	+20 44	11.348	1.434	0.480	1.202
BD +35 3659	1927.6	+35 57	10.281	0.060	-0.067	0.050
BD +28 4211	2146.7	+2824	10.214	-0.837	-0.767	-0.800
BD +174708	2206.7	+1736	9.500	0.001	-0.001	0.001
HD 215732	2242.2	+29 22	8.157	1.302	0.618	0.649
Ross 786	2304.5	+00 12	10.059	0.356	-0.045	0.242

directly as it did originally. Nevertheless its new magnitude and color indices differ from the old by at most 0.001 .

For reference, the mean extinction coefficients derived from the standard solutions are listed in Table II.

IV. System Characteristics

In advance of presenting the new photometry, some of the characteristics of the $u v g r$ system are first discussed.

A. Main Sequence

A mean main sequence will be plotted in all figures. It was derived using stars with good spectral types in the Pleiades, Hyades, and M34 (with small reddening corrections applied where necessary) and selected field stars. The main sequence so derived is listed in Table III. Values for spectral types earlier than A0 are somewhat uncertain because unreddened stars of these types are too bright to observe with a 60 -inch telescope. No values are listed for M dwarfs because not very many stars of these types were observed and the colors of these stars are a quite sensitive function of spectral type.

TABLE II

Atmospheric Extinction Coefficients

Term	Coefficient
$\mathbf{k}_{\mathbf{g}}$	-0.179
$\mathbf{k}_{\mathbf{v}-\mathrm{g}}$	-0.171
$\mathbf{k}_{\mathbf{u}-\mathrm{v}}$	-0.212
$\mathbf{k}_{\mathrm{g}-\mathrm{r}}$	-0.093

TABLE III
Standard Main Sequence

Spectral Class	$\mathrm{v}-\mathrm{g}$	$\mathrm{u}-\mathrm{v}$	$\mathrm{g}-\mathrm{r}$
05	-0.84	-0.77	-0.80
B5	-0.61	-0.30	-0.68
A0	-0.37	0.36	-0.56
A5	-0.17	0.42	-0.40
F0	-0.02	0.24	-0.19
F5	0.12	0.09	-0.02
G0	0.27	0.05	0.08
G5	0.42	0.09	0.14
K0	0.66	0.18	0.28
K5	1.06	0.37	0.58
K8	1.29	0.46	0.79

B. Reddening

Following Hiltner and Johnson (1956), O stars with various degrees of reddening were measured in order to determine the slope of the reddening function in the $(u-v),(v-g)$ and $(v-g),(g-r)$ planes. These relations were determined to be

$$
\begin{aligned}
& E(u-v)=0.574 E(v-g) \\
& E(v-g)=0.797 E(g-r) .
\end{aligned}
$$

Also, from the $U B V$ data of Hiltner and Johnson, it was found that

$$
E(v-g)=0.89 E(B-V)
$$

Zinn (1980) has measured these numbers for a slightly different filter set and in general finds smaller coefficients. The reason for this discrepancy is not clear, but may be due to the fact that second-order corrections have not been included here though they may be important for some of the very heavily reddened stars. Also, the reddening law is known to vary within the galaxy; the stars sampled here are concentrated toward 90° galactic longitude.

V. Open Clusters

Observations of stars from four open clusters are listed in Table IV. Stars were selected as follows:

1. Hyades-Stars were taken from the compilation of Johnson, Mitchell, and Iriarte (1962). Spectral types, where given, are from Morgan and Hiltner (1965). Designations are taken from Van Buren (1952), Giclas (1962), and Johnson, Mitchell, and Iriarte (1968).
2. Pleiades-Stars were selected from the lists of Johnson and Morgan (1953) and Johnson and Mitchell (1958). Designations are taken from Hertzsprung (1923). (Note: Johnson and Mitchell use a different numbering scheme given by Hertzsprung (1947). This latter reference provides a cross-reference to the earlier numbering system.) Spectral types are taken from Blanco et al. (1968).
3. M34—Stars were taken from Johnson (1954), and designations are those of Bruggemann (1935).
4. M67-Stars were selected from lists of Johnson and Sandage (1955) and Eggen and Sandage (1964). The designations are from Fagerholm (1906) for objects labeled by F plus number, and Eggen and Sandage (1964) for objects marked with a Roman numeral plus number.

The data from the Pleiades, Hyades, and M34 are plotted as $u v g$ and $v g r$ two-color diagrams in Figure 1. Also plotted in these diagrams are solid lines which mark the main sequence as described in section IV.A. As can be seen, the clusters provide continuous spectral coverage from B8 to K8. Stars within each cluster form a very tight relation in the two-color diagrams. The Pleiades are reddened by $0^{\mathrm{m}} \cdot 03-0^{\mathrm{m}} 07 \mathrm{mag}$ in $(B-V)$
(Mitchell and Johnson 1957) and M34 is reddened by 0.09 (Johnson 1954), so stars in these clusters lie somewhat off the main-sequence curves. In Figures $1(a)$ a sharp dip in the two-color curve near $(v-g)=-0^{m} .2$ reflects the strong sensitivity of the $(u-v)$ index to the Balmer discontinuity in early-type stars. Reddening lines are drawn in both diagrams. It is seen that for stars redder than $(v-g)=0^{m} .5$, reddening shifts stars virtually parallel to the main sequence and so reddening cannot be disentangled from spectral type easily on the basis of photometry alone. However, for early-type stars, particularly earlier than B5, reddening is decoupled from spectral type in the $(u-v),(v-g)$ plane and so this diagram can be used to determine reddening to good accuracy (a better calibration is needed before spectral type can be measured).

VI. Main Sequence

Observations of a large selection of main-sequence field stars are given in Table V. Most stars were selected at random from Blanco et al. (1968), who give coordinates and spectral types as well. Additionally, several reddened O stars were selected from Hiltner and Johnson (1956), some early-type stars at high galactic latitude were taken from Slettebak, Bahner, and Stock (1961), and K and M dwarfs were taken from Veeder (1974). For convenience, Table V is sorted by spectral type. Stars identified only by a number are HD objects; others have fairly standard designations. It should be recognized that many of the spectral types are of questionable accuracy.

The stars in Table V have been divided into two groups of spectral types $\mathrm{O}-\mathrm{A}$ and $\mathrm{F}-\mathrm{M}$ and plotted separately in Figures 2 and 3. Several features are immediately evident. First, the two-color relations show much more scatter than for the open clusters in Figure 1, reflecting the diversity in age, composition, and reddening of these field stars. For early-type stars (Fig. 2) the reddening can be especially severe. In Figure 3, the M stars are seen to extend beyond the mean main sequence. In the $(v-g),(g-r)$ plane these stars are seen to make a sharp bend right from the main sequence at $(g-r)=$ $0^{\mathrm{m}} .8$ and remain at constant $(v-g)$ out to $(g-r)=1 \mathrm{~m} \cdot 2$.

VII. Giants

Table VI contains observations of an assortment of field giants covering luminosity classes I to IV. These stars are plotted in Figure 4. Also plotted are the M-type main-sequence stars to better define the main sequence for these type stars.

Among early-type stars, particularly late-A through F the Balmer discontinuity is expected to be an indicator of both temperature and luminosity. In Figure 4(a) it is seen that there is a scattering of stars with excessively large $(u-v)$ near $(v-g)=0$, although reddening is also
table IV
Open Cluster Stars

	Name	Sp. Type	8	v-8	u-v	8-r
Hyades						
vB	3		8.43	0.55	0.11	0.20
VB	10		7.91	0.29	0.05	0.07
VB	15	G3v	8.15	0.38	0.09	0.14
vb	17		8.57	0.45	0.10	0.17
VB	18		8.10	0.35	0.08	0.10
vb	21	K0V	9.28	0.64	0.19	0.28
vB	22		8.46	0.52	0.13	0.25
vB	25	R3v	9.79	0.91	0.31	0.43
VB	26	G9V	8.71	0.53	0.13	0.20
VB	27	G8v	8.58	0.49	0.13	0.19
vb	29	F8V	6.91	0.22	0.08	0.03
VB	31	GOV	7.50	0.22	0.07	0.05
vB	39		7.95	0.41	0.08	0.14
VB	42		8.95	0.54	0.13	0.21
VB	43	K2V	9.57	0.78	0.25	0.38
VB	46		9.26	0.70	0.22	0.31
vB	49		8.30	0.31	0.06	0.08
VB	50	GIV	7.67	0.28	0.07	0.09
VB	52		7.88	0.30	0.06	0.09
VB	57	F7V	6.47	0.14	0.06	-0.02
vB	58	G6V	7.62	0.41	0.10	0.15
vB	59	F8V	7.53	0.22	0.06	0.03
vB	62	F8V	7.41	0.21	0.08	0.02
VB	63	G5v	8.13	0.36	0.07	0.10
VB	64		8.20	0.40	0.09	0.13
VB	65	F8V	7.47	0.20	0.06	0.02
VB	73	GIV	7.90	0.31	0.07	0.07
vB	76		9.30	0.57	0.15	0.22
vB	79	K0V	9.10	0.66	0.21	0.27
vB	85	F5V	6.50	0.08	0.11	-0.08
VB	87	G8V	8.71	0.53	0.13	0.19
VB	91	R1V	9.10 ,	0.72	0.21	0.34
VB	92	G8V	$8.78{ }^{\prime}$	0.53	0.12	0.19
VB	93	K2V	9.57	0.77	0.23	0.32
VB	96	ROV	8.65	0.66	0.18	0.30
vB	97	GIV	7.98	0.33	0.07	0.09
vb	99	R1V	9.53	0.73	0.23	0.30
vB	102	GIV	7.61	0.29	0.07	0.09
VB	105		7.58	0.26	0.06	0.06
vB	109		9.52	0.62	0.18	0.25
vB	115		9.22	0.69	0.21	0.29
VB	116		9.13	0.68	0.21	0.28
VB	117		9.76	0.99	0.35	0.55
vb	140		9.06	0.53	0.11	0.24
VB	142		8.40	0.40	0.08	0.12
VB	143		7.93	0.20	0.06	-0.01
VB	145		9.44	0.54	0.12	0.25
VB	173		10.83	1.27	0.47	0.75
VB	176		9.22	0.82	0.25	0.41
vB	178	ROV	9.19	0.68	0.21	0.31
VB	180	K1V	9.24	0.72	0.23	0.32
VB	183		9.88	0.82	0.27	0.38
VB	185		9.75	1.04	0.35	0.62
VB	222		10.39	1.07	0.39	0.56
VB	262		11.28	1.36	0.46	0.85
vB	286		11.41	1.32	0.48	0.85
vB	290		11.03	1.28	0.47	0.78
vB	304		10.46	1.18	0.43	0.67
VB	311		10.29	1.08	0.40	0.56
VB	312		9.76	1.05	0.37	0.62
	Pleiades					
HS	8	P5V	9.52	0.12	0.11	0.00
HS	28	A7v	8.18	-0.05	0.36	-0.27
HS	29	F5V	9.60	0.14	0.07	0.01
HS	43		7.98	-0.10	0.42	-0.33
HS	88	12	9.12	0.09	0.21	0.00
HS	92	A8V	8.12	-0.05	0.31	-0.23
HS	123	F3v	8.98	0.04	0.15	-0.09
HS	133		10.51	0.31	0.06	0.14
HS	145	F2V	8.97	0.03	0.14	-0.10
HS	146		8.58	0.02	0.38	-0.17
HS	169	F3V	9.03	0.09	0.16	-0.04
HS	187	A3V	7.99	-0.08	0.47	-0.29
HS	206	A9V	8.60	0.01	0.31	-0.14
HS	213		10.23	0.25	0.10	0.13
HS	219		9.79	0.19	0.06	0.05
H8	251	A2V	7.77	-0.11	0.48	-0.34
HS	310	cov	8.75	0.30	0.06	0.08
HS	341	A2V	7.25	-0.21	0.45	-0.43

TABLE IV (Continued)

	Name	Sp. Type	8	v-8	u-v	8-r
HS 3	385		10.36	0.49	0.07	0.20
HS 3	388	F4V	9.33	0.12	0.09	-0.03
HS 3	396	F5V	9.43	0.13	0.09	-0.02
HS	420		9.98	0.17	0.12	0.05
HS	424		10.56	0.32	0.04	0.12
HS	428		10.62	0.34	0.05	0.12
HS 4	457	A9V	8.34	-0.04	0.29	-0.21
HS	484	F3V	8.75	0.12	0.14	-0.03
HS 5	501	A7V	8.21	-0.06	0.36	-0.28
HS 5	513	A4V	7.60	-0.12	0.40	-0.33
HS 5	534	A3V	7.66	-0.16	0.42	-0.39
HS 6	610		11.26	0.51	0.11	0.23
HS 6	620		9.95	0.19	0.05	0.03
HS 6	681	F6V	9.33	0.19	0.09	0.03
HS 6	695	F4V	9.17	0.11	0.14	-0.02
HS 6	698		11.05	0.45	0.09	0.21
HS 8	862		11.06	0.56	0.13	0.34
HS 8	891		7.41	-0.23	0.46	-0.43
HS 9	919		11.07	0.68	0.18	0.34
HS 9	922		11.44	0.57	0.11	0.26
HS	936		11.52	0.61	0.16	0.27
HS 9	948	F3V	9.14	0.06	0.13	-0.08
HS	986		11.70	0.64	0.17	0.29
		M34				
M34	62	B9	8.35	-0.33	0.46	-0.46
M34	70	A2	10.36	-0.15	0.46	-0.42
M34	74	A2		-0.13	0.48	-0.37
M34	80			0.33	0.04	0.11
M34	82	B8		-0.39	0.28	-0.54
M34	83	A5	11.48	-0.01	0.29	-0.17
M34	90	B7		-0.42	0.15	-0.53
M34	93	B7		-0.41	0.16	-0.52
M34	96	A2		-0.17	0.45	-0.40
M34	97	A8		-0.05	0.43	-0.28
M34	101	B8		-0.42	0.17	-0.54
M34	102	A2		-0.05	0.41	-0.26
M34	105	A5		0.00	0.34	-0.23
M34	109	A0		-0.23	0.47	-0.45
M34	111			-0.22	0.47	-0.46
M34	112	B8		-0.38	0.23	-0.52
M34	114	B9		-0.30	0.36	-0.48
M34	117	B9	9.17	-0.32	0.39	-0.49
M34	118	A5	11.46	0.00	0.30	-0.16
M34	123	B9	8.73	-0.35	0.35	-0.50
M34	126	B9	9.18	-0.32	0.40	-0.49
M34	132	F0	11.48	0.00	0.29	-0.17
M34	137	A8	11.47	0.07	0.30	-0.11
M34	140	A2	10.17	-0.19	0.45	-0.43
M 34	143	B8	8.11	-0.40	0.22	-0.51
M34	152	A2	10.81	-0.16	0.50	-0.40
	M67					
M67	F-81		9.70	-0.58	-0.07	-0.63
M67	F-105		10.64	1.35	0.61	0.66
M67	F-108		10.10	1.51	0.69	0.77
M67	F-141		10.72	1.06	0.48	0.50
M67	F-153		11.12	-0.19	0.48	-0.43
M67	F-224		11.04	1.11	0.55	0.52
M67	F-231		11.75	0.95	0.47	0.46
M67	I-15		11.55	0.01	0.17	-0.08
M67	I-20		13.50	0.16	0.14	0.02
M67	I-25		12.70	0.26	0.09	0.09
M67	I-27		11.26	-0.03	0.43	-0.23
M67	I-49		13.48	0.26	0.05	0.10
M67	I-62		12.91	0.50	0.18	0.22
M67	II-22		13.14	0.78	0.25	0.36
	II-25		12.47	0.16	0.02	0.09
M67	II-36		12.78	0.21	0.12	0.06
M67	II-56		13.42	0.22	0.08	0.05

contributing an unknown but significant amount to this scatter. Reddening could in principle be measured in the $(v-g),(g-r)$ plane, but a more accurate calibration of the unreddened relation for giants would be needed before this is possible. Also, reddening in this plane shifts stars very nearly parallel to the main sequence, and so in practice it is difficult to disentangle the effects of lumi-

Fig. 1-Two-color diagrams for stars from three open clusters. The solid line is a nominal main sequence.
nosity, spectral type, and reddening from $u v g r$ photometry alone.

One errant star is visible in Figure $4(\mathrm{a})$ at $(u-v)=$ $0^{\mathrm{m}} 9,(v-g)=0 \mathrm{~m} 3,+632105$. An unpublished spectrum shows this star to be a heavily reddened giant of spectral type F3 III. Even unreddened it must still have an unusually large Balmer discontinuity.

The $u v g r$ system works much better at isolating latetype giants. In all of the three diagrams in Figure 4, the separation of late-type giants from the main sequence is quite clear-cut, the separation being largest for the lat-est-type stars. Difficulty is to be had only with giants earlier than K0 for luminosity classes I-III. A detailed comparison with $U B V$ photometry shows that $u v g r$ provides separation between giants and the main sequence at an earlier spectral type ($U B V$ is effective beyond K2) and gives about twice the separation of $U B V$.

VIII. Special Stars

Collected together in Table VII are observations of subdwarfs and an assortment of stars of other miscellaneous types. They are plotted in Figure 5. The subdwarfs have been augmented by those which have been used as standard stars in Table I.

A. Subdwarfs

Subdwarfs were taken from Blanco et al. (1968) and Sandage (1964, 1969). It is seen from Figure 5 that they lie above the main sequence in the $(u-v),(v-g)$ and $(v-g),(g-r)$ planes. A detailed comparison of this photometry with the $U B V$ photometry of subdwarfs by Sandage (1964) shows that the $u v g r$ system has a slightly greater sensitivity to metallicity than UBV (by about 25%) with the separation from the main sequence being greatest in the $(u-g),(g-r)$ plane.

B. White Dwarfs

A few of these objects were observed. Selections were made from Blanco et al. (1968) and Feige (1959). These objects generally lie in the same regions as reddened O stars.

C. Wolf Rayet Stars

One such object was observed.

D. Horizontal-Branch-Type Star

One such star was observed. It has an enormous Balmer decrement, as can be seen in Figure 5(a). In $U B V$ the colors of this star are much closer to those of a normal-A star (Slettebak et al. 1961). Although described by these authors as having a spectrum similar to globular clusterhorizontal branch stars, it has a much larger $(u-v)$ index than those stars which are described in section IX, indicating that it is, in fact, considerably more luminous than a typical globular cluster HB star.

E. Field Globular-Cluster-Type Giant

One such object was observed. It will be discussed further in the next section on globular cluster stars.

IX. Globular-Cluster Stars

A handful of stars in each of five globular clusters were observed. The stars are listed in Table VIII and plotted in Figure 6. The stars were selected as follows:

1. M2—Arp (1955)
2. M3—Sandage (1970)
3. M5—Arp (1955)
4. M13-Arp and Johnson (1955)
5. M92-Sandage and Walker (1966).

The accuracy of these observations is much poorer than for any previous objects, particularly in the u band, which, for red giants, has a very low count rate. The globular-cluster giants are in general much bluer than the field giants which were considered in section VII.
table V
Main-Sequence Stars

Name	Sp. Type	8	v-8	u-v	g-r
0 Main-Sequence					
-12 134	OP	11.48	-0.83	-0.75	-0.72
+60 470	08V	10.04	0.05	-0.21	0.28
12323	09V	8.77	-0.57	-0.55	-0.51
12993	05	8.95	-0.40	-0.49	-0.25
15570	05	8.33	0.03	-0.27	0.33
191423	09V	7.97	-0.40	-0.46	-0.29
191978	08	7.95	-0.41	-0.48	-0.32
228854	08	8.71	0.06	-0.17	0.35
229232	05	9.79	0.22	-0.12	0.44
236894	08V	9.35	-0.39	-0.47	-0.24
B Main-Sequence					
-15 115	B2	10.63	-0.64	-0.36	-0.69
-7 230	B9	10.91	-0.35	0.49	-0.51
+394863	B9	10.21	-0.31	0.38	-0.48
+40 4845	B7	8.90	-0.40	0.16	-0.49
+51 3239	B2V	9.55	-0.28	0.25	-0.34
+562720	B6V	9.48	-0.09	0.35	-0.09
+80 32	B2V		-0.48	-0.35	-0.47
1403	B9V	8.91	-0.35	0.36	-0.51
1604	B9V	8.78	-0.36	0.32	-0.51
8323	B6		-0.48	-0.01	-0.62
36542	B9V	8.45	-0.37	0.33	-0.56
183282	B8V		-0.31	0.27	-0.43
185338	B9V		-0.36	0.23	-0.44
191568	B9V		-0.35	0.36	-0.53
202883	B3		-0.54	-0.25	-0.60
211229	B9		-0.34	0.34	-0.46
211835	${ }^{\text {B3V }}$	8.32	-0.51	-0.47	-0.39
213781	B6	8.82	-0.49	-0.04	-0.58
214022	B7	8.32	-0.47	-0.08	-0.54
227784	B8V		-0.38	0.06	-0.46
228063	B8V		-0.41	0.03	-0.50
228147	B9V		-0.34	0.38	-0.52
AC +9 6-12	BP	10.01	-0.65	-0.52	-0.74
A Main-Sequence					
-14 27	A2	10.78	-0.17	0.49	-0.44
-4 495	A2	10.64	-0.19	0.49	-0.43
+9 124	AP	10.42	-0.37	0.50	-0.49
+144760	A7	10.05	-0.06	0.38	-0.26
+364917	A5	9.74	-0.08	0.43	-0.23
+374655	A6	9.60	-0.05	0.32	-0.22
+384833	A5	9.05	-0.08	0.39	-0.28
+394861	A5	10.82	-0.16	0.46	-0.37
+394943	A1	9.88	-0.22	0.45	-0.43
331	A6V	8.98	-0.08	0.50	-0.34
1017	A2	9.26	-0.05	0.29	-0.21
1086	A0	9.73	-0.13	0.46	-0.35
1112	A0	8.91	-0.42	0.23	-0.55
1151	A5	8.35	-0.01	0.36	-0.22
1470	A3v	9.03	-0.10	0.44	-0.30
1822	A2V	9.34	-0.15	0.45	-0.38
1875	A2V	9.73	-0.19	0.55	-0.40
2155	A3V	8.53	-0.20	0.41	-0.48
2676	A4V	9.09	-0.13	0.51	-0.33
3202	A2	8.42	-0.22	0.46	-0.44
3225	A7	8.84	-0.12	0.53	-0.34
3369 9	A6V	8.47	-0.12	0.33	-0.37
3604	AO	9.40	-0.34	0.36	-0.56
3691	A3	10.61	-0.14	0.43	-0.34
3832	A 4	10.06	-0.03	0.31	-0.22
3885	AP	9.60	-0.44	0.16	-0.56
4720	A3	8.71	-0.02	0.25	-0.16
4729	A2	9.29	-0.07	0.33	-0.22
8983	A5V	8.59	-0.10	0.44	-0.38
19825	A^{3}	8.60	-0.04	0.23	-0.19
27821	A7V	8.67	-0.04	0.25	-0.18
184501	A7V	8.01	-0.12	0.44	-0.37
191082	AOV		-0.40	0.16	-0.52
192243	AOV		-0.31	0.39	-0.54
192321	A2V		-0.25	0.49	-0.48
210554	AS	8.77	-0.10	0.40	-0.28
213371	A5	8.39	-0.05	0.35	-0.23
213580	A2	8.98	-0.12	0.42	-0.34
214783	AO	8.54	-0.36	0.51	-0.45
225186	A3V	8.97	-0.16	0.41	-0.37
FEIGE 16	A0	12.22	-0.36	0.53	-0.55

TABLE V (Continued)

Name	Sp. Type	8	v-g	u-v	g-r
F Main-Sequence					
+20 4126	F6V	8.72	0.21	0.06	0.03
+21 3810	FOV		0.01	0.21	-0.15
+21 4772	F2	9.06	0.08	0.25	-0.07
+28 3192	F8V	9.25	0.26	0.07	0.06
+572501	F7V	9.28	0.23	0.03	0.05
+582589	F6V	9.58	-0.12	0.27	-0.13
+61 2571	F8V	9.07	0.24	0.15	0.04
1368	F9V	8.92	0.19	-0.02	0.05
1905	FOV	9.82	-0.09	0.44	-0.33
3158	F2	8.89	0.01	0.12	-0.11
3567	F5V	9.28	0.05	0.00	0.00
3567	F5V	9.28	0.03	0.01	0.01
13721	POV	8.49	-0.07	0.26	-0.22
19079	F7V	8.85	0.11	0.11	-0.06
179626	F8V	9.27	0.13	-0.01	0.06
185270	F8V		0.20	0.05	0.06
186225	F4V		-0.02	0.45	-0.25
186657	F7V		0.14	0.08	-0.02
191177	F4V		0.05	0.34	-0.14
192405	F7V		0.18	0.09	-0.01
210643	F6	8.85	0.12	0.10	-0.01
216465	F8V	8.48	0.06	0.13	-0.07
216685	F8V	8.79	0.17	0.09	-0.01
221900	F3V	8.75	0.05	0.10	-0.07
G Main-Sequence					
+15 28	GOV		0.21	-0.02	0.07
+25 4607	G2V	8.50	0.39	0.07	0.12
+26 3708	GOV		0.21	0.02	0.07
+27 4219	COV	8.97	0.30	0.10	0.08
+28 3198	G2v	8.74	0.41	0.16	0.12
+28 4510	G2V	8.88	0.48	0.15	0.24
+294828	G5V	9.54	0.48	0.13	0.19
+29 4982	GOV	9.03	0.28	0.10	0.09
+62 2325	G2v	9.78	0.41	0.12	0.13
3042	GOV	9.24	0.35	-0.01	0.13
3556	GOV	8.82	0.28	0.06	0.06
4822	G0	9.53	0.21	0.00	0.06
7320	GO	9.05	0.38	0.04	0.16
7983	G27	8.97	0.22	0.01	0.10
8497A	G5	8.88	0.40	0.12	0.17
15833	G5		1.02	0.29	0.50
17647 AB	65v		0.39	0.04	0.18
21543	G2V-V	8.30	0.29	0.00	0.08
184700	G2v		0.36	0.06	0.13
190605	G2v		0.37	0.09	0.13
191898	GOV		0.27	0.03	0.07
201860	GOV		0.32	0.09	0.14
203030	G8V		0.53	0.12	0.22
213570	G5v	9.52	0.17	0.14	0.01
214065	G4V	8.36	0.37	0.08	0.16
215956	GOV	8.50	0.20	0.02	0.07
220056	GO	8.50	0.28	0.06	0.08
227547	G5V		0.37	0.07	0.12
K Main-Sequence					
+4 415	K3v		0.81	0.21	0.43
+22 4567	K3v	9.41	0.84	0.25	0.45
+63 137	R7V	9.42	1.29	0.46	0.92
114	K6		1.24	0.48	0.70
5504	K5	9.25	1.03	0.45	0.48
188268	K0		0.78	0.27	0.34
205855	K0V	8.80	0.72	0.23	0.31
GL 39	K6	9.59	1.26	0.45	0.77
GL 851.4	k0		0.48	0.06	0.22
GL 854	R6		1.18	0.44	0.70
GL 908.1	K8		1.28	0.46	0.79
M Main-Sequence					
-15 6290	M5V	10.75	1.35	0.61	1.22
+1 4774	M2V	9.49	1.27	0.49	1.07
204587	10	9.49	1.30	0.47	0.88
GL 96	M1		1.38	0.52	1.10
GL 740	M2		1.35	0.53	1.10
GL 752	M3		1.30	0.57	1.15
GL 809	M2		1.35	0.53	1.11
GL 860AB	M3		1.48	0.56	1.25
Y 49 A	M1V	8.67	1.40	0.50	1.15
Y 49 B	M6V	11.67	1.65	0.50	1.34

Fig. 2-Two-color diagrams for main-sequence field stars of spectral types O-A. Most of the scatter relative to the nominal main sequence is due to reddening.

These stars can be separated from the main sequence, lying below it in the $u v g$ plane (Fig. 6(a)), just as for regular giants, but rising above it in the vgr plane (Fig. $6(\mathrm{~b})$). This latter separation, which is also characteristic of subdwarfs, is evidently due to metallicity alone, since ordinary giants are indistinguishable from main-sequence stars in this region. Horizontal-branch stars lie near the main-sequence A- and F-type stars. The field globular-cluster-type giant mentioned in section VIII.E lies in the midst of the true cluster giants.

X. Transformations to $U B V R$

As more observations appear in the literature in the $u v g r$ system, occasional need is had for approximate conversions of magnitudes and colors to the standard $U B V R$ system. The following transformations have been derived by eyeball fits to plots of stars with photometry on both

Fig. 3-Same as Figure 2 except for spectral types F-M.
systems. The plots included main-sequence stars from the Hyades, Pleiades, and M67, and giants from M67 and M3. The R photometry is on the Johnson system.

$$
\begin{aligned}
g & =V-0.19+0.41(B-V) \\
r & =R+0.43+0.15(B-V) \\
v-g & =-0.47+1.37(B-V) \\
g-r & =-0.53+0.98(B-V) \\
g-r & =-0.66+1.37(V-R)
\end{aligned}
$$

Other combinations are possible. No transformations for u or U have been determined as they are very nonlinear.

XI. Conclusions

The $u v g r$ system is a photometric system with better designed filters than $U B V$. Its main disadvantage is the relatively low count rate one gets in the u filter. The system shows good sensitivity to metallicity in stars of all types and to luminosity for stars later than K0. For types

TABLE VI Giants					
Name	Sp. Type	8	v-8	u-v	g-r
Luminosity Class I					
+45 3375	Al Ib	9.04	-0.32	-0.05	-0.33
+61 2452	A5IB	9.99	0.16	0.25	0.05
+62 15	Al Ib	9.13	-0.27	0.24	-0.36
14580	MDIAB	9.38	2.38	0.80	1.75
209678	B2I	8.44	-0.18	-0.21	-0.05
209900	A0IB	8.74	-0.05	0.77	0.00
211540	K5IB	8.66	2.14	0.94	1.46
235783	B1 IB	8.64	-0.39	-0.37	-0.29
239923	B3IB	9.11	0.18	0.01	0.46
Luminosity Class II					
185061	G8II		1.22	0.59	0.66
191047	G5II		0.89	0.38	0.41
200448	K1II	8.37	1.31	0.64	0.64
221038	A7II	7.97	-0.13	0.39	-0.35
227472	KOII	8.74	1.73	0.77	1.00
227480	A2II		-0.32	0.46	-0.43
227776	KOII		1.28	0.62	0.63
227785	B9II	9.23	-0.39	0.05	-0.49
Luminosity Class III					
+124789	K2III	10.76	1.50	0.75	0.84
+134888	K3III	9.15	1.60	0.82	0.83
+154543	MSIII		1.86	0.95	1.14
+154566	K5III	9.61	1.81	0.90	1.03
+154581	MOIII	10.59	1.87	0.93	1.07
+154582	K3III	10.31	1.73	0.82	0.99
+184853	K3111	10.34	1.68	0.80	0.92
+184897	K2III	10.85	1.43	0.66	0.80
+194787	MOIII	10.99	1.85	0.93	1.13
+194836	K5III	10.40	1.95	0.92	1.19
+32 3700	B6III	9.13	-0.38	-0.09	-0.40
+463097	AOIII	9.12	-0.12	0.47	-0.05
+473265	KOIII	9.06	1.34	0.65	0.74
+55 2711	K0III	9.49	1.42	0.75	0.76
+562679	AdIII	9.71	-0.08	0.60	-0.22
+562684	A5III	9.87	0.07	0.59	-0.08
+562707	F4III	9.18	0.11	0.14	-0.07
+582612	F6III	8.61	0.19	0.12	0.03
+63 2105	F2III	9.35	0.27	0.94	0.29
26	KOIII	8.45	0.88	0.11	0.41
163	F2III	8.47	0.02	0.25	-0.14
350	F21II	8.76	-0.01	0.45	-0.21
415	A71II	8.95	-0.03	0.54	-0.23
680	K5III	8.58	1.84	0.87	1.04
2126	K0III	8.46	0.91	0.36	0.45
183562	A0III		-0.39	0.25	-0.50
185783	P4III		-0.01	0.34	-0.24
191064	B9III		-0.39	0.23	-0.58
191176	AlIII		-0.29	0.51	-0.48
191743	B7III		-0.39	0.09	-0.52
192320	K21II	8.50	1.72	0.82	0.96
193612	A01II	8.49	-0.44	0.00	-0.53
200839	K01II	8.55	1.20	0.58	0.57
208609	K3III	7.62	1.67	0.80	0.93
210627	K1III	8.45	1.38	0.71	0.69
215330	K5III	9.47	1.53	0.73	0.82
223818	KOIII	8.41	0.99	0.44	0.47
227421	ASIII	9.08	-0.08	0.64	-0.20
227535	G8III		0.92	0.38	0.55
228097	koili		1.03	0.46	0.50
228108	F4III		0.10	0.25	-0.03
228899A	G8III	9.48	0.84	0.34	0.38
228899B	G8III	9.90	0.82	0.32	0.38
229234	09111	9.13	0.16	-0.11	0.37
Luminosity Class IV					
+53 2820	B0IV	9.87	-0.45	-0.45	-0.36
+542749	G2 IV	9.46	0.59	0.22	0.23
+56 2694	B3IV	9.33	-0.25	0.04	-0.23
+60 2666	F5IV	9.61	0.15	0.20	0.01
12088	G8 IV	9.19	0.52	0.07	0.22
13391	G2IV	8.75	0.30	0.08	0.07
13830	F6IV	8.30	0.18	0.20	0.03
19618	ROIV-	9.19	0.68	0.20	0.26
191227	F2IV		-0.01	0.39	-0.18

earlier than A0 it can measure spectral type and reddening, but not luminosity. For types between late-A and G,

TABLE VII
Subdwarfs and Other Types

Name	Sp. Type	8	v-8	u-v	g-r
Subdwarf 8					
-2 181	SD	9.06	0.39	0.03	0.16
-0 4470	G2SD	10.05	0.35	-0.04	0.23
+10 1091	SD	8.92	0.20	-0.09	0.14
+16 3924	SD	9.47	2.04	0.88	1.52
+66 268	SD	10.03	0.24	-0.08	0.20
28571	G6SD	9.06	0.34	0.05	0.11
EG145A	K4SD	10.04	0.73	0.19	0.52
G 5-17	SD	9.20	0.67	0.23	0.27
G 18-39	GOSD	10.42	0.04	-0.03	0.00
G 37-34	SD	9.86	0.68	0.17	0.36
G 68-30	SD	9.17	0.19	0.01	0.07
G 77-54		8.30	0.27	0.00	0.11
G 190-34	SD	9.23	0.60	0.13	0.25
GL 213	M5SD	12.04	1.39	0.56	1.21
GL 725 A	M2SD	9.44	1.31	0.50	1.15
GL 725 B	M2SD	10.23	1.38	0.51	1.18
SA 115-147	SD	8.94	0.50	0.13	0.20
WOLF 1324	SD	11.02	1.14	0.38	0.79
White Dwarfs + Wolf-Rayet					
219460	WR		0.10	-0.19	0.27
26976 B	WD A	9.31	-0.34	-0.49	-0.63
EG 157	WD	12.71	-0.71	-0.65	-0.72
Feige 24		12.18	-0.76	-0.75	-0.46
FEIGE 26		13.72	-0.80	-0.75	-0.79
FEIGE 108		12.73	-0.73	-0.64	-0.76
FEIGE 110	WD 0	11.55	-0.78	-0.73	-0.79
Hor. Br. Star					
+394926	B8H B	9.20	-0.25	0.91	-0.26
Globular Cluster Type Giant					
221170	GLOB	8.00	0.75	0.43	0.59

it should be sensitive to luminosity, but separation of the effects of reddening and luminosity is difficult, and in practice only unusually luminous stars can be distinguished.

Many of the observations presented here have been circulated and cited in an unpublished form for several years. This paper should now make them more widely available.

REFERENCES

Arp, H. C. 1955, A.J. 60, 317.
Arp, H. C., and Johnson, H. L. 1955, Ap. J. 122, 171.
Blanco, V. M., Demers, S., Douglass, G. G., and FitzGerald, M. P. 1968, Pub. U.S. Naval Obs. 21.
Bruggemann, H. 1935, Abstr. Abh. der Hamburger-Bergedorf Sternwarte 4, 157.
Eggen, O. J., and Sandage, A. R. 1964, Ap. J. 140, 130.
Fagerholm, E. 1906, Inaugural Dissertation, Uppsala.
Feige, J. 1959, Ap. J. 128, 269.
Giclas, H. L. 1962, Lowell Obs. Bull. 5, 257.
Hertzsprung, E. 1923, Effective Wavelengths of Stars in the Pleiades (Copenhagen).
Hertzsprung, E. 1947, Ann. Leiden Obs. 19, No. 1A.
Hiltner, W. A., and Johnson, H. L. 1956, Ap. J. 124, 367.
Hoessel, J. G., and Melnick, J. 1980, Astr. and Ap. 84, 317.
Hoessel, J. G., Gunn, J. E., and Thuan, T. X. 1980, Ap. J. 241, 486.
Johnson, H. L. 1954, Ap. J. 119, 185.
Johnson, H. L., and Mitchell, R. I. 1958, Ap. J. 128, 31.
Johnson, H. L., Mitchell, R. I., and Iriarte, B. 1962, Ap. J. 136, 75.
Johnson, H. L., Mitchell, R. I., and Iriarte, B. 1968, Ap. J. 154, 1163.

Fig. 4-Two-color diagrams for giants of all spectral types and luminosity classes.

Fig. 5-Two-color diagrams for stars with special properties as indicated.

Johnson, H. L., and Morgan, W. W. 1953, Ap. J. 117, 313.
Johnson, H. L., and Sandage, A. R. 1955, Ap. J. 121, 616.
Mitchell, R. I., and Johnson, H. L. 1957, Ap. J. 125, 414.
Morgan, W. W., and Hiltner, W. A. 1965, Ap. J. 141, 177.
Sandage, A. R. 1964, Ap. J. 139, 442.
Sandage, A. R. 1969, Ap. J. 158, 1115.
Sandage, A. R. 1970, Ap. J. 162, 841.
Sandage, A. R., and Walker, M. F. 1966, Ap. J. 143, 313.
Searle, L., Wilkinson, A., and Bagnuolo, W. G. 1980, Ap. J. 239, 803.
Slettebak, A., Bahner, K., and Stock, J. 1961, Ap. J. 134, 195.
Thuan, T. X., and Gunn, J. E. 1976, Pub. A.S.P. 88, 543. (TG).
Van Buren, H. G. 1952, B.A.N. 11, 432.
Veeder, G. J. 1974, A.J. 79, 1056.
Zinn, R. 1980, Ap. J. Suppl. 42, 19.

TABLE VIII
Globular Cluster Stars

Name	Sp. Type	g	v-8	$\mathbf{u}-\mathrm{v}$	8-r
M2					
M2 II-33		14.08	0.61	0.24	0.45
M2 II-59		13.39	0.85	0.47	0.67
M2 II-69		13.44	1.14	0.79	0.79
M3					
M3 193		15.00	0.53	0.19	0.42
M3 216		14.22	0.76	0.37	0.47
M3 297		13.32	1.35	0.39	0.85
M3 1397		13.24	1.48	0.40	0.98
M3 1-27		15.63	-0.34	0.16	-0.38
M3 1-30		15.50	-0.32	0.32	-0.36
M3 II-6		15.35	-0.25	0.32	-0.28
M3 11-18		14.36	0.60	0.28	0.44
M3 1II-28		13.23	1.21	0.69	0.81
M5					
M5 1-34		15.08	-0.30	0.35	-0.30
M5 1-55		13.80	0.61	0.35	0.39
MS 1-68		12.84	1.36	0.59	0.83
M5 11-50		14.02	0.69	0.31	0.45
M5 11-80		14.21	0.45	0.14	0.38
M5 11-82		14.62	-0.21	0.46	-0.24
M5 11-85		12.74	1.44	0.62	0.86
M5 1I-86		13.56	0.72	0.41	0.44
M5 III-50		13.10	0.95	0.60	0.55
M5 11I-72		13.29	0.88	0.37	0.56
M5 111-78		12.96	1.21	0.60	0.77
M5 IV-19		13.03	1.38	0.82	0.78
M5 IV-26		13.54	0.50	0.04	0.38
M5 IV-67		14.64	0.48	0.04	0.34
M5 IV-68		14.73	-0.16	0.50	-0.24
M5 IV-69		14.98	0.10	0.13	0.15
MS IV-73		13.97	0.50	0.23	0.35
M13					
M13 3		13.56	0.91	0.34	0.52
M13 11		14.76	-0.21	0.45	-0.33
M13 24		15.13	-0.46	0.38	-0.59
M13 34		14.89	0.52	0.24	0.24
M13 37		14.67	0.52	0.16	0.31
M13 38		13.77	0.68	0.29	0.43
M13 49		13.87	0.63	0.29	0.41
M13 59		12.63	1.62	0.77	0.98
M92					
M92 I-14		14.84	0.30	0.01	0.29
M92 11-24		14.73	0.26	0.13	0.41
M92 II-28		15.03	-0.05	0.27	0.10
M92 II-40		15.56	-0.45	0.21	-0.42
M92 1I-70		13.29	0.59	0.36	0.52
M92 III-13		12.44	1.15	0.77	0.81
M92 III-65		12.76	0.90	0.56	0.67
M92 VII-5		15.12	0.24	0.09	0.17
M92 VII-18		12.58	1.17	0.57	0.78
M92 VII-46		15.52	-0.42	0.17	-0.43
M92 X-4		13.12	1.14	0.60	0.58
M92 XII-31		13.97	0.41	0.24	0.38
M92 XII-34		13.59	0.49	0.19	0.45
M92 XII-45		14.11	0.45	0.23	0.40

Fig. 6-Two-color diagrams for bright stars selected from five globular clusters. Compare with the plots for giants in Figure 4 and subdwarfs in Figure 5.

[^0]: ${ }^{\circ}$ Research reported here was begun while the author was at Palomar Observatory, California Institute of Technology.

