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On uniqueness of probability solutions
of the Fokker-Planck-Kolmogorov equation

V. I. Bogachev, T. I. Krasovitskii and S. V. Shaposhnikov

Abstract. The paper gives a solution to the long-standing problem of
uniqueness for probability solutions to the Cauchy problem for the Fokker-
Planck-Kolmogorov equation with an unbounded drift coefficient and unit
diffusion coefficient. It is proved that in the one-dimensional case unique-
ness holds and in all other dimensions it fails. The case of nonconstant
diffusion coefficients is also investigated.

Bibliography: 70 titles.
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§ 1. Introduction

The goal of this work is to give a positive solution to the long-standing problem of
uniqueness of a probability solution to the Cauchy problem for the one-dimensional
Fokker-Planck-Kolmogorov equation

∂tµ = ∂2
xµ− ∂x(bµ), µ0 = ν, (1.1)

where the initial condition ν is an arbitrary Borel probability measure and the
drift coefficient b is a locally bounded Borel function not depending on time t
(the problem has remained open even for infinitely differentiable drifts b). By a solu-
tion we mean a family of probability measures µ = {µt}t⩾0 on the real line, Borel
measurable in t and satisfying the integral identity∫

φdµt −
∫
φdν =

∫ t

0

∫
(φ′′ + bφ′) dµs ds (1.2)
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for almost all t ∈ [0, T ] for every function φ ∈ C∞0 (R), where T > 0 is fixed. Under
our assumptions the measures µt for t > 0 are given by probability densities ϱ( · , t),
so equation (1.1) can be written as an equation with respect to the density ϱ(x, t).
However, in the setting under consideration it is important that all (or almost all)
measures µt are probability measures. The significance of this condition will be
clear below.

Our main result is this.

Theorem 1.1. If a probability solution to the Cauchy problem (1.1) exists, then it
is unique.

Uniqueness is understood as the equality µt = νt almost everywhere for any two
solutions {µt} and {νt}.

We emphasize that there are no global restrictions on the drift coefficient and
no assumptions about the behaviour of solutions at infinity or any semigroup prop-
erties of solutions. In the two-dimensional case (x ∈ R2) the assertion of Theo-
rem 1.1 is false, as Example 4.7 shows (in the three-dimensional case an example
of non-uniqueness was given in [11], Ch. 9). Throughout, we cite that book many
times, so it is worth mentioning that its Russian version is available on the website
of the Russian Foundation for Basic research (https://www.rfbr.ru/rffi/ru/books/
o−1896849#1) and the somewhat more complete English version that we cite can
be found on the internet.

In addition, we study the Cauchy problem

∂tµt = ∂2
x(aµt)− ∂x(bµt), µ0 = ν (1.3)

with nonconstant diffusion coefficient a and obtain the following result.

Theorem 1.2. Let a be a positive locally Lipschitz function and let b be a locally
bounded Borel function. Suppose that∫ 0

−∞

1√
a(x)

dx =
∫ +∞

0

1√
a(x)

dx = +∞. (1.4)

Then, if a probability solution to the Cauchy problem (1.3) exists, it is unique.
If at least one of these integrals converges, then there exists a locally bounded drift
coefficient b (which is continuous if a has a continuous derivative and is smooth
if a is) and an initial distribution given by a locally Lipschitz density (smooth if
a is) for which the simplex of probability solutions to the Cauchy problem is infinite
dimensional.

A similar assertion is true for probability solutions to the one-dimensional sta-
tionary Fokker-Planck-Kolmogorov equation (see [11], Proposition 4.1.2 and Exam-
ple 4.1.1). In the case of the one-dimensional stationary equation

∂2
x(aµ)− ∂x(bµ) = 0

it is easy to write out an explicit formula for a general solution (see [11], § 1.4), which
simplifies the investigation considerably. In the parabolic case under consideration
no such formula exists and the uniqueness question is difficult. In particular, to

https://www.rfbr.ru/rffi/ru/books/o_-1896849#1
https://www.rfbr.ru/rffi/ru/books/o_-1896849#1
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construct an example of non-uniqueness in Theorem 1.2 it becomes necessary to
employ nontrivial results on the solvability of the initial-boundary value problem
for a degenerate parabolic equation.

Note that even for an infinitely differentiable drift coefficient b it can happen
that in addition to a unique probability solution with smooth initial distribution
there exists another family of nonnegative bounded measures that is a solution with
the same initial condition (see Example 4.5).

The Fokker-Planck-Kolmogorov equations for transition probabilities and sta-
tionary distributions of diffusion processes in a mathematically rigorous form were
first obtained in the fundamental papers [40] and [41] by Kolmogorov. In particular,
the problem of investigating the uniqueness of a solution to the Cauchy problem
for such equations was formulated in them. In § 15, “A statement of the uniqueness
and existence problem for solutions of the second differential equation”, in the first
paper, one-dimensional equations are considered and the question about the exis-
tence of a unique probability solution is posed; multi-dimensional equations are
considered in the second paper. Note that the term ‘the Fokker-Planck-Kolmogorov
equation’ is now used for the ‘second differential equation’ in Kolmogorov’s termi-
nology. The book [11] contains references to prior papers in the physics literature,
including works by Fokker and Planck. In Kolmogorov’s paper [41] the uniqueness
of the solution is established for the equation on a compact Riemannian manifold
(in the case of coefficients with two continuous derivatives and an initial distribution
with continuous density).

The problem of uniqueness of solutions to the Fokker-Planck-Kolmogorov equa-
tion in the one-dimensional case was considered in such classics as Feller [28],
Yosida [70] and Hille [37], however, in a somewhat different setting connected with
semigroups. For example, in [37], the uniqueness in the class of probability solutions
was not discussed, but the existence and uniqueness of solutions with certain prop-
erties and initial conditions in the domain of definition of the corresponding elliptic
operator (see a more precise comment in Remark 4.6 below and also an example
showing that such a problem and the problem studied here are not equivalent).

Since Fokker-Planck-Kolmogorov equations in the case of sufficiently regular
coefficients are classical parabolic equations, known results on uniqueness of solu-
tions in the classical theory of parabolic equations can, of course, be applied to
them, and so we give a brief overview now.

According to Tychonoff’s well-known example [65], even for the heat equa-
tion ∂tu = ∂2

xu the Cauchy problem can have several solutions. However, as
shown by Widder [68], in the class of nonnegative functions the Cauchy problem
for the heat equation has a unique solution. In the case of a parabolic equa-
tion of general form uniqueness depends not only on the class of functions in
which the equation is solved, but also on the coefficients of the equation. Aron-
son and Besala [2] and [3], Friedman [32] and [33], and Smirnova [61] and [62]
obtained various results on uniqueness, namely, uniqueness was investigated in the
following classes of functions u: 1) u has a limit as |x| → ∞; 2) for a suitable
weight ω, the function uω belongs to the space L∞(Rd × [0, T ]); 3) for a suitable
weight ω, the function uω belongs to the space Lp(Rd × [0, T ]). The unique-
ness of a solution having a prescribed limit at infinity is established with the
aid of the maximum principle and requires that the coefficient c in the equation
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∂tu = aij∂xi∂xju+ bi∂xiu+ cu be bounded above, while the uniqueness of solutions
integrable with some weight or growing no faster than some function is established
under the assumption that the coefficients have at most linear growth. A consider-
able number of papers are devoted to the study of the uniqueness problem in the
class of nonnegative solutions of parabolic equations on Rd and on smooth Rie-
mannian manifolds (see [38], [48], [50], [52], [53] and [58]). Typical results in this
direction establish uniqueness under restrictions on the growth of the coefficients
and under the assumption that the parabolic Harnack inequality holds for solu-
tions. In the case of parabolic equations with nonsmooth or degenerate coefficients
we mention the method of renormalized solutions (see, for example, [44] by Le Bris
and P.-L. Lions), where uniqueness is established in the class of solutions satisfying
certain differential inequalities. However, the class of probability solutions of the
Fokker-Planck-Kolmogorov equations differs from all the traditional classes listed
above. Moreover, there are examples (see [11], Ch. 9, and Example 4.5 below)
where the probability solution is unique, but in the class of integrable, bounded
or nonnegative functions the Cauchy problem has at least two different solutions.
A separate question, though close in spirit, is the uniqueness of a semigroup gener-
ated by the corresponding elliptic operator. The study of uniqueness in the classes
of Markov and Feller semigroups or semigroups on the space Lp with respect to
a fixed measure is the subject of the well-known papers by Feller [29] and [30],
Yosida [70], Hille [37], and Wentzell [66] and [67], and some information about
recent results can be found in [11], Ch. 5, [1], [4], [24], [25], [45], [49], [64] and [69].
The uniqueness of a semigroup also requires some restrictions on the growth of
the coefficients and additional boundary conditions, which are actually necessary
restrictions on the domain of definition of the generator of the semigroup. In this
paper we do not assume that a probability solution is the result of applying some
semigroup to the initial probability measure.

The uniqueness of probability solutions to Fokker-Planck-Kolmogorov equations
has also been investigated in many papers; see [7], [8], [10], [15]–[18], [42], [47], [59],
[60], and also [11], Ch. 9, where in particular the following results were obtained.
Let b be a locally bounded Borel vector field on Rd× [0, T ]. Then, for a probability
solution to the Cauchy problem

∂tµt = ∆µt − div(bµt), µ0 = ν

to be unique it suffices that the inequality

⟨b(x, t), x⟩ ⩽ C + C|x|2

hold. It also suffices that for at least one probability solution µ = {µt} one of the
following conditions be fulfilled:

(i) (1 + |x|)−1|b| ∈ L1(µt dt,Rd × [0, T ]);
(ii) |b − βµ| ∈ L1(µt dt,Rd × [0, T ]), where βµ is the logarithmic derivative of

the measure µ, that is, βµ(x, t) = ∇xϱ(x, t)/ϱ(x, t), where µ is given by the
density ϱ(x, t).

In addition, in all dimensions d ⩾ 3 examples have been constructed (see [11],
Example 9.2.1) in which the Cauchy problem has infinitely many linearly indepen-
dent probability solutions. The question about uniqueness in dimensions d = 1
and d = 2 has remained open. In this paper we give a complete solution of the
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uniqueness problem for d ⩽ 2 in the case when the drift coefficient b depends only
on x. In addition, we have obtained auxiliary results for the proof of our main
theorems, Theorems 1.1 and 1.2, that are of independent interest:

1) it is shown that the special semigroup {Tµ
t }t⩾0 constructed in [11], Ch. 5, for

every probability solution µ of the stationary equation defines the minimal non-
negative solution to the Cauchy problem for the first Kolmogorov equation with
respect to functions (that is, the usual parabolic equation), and the correspond-
ing semigroup {K∗

t }t⩾0 on the space of measures defines the minimal nonnegative
solution to the Fokker-Planck-Kolmogorov equation;

2) it is shown that if for some probability measure ν on Rd the family of mea-
sures K∗

t ν generated by the indicated semigroup is a probability solution to the
Fokker-Planck-Kolmogorov equation, then for every initial condition the probabil-
ity solution to this equation is unique.

Since in what follows we discuss not only the one-dimensional, but also the
multi-dimensional case, we give the definition of a solution in the general case
and mention the results about the regularity of solutions that will be used in this
paper. Let Lp(U) denote the usual space Lp of functions on a domain U in Rd with
Lebesgue measure (which is not indicated in this notation), and the symbol Lp(µ)
will denote the space Lp with respect to the measure µ. By W p,1(U) we denote the
Sobolev space of functions f in Lp(U) whose generalized partial derivatives ∂xif
also belong to Lp(U). The norm in W p,1(U) is defined by

∥f∥W p,1(U) = ∥f∥Lp(U) +
∑
i⩽d

∥∂xi
f∥Lp(U).

For brevity the second term will be denoted by ∥∂xf∥Lp(U). Similarly, we introduce
the Sobolev space W p,2(U) of functions in Lp(U) with generalized derivatives of the
first and second order in Lp(U), with its natural norm ∥f∥W p,2(U).

Let aij and bi be Borel functions on Rd. We recall that here and throughout the
coefficients of the equation depend only on x and are independent of t. Suppose
that the matrix A(x) = (aij(x)) is symmetric and nonnegative definite.

Let T > 0. A family of Borel probability measures {µt}t∈[0,T ] on Rd (that is,
µt ⩾ 0 and µt(Rd) = 1) is called a probability solution to the Cauchy problem

∂tµt = ∂xi
∂xj

(aijµt)− ∂xi
(biµ), µ0 = ν, (1.5)

where ν is a given probability Borel measure on Rd (in writing out the equation
we omit summation over repeated indices) if for every Borel set E the function
t 7→ µt(E) is Borel measurable (which is equivalent to the integrals with respect
to µt of smooth functions with compact support being Borel measurable in t), the
functions aij and bi are integrable on compact sets with respect to the measure
µt dt on Rd × (0, T ) and for every function φ ∈ C∞0 (Rd), for almost all t ∈ [0, T ]
the equality ∫

φdµt −
∫
φdν =

∫ t

0

∫
(aij∂xi

∂xj
φ+ bi∂xi

φ) dµs ds

holds. A solution can be also understood as the measure µ := µt dt defined by

µ =
∫ T

0

µt dt.
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If the measures µt are given by their densities ϱ( · , t) (which is the case under our
assumptions), then this measure µ is given by its density ϱ(x, t) in two variables.
We write µ = {µt} or µ = µt dt in what follows.

It should be noted that the Borel measurability of the functions t 7→ µt(E)
can be weakened to Lebesgue measurability, since we can take equivalent versions;
moreover, it is possible to pick a Borel version for which the above equality (or (1.2)
in the one-dimensional case) holds for all t, provided that we allow µt to be a prob-
ability measure only for almost all t.

In addition to probability solutions, we can introduce solutions of bounded varia-
tion µ = µt dt in precisely the same way, including signed solutions, for which |µt| dt
is assumed to be bounded (such solutions are also called integrable). A solution is
called nonnegative if the measures µt are nonnegative. However, such a solution
need not be a probability solution even if the measure µ = µt dt is probabilistic.

It is known (see [11], Ch. 6) that for a nonnegative solution µ the locally bounded
measure (detA)1/(d+1) · µ is always absolutely continuous, and if the matrix A(x)
is nonsingular for all x, then the measure µ itself is absolutely continuous. If for
every ball U there exists a number C(U) > 0 such that A(x) ⩾ C(U)I for all
x ∈ U and if aij ∈ W p,1(U) and bi ∈ Lp(U) for some p > d + 2, then the
measure µ = µt dt has a locally Hölder continuous positive density ϱ with respect
to Lebesgue measure on Rd × [0, T ] such that the function x 7→ ϱ(x, t) belongs to
the local Sobolev class W p,1

loc . As concerns the properties of solution densities, see
also [9], [12], [13], [14] and [19].

If d = 1, A = I and b is a locally bounded function, then for t > 0 the function
x 7→ ϱ(x, t) belongs to all local Sobolev classes W p,1

loc with p ⩾ 1; in particular, it
has a locally absolutely continuous version; moreover, for all τ > 0 and R > 0 the
integrals ∫ T

τ

∫ R

−R

|∂xϱ(x, t)|p dx dt

are finite.
It is worth noting that for the Hölder continuous version of the density ϱ it is

only known that almost all densities ϱ( · , t) are probabilistic, but it is not known
whether the continuous version of all these densities must be probabilistic.

Under such broad assumptions about the coefficients, which only have to be
locally integrable with respect to the solution µ, but can be locally unbounded, it is
not difficult to construct examples of non-uniqueness of probability solutions even
in dimension 1 for the stationary equation with unit drift, that is, the equation
ϱ′′ − (bϱ)′ = 0 with respect to probability densities, as well as for a parabolic
equation (see Example 4.8). For this reason we consider locally bounded drift
coefficients.

Finally, note that in the case when A = I and the drift coefficient b is
infinitely differentiable the solution density ϱ has an infinitely differentiable version
on Rd × (0, T ).

This paper consists of four sections. In § 2 we discuss stationary equations and
some properties of special semigroups generated by the corresponding elliptic opera-
tors. Section 3 is devoted to the proofs of the main theorems, Theorems 1.1 and 1.2.
In § 4 we construct examples of non-uniqueness.
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§ 2. Stationary equations and semigroups

In this section we obtain new conditions for the uniqueness of a probability
solution to the Cauchy problem in the case when there exists a probability solution
of the stationary equation. Of course, a stationary solution does not always exist:
for example, if b = 0, then there are no probability measures satisfying the harmonic
equation ∆µ = 0. Thus, the existence of a probability stationary solution can be
regarded as an additional restriction on the coefficients of the equation.

Consider the elliptic operator LA,b of the form

LA,bφ = aij∂xi
∂xj

φ+ bi∂xi
φ

with Borel coefficients aij and bi on Rd satisfying the following conditions:
(i) the functions aij are continuous and belong to the Sobolev class W p,1(U) on

every ball U in Rd for some p > d+2, and the functions bi belong to Lp(U);
(ii) the matrix A(x) = (aij(x))i,j⩽d is symmetric and positive definite, and for

every ball U there is a number λ(U) > 0 such that A(x) ⩾ λ(U) · I for x ∈ U .
Note that for some assertions used below the condition p > d is sufficient, but

for the desired regularity of the semigroup considered below the bound p > d + 2
is required.

Suppose that there exists a probability measure µ on Rd satisfying the stationary
equation

L∗A,bµ = 0

in the sense of the integral identity∫
LA,bφ(x)µ(dx) = 0 ∀φ ∈ C∞0 (Rd),

where it is also assumed that the functions bi are integrable with respect to µ on all
balls (this is automatically fulfilled for locally bounded coefficients, but here we do
not assume local boundedness); moreover, here and throughout when integrating
over the whole space Rd we do not indicate the limits of integration. It is known
(see [11], Ch. 1) that in this case the measure µ is given by a positive locally Hölder
continuous density ϱ with respect to Lebesgue measure such that ϱ belongs to the
Sobolev classes W p,1 on all balls. Hence the vector field ∇ϱ/ϱ (the logarithmic
gradient of the density) belongs to Lp with respect to Lebesgue measure on balls.

With the aid of the logarithmic gradient we introduce the dual drift

b̂ = 2βA,µ − b, βA,µ = A∇ϱ/ϱ+ trace∇A = (aij∂xjϱ/ϱ+ ∂xja
ij)d

i=1,

which, according to what we have said above, also belongs to Lp(U) on every ball U .
The measure µ also satisfies the equation

L∗
A,̂b
µ = 0

with the dual drift.
According to [11], Theorem 5.2.2, the operators LA,b and LA,̂b on the domain of

definition C∞0 (Rd) extend to the generators Lµ
A,b and Lµ

A,̂b
of strongly continuous

sub-Markov semigroups {Tµ
t }t⩾0 and {T̂µ

t }t⩾0 on the space L1(µ) such that the
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measure µ is subinvariant with respect to them. We recall that the sub-Markov
property means that 0 ⩽ Tµ

t f ⩽ 1 whenever 0 ⩽ f ⩽ 1. If, in addition, Tµ
t 1 = 1,

then the semigroup is called Markov. The subinvariance of the measure µ means
the inequality ∫

Tµ
t f dµ ⩽

∫
f dµ

holds for all nonnegative f . The indicated semigroups are adjoint to each other:∫
ξTµ

t η dµ =
∫
ηT̂µ

t ξ dµ and
∫
ξLA,bη dµ =

∫
ηLA,̂bξ dµ (2.1)

for all η, ξ ∈ C∞0 (Rd).
The resolvent Rλ = (λ− Lµ

A,b)
−1 of the semigroup {Tµ

t }t⩾0 for λ > 0 is charac-
terized as follows: (λ−Lµ

A,b)
−1f for f ∈ C∞0 (Rd) is the limit of solutions uk to the

boundary value problems λuk − LA,buk = f , uk|∂Bk
= 0 on the balls Bk of radius

k ∈ N. The resolvent {T̂µ
t }t⩾0 is described similarly.

However, these semigroups, called canonical, are not always unique strongly con-
tinuous semigroups on L1(µ) whose generators extend LA,b and LA,̂b. In addition,
the measure µ is not always invariant for these semigroups, that is, the identity∫

Tµ
t f dµ =

∫
f dµ

is not always fulfilled for all f ∈ C∞0 (Rd) (or for all bounded measurable f). Suffi-
cient conditions for the invariance of µ are given in [11], Ch. 5. Note that µ being
invariant with respect to one of the two semigroups is equivalent to it being invari-
ant with respect to the other (see [11], Remark 5.2.4), and it is also equivalent to
the equality Tµ

t 1 = 1. For example, for A = I a sufficient condition for invariance
is the bound |b(x)| ⩽ C+C|x|. It is also sufficient that |b(x)|/(1+ |x|) be integrable
with respect to µ. One more sufficient condition for invariance in terms of µ is this:
|b−∇ϱ/ϱ| ∈ L1(µ). In the case of a non-constant A the invariance of µ for {Tµ

t }t⩾0

is ensured by the inclusions aij , |b − βA,µ| ∈ L1(µ), as follows from the proofs of
Example 5.5.3 and Theorem 5.3.1 in [11]. In particular, if b = βA,µ and aij ∈ L1(µ),
then invariance holds.

Throughout, we assume that the functions aij are locally Lipschitz (which is
stronger than the condition in (i) above).

Lemma 2.1. For every function f ∈ L1(µ), the family of measures νt = Tµ
t f · µ

gives a solution to the Cauchy problem for the Fokker-Planck-Kolmogorov equation
with the dual drift b̂ and initial condition f · µ.

In addition, the function u(x, t) = Tµ
t f(x) is a solution to the Cauchy problem

∂tu = LA,bu, u(x, 0) = f(x) (2.2)

in the following sense: for every t > 0 the function Tµ
t f belongs to the Sobolev class

W p,2(U) on every ball U , the function ∥Tµ
t f∥

p
W p,2(U) is integrable over every compact

interval [τ, T0] of (0, T ), in U × (τ, T0) the Sobolev derivative ∂tu ∈ Lp(U × (τ, T0))
exists, equality (2.2) for Sobolev derivatives holds almost everywhere, and the initial
condition is also fulfilled in the sense of convergence in L1(µ).
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If the function f is locally bounded, then u(x, t) is a weak solution in the sense
of [2], which means that for t > 0 the function u( · , t) belongs to the Sobolev class
W 2,1(U) on every ball U , the function ∥u( · , t)∥L2(U) is bounded on all compact
intervals [0, T0] ⊂ [0, T ), the function ∥∂xu( · , t)∥2L2(U) is integrable on [0, T0], and
for every function ψ ∈ C∞0 (Rd) the equality∫

u(x, t)ψ(x) dx−
∫
f(x)ψ(x) dx

= −
∫ t

0

∫
[aij(x)∂xj

ψ(x)∂xi
u(x, s)− bi∂xi

u(x, s)ψ(x)

+ ∂xj
aij(x)∂xi

u(x, s)ψ(x)] dx ds (2.3)

holds.

Proof. Let φ ∈ C∞0 (Rd). Then φ belongs to the domain of definition of the gen-
erator of the dual semigroup {T̂µ

t }t⩾0 and its action on φ coincides with LA,̂bφ.
In addition,

T̂µ
t φ(x)− φ(x) =

∫ t

0

LA,̂bT̂
µ
s φ(x) ds,

which yields the equality∫
T̂µ

t φ(x)f(x)µ(dx)−
∫
φ(x)f(x)µ(dx) =

∫ ∫ t

0

f(x)LA,̂bT̂
µ
s φ(x) ds µ(dx)

=
∫ ∫ t

0

f(x)T̂µ
s LA,̂bφ(x) ds µ(dx).

Therefore, we have∫
φ(x)Tµ

t f(x)µ(dx)−
∫
φ(x)f(x)µ(dx) =

∫ t

0

∫
Tµ

s f(x)LA,̂bφ(x)µ(dx) ds,

which proves the first assertion.
Let ϱ be a version of the density of the measure µ which is locally Hölder con-

tinuous and Sobolev in x. It follows from what we have said about the properties
of solution densities that the measure Tµ

t f · µ has a Hölder continuous density g
on (0, T )×Rd such that for almost every t the function x 7→ u(x, t)ϱ(x) belongs to
the Sobolev class W p,1(U) on every ball U and the function t 7→ ∥∂xg(x, t)∥p

Lp(U) is
integrable on compact intervals in (0, T ). Hence the function u possesses the same
properties. From the equality obtained above, for 0 < τ < t < T we have∫

φ(x)(u(x, t)− u(x, τ))ϱ(x) dx =
∫ t

τ

∫
u(x, s)LA,̂bφ(x)ϱ(x) dx ds.

Integrating by parts we transform the right-hand side into the form

−
∫ t

τ

∫
[∂xi

(aij(x)ϱ(x)u(x, s))− b̂j(x)ϱ(x)u(x, s)]∂xj
φ(x) dx ds.
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Now we observe that from (2.1), integrating by parts we obtain the equality∫
[−∂xi

(aijξϱ)∂xj
η + bi∂xi

ηξϱ] dx =
∫

[−∂xi
(aijηϱ)∂xj

ξ + b̂i∂xi
ξηϱ] dx

for all η, ξ ∈ C∞0 (Rd). Passing to the limit, this remains valid for functions η
and ξ in the Sobolev class W p,1(Rd) such that one of them has compact support,
in particular, for η(x) = u(x, s) with s > 0 and ξ = φ. Hence∫

φ(x)(u(x, t)− u(x, τ))ϱ(x) dx

= −
∫ t

τ

∫
[∂xi

(aij(x)ϱ(x)φ(x))− bj(x)ϱ(x)φ(x)]∂xj
u(x, s) dx ds.

By a limiting procedure this equality extends to functions φ ∈ W p,1(Rd) with
compact support, in particular, we can take φ = ψ/ϱ, where ψ ∈ C∞0 (Rd). This
yields identity (2.3) for [τ, t] in place of [0, t]. Thus, in every inner strip u is a weak
solution of the direct parabolic equation, which, by known results (see [46]), implies
the second assertion of the lemma.

The last assertion follows from Theorem 7.3.11 in [11], where it was assumed that
A is globally Lipschitz and both A and A−1 are uniformly bounded, but we can see
from the proof that for the desired assertion about convergence in L2 on balls it
suffices to have the local Lipschitz property and pointwise invertibility. The theorem
just cited also ensures that u(x, t) is bounded on compact sets in Rd× [0, T ], which
implies the integrability of ∥∂xu( · , t)∥2L2(U) on [0, T0]. Indeed, if we multiply (2.2)
by φ(x)2u(x, t), where φ ∈ C∞0 (U), integrate over [τ, T0]×U and integrate by parts
in the integral of φ2uaij∂xi∂xju, then we see that the integral of φ2aij∂xiu∂xju is
estimated by the sum of the integrals of 2φ∂xi

φaiju∂xj
u, φ2∂xi

aiju∂xj
u, φ2ubi∂xi

u
and φ2u∂tu. As u is bounded on U × [0, T0], using the inequality vw ⩽ εv2 +ε−1w2

with an appropriate ε enables us to estimate the integral I(τ) of φ2|∇xu|2 over
U × [τ, T0] by C + I(τ)1/2, where C does not depend on τ , which gives the uniform
boundedness of I(τ) up to τ− = 0. Therefore, equality (2.3) extends to the whole
of the interval [0, t].

Lemma 2.1 is proved.

We observe in passing that so far the boundary behaviour (as t → 0) of these
solutions has not been sufficiently investigated. In the elliptic case the bound-
ary values of solutions of equations in divergence form on domains were investi-
gated in [34]–[36] under considerably more general assumptions about the diffusion
matrix. For general parabolic boundary value problems, see [63].

According to Theorem 5.4.5 in [11], the canonical semigroup {Tµ
t }t⩾0 is repre-

sented by integrable kernels in the form

Tµ
t f(x) =

∫
f(y)Kt(x, dy),

where Kt(x, dy) is a family of subprobability measures on Rd of the form

Kt(x, dy) = pA,b(t, x, y) dy,
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where the density pA,b is locally Hölder continuous on (0, T ) × Rd × Rd. If the
measure µ is invariant with respect to the operators Tµ

t , then the measuresKt(x, dy)
are probabilistic.

For a bounded measure ν on Rd we set

K∗
t ν(dy) :=

∫
Kt(x, dy)ν(dx).

Then the family {K∗
t ν}t⩾0 is a solution of the Cauchy problem

∂tµ = ∂xi
∂xj

(aijµ)− ∂xi
(biµ), µ0 = ν (2.4)

with initial condition ν. If the measure µ is invariant with respect to the opera-
tors Tµ

t , then, for every probability measure ν, the measures K∗
t ν are also proba-

bilistic.
For any bounded Borel function φ we have the equality∫

φ(x)K∗
t ν(dx) =

∫
Tµ

t φ(x)ν(dx).

If the measure ν has a density f with respect to µ, then K∗
t ν = T̂µ

t f · µ. The
semigroup property of Tµ

t implies the semigroup property of K∗
t :

K∗
t (K∗

s ν) = K∗
t+sν, t, s ⩾ 0.

If a family of measures σt on Rd satisfies equation (2.4), then the measures σt

have densities v( · , t) with respect to the measure µ and the function v(x, t) of two
arguments possesses a locally Hölder continuous density on (0, T )× Rd. As in the
lemma above, it is straightforward to verify that v satisfies the direct equation

∂tv = aij∂xi∂xjv + b̂i∂xiv

with the dual drift. If the solution {σt} has the initial condition ν, where ν
is a bounded measure, then the initial condition for v is the locally bounded
measure ϱ−1ν, where this initial condition is understood in the sense of conver-
gence of generalized functions, that is, for every function φ ∈ C∞0 (Rd), as t → 0
the integrals of φ(x)v(x, t) converge to the integral of φ against the measure ν/ϱ.

For the next lemma we need the fact that a semigroup with similar proper-
ties can be constructed for every ball U in place of the whole space, that is,
on L1(µ|U ) there is a contractive C0-semigroup {TU,µ

t }t⩾0 of sub-Markov opera-
tors for which the measure µ on U is subinvariant and its generator extends the
operator (LA,b, C

∞
0 (U)). For a bounded function f (or for f ∈ L2(U)) the function

(x, t) 7→ TU,µ
t f(x) on U × [0, T ] is defined as the solution to the initial-boundary

value problem

∂tu = LA,bu, u(x, 0) = f, u|∂U×[0,T ] = 0,

which exists, as was shown in [2], p. 634, Theorem 1; moreover, it is unique in the
class L2([0, T ],W 2,1

0 (U)) of functions v such that v(t, · ) belongs to the Sobolev
class W 2,1

0 (U) of functions with zero boundary value on ∂U and the function
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∥v(t, · )∥2W 2,1(U) is integrable on [0, T ]. The semigroup property follows from the
uniqueness of a solution, the sub-Markov property follows from the properties of
solutions established in [2]. If f is continuous and has a compact support in U ,
then the solution is continuous on the closure of U × [0, T ]. Our conditions on
the matrix A are stronger than those assumed in [2], so by virtue of the results
in [46] the solution obtained has the property that for each f ∈ Lp(U) the function
TU,µ

t f = u( · , t) with t > 0 belongs to W p,1
0 (U) ∩W p,2(U). Then by Lemma 5.2.1

in [11] the integral of LA,bT
U,µ
t f over U is nonpositive if f ⩾ 0. Hence for nonneg-

ative functions f ∈ C∞0 (U) we have∫
U

TU,µ
t f dµ−

∫
U

f dµ =
∫ t

0

∫
U

LA,bTsf dµ ds ⩽ 0,

which implies the same estimate for all nonnegative functions f ∈ L1(µ|U ). It fol-
lows that the operators TU,µ

t extend to contractions on all spaces Lp(µ|U ), p ⩾ 1.
Note that the role of the measure µ is as follows: the operators TU,µ

t , whose action
on bounded functions has no relation to the measure, by virtue of the equation
L∗A,bµ = 0 turn out to be contractions of the spaces Lp(µ|U ), but not of the spaces
Lp(U) with equivalent norms. The resolvent w = (LA,b − λ)−1f for f ∈ C∞0 (U)
satisfies the equation LA,bw−λw = f with zero boundary condition, which follows
from the equalities

(LA,b − λ)−1f =
∫ ∞

0

e−λtTU,µ
t f dt, LA,bT

U,µ
t f =

d

dt
TU,µ

t f.

We can also verify that the semigroup {TU,µ
t }t⩾0 we have described coincides with

the canonical semigroup in Theorem 5.2.2 in [11], constructed for the domain sim-
ilarly to the case of the whole space. The resolvent RU

λ = (λ − LU,µ
A,b )

−1 of the
semigroup {TU,µ

t }t⩾0 with λ > 0 is characterized as follows: (λ − LU,µ
A,b )

−1f for
f ∈ C∞0 (U) is the solution u of the boundary value problem

λu− LA,bu = f, u|∂U = 0.

We emphasize that LU,µ
A,b is not the closure of (LA,b, C

∞
0 (U)). For example, even for

the interval U = (−1, 1) with Lebesgue measure and Lu = u′′ the image of C∞0 (U)
under the operator L−I is not dense in L1(U), since the integral of ex(u′′(x)−u(x))
vanishes for all u ∈ C∞0 (U).

In the case of Hölder continuous coefficients the following fact was establish in
the paper [49].

Lemma 2.2. The canonical semigroup is the limit of the aforementioned semi-
groups {T k

t }t⩾0 corresponding to the operator LA,b with zero boundary conditions
on the balls Bk of radius k ∈ N, which are defined on the spaces L1(µ|Bk

). In par-
ticular, if f ∈ L1(µ), T > 0 and uk = T k

t f is the solution to the initial-boundary
value problem

∂tuk = LA,buk, uk|∂Bk×[0,T ] = 0, uk(x, 0) = f(x) for x ∈ Bk,

then Tµ
t f(x) = limk→∞ uk(x, t) in L1(µ) for t ∈ [0, T ].
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Proof. It suffices to consider the case f ⩾ 0. Suppose in addition that f ⩽ M .
By the maximum principle uk+1 ⩾ uk and uk ⩽ M (see [2], p. 634), hence the point-
wise limit u(x, t) = limk→∞ uk(x, t) ⩽ M exists. Therefore, whenever Reλ > 0,
the pointwise limit∫ ∞

0

e−λtu(x, t) dt = lim
k→∞

∫ ∞

0

e−λtuk(x, t) dt

exists. The construction of the canonical semigroup (see [11], Ch. 5, and the expla-
nations above) yields that the resolvent Rλ of this semigroup satisfies the equality

Rλf(x) = lim
k→∞

RBk

λ f(x) = lim
k→∞

∫ ∞

0

e−λtT k
t f(x) dt,

where RBk

λ is the resolvent of the semigroup {T k
t }t⩾0, that is, the function RBk

λ f
is the solution of the boundary value problem LA,bu − λu = f on Bk. Moreover,
for Rλf we have the equality

Rλf(x) =
∫ ∞

0

e−λtTµ
t f(x) dt.

Therefore, ∫ ∞

0

e−λtu(x, t) dt =
∫ ∞

0

e−λtTµ
t f(x) dt.

From the estimates 0 ⩽ u ⩽ M and 0 ⩽ Tµ
t f(x) ⩽ M we obtain the desired

equality u(x, t) = Tµ
t f(x). Now we drop the assumption that f is bounded.

As above, there exists a limit u(x, t) of the increasing sequence of solutions uk(x, t)
of initial-boundary value problems on the balls Bk. For every fixed M ∈ N, accord-
ing to what we have proved we have the equality

Tµ
t min(f,M) = lim

k→∞
T k

t min(f,M).

The right-hand side does not exceed u = limk→∞ T k
t f . The left-hand side increases

to Tµ
t f as M → ∞. Hence Tµ

t f ⩽ u. On the other hand u ⩽ Tµ
t f , since for any

fixed M and k we have T k
t min(f,M) ⩽ Tµ

t min(f,M), and so T k
t f ⩽ Tµ

t f for all k.
The lemma is proved.

Theorem 2.3. The canonical semigroup {Tµ
t }t⩾0 gives the minimal solution of

the Cauchy problem (2.2) in the following sense: if f is a µ-integrable nonnegative
continuous function and v(x, t) is some nonnegative solution to this Cauchy problem
with initial condition f in the aforementioned sense from [2], then

Tµ
t f(x, t) ⩽ v(x, t).

A similar assertion is true for the dual drift b̂ and the semigroup {T̂µ
t }t⩾0 .

Proof. Let v be an arbitrary nonnegative solution to the Cauchy problem

∂tv = LA,bv, v(x, 0) = f(x).

Then it follows from the maximum principle (see [2], p. 634) that 0 ⩽ uk ⩽ v
on Bk, where uk(x, t) = T k

t f(x) for x ∈ Bk is the function from the previous
lemma. Hence Tµ

t f ⩽ v. Of course, what we have proved also applies to the dual
drift. The theorem is proved.
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Below the inequality ν1 ⩽ ν2 for measures means that ν1(B) ⩽ ν2(B) for all
Borel sets. For measures with densities this reduces to an inequality for densities
almost everywhere.

Corollary 2.4. If {σt}t⩾0 is some probability solution of the Cauchy problem (2.4)
with initial condition ν , then K∗

t ν ⩽ σt .

Proof. We show that for every nonnegative smooth function φ with compact sup-
port the integral with respect to the measure K∗

t ν is not greater than the integral
with respect to the measure σt. Fix t1 > 0. It suffices to verify that for every ε > 0
the first integral is not greater than the second plus ε. There is τ1 ∈ (0, t1) such
that ∫

Tµ
t1φ(y)K∗

τ ν(dy) ⩽
∫
Tµ

t1φ(y)στ (dy) + ε

for all τ ∈ [0, τ1]. For t > 0 the measures σt are given by continuous densities v(x, t)
with respect to µ. The function v(x, t+ τ) is a nonnegative solution to the Cauchy
problem for the equation ∂tv = LA,̂bv with the continuous initial condition v(x, τ)
for t = 0. By Theorem 2.3

K∗
t στ = T̂µ

t v(·, τ) · µ ⩽ v(x, t+ τ) · µ for t ⩾ 0.

Hence for t ⩾ 0 and τ ∈ (0, τ1] we have∫
φ(y)K∗

t στ (dy) ⩽
∫
φ(x)v(x, t+ τ)µ(dx).

In addition,∫
φ(y)K∗

t1στ (dy) =
∫
Tµ

t1φ(y)στ (dy) ⩾
∫
Tµ

t1φ(y)K∗
τ ν(dy)− ε.

Thus, ∫
Tµ

t1φ(y)K∗
τ ν(dy) ⩽

∫
φ(x)v(x, t1 + τ)µ(dx) + ε,

that is, ∫
Tµ

t1+τφ(y)ν(dy) ⩽
∫
φ(x)σt1+τ (dx) + ε,

which, as τ → 0, gives the estimate∫
Tµ

t1φ(y)ν(dy) ⩽
∫
φ(x)σt1(dx) + ε,

completing the proof.

Corollary 2.5. If for some probability measure ν all measures K∗
t ν (or K̂∗

t ν ) are
probabilistic, then the Cauchy problem (2.4) has a unique probability solution K∗

t σ
for every initial probability distribution σ .

Proof. If the measures K∗
t ν are probabilistic, then the integral of Tµ

t/21 with respect
to the measure K∗

t/2ν is equal to the integral of Tµ
t 1 with respect to the measure ν,

that is, the integral of 1 with respect to the measure K∗
t ν, is equal to 1. Since the
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measure K∗
t ν possesses a positive density and Tµ

t/21 ⩽ 1, this is only possible in the
case when Tµ

t/21 = 1. Hence the measure µ is invariant for the canonical semigroup,
and for every probability measure σ the family K∗

t σ gives a probability solution
with initial condition σ. Its minimality implies that there are no other probability
solutions. The corollary is proved.

Theorem 2.6. Let b = βA,µ , aij ∈ L1(µ). Then the probability solution of equa-
tion (2.4) is unique.

If A = I and b = ∇V , where V ∈ W p,1
loc , p > d and eV ∈ L1(Rd), then the

probability solution of equation (2.4) is unique. In particular, this is true for d = 1
if eB ∈ L1(R) and B′ = b.

Proof. The first assertion follows from what has been said above. Indeed, accord-
ing to the results presented at the beginning of this section, under our conditions
the measure µ is invariant for the semigroup {Tµ

t }t⩾0, hence K∗
t µ = µ is a probabil-

ity measure for each t. By Corollary 2.5 the Cauchy problem under consideration
has a unique probability solution for every initial distribution ν. To prove the second
assertion take the measure µ = C expV dx, where C is picked so that the measure
becomes probabilistic. Then βA,µ = ∇V , that is, b− βA,µ = 0.

§ 3. Uniqueness in the one-dimensional case

In this section d = 1. Set

B(x) =
∫ x

0

b(s) ds.

The next assertion is inspired by Lemma 9.3 in Feller’s paper [29].

Proposition 3.1. Let b be a locally bounded Borel function and let w be a non-
negative function, absolutely continuous on compact intervals and satisfying the
inequality

w′′ − bw′ ⩾ w

in the sense of distributions; moreover, suppose that the limit

lim
|x|→∞

w(x) = q

exists and is finite. Then the following assertions are true:
(i) if q = 0, then w = 0;
(ii) if q > 0, then eB ∈ L1(R).
Analogous assertions are true in a more general case when

aw′′ − bw′ ⩾ w,

where a > 0 is a locally Lipschitz function, but here in (ii) the integrability of the

function exp
∫ x

0

a(s)−1b(s) ds is asserted.
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Proof. Since a nonnegative distribution is locally a finite measure, the equality

w′′ = bw′ + w +m

holds, where m is a nonnegative Borel measure which is finite on compact intervals.
Hence w′ as a distribution is given by an ordinary function v of bounded variation
on compact intervals.

We show that the function w cannot have positive local maxima. This is well
known for twice differentiable solutions (see [54], Ch. 1), but we need the general
case. Let z be a point of local maximum. Suppose first (as in the classical result)
that at the point z the derivative of the function w exists and is continuous. Then
w′(z) = 0, hence since b is locally bounded and we have assumed that w′ is con-
tinuous at z, we have w′′ ⩾ w(z)/2 in some neighbourhood of the point z in the
sense of distributions. Hence w′(x) > 0 for all x > z in this neighbourhood, and so
w(x) > w(z), contradicting the fact that w(z) is a local maximum. Now we drop
the assumption about the existence and continuity of the derivative at z. For the
function v of locally bounded variation representing the generalized function w′, as
noted above, there exist one-sided limits L = limx→z− v(x) and R = limx→z+ v(x).
Then L ⩽ R, since in case L > R the measure w′′ must have an atom at the point z
with a negative coefficient, which is impossible by the equality w′′ = bw′ + w +m,
where m ⩾ 0 and the measure with density bw′+w has no atoms. If L = R, then we
obtain the existence and continuity of w′ at the point z and arrive at the case under
consideration. If L < R, then either L < 0 or R > 0. Both cases are impossible at
a point of local maximum, since in the first case in every interval (z − ε, z) there
exist points with values larger than w(z), and in the second case such points exist
in any interval (z, z + ε).

Let q = 0, that is, w(x) → 0 as |x| → ∞. If w assumes a positive value, then w
has a positive local maximum, which is impossible. Therefore, w = 0.

Now let q > 0. Then w ⩽ q, since otherwise there exists a point of positive local
maximum. There is z > 0 such that w(x) ⩾ q/2 whenever |x| ⩾ z. Such a point can
be taken so that w(z) < q, since w cannot be constant. Then there exists a point
z1 > z for which w(x) > w(z) for all x ⩾ z1. On [z1,+∞) the function w must be
increasing, since the existence of points y > x > z1 with w(y) < w(x) yield a local
maximum on the interval [z, y] by the inequalities w(z) < w(y) < w(x). Thus,
w′ ⩾ 0 on (z1,+∞). Similarly, there exists a point z2 < −z such that w′(x) ⩽ 0 for
all x ⩽ z2. Obviously, we can assume that both points z1 and z2 are picked such
that the function w′ of bounded variation is continuous at them and w′(z1) > 0,
w′(z2) < 0.

Since w′ is of locally bounded variation, on the ray (z1,+∞) we obtain the
inequality in the sense of distributions:

(w′e−B)′ ⩾ we−B .

Therefore, for almost all x > z1 we have

w′(x) ⩾ w′(z1)e−B(z1)eB(x) + eB(x)

∫ x

z1

w(y)e−B(y) dy,



On uniqueness of probability solutions 761

and so

w′(z1)e−B(z1)

∫ +∞

z1

eB(x) dx ⩽
∫ +∞

z1

w′(x) dx = q − w(z1) <∞.

Therefore, the function eB is integrable on [z1,+∞). Similarly, we obtain integra-
bility on (−∞, z2]. Thus, the function eB is integrable on R.

The second assertion of the proposition is proved similarly, but for B we take

B(x) =
∫ x

0

b(s)
a(s)

ds+ ln a(x),

and the corresponding inequality takes the form (aw′e−B)′ ⩾ uw−B , which leads
to the inequality w′(x) ⩾ u′(z1)e−B(z1)eB(x)a(x)−1 and shows that the function
eB(x)a(x)−1 is integrable.

Proposition 3.1 is proved.

We now prove our main theorems.

Proof of Theorem 1.1. Suppose that there exist two probability solutions ϱ1 and ϱ2.
Then by Theorem 2.6

eB /∈ L1(R).

We shall use continuous versions of densities (which exist as we have noted). Set

F (x, t) =
∫ x

−∞
r(y, t) dy, r(y, t) = ϱ1(y, t)− ϱ2(y, t), F (x, 0) = 0,

that is, F is the difference of the distribution functions of these two solutions.
Note that F (x, t) → 0 as t→ 0 for all points x, apart from an at most countable set
(possible atoms of the common initial distribution). In addition, −1 ⩽ F (x, t) ⩽ 1.
Finally, for almost all t the function F (x, t) tends to zero as |x| → +∞. Since we are
using the continuous version of the function r, the function F is Borel on R×(0, T ).
With respect to the argument x the function F (x, t) is continuously differentiable.

Let ζ be a smooth probability density with compact support. Set

q(t) =
∫

[ζ ′′(x)F (x, t)− b(x)ζ(x)r(x, t)] dx, q(0) = 0,

where here and below we do not indicate the limits of integration when integrating
over the whole real line. The function q is Borel and is bounded on [0, T ]. Hence
the function

C(t) =
∫ t

0

q(s) ds

is Lipschitz on [0, T ] and C(0) = 0. We show that the bounded Borel function

H(x, t) = F (x, t)−
∫
ζ(y)F (y, t) dy + C(t),

on R × [0, T ], which is continuously differentiable in the variable x, satisfies the
equation

∂tH = ∂2
xH − b∂xH
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in the sense of the equality∫
ψ(x)H(x, t) dx−

∫
ψ(x)H(x, s) dx

=
∫ t

s

∫
[ψ′′(x)H(x, τ)− ψ(x)b(x)∂xH(x, τ)] dx dτ (3.1)

for every function ψ ∈ C∞0 (R) and all t, s ∈ (0, T ) with s ⩽ t. Note that

∂xH(x, t) = r(x, t)

by the continuity of the version of r under consideration.
By the definition of a solution, for every function φ ∈ C∞0 (R) and all s, t ∈ (0, T )

we have the equality∫
φ(x)r(x, t) dx−

∫
φ(x)r(x, s) dx =

∫ t

s

∫
[φ′′ + bφ′]r dx dτ.

Substituting ∂xF = r and integrating by parts, we arrive at∫
φ′(x)F (x, t) dx−

∫
φ′(x)F (x, s) dx =

∫ t

s

∫
[φ′′′F − bφ′∂xF ] dx dτ.

Let ψ ∈ C∞0 (R). Then there exists a function φ ∈ C∞0 (R) such that

φ′(x) = ψ(x)− ζ(x)
∫
ψ(y) dy.

Substituting into the above equality we obtain∫
ψ(x)

(
F (x, t)−

∫
ζ(y)F (y, t) dy

)
dx−

∫
ψ(x)

(
F (x, s)−

∫
ζ(y)F (y, s) dy

)
dx

=
∫ t

s

∫ [
ψ′′(x)F (x, t)− b(x)ψ(x)∂xF (x, t)

− ψ(x)
(∫

(ζ ′′(y)F (y, τ)− b(y)ζ(y)∂yF (y, τ)) dy
)]
dx dτ

=
∫ t

s

∫ [
ψ′′(x)F (x, t)− b(x)ψ(x)∂xF (x, t)− ψ(x)q(τ)

]
dx dτ.

Now, to prove (3.1) it suffices to observe that in the integrals containing ψ′′ and ∂xF
we can replace F (x, t) by H(x, t), since the difference H(x, t) − F (x, t) does not
depend on x.

It follows from equality (3.1) that the function

t 7→
∫
ψ(x)H(x, t) dx

is Lipschitz on (0, T ). In addition, on the right-hand side of (3.1) we can integrate
the term with ψ′′ under the integral twice by parts, which gives us the integral
of ψ(x)∂xr(x, t). This yields the equality

H(x, t)−H(x, s) =
∫ t

s

[∂xr(x, τ)− b(x)r(x, τ)] dτ (3.2)
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for almost all x (for any fixed s and t) and also in the sense of distributions.
The left-hand side is continuously differentiable in x.

Consider the bounded Borel function

W (x, t) =
H(x, t)2

2

on R× [0, T ], which is also continuously differentiable in the variable x. For t > 0
this function satisfies

∂tW = ∂2
xW − b∂xW − |∂xH|2,

and therefore we have the inequality

∂2
xW − b∂xW ⩾ ∂tW.

For t > 0 the equation and the inequality hold almost everywhere in x and also in
the sense of distributions, because the function x 7→ ∂xW (x, t) is locally absolutely
continuous as the function x 7→ r(x, t) is (the solution densities are locally Sobolev
in x for t > 0). In addition,

W (x, 0) = 0, W ⩾ 0, η(t) := lim
x→+∞

W (x, t) = lim
x→−∞

W (x, t) ⩾ 0.

The first equality is fulfilled for all x excepting possibly a countable set, since
F (x, t) → 0 as t → 0 for all x in the complement of an at most countable set.
The two limits of W (x, t) with respect to x are equal for almost all t because
lim|x|→∞ F (x, t) = 0 for almost all t. Now consider a new function:

w(x) =
∫ T

0

W (x, t)e−t dt.

This function is nonnegative, bounded, and continuous, and

lim
|x|→∞

w(x) =
∫ T

0

η(t)e−t dt.

For the sequel we note that

w′(x) =
∫ T

0

H(x, t)r(x, t)e−t dt

almost everywhere, w′(x) is integrable because H is uniformly bounded, and this
expression also defines the generalized derivative, so that the function w is abso-
lutely continuous on compact intervals. To justify this we observe that the function
H(x, t)r(x, t)e−t is integrable in both variables on the strip (−∞,+∞) × [0, T ],
since, for each fixed t, the function r(x, t) is the difference of subprobability densi-
ties, hence the integral of |r(x, t)| with respect to the variable x over the real line is
no greater than 2. By Fubini’s theorem, the function given by the right-hand side
is integrable. By integrating by parts against a test function it is readily verified
that this expression serves as the generalized derivative of w.
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Now we show that w satisfies the inequality

w′′ − bw′ ⩾ w

in the sense of distributions. Once this is done, since eB /∈ L1(R), from Proposi-
tion 3.1 we obtain that w = 0. Then W = 0, hence H = 0, that is, F (x, t) does not
depend on x, which means that r(x, t) = 0.

To justify the desired inequality we observe that for τ > 0 the function

w(τ, x) :=
∫ T

τ

W (x, t)e−t dt

satisfies the inequality∫ T

τ

∂tW (x, t)e−t dt = w(τ, x) +W (x, T )e−T −W (x, τ)e−τ

⩾ w(τ, x)−W (x, τ)e−τ .

Therefore, the inequality

w(τ, x)′′ − b(x)w(τ, x)′ ⩾ w(τ, x)−W (x, τ)e−τ

holds in the sense of distributions (with derivatives with respect to x), that is,
for every nonnegative smooth function φ with compact support,∫

[φ′′(x)w(τ, x)− b(x) ∂xw(τ, x)φ(x)] dx

⩾
∫
φ(x)w(τ, x) dx−

∫
φ(x)W (x, τ)e−τ dx,

where the derivative ∂xw(τ, x) exists almost everywhere and defines the generalized
derivative similarly to the case of the function w. As τ → 0, the last integral tends
to zero, since the function W (x, t) is uniformly bounded and W (x, τ) → 0 as
τ → 0 for almost all x. The first integral on the right tends to the integral of φw
as τ → 0. The integral of φ′′(x)w(τ, x) tends to the integral of φ′′(x)w(x). The
integral of b(x)∂xw(τ, x)φ(x) tends to the integral of b(x)w′(x)φ(x), because

w′(τ, x) =
∫ T

τ

H(x, t)r(x, t)e−t dt,

and the function H(x, t)e−t is uniformly bounded. Thus, letting τ → 0 we obtain
the desired inequality.

Theorem 1.1 is proved.

Proof of Theorem 1.2. Suppose that condition (1.4) is fulfilled. The function

ψ(x) =
∫ x

0

1√
a(s)

ds

is a diffeomorphism of the real line with locally Lipschitz derivative (this follows
from the local Lipschitz property, since a is positive). Let φ = ψ−1 be the
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inverse function. The family of measures µt = ϱ(x, t) dx is a solution of the
Cauchy problem (1.3) precisely when the family of measures σt = σ(y, t) dy, where
σ(y, t) = φ′(y)ϱ(φ(y), t), satisfies the equation

∂tσt = ∂2
yσt − ∂y(βσt)

with the drift coefficient

β(y) = b(φ(y))ψ′(φ(y)) + a(φ(y))ψ′′(φ(y))

and initial condition ν̃ = ν ◦ ψ−1. By Theorem 1.1 the probability solution of
the Cauchy problem for σt is unique. Therefore, the probability solution of the
original Cauchy problem is also unique. Examples of non-uniqueness in the case
where condition (1.4) is not fulfilled are constructed in the next section.

§ 4. Examples of non-uniqueness

We start with examples completing the proof of Theorem 1.2.
Let T = 1.

Example 4.1. Let a be a locally Lipschitz positive function on the real line such
that ∫ 0

−∞

1√
a(s)

ds = y1 <∞ and
∫ +∞

0

1√
a(s)

ds = y2 <∞.

Set b = a′/2. Then there exists a locally Lipschitz probability density ϱ0 (which is
smooth if a is) such that the Cauchy problem

∂tϱ = ∂2
x(aϱ)− ∂x(bϱ), ϱ(x, 0) = ϱ0(x) (4.1)

has infinitely many linearly independent solutions ϱ such that the function ϱ is
continuous on R×[0, 1], continuously differentiable in t, locally Lipschitz in x (if the
coefficient a is twice continuously differentiable, then ϱ is also twice continuously
differentiable in x), and

ϱ(x, t) > 0,
∫
ϱ(x, t) dx = 1.

The function
ψ(x) =

∫ x

0

1√
a(s)

ds

defines a diffeomorphism from the real line onto the interval J = (−y1, y2) with
locally Lipschitz derivative. We denote the inverse function ψ−1 by φ. Changing
the variables we arrive at the Cauchy problem

∂tσ = ∂2
yσ, σ(y, 0) = σ0(y),

where
σ(y, t) = φ′(y)ϱ(φ(y), t) and σ0(y) = φ′(y)ϱ0(φ(y)).

Below we pick a smooth probability density σ0 on the interval J determining
the required initial density ϱ0. We observe that if the new Cauchy problem for the
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function σ has infinitely many linearly independent probability solutions, then
the original Cauchy problem has also infinitely many linearly independent prob-
ability solutions.

On [−y1, y2]× [0, 1] consider the initial-boundary value problem

∂tσ = ∂2
yσ, σ(y, 0) = σ0(y), ∂yσ(−y1, t) = ∂yσ(y2, t) = θ(t), (4.2)

where θ is a continuously differentiable function, θ(0) = θ′(0) = 0 and σ0 is a smooth
nonnegative function with compact support in (y1, y2). It is known (see [43], Theo-
rem 5.3) that there exists a solution σ that is a function on [−y1, y2]× [0, 1] which
is continuously differentiable in t and twice continuously differentiable in y. We
verify that for all t ∈ [0, 1]∫ y2

−y1

σ(y, t) dy =
∫ y2

−y1

σ0(y) dy.

In fact,

d

dt

∫ y2

−y1

σ(y, t) dy =
∫ y2

−y1

∂tσ(y, t) dy =
∫ y2

−y1

∂2
yσ(y, t) dy

= ∂yσ(y2, t)− ∂yσ(−y1, t) = 0.

Adding a constant to σ (and correspondingly to σ0) we can assume that σ > 0.
Multiplying σ by a suitable constant, we obtain the solution σ which for every t
is a probability density on [−y1, y2]. If the functions θ1, . . . , θN are linearly inde-
pendent, then the corresponding solutions σ1, . . . , σN are also linearly independent.
To prove this it suffices to observe that θj(t) = ∂yσj(y2, t). Thus, taking lin-
early independent functions θ, we can construct linearly independent solutions σ.
Returning to the original coordinates, we obtain linearly independent probability
solutions of the Cauchy problem (4.1) under consideration.

In the following example only one integral from condition (1.4) converges.

Example 4.2. Let a be a locally Lipschitz positive function on the real line such
that ∫ 0

−∞

1√
a(s)

ds = y1 <∞ and
∫ +∞

0

1√
a(s)

ds = ∞.

Then there exists a locally bounded Borel drift coefficient b (which is continuous
if a has a continuous derivative) and an initial condition with a locally Lipschitz
probability density ϱ0 (which is smooth if a is) for which the Cauchy problem

∂tϱ = ∂2
x(aϱ)− ∂x(bϱ), ϱ(x, 0) = ϱ0(x) (4.3)

has infinitely many linearly independent solutions ϱ with the following properties:
the function ϱ is continuous on R × [0, 1], continuously differentiable in t, locally
Lipschitz in x (and twice continuously differentiable in x in the case of a twice
continuously differentiable coefficient a), and

ϱ(x, t) > 0,
∫
ϱ(x, t) dx = 1.
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The function
ψ(x) =

∫ x

0

1√
a(s)

ds

is a diffeomorphism of the real line onto the ray J = (−y1,+∞) with locally Lips-
chitz derivative. Let φ = ψ−1. In the new coordinates the Cauchy problem (4.3)
has the form

∂tσ = ∂2
yσ − ∂y(βσ), σ(y, 0) = σ0(y),

where

β = ψ′b+ aψ′′ =
b√
a
− 1

2
a′√
a
,

σ0(y) = φ′(y)ϱ0(φ(y)), σ(y, t) = φ′(y)ϱ(φ(y), t).

Below we pick a smooth coefficient β, from which we find the required coefficient b
by the formula b = β

√
a+a′/2. It is seen from this formula that if the derivative a′

is continuous, then the function b is also continuous and if a is locally Lipschitz,
then it is locally bounded. In addition, we pick some initial density σ0 which will
give ϱ0. We make one more change of coordinates

η(y) = 1− (y + y1 + 1)−1,

which transforms the ray J into the interval (0, 1). In the new coordinates we arrive
at the Cauchy problem

∂tv = ∂2
z ((1− z)4v)− ∂z(hv), v(z, 0) = v0(z).

As above, h = η′β + η′′ and v(z, t) = ξ′(z)σ(ξ(z), t), where ξ = η−1. Now take the
third order polynomial

h(z) = −4(1− z)3 − 1,

which determines the smooth function β = (h− η′′)/η′. We have

∂2
z (1− z)4 − ∂zh(z) = 0, h(0) = −5, h(1) = −1.

Suppose also that v0 is a smooth function with compact support in the inter-
val (0, 1). Consider the initial-boundary value problem

∂tv = ∂2
z ((1− z)4v)− ∂z(hv), v(z, 0) = v0(z),
v(1, t) = v(0, t) + ∂zv(0, t) = θ(t)

(4.4)

on [0, 1]×[0, 1], where θ is a continuously differentiable function and θ(0) = θ′(0) = 0.
Below we show that this problem has a solution v that is continuously differentiable
in t and twice continuously differentiable in z on [0, 1]× [0, 1]. We verify that∫ 1

0

v(z, t) dz =
∫ 1

0

v0(z) dz

for all t ∈ [0, 1]. In fact,

d

dt

∫ 1

0

v(z, t) dz =
∫ 1

0

[
∂2

z ((1− z)4v)− ∂z(hv)
]
dz

= −v(0, t)− ∂zv(0, t) + v(1, t) = 0.
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The function h is picked in such a way that if v is a solution of the equation, then
v + const is also a solution. Adding a constant we can assume that v > 0. Next,
multiplying by a suitable constant, we can assume that the function x 7→ v(x, t) is
a probability density on [0, 1] for every t. Finally, linearly independent solutions
correspond to the linearly independent functions θ.

The reasoning we have given here is essentially based on the solvability of the
initial-boundary value problem (4.4). The main difficulty is that the equation
degenerates at z = 1. Boundary value problems for degenerate elliptic and parabolic
equations are considered in many works, among which we mention [26], [27], [31],
[51] and [55]. However, the assertion we need about the solvability of the third
boundary value problem is only contained in [26], without proof; furthermore,
the proof of this assertion is also omitted from [27], which contains the proofs
of the main results from [26]. In the closely related paper [55], the solvability of
the third boundary value problem for a degenerate elliptic equation is studied,
a particular case of which is, of course, a parabolic equation, but the smoothness
of the boundary assumed there is such that the result does not apply to parabolic
problems. Moreover, in [55] only a generalized solution is constructed. For these
reasons we include the necessary assertion here together with a short justification
in the case of one space variable, which is the case we are looking at. A general
assertion will be considered in a separate paper.

Let a, b, c and f be infinitely differentiable functions on R × [0, T ], let h, g
and k be infinitely differentiable functions on [0, T ], and let u0 be an infinitely
differentiable function with compact support in (0, 1). Suppose that a ⩾ 0 and
consider the following problem:

∂tu = a∂2
xu+ b∂xu+ cu+ f, u(x, 0) = u0(x), u(1, t) = h(t),

∂xu(0, t) + ku(0, t) = g(t).
(4.5)

Proposition 4.3. Suppose that a(0, t) > 0 and a(1, t) = 0, and let

b(1, t)− ∂xa(1, t) > 0.

Then there exists a unique solution v of the Cauchy problem (4.5) in the class of
functions that are continuously differentiable in t and twice continuously differen-
tiable in x on the rectangle [0, 1]× [0, T ].

Proof. Let u = weλt+γx. Then

wt = a∂2
xw + (b+ 2γa)∂xw + (γ2a+ γb+ c− λ)w + fe−λt−γx,

w(x, 0) = u0(x)e−γx, w(1, t) = h(t)e−γ−λt,

∂xw(0, t) + (k + γ)w(0, t) = g(t)e−λt.

Picking constants γ < 0 and λ > 0, we can obtain

k + γ < 0 and γ2a+ γb+ c− λ < 0.

Moreover, the condition b(1, t)−∂xa(1, t) for our new coefficient b+2γa in place of b
is preserved, since a(1, t) = 0. So in what follows, passing from u to w, we assume
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that the inequalities c ⩽ −c0 < 0 and k ⩽ −k0 < 0 hold for some numbers c0
and k0. Moreover, subtracting a function Q from the solution u which is such that
Q(1, t) = h(t) and ∂xQ(0, t) + k(t)Q(0, t) = g(t), we can assume that h = g = 0.

Let n ∈ N. It is known (see [5], [20], [21], [57] and [39], Ch. 2, § 4, Theorem 4.1)
that there exists a solution un of the Cauchy problem for the equation with a+n−1

in place of a. Let qn = u2
n/2. Then

∂tqn = a∂2
xqn + b∂xqn + 2cqn + fun − a(∂xqn)2.

Since fun ⩽ c0qn + |f |2c−1
0 , we have

∂tqn ⩽ a∂2
xqn + b∂xqn + cqn + |f |2c−1

0 .

Moreover, ∂xqn(0, t) = −2kqn(0, t), qn(x, 0) = u0(x)2/2 and qn(1, t) = 0. Let

M = 2−1 max |u2
0|+ c−2

0 max |f |2.

Then
∂t(qn −M) ⩽ a∂2

x(qn −M) + b∂x(qn −M) + c(qn −M)

and ∂x(qn(0, t)−M) = −2k(qn(0, t)−M)−kM , qn(x, 0)−M ⩽ 0, qn(1, t)−M ⩽ 0.
Since c < 0 and k < 0, it is clear that the function qn − M cannot attain
a positive maximum. Therefore, qn ⩽ M and |un| ⩽

√
2M , where M does not

depend on n. Passing to a subsequence, we can assume that {un} converges weakly
in L2([0, 1]× [0, T ]) to some function u.

By assumption there are positive numbers a0 and x0 such that a(x, t) ⩾ a0

on the rectangle [0, 2x0] × [0, T ]. According to Theorem 10.1 in [43], passing to
a subsequence, we can assume that {un} converges uniformly on [0, x0] × [0, T ]
to a function u which is continuously differentiable in t and twice continuously
differentiable in x on the rectangle [0, x0]× [0, T ].

According to Theorem 4 in [27], there exists a smooth solution v of the Cauchy
problem

∂tv = a∂2
xv + b∂xv + cv + f,

v(x, 0) = u0(x), v(1, t) = 0, v(0, t) = u(0, t).

Here we use the condition b(1, t)−∂xa(1, t) > 0. Consider the difference rn = un−v.
The function rn is a solution of the Cauchy problem

∂trn = (a+ n−1)∂2
xrn + b∂xrn + crn + n−1∂2

xv,

rn(x, 0) = 0, rn(1, t) = 0 and rn(0, t) = un(0, t)−u(0, t). By the maximum principle
(see, for example, [51], Theorem 1.1.2) we have

max
[0,1]×[0,T ]

|rn(x, t)| ⩽ 1
nc0

max
[0,1]×[0,T ]

|∂2
xv(x, t)|+ max

[0,T ]
|un(0, t)− u(0, t)|.

Hence the sequence {rn} converges uniformly to zero, and u coincides with v. Thus,
the function u is continuously differentiable in t and twice continuously differen-
tiable in x on [0, 1] × [0, T ], satisfies the initial condition u = u0 for t = 0, the
boundary condition ∂xu + ku = 0 for x = 0 and the boundary condition u = 0
for x = 1. The uniqueness of the solution we have constructed follows from the
maximum principle. Proposition 4.3 is proved.
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Remark 4.4. Since in the case where∫ 0

−∞

1√
a(s)

ds =
∫ +∞

0

1√
a(s)

ds = ∞

the probability solution is unique, the method of constructing examples of
non-uniqueness suggested in Examples 4.1 and 4.2 should not work in this case.
We show that this is indeed the case. After an appropriate change of coordinates
we obtain the Cauchy problem on the interval (0, 1) for the equation of the form

∂tσ = ∂2
x(Aσ)− ∂x(Bσ),

where A(0) = ∂xA(0) = A(1) = ∂xA(1) = 0. Thus, this equation degenerates at
the endpoints of the interval (0, 1). To construct a probability solution, we have

to ensure that the expression
∫ 1

0

σ(x, t) dx is independent of t. Since we are con-

structing a smooth solution, due to the equation the latter requirement implies the
equality

0 =
d

dt

∫ 1

0

σ(x, t) dx = B(0)σ(0, t)−B(1)σ(1, t).

On the other hand, for the problem with boundary conditions at x = 0 and x = 1
to be solvable, it is necessary (see [51], Ch. 1) that B(0) > 0 and B(1) < 0. This
means that the numbers σ(0, t) and σ(1, t) must have different signs. In turn, this
contradicts the positivity of the solution. It is important to note here that we cannot
pick B such that ∂xA = B + const, because ∂xA vanishes at the endpoints of the
interval [0, 1] and B assumes values with different signs at these points. Therefore,
it is not possible, by choosing the coefficient B, to ensure that a solution remains
a solution after adding a constant and thus guarantee the positivity of the solution.

The idea of constructing an example of non-uniqueness for the Fokker-Planck-
Kolmogorov equation with the aid of a change of coordinates and application of the
theory of degenerate equations was first suggested in [42] in the case of a stationary
equation.

Example 4.5. (i) Consider an example where, for an infinitely differentiable drift
coefficient b on the real line, in addition to a unique probability solution with smooth
initial distribution there exists another family of nonnegative bounded measures
that is a solution with the same initial condition. In [11], Exercise 9.8.47, the
following example was proposed (with a hint for the solution):

b(x) = −2x(1 + x2)−1 − (1 + x2) arctanx,

the initial density is u0(x) = (π(1+x2))−1. We give a solution of this exercise here.
One nonnegative integrable solution has a simple explicit form etu0(x). This can
be verified directly:

u′0(x) = −2π−1x(1 + x2)−2,

u′′0(x) = −2π−1(1 + x2)−2 + 8π−1x2(1 + x2)−3,

(b(x)u0(x))′ = −2π−1(1 + x2)−2 + 8π−1x2(1 + x2)−3 − π−1(1 + x2)−1.
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However, there is also a unique probability solution. Indeed, since b(x)x ⩽ 0,
for the function V (x) = x2 we have V ′′(x) + b(x)V ′(x) = 2 + 2xb(x) ⩽ 2. It is
known (see [11], Theorem 9.4.8, where a Lyapunov function with the estimate
V ′′ + bV ′ ⩽ C + CV is required) that this guarantees the existence of a unique
probability solution of the Cauchy problem (though, the uniqueness also follows
from the main theorem of this paper).

(ii) Consider an example where for an infinitely differentiable drift coefficient b
on the real line and a smooth initial condition there are no probability solutions, but
there exists a unique subprobability solution. We take the same initial condition u0

as in (i), but the drift is changed as follows:

b(x) = −2x(1 + x2)−1 + (1 + x2) arctanx.

Now, since xb(x) ⩾ −2, for V (x) = x2 + 4 we obtain V ′′ + bV ′ ⩾ −V , which
according to Theorem 9.6.3 in [11] implies the uniqueness of an integrable solu-
tion. The calculations in (i) show that e−tu0(x) is such a solution; moreover, it is
a subprobability solution.

In [11], § 9.6, in the multi-dimensional case sufficient conditions on the coefficients
are given in terms of Lyapunov functions under which there is at most one integrable
solution of the Cauchy problem.

Remark 4.6. Now we explain why the problem we consider is not equivalent to
the existence and uniqueness problem studied by Hille [37] for the one-dimensional
Fokker-Planck-Kolmogorov equation. For simplicity, we confine ourselves to the
case of a unit diffusion coefficient (note that in [37] the opposite notation is used,
the drift is denoted by a, but we give the formulations below using our notation).
The problem posed in [37], §8, p. 116 (in the case of the equation on the whole
real line), is this: find necessary and sufficient conditions in order that for every
function h ∈ L1(R) with Lh = h′′ − (bh)′ ∈ L1(R) a unique solution T (x, t, h) of
the equation ∂tu = ∂2

xu− ∂x(ub) can be found with initial condition h in the sense
of the relation ∥T ( · , t, h)− h∥L1 → 0 as t→ 0. This setting is called Problem L0,
and in Problem L it is required in addition that the solution with any nonnegative
initial condition h be nonnegative and have the same integral over the real line as h
(in other words, the solutions with probability initial densities in the domain of
definition of the operator L must be probabilistic). The drift coefficient in [37] is
assumed to be continuous, but this is a minor technical difference. According to
Theorems 8.5 and 8.7 in [37], a necessary and sufficient condition for the solvability
of Problem L0 is that the integral∫ x

0

expB(y)
∫ y

0

exp(−B(u)) du dy, where B(y) =
∫ y

0

b(s) ds,

diverges at −∞ and +∞; for Problem L to be solvable the divergence of the integral∫ x

0

exp(−B(y))
∫ y

0

exp(B(u)) du dy

must also diverge at −∞ and +∞. This is the previous condition for the drift −b,
which makes the conditions for b and −b the same. In both theorems of Hille we
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have cited the closure of the operator L generates a semigroup on L1(R). We see in
the previous example that, for every initial condition that is a probability measure,
there may exist a unique probability solution of the Cauchy problem, but there
are also other solutions. Finally, yet another difference between Hille’s conditions
and our result (in which there are no conditions on the drift at all, apart from local
boundedness) is that Hille’s solution must exist for every initial condition (although
with density in the domain of definition of the operator, while we admit arbitrary
initial probability measures), and in our setting solutions can exist for some initial
conditions and not for others, but we show that for no initial probability distribution
can two different solutions exist. Moreover, uniqueness holds even in the case when
the closure of the operator L does not generate any semigroup on L1(R).

It is also worth noting that Hille’s theorem says (for a continuous drift) that, if
Hille’s condition for Problem L is violated, then either for some initial condition
there is no solution or for some other initial condition there are several solutions,
while our result shows that the second possibility cannot occur, so that the reason
is always the first case. Moreover, it follows from our result that there is no solution
for the initial distribution that is the Dirac measure δa at some point a. In fact,
we can verify that if the solution ϱ(x, t, a) exists for every initial condition of the
form δa, then due to uniqueness it depends on a Borel measurably, which after
averaging over the probability measure ν gives a solution with initial condition ν.

We give an example of the absence of a probability solution for some initial distri-
butions and its existence for others. In the justification of the following example we
use the drift b(x) = −x− 6 exp(x2/2), for which the standard Gaussian measure γ
on the real line is the stationary solution with initial distribution γ. We verify that
here there exist initial probability distributions for which there are no probability
solutions; using Hille’s terminology this means that Problem L is not solvable for
this drift. To this end we show that Hille’s condition is violated, namely, the second
of the two integrals above converges at −∞. In our case, after changing from x
to −x, we arrive at the integral over [0,+∞) of the function F (x)/F ′(x), where

F (x) =
∫ x

0

f(y) dy, f(x) = exp
(
−2−1x2 + 6

∫ x

0

exp
(
y2

2

)
dy

)
,

the function f is increasing and the estimate F ′′(x)/F ′(x) ⩾ x2 holds. We observe
that then also F ′(x)/F (x) ⩾x2/8: indeed, integrating the estimate F ′′(x)⩾x2F ′(x)
we obtain

F ′(x)− F ′(0) ⩾
∫ x

0

y2F ′(y) dy ⩾
∫ x

x/2

y2F ′(y) dy

⩾
x2

4

(
F (x)− F

(
x

2

))
⩾
x2

8
F (x),

since 2F (x/2) ⩽ F (x). The latter is seen from the equality

2F
(
x

2

)
= 2

∫ x/2

0

f(y) dy =
∫ x

0

f

(
y

2

)
dy

and the inequality f(y/2) ⩽ f(y). Thus, F ′(x) ⩾ x2F (x)/8, which implies that
the integral of F/F ′ converges at +∞. The same conclusion can be obtained by
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finding an asymptotic relation for the ratio F/F ′ with the aid of L’Hôpital’s rule,
which shows that the ratio of F (x)(−x+ 6 exp(x2/2)) and f(x) tends to 1, that is,
F (x)/F ′(x) actually decreases even more rapidly. By Hille’s criterion there is no
probability solution for some initial distribution, but it follows from what we said
above that then there is no solution for some Dirac initial measure. Note that by
Theorem 6.6.2 in [11] a subprobability solution exists for every initial probability
distribution. By the way, this implies the absence of a diffusion process (in the usual
sense) generated by the operator L, in spite of the existence of the infinitesimally
invariant measure γ for this operator.

We now construct an example of a Fokker-Planck-Kolmogorov equation in dimen-
sion d = 2 for which the Cauchy problem has an infinite-dimensional simplex of
probability solutions. We recall that such examples have previously only been con-
structed for d ⩾ 3 (see [11], Ch. 9).

Example 4.7. Let γ be the standard Gaussian measure on the real line given by the
density (2π)−1/2 exp(−x2/2). Set

b1(x) = −x− 6 exp
(
x2

2

)
, b2(y) = −y.

Let {Tt}t⩾0 be the standard Ornstein-Uhlenbeck semigroup (see, for example, [6])
generated by the operator Lyu = u′′ + b2u′ on the space L1(γ) and defined by the
formula

Ttf(x) =
∫
f
(
e−tx−

√
1− e−2t y

)
γ(dy).

It is straightforward to verify that the measure γ also satisfies the stationary equa-
tion with the operator Lxu = u′′ + b1u′. As indicated in § 2 above, on L1(γ) there
exists a sub-Markov semigroup {St}t⩾0 associated with the operator Lx for which γ
is a subinvariant measure. However, it is known (and it is important for the sequel)
that γ is not an invariant measure for this semigroup (see [11], Exercises 4.5.17
and 5.6.49). The semigroups {Tt}t⩾0 and {St}t⩾0 also act on every measure ν with
density and give nonnegative measures T ∗t ν and S∗t ν by the formulae∫

f d(T ∗t ν) =
∫
Ttf dν and

∫
f d(S∗t ν) =

∫
Stf dν.

In terms of the density g of the measure ν with respect to γ we can write

T ∗t ν = Ttg · γ and S∗t ν = S∗t g · γ,

where S∗t g is the action on g of the operator on the space L1(γ) obtained by extend-
ing the operator adjoint to St from L∞(γ) (if the density g is bounded, then this
is the action of the adjoint operator itself).

For any function u of two variables we set

Lu = ∂2
xu+ ∂2

yu+ b1(x) ∂xu+ b2(y) ∂yu = Lxu+ Lyu.

Let σ be an arbitrary probability measure with smooth density. Consider the
Cauchy problem

∂µt = L∗µt, µ0 = γ ⊗ σ.
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We verify that this problem has infinitely many different probability solutions of
the form

µα
t = S∗t γ ⊗ (T ∗t σ − T ∗t α) + γ ⊗ T ∗t α,

where α is an arbitrary probability measure with smooth density; moreover, solu-
tions µαj

t corresponding to linearly independent measures αj are linearly indepen-
dent.

First, {µα
t } is a solution, since in every variable it satisfies the corresponding

equation: {S∗t γ} is a solution of the one-dimensional Cauchy problem with the
operator Lx and the initial condition γ, the measure γ is the stationary solution for
the equation with the operator Lx, {T ∗t σ} and {T ∗t α} are solutions to the Cauchy
problems with the operator Ly and the initial conditions σ and α, respectively. Since
{Tt}t⩾0 is obviously a Markov semigroup, T ∗t σ and T ∗t α are probability measures
for each t. In addition, as noted in § 2, S∗t γ ⩽ γ in the sense of the inequality for
measures; moreover, S∗t γ ̸= γ for t > 0 due to the lack of invariance (if S∗t γ = γ
for some t > 0, then S∗τγ = γ for all τ ⩽ t, hence S∗t γ = γ for all t > 0).

Second, µα
t is a nonnegative measure. Indeed,

µα
t = S∗t γ ⊗ T ∗t σ + (γ − S∗t γ)⊗ T ∗t α ⩾ 0.

In addition, µα
t is a probability measure since

µα
t (R2) = S∗t γ(R1) · (T ∗t σ − T ∗t α)(R1) + γ(R1) · T ∗t α(R1) = S∗t γ(R1) · 0 + 1 = 1.

We now verify that for linearly independent probability measures αj the corres-
ponding solutions are linearly independent. Suppose that for some finite collection
of numbers cj the equality∑

j

cj(S∗t γ ⊗ (T ∗t σ − T ∗t αj) + γ ⊗ T ∗t αj) = 0

holds for all t ⩾ 0. This can be written in the form(∑
j

cj

)
S∗t γ ⊗ T ∗t σ + (γ − S∗t γ)⊗ T ∗t

(∑
j

cjαj

)
= 0.

For t = 0 we obtain
(∑

j cj
)
γ ⊗ σ = 0, and therefore

∑
j cj = 0. Hence

(γ − S∗t γ)⊗ T ∗t

(∑
j

cjαj

)
= 0.

Since γ−S∗t γ is a positive measure for all t > 0, we have T ∗t
(∑

j cjαj

)
= 0 for t > 0,

but this, in turn, implies the equality
∑

j cjαj = 0. The linear independence of
the αj shows that all the numbers cj equal zero.

Note that, in this example, non-uniqueness takes place for some smooth, but very
special initial condition. Naturally, the question arises about constructing an exam-
ple where non-uniqueness takes place for some broad class of initial conditions, say,
for all Dirac measures. In the case when the variable x is three-dimensional, such
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examples can be constructed by combining the idea from the example described and
the approach based on the theory of degenerate parabolic equations in the spirit of
Examples 4.1 and 4.2. A detailed discussion of such examples will be the subject
of a separate paper.

Now we give examples showing that if we omit the local boundedness of the
drift, the uniqueness of a probability solution can fail for the elliptic equation as
well as for the parabolic one. However, the question of uniqueness for drifts that
are locally integrable to some power with respect to Lebesgue measure is worth
studying (of course, keeping the requirement of the local integrability with respect
to the solution).

Example 4.8. Any locally Lipschitz probability density ϱ obviously satisfies the sta-
tionary equation ϱ′′ − (bϱ)′ = 0 with the drift b equal to the logarithmic derivative
of ϱ, that is, b(x) = ϱ′(x)/ϱ(x), where we set b(x) = 0 if ϱ(x) = 0. The function
b is locally integrable with weight ϱ. If, say, we take ϱ(x) = (2π)−1/2x2 exp(−x2),
then for the drift b(x) = 2x−1 − 2x obtained there are other probability solutions,
distinct from the one given by the density ϱ, including the solution with density ϱ/2
on (−∞, 0) and density 3ϱ/2 on [0,+∞). In this case the function b is integrable
with weight ϱ on the whole real line.

In the parabolic case we consider the function

ϱ(x, t) = t−2x3E(x, t), E(x, t) = C exp
(
−x

2

4t

)
, x ⩾ 0, t > 0,

where C > 0 is a constant such that the function ϱ( · , 1) is a probability density
on [0,+∞); then all the functions ϱ( · , t) are too. Set ϱ(x, t) = 0 if x < 0 and
ϱ1(x, t) = ϱ(−x, t).

Then the functions ϱ and ϱ1 give distinct probability solutions of the equation

∂tϱ = ∂2
xϱ− ∂x(bϱ), b(x) =

3
x
,

with the initial distribution at t = 0 equal to Dirac’s measure at the origin.

Proof. We verify that for t > 0 and x ⩾ 0 the twice differentiable function ϱ satisfies
pointwise the equation indicated. Indeed,

∂tϱ = −2t−3x3E(x, t) +
1
4
t−4x5E(x, t),

∂xϱ = 3t−2x2E(x, t)− 1
2
t−3x4E(x, t),

∂2
xϱ = 6t−2xE(x, t)− 3

2
t−3x3E(x, t)− 2t−3x3E(x, t) +

1
4
t−4x5E(x, t)

= 6t−2xE(x, t)− 7
2
t−3x3E(x, t) +

1
4
t−4x5E(x, t),

bϱ = 3t−2x2E(x, t),

∂x(bϱ) = 6t−2xE(x, t)− 3
2
t−3x3E(x, t)

and
∂2

xϱ− ∂x(bϱ) = −2t−3x3E(x, t) +
1
4
t−4x5E(x, t) = ∂tϱ.
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At the point x = 0 the function x 7→ ϱ(x, t) with t > 0 is twice differentiable and

ϱ(0, t) = ∂xϱ(0, t) = ∂2
xϱ(0, t) = 0.

In addition, for t > 0 the function x 7→ b(x)ϱ(x, t) is continuously differentiable at
zero, and its derivative at zero vanishes. Therefore, setting ϱ(x, t) = 0 for x < 0
we obtain a twice differentiable solution of our equation on the whole real line.
Moreover, as t→ 0, the measures ϱ(x, t) dx converge weakly to the Dirac measure
at zero. Finally, we verify that bϱ ∈ L1(R × [0, T ]). Now, this product vanishes
if x < 0, and for x > 0 we have

b(x)ϱ(x, t) = Ct−2x2 exp
(
−x

2

4t

)
.

Then for t > 0 we obtain∫ +∞

0

b(x)ϱ(x, t) dx = Ct−1/2

∫ +∞

0

u2 exp
(
−u

2

4

)
du = C ′t−1/2.

Therefore, ∫ T

0

∫ +∞

0

b(x)ϱ(x, t) dx dt <∞.

The integrability of bϱ implies that ϱ is a solution to the Cauchy problem in our
sense, that is, in the sense of the integral identity. We now observe that the mea-
sures with densities ϱ1(x, t) = ϱ(−x, t), concentrated on the left half-line, also give
a solution. Therefore, our problem has at least two linearly independent solutions.

We should explain the probabilistic nature of this example. It was shown in [22]
and [23], Example 1.23, that for the singular drift

b(x) =
3
2
x−1IR\0(x)

the stochastic differential equation dXt = b(Xt)dt+dWt with the initial distribution
concentrated at zero has several solutions with different one-point distributions.
One of these solutions is the nonnegative Bessel process Bt with the parameter
α = 4, another solution Xt = −Bt is nonpositive; moreover, |Xt| has the same
distribution as Bt. This leads to two different probability solutions {µt} and {νt}
of the corresponding Fokker-Planck-Kolmogorov equation, with respect to which
the drift b is integrable on R × [0, 1]. The integrability of the drift is verified
explicitly with the aid of the known formula for the density of the distribution of
the square B2

t of the Bessel process (see [56], Ch. XI, § 1, Corollary 1.4), which also
gives the explicit densities of the distributions of Bt and Xt. The coefficients of the
Fokker-Planck-Kolmogorov equation for Bt and Xt differ from the ones indicated
in our example by some numeric coefficients.

Note that in the last example only the drift coefficient is singular with respect to
Lebesgue measure, but the solutions are smooth, and this coefficient is integrable
with respect to the solutions. By the way, this shows that in the uniqueness theo-
rems from [11], Ch. 9, with the identity diffusion matrix, the hypotheses cannot be
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weakened even for d = 1 to the inclusion of the drift b in L1(µ): in Theorem 9.3.6
in [11], in addition to the condition |b| ∈ L1(µ) the inclusion |b| ∈ L2(µ,U × (0, T ))
is also required for every ball U and in Theorem 9.4.3 in [11], in addition to the
previous condition, the inclusion |b| ∈ Lp(µ,U × (0, T )) with some p > d + 2 is
necessary, that is, p > 3 in the one-dimensional case.

Remark 4.9. In this work we have studied equations with coefficients independent
of t. In our proofs this has played an essential role, and the uniqueness problem in
the case when the coefficients depend on x and t remains open. We only observe
that if a = 1 and the drift coefficient has the form b(x, t) = h(t), then by the change
of the solution ϱ(x, t) for the new function

σ(x, t) = ϱ(x−H(t), t), H(t) =
∫ t

0

h(s) ds,

the problem reduces to the heat equation. Therefore, in this case the probability
solution is unique.
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[17] V. I. Bogachev, M. Röckner and S. V. Shaposhnikov, “Uniqueness problems for
degenerate Fokker-Planck-Kolmogorov equations”, Probl. Mat. Anal., vol. 78,
Tamara Rozhkovskaya Publishing House, Novosibirsk 2015, pp. 31–46; English
transl. in J. Math. Sci. (N.Y.) 207:2 (2015), 147–165.
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