
Sbornik: Mathematics
                   

PAPER

General elephants for threefold extremal
contractions with one-dimensional fibres:
exceptional case
To cite this article: S. Mori and Yu. G. Prokhorov 2021 Sb. Math. 212 351

 

View the article online for updates and enhancements.

You may also like
Polyhomomorphisms of locally compact
groups
Yu. A. Neretin

-

Ramification filtration via deformations
V. A. Abrashkin

-

Singularities on toric fibrations
C. Birkar and Y. Chen

-

This content was downloaded from IP address 3.142.96.146 on 08/05/2024 at 02:28

https://doi.org/10.1070/SM9388
https://iopscience.iop.org/article/10.1070/SM9412
https://iopscience.iop.org/article/10.1070/SM9412
https://iopscience.iop.org/article/10.1070/SM9322
https://iopscience.iop.org/article/10.1070/SM9446


Sbornik : Mathematics 212:3 351–373 Matematicheskĭı Sbornik 212:3 88–111
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General elephants for threefold extremal contractions
with one-dimensional fibres: exceptional case

S. Mori and Yu. G. Prokhorov

Abstract. Let (X, C) be a germ of a threefold X with terminal sin-
gularities along a connected reduced complete curve C with a contrac-
tion f : (X, C) → (Z, o) such that C = f−1(o)red and −KX is f -ample.
Assume that each irreducible component of C contains at most one point
of index > 2. We prove that a general member D ∈ |−KX | is a normal
surface with Du Val singularities.

Bibliography: 16 titles.

Keywords: terminal singularity, extremal curve germ, flip, divisorial con-
traction, Q-conic bundle.

§ 1. Introduction

This paper is a continuation of a series of papers on the classification of extremal
contractions with one-dimensional fibres (see the survey [13] for an introduction).
Recall that an extremal curve germ is the analytic germ (X,C) of a threefold X
with terminal singularities along a reduced connected complete curve C such that
there exists a contraction f : (X,C) → (Z, o) such that C = f−1(o)red and −KX

is f -ample. There are three types of extremal curve germs: flipping, diviso-
rial and Q-conic bundles, and all of them are important building blocks in the
three-dimensional minimal model program.

The first step in the classification is to establish the existence of a ‘good’ mem-
ber of the anticanonical linear system. This is Reid’s so-called ‘general elephant
conjecture’ [15]. In the case of an irreducible central curve C the conjecture has
been proved.

Theorem 1.1 (see [2], Theorem (2.2), and [11]). Let (X,C) be an extremal curve
germ with irreducible central curve C . Then a general member D ∈ |−KX | is
a normal surface with Du Val singularities.

Moreover, all the possibilities for general members of |−KX | have been classified.
Firstly, extremal curve germs with irreducible central curve are divided into two
classes: semistable and exceptional. Such a germ (X,C) is said to be semistable
if the restriction of the corresponding contraction f : (X,C) → (Z, o) to a general
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member D ∈ |−KX | has the Stein factorization fD : D → D′ → f(D), where the
surface D′ has only Du Val singularities of type A [2]. Non-semistable extremal
curve germs are called exceptional . Semistable extremal curve germs are subdivided
into two types: (k1A) and (k2A), while exceptional ones are subdivided into the
following types: cD/2, cAx/2, cE/2, cD/3, (IIA), (II∨), (IE∨), (ID∨), (IC), (IIB),
(kAD) and (k3A) (see [2], [9] and [11]).

The result stated in Theorem 1.1 is very important in three-dimensional geome-
try. For example, the existence of a good member D ∈ |−KX | for flipping contrac-
tions is a sufficient condition for the existence of flips (see [1]) and the existence
of a good member D ∈ |−KX | in the Q-conic bundle case proves Iskovskikh’s
conjecture about singularities of the base (see [14] and [9]).

Reid’s conjecture has also been proved for an arbitrary central curve C in the
case of Q-conic bundles over singular base.

Theorem 1.2 (see [10]). Let (X,C) be a Q-conic bundle germ and let f : (X,C) →
(Z, o) be the corresponding contraction. Assume that (Z, o) is singular. Then a gen-
eral member D ∈ |−KX | is a normal surface with Du Val singularities.

In this paper we study Reid’s conjecture for extremal curve germs with reducible
central curve. Our main result is the following theorem.

Theorem 1.3. Let (X,C) be an extremal curve germ. Assume that (X,C) satisfies
the following condition:

(∗) each irreducible component of C contains at most one point of index > 2.
Then a general member D ∈ |−KX | is a normal surface with Du Val singularities.

Moreover, for each irreducible component Ci ⊂ C with two non-Gorenstein points
or points of type (IC) or (IIB), the dual graph ∆(D,Ci) has the same form as the
irreducible extremal curve germ (X,Ci) (see Theorem 5.1).

Throughout this paper we use the standard notation (IC), (IIB) and so on for
types of extremal curve germs (X,C) with irreducible central fibre [2]. Some-
times, we will use subscripts to specify the indices of singular points. For example,
(kAD2,m) means that the indices of points of (X,C) are 2 and m. Some of the sub-
scripts can be omitted if it is not important to our argument, for instance, (k2A2)
means that (X,C) contains a point of index 2 (and another point of index > 1).

According to the classification of birational extremal curve germs, condition (∗)
in Theorem 1.3 is equivalent to saying that an arbitrary component Ci ⊂ C of type
(k2A) has a point of index 2.

Corollary 1.4. Let (X,C) be an extremal curve germ and let Ci ⊂ C be an irre-
ducible component.

(i) If Ci is of type (IIB), then any other component Cj ⊂ C is of type (IIA)
or (II∨).

(ii) If Ci is of type (IC) or (k3A), then any other component Cj ⊂ C meeting Ci

is of type (k1A) or (k2A).
(iii) If Ci is of type (kAD), then any other component Cj ⊂ C meeting Ci is of

type (k1A), (k2A), cD/2 or cAx/2.
(iv) If Ci is of type (k2A2), then any other component Cj ⊂ C meeting Ci is of

type (k1A), (IC) or (k2An,m), where n,m ⩾ 3.
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There are more restrictions on the combinatorics of the components of C. These
will be treated in a subsequent paper. Examples of extremal curve germs satisfying
the conditions of Theorem 1.3 can be found in the appendix of the arXiv version
of this paper (see arXiv:2002.10693).

Acknowledgements. The paper was written during the second author’s visits to
the Research Institute for Mathematical Sciences in Kyoto University. The authors
are very grateful to the institute for their support and hospitality.

§ 2. Preliminaries

2.1. Recall that a contraction is a proper surjective morphism f : X → Z of normal
varieties such that f∗OX = OZ .

Definition 2.1. Let (X,C) be the analytic germ of a threefold with terminal singu-
larities along a reduced connected complete curve. We say that (X,C) is an extremal
curve germ if there is a contraction f : (X,C) → (Z, o) such that C = f−1(o)red
and −KX is f -ample. Furthermore, f is called flipping if its exceptional locus
coincides with C and divisorial if its exceptional locus is two-dimensional. If f is
not birational, then Z is a surface and (X,C) is said to be a Q-conic bundle germ.

Lemma 2.2. Let (X,C) be an extremal curve germ. Assume that C is reducible.
Then for any proper connected subcurve C ′ ⫋ C the germ (X,C ′) is a birational
extremal curve germ.

Proof. Clearly, there exists a contraction f ′ : X → Z ′ of C ′ over Z (see [6], Corol-
lary (1.5)). We only need show that f ′ is birational. Assume that (X,C ′) is
a Q-conic bundle germ. Then there exists the following commutative diagram

X

f
��

f ′

%%JJJJJJJJJ

Z Z ′
φoo

where f and f ′ are Q-conic bundles contracting C and C ′, respectively. The
image Γ := f ′(C ′′) of the remaining part C ′′ := C − C ′ is a curve on Z ′ such
that φ(Γ) = f(C) is a point, say o ∈ Z. Hence the fibre f ′−1(Γ) = f−1(o) is
two-dimensional, a contradiction. The lemma is proved.

2.2. Recall the basic definitions of ℓ-structure techniques; see [6], § 8, for details.
Let (X,P ) be three-dimensional terminal singularity of index m. Throughout this
paper π : (X♯, P ♯) → (X,P ) denotes its index-one cover. For any object V on X
we denote the pull-back of V on X♯ by V ♯.

Let L be a coherent sheaf on X without submodules of finite length > 0.
An ℓ-structure of L at P is a coherent sheaf L ♯ on X♯ without submodules of
finite length > 0, with µm-action and endowed with an isomorphism (L ♯)µm ≃ L .
An ℓ-basis of L at P is a collection of µm-semi-invariants s♯

1, . . . , s
♯
r ∈ L ♯ generat-

ing L ♯ as an OX♯ -module at P ♯. Let Y be a closed subvariety of X. Note that L
is an OY -module if and only if L ♯ is an OY ♯ -module. We say that L is an ℓ-free
OY -module at P if L ♯ is a free OY ♯-module at P ♯. If L is an ℓ-free OY -module
at P , then an ℓ-basis of L at P is said to be ℓ-free if it is a free OY ♯ -basis.

https://arxiv.org/abs/2002.10693
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Let L and M be OY -modules at P with ℓ-structures L ⊂ L ♯ and M ⊂ M ♯.
Define the following operations ⊕̃ and ⊗̃:

• L ⊕̃M ⊂ (L ⊕M )♯ is an OY -module at P with ℓ-structure

(L ⊕̃M )♯ = L ♯ ⊕M ♯;

• L ⊗̃M ⊂ (L ⊗M )♯ is an OY -module at P with ℓ-structure

(L ⊗̃M )♯ = (L ♯ ⊗O
X♯

M ♯)/ SatL ♯⊗M ♯(0),

where SatF1 F2 is the saturation of F2 in F1.
These operations satisfy the standard properties (see [6], (8.8.4)). If X is an

analytic threefold with terminal singularities and Y is a closed subscheme of X,
then the above local definitions of ⊕̃ and ⊗̃ match the corresponding operations
on X \ SingX. Therefore, they give well-defined operations of global OY -modules.

Lemma 2.3. Let (D,C) be the germ of a normal Gorenstein surface along a proper
reduced connected curve C =

⋃
Ci , where Ci are irreducible components. Assume

that the following conditions hold:
(i) KD ∼ 0;
(ii) there is a birational contraction φ : (D,C) → (R, o) such that φ−1(o)red = C ;
(iii) there is a point P ∈ D which is not Du Val of type A.
Then D has only Du Val singularities on C \ {P}.

Proof. Assume that there is a point Q ∈ D \ {P} which is not Du Val. If there
exists a component Ci ⊂ C passing through Q but not passing through P , we can
contract it: D → D′ over R. The contraction is crepant, so the image of Q is again
a non-Du Val point. Replace D with D′. Continuing the process we can assume
that P and Q are connected by some component Ci ⊂ C. Moreover, by shrinking C
we may assume that Ci = C, that is, C is irreducible. Since D is Gorenstein, the
point Q ∈ D is not log terminal and the point P ∈ D is log terminal only if it is
Du Val of type D or E. Hence the pair (D,C) is not log canonical at Q and not
purely log terminal at P (see [3], Theorem 4.15). Let H be a general hyperplane
section passing through P . For some 0 < ε and δ ≪ 1 the pair (D, (1− ε)C + δH)
is not log canonical at P and Q. Since −(KD + (1 − ε)C + δH) is φ-ample, this
contradicts Shokurov’s connectedness lemma [16]. The lemma is proved.

§ 3. Low index cases

Extremal curve germs of index 2 with arbitrary central curve were completely
classified in [2], § 4, and [9], § 12. As an easy consequence, we have the following.

Proposition 3.1. Let (X,C) be an extremal curve germ. Assume that all the
singularities of X are of index 1 or 2, that is, 2KX is Cartier. Then a general
member D ∈ |−KX | is a normal surface with Du Val singularities and D does not
contain any component of C .

Proof. Since the case whereX is Gorenstein is trivial, we assume thatX has at least
one point, say P , of index 2. In the birational case there are no other non-Gorenstein
points and all the components Ci ⊂ C pass through P (see [2], Proposition (4.6)).
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By Theorem (2.2) in [2] a general local member D ∈ |−K(X,P )| is in fact a general
member of |−KX | and this D has only a Du Val singularity (at P ) (see [15], (6.3)).
For the Q-conic bundle case we refer to the proof of Theorem (12.1) in [9], and [10],
Corollary (1.4). The proposition is proved.

Proposition 3.2. Let (X,C) be an extremal curve germ. Assume that C
is reducible and (X,C) contains a point P of one of the types cD/2, cAx/2, cE/2
or cD/3. Then one of the following holds.

(i) P is the only non-Gorenstein point of X , all the components pass through P
and do not meet each other elsewhere, and a general member D ∈ |−KX | is a normal
surface with Du Val singularities. Moreover, D ∩ C = {P}.

(ii) There is a component Ci ⊂ C passing through P such that the germ (X,Ci) is
divisorial of type (kAD). Moreover, (X,P ) is a singularity of type cD/2 or cAx/2.

Proof. Recall that the intersection points Ci∩Cj of different components Ci, Cj ⊂ C
are non-Gorenstein by [6], Corollary (1.15), [4], Proposition 4.2, and also by [9],
Lemma (4.4.2). If P is the only non-Gorenstein point of X, then a general member
D ∈ |−K(X,P )| is in fact a general member of |−KX | (see [6], (0.4.14)). This D has
only a Du Val singularity (at P ) (see [15], (6.3)). If there exists a non-Gorenstein
point Q ∈ X other than P , then we may assume that Q lies on some component
Ci ⊂ C passing through P . Thus (X,Ci) is a birational extremal curve germ
with two non-Gorenstein points (see Lemma 2.2). According to Theorem 2.2 in [2]
and [8] the germ (X,Ci) is divisorial of type (kAD) and (X,P ) is a singularity of
type cD/2 or cAx/2. This proves the proposition.

§ 4. Extension techniques

Theorem 4.1 (see [6], Theorem (7.3), and [9], Proposition (1.3.7)). Let (X,C≃P1)
be an irreducible extremal curve germ satisfying condition (∗) in Theorem 1.3. Then
any general member S ∈ |−2KX | satisfies S ∩ C = {P}, where P is the point of
index r > 2 or a smooth point (if (X,C) is of index 2). Moreover, the pair (X, 1

2S)
is log terminal.

Proposition 4.2 (see [2], Lemma (2.5), and [11], Proposition 2.1). Let (X,C) be
an extremal curve germ (C is not necessarily irreducible) and let S ∈ |−2KX |
be a general member. Assume that the set Σ := S ∩ C is finite.

(i) If (X,C) is birational, then the natural map

τ : H0(X,OX(−KX)) → ω(S,Σ) = H0(S,OS(−KX)) (4.1)

is surjective, where ω(S,Σ) is the dualizing sheaf of (S,Σ).
(ii) If (X,C) is a Q-conic bundle germ over a smooth base surface, then the

natural map
τ : H0(X,OX(−KX)) → ω(S,Σ)/Ω2

(S,Σ) (4.2)

is surjective, where Ω2
(S,Σ) is the sheaf of holomorphic 2-forms on (S,Σ).

(iii) If (X,C) is a Q-conic bundle germ over a base surface and Σ = Σ1 ⨿ Σ2 ,
Σi ̸= ∅, then

τ1 : H0(X,OX(−KX)) → ω(S,Σ1) (4.3)

is surjective.
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Proof. For the proof of (i) we refer to [2], Lemma (2.5).
We now prove (ii). Note that by adjunction OS(KS) = OS(−KX). Let f :

(X,C) → (Z, o) be the corresponding Q-conic bundle contraction and let g =
f |S : S → Z be its restriction to S. Since the base surface Z is smooth, by
Lemma (4.1) in [9] there is a canonical isomorphism

R1f∗ωX ≃ ωZ .

Now we apply Proposition 2.1 from [11] to our situation:

H0(X,OX(−KX)) // H0(S,OS(−KX))

≃
��

f∗ωX(S) //

)) ))TTTTTTTTTTTTTT
ω(S,Σ)

��
ω(S,Σ)/g

∗ω(Z,o)
// // ω(S,Σ)/Ω2

(S,Σ)

and obtain the surjectivity of τ .
To prove (iii) we consider the map gi : Si → Z which is the restriction of g to

Si = (S,Σi) ⊂ S and the induced exact sequence

f∗ωX(S) // ω(S,Σ1) ⊕ ω(S,Σ2)
// ωZ //

g∗2

ff 0

Then we see that g∗2 : ωZ → 0 ⊕ ω(S,Σ2) is a splitting homomorphism. Therefore,
the homomorphism

f∗ωX(S) → ω(S,Σ1) ⊕ (ω(S,Σ2)/g
∗
2ω(Z,0))

is surjective. The proposition is proved.

Lemma 4.3. Let (X,C) be an extremal curve germ with reducible central curve C .
Suppose X satisfy condition (∗) in Theorem 1.3 and that there is a component
C ⊂ C of type (k1A) which meets C − C at a point P of index 2. Then a general
member D ∈ |−KX | does not contain C .

Proof. On each irreducible component Ci of C there exists at most one point of
index > 2. Let {Pa}a∈A be the collection of such points. For each Ci without
points of index > 2, choose one general point of Ci. Let {Pb}b∈B be the col-
lection of such points. For each i ∈ A ∪ B, let Si ∈ |−2K(X,Pi)| be a general
element on the germ (X,Pi), and set S =

∑
i∈A∪B Si. Then S extends to an ele-

ment |−2KX | by [6], Theorem (7.3). A generator σb of OS,b(−KX) ≃ OS,b lifts
to s ∈ H0(X,OX(−KX)) by Proposition 4.2, (i) if (X,C) is birational and since
A ̸= ∅, and by Proposition 4.2, (ii) otherwise. In either case we have C ̸⊂ D. The
lemma is proved.

§ 5. A review of [2], § 2

We need some refinements of some facts on birational extremal curve germs with
irreducible central fibre, proved in [2], § 2.
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5.1. Below, for a normal surface D and a curve C ⊂ D, we use the usual notation
for graphs ∆(D,C) of the minimal resolution of D near C: each vertex labelled •
corresponds to an irreducible component of C and each labelled ◦ corresponds to
a component Ei ⊂ E of the exceptional divisor E on the minimal resolution of D.
Note that, in our situation, below E2

i = −2 for all Ei.

Theorem 5.1 (see [2], Theorem (2.2), and [8]). Let (X,C ≃ P1) be a birational
extremal curve germ and let D ∈ |−KX | be a general member. Then D is a normal
surface with Du Val singularities. Moreover, either D ∩C is a point or D ⊃ C and
one and only one of the following possibilities holds for the graph ∆(D,C):

(IC)
k=1

◦ − · · · − ◦︸ ︷︷ ︸
m−3⩾2

◦ ◦

•

(IIB)
k=3, m=4

◦ ◦ ◦ ◦ •
◦

(kAD)
k=1, n=2

◦
◦ − · · · − ◦︸ ︷︷ ︸

m−1⩾2

• ◦ − · · · − ◦︸ ︷︷ ︸
2l−2⩾0

◦
rrrr

LLLL

◦

(k3A)
k=1, n=2

◦
◦ − · · · − ◦︸ ︷︷ ︸

m−1⩾2

•
rrrr

LLLL

◦

(k2A) ◦ − · · · − ◦︸ ︷︷ ︸
km−1

• ◦ − · · · − ◦︸ ︷︷ ︸
ln−1

where m and k are the index and axial multiplicity (see Definition-Corollary
(1a.5), (iii) in [6]) of a singular point of X , and n and l are those for the other
non-Gorenstein point (if any).

In the cases (IC), (IIB), (kAD), (k3A) and (k2A2), Theorem 5.1 is a consequence
of the following.

Theorem 5.2 (cf. [2], § 2, and [8]). Let (X,C) be a birational extremal curve germ
with irreducible central curve of type (IC), (IIB), (kAD), (k3A) or (k2A2). Let
S ∈ |−2KX | be a general member (so that S ∩ C = {P}, where P is the point of
index r > 2). Let σS ∈ H0(S,OS(−KX)) be a general section. Then for any section
σ ∈ H0(X,OX(−KX)) such that

σ|S ≡ σS modΩ2
S (5.1)

(see (4.2)) the divisor D := div(σ) is a normal surface with only Du Val singulari-
ties. Furthermore, the configuration of ∆(D,C) is as described in Theorem 5.1.

Below we outline the proof of Theorem 5.2 following [2], § 2. We treat the
possibilities (IC), (IIB), (k3A), (kAD) and (k2A2) case by case.
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5.2. Case (IC). By [6], (A.3), we have the following identification at P :

(X,C) = (C3
y1,y2,y4

, {ym−2
1 − y2

2 = y4 = 0})/µm(2,m− 2, 1).

A general divisor S ∈ |−2KX | is given by y1 = ξ(y2, y4), where ξ ∈ (y2, y4)2 is such
that wt(ξ) ≡ 2 modm. Thus we have

S ≃ C2
y2,y4

/µm(m− 2, 1), ωS = (OS♯,P ♯ dy2 ∧ dy4)µm , (5.2)

ωS ⊗ CP = C · y(m−1)/2
2 dy2 ∧ dy4 ⊕ C · y4 dy2 ∧ dy4. (5.3)

Furthermore,

gr0C ω∗ = (P ♯) =
(
−1 +

m+ 1
2

· 2P ♯

)
≃ OC(−1), (5.4)

where
Ω−1 := (dy1 ∧ dy2 ∧ dy4)−1

is an ℓ-free ℓ-basis at P . Hence H0(C, gr0C ω∗) = 0 and

H0(X,OX(−KX)) = H0(X,IC ⊗̃ OX(−KX)), (5.5)

where IC is the defining ideal of C in X. Furthermore, by [2], (2.10.4),

gr1C ω∗ = (5P ♯) ⊕̃ (0), (5.6)

where the µm-semi-invariants

(ym−2
1 − y2

2) · Ω−1 and y4 · Ω−1 (5.7)

form an ℓ-free ℓ-basis at P . Therefore,

gr1C ω∗ ≃


OC(−1)⊕ OC if m ⩾ 9,
OC ⊕ OC if m = 7,
OC(1)⊕ OC if m = 5.

We have natural homomorphisms

δ : H0(X,OX(−KX)) → gr1C ω∗ → (gr1C ω∗)♯ ⊗ CP ♯ .

Since (y1 − ξ) · (gr1C ω∗)♯ ⊗ CP ♯ = 0, the map δ factors as

δ : H0(X,OX(−KX)) → ωS → (gr1C ω∗)♯ ⊗ CP ♯ .

As in [11], (3.1.1), we see that

Ω2
S ⊂ (mS,P · y4 + mS,P · y(m−1)/2

2 ) dy2 ∧ dy4 = mS,P · ωS ,

because for arbitrary elements ϕ1 and ϕ2 of the set of generators

{ym
2 , y

m
4 , y2y

2
4 , y

(m−1)/2
2 y4}
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of the ring O
µm

S♯ we have

dϕ1 ∧ dϕ2 ∈
(
(y2, y4)y4 + (y2, y4)y

(m−1)/2
2

)
dy2 ∧ dy4.

Thus δ factors further as follows:

δ : H0(OX(−KX)) ↠ ωS/Ω2
S ↠ ωS ⊗ CP → (gr1C ω∗)♯ ⊗ CP ♯ ,

where the last map is a surjection if m = 5 and the image is generated by y4Ω−1 if
m ⩾ 7 (see (5.3) and (5.7)). If m ⩾ 7, this implies that the coefficient of y4Ω−1 in
σS is nonzero. If m = 5, then the coefficients of y4Ω−1 and (ym−2

1 − y2
2)Ω−1 in σS

are independent and the image σ of σ in gr1C ω∗ is not contained in OC(1). Hence
σ is nowhere vanishing and so the singular locus of D does not meet C \{P}. Then
we can again take σS so that it contains the term y4Ω−1. Therefore, D ∈ |−KX |
can be given by the equation y4 + · · · = 0. Then Computation 2.10.5 in [2] shows
that D is Du Val at P and its graph is as given for type (IC) in Theorem 5.1.

5.3. Case (IIB). Then by [6], (A.3), the germ (X,C) at P can be given as follows

(X,C) =
(
{ϕ = 0} ⊂ C4

y1,...,y4
, {y2

1 − y3
2 = y3 = y4 = 0}

)
/µ4(3, 2, 1, 1),

ϕ = y2
1 − y3

2 + ψ, wt(ψ) ≡ 2 mod 4, ψ(0, 0, y3, y4) /∈ (y3, y4)3.

A general divisor S ∈ |−2KX | is given by y2 = ξ(y1, y3, y4) with ξ ∈ (y1, y3, y4)2

such that wt(ξ) ≡ 2 mod 4. Thus S is the quotient by µ4(3, 1, 1) of the hypersurface
ϕ(y1, ξ, y3, y4) = 0 in C3

y1,y3,y4
. We have

ωS =
(

OS♯,P ♯

dy3 ∧ dy4
y1 + · · ·

)µ4

,

ωS ⊗ CP = C · y3
dy3 ∧ dy4
y1 + · · ·

⊕ C · y4
dy3 ∧ dy4
y1 + · · ·

. (5.8)

Furthermore,

gr0C ω∗ = (P ♯) = (−1 + 3P ♯ + 2P ♯) ≃ OC(−1), (5.9)

where

Ω−1 :=
(

dy2 ∧ dy3 ∧ dy4
∂ϕ/∂y1

)−1

is an ℓ-free ℓ-basis at P . Hence H0(C, gr0C ω∗) = 0 and

H0(X,OX(−KX)) = H0(X,IC ⊗̃ OX(−KX)), (5.10)

where IC is the defining ideal of C in X. Furthermore, by [2], (2.11),

gr1C ω∗ = (0) ⊕̃ (1) ≃ OC ⊕ OC(1), (5.11)

where the µm-invariants
y3 · Ω−1, y4 · Ω−1 (5.12)
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form an ℓ-free ℓ-basis at P . As in case (IC), we have natural homomorphisms

δ : H0(OX(−KX)) ↠ ωS ⊗ CP → (gr1C ω∗)♯ ⊗ CP ♯ ,

where the last homomorphism is an isomorphism (see (5.8) and (5.12)). Thus the
coefficients of y3Ω−1 and y4Ω−1 in σS are independent, and so Computation 2.11.2
in [2] shows that D is Du Val at P , and the image σ of σ in gr1C ω∗ is not con-
tained in OC(1). Hence σ is nowhere vanishing and D is smooth outside P . Hence
the graph ∆(D,C) is as given for type (IIB) in Theorem 5.1.

5.4. Case (k3A). The configuration of singular points on (X,C) is the follow-
ing: a type (IA) point P of odd index m ⩾ 3, a type (IA) point Q of index 2 and
a type (III) point R. According to [6], (A.3), and [2], (2.12), the local structure of
the points is given by

(X,C, P ) = (C3
y1,y2,y3

, (y1-axis), 0)/µm

(
1,
m+ 1

2
,−1

)
,

(X,C,Q) = (C3
z1,z2,z3

, (z1-axis), 0)/µ2(1, 1, 1),

(X,C,R) =
(
{γ(w1, w2, w3, w4) = 0}, (w1-axis), 0

)
,

where γ ≡ w1w3 mod(w2, w3, w4)2.
For a general divisor S ∈ |−2KX | we have S ∩ C = {P} and S is given by

y1 = ξ(y2, y3), where ξ ∈ (y2, y3)2 is such that wt(ξ) ≡ 1 modm. Thus,

S ≃ C2
y2,y3

/µm

(
m+ 1

2
,−1

)
, ωS = (OS♯,P ♯ dy2 ∧ dy3)µm , (5.13)

ωS ⊗ CP = C · y2 dy2 ∧ dy3 ⊕ C · y(m−1)/2
3 dy2 ∧ dy3. (5.14)

By the proof of Lemma (2.12.2) in [2] we have

gr0C ω∗ =
(
−1 +

m+ 1
2

P ♯ +Q♯

)
≃ OC(−1), (5.15)

where an ℓ-free ℓ-basis at P , Q and R, respectively, can be written as follows:

Ω−1
P := (dy1 ∧ dy2 ∧ dy3)−1, Ω−1

Q := (dz1 ∧ dz2 ∧ dz3)−1,

Ω−1
R :=

(
dw2 ∧ dw3 ∧ dw4

∂γ/∂w1

)−1

.

Hence H0(C, gr0C ω∗) = 0 and

H0(X,OX(−KX)) = H0(X,IC ⊗̃ OX(−KX)), (5.16)

where IC is the defining ideal of C in X. Furthermore, as in [2], (2.12.4), we can
further arrange that

gr1C ω∗ = (0) ⊕̃
(
−1 +

m+ 3
2

P ♯

)
, (5.17)
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where y2 · Ω−1
P , z2 · Ω−1

Q and w2 · Ω−1
R form ℓ-free ℓ-bases for (0) at P , Q and R,

respectively, and y3 ·Ω−1
P , z3 ·Ω−1

Q , w4 ·Ω−1
R form such a basis for (−1+(m+3)/2P ♯).

Moreover,

γ ≡ w1w3 + c1w
2
4 + c2w4w2 + c3w

2
2 mod(w3, w

2
2, w2w4, w

2
4) ·IC

for some c1, c2, c3 ∈ C such that c1 ̸= 0 if m ⩾ 5 (see [2], (2.12.6), and [8], Remark 2)
and (c1, c2, c3) ̸= 0 if m = 3 (see [2], (2.12.7), and [8], Remark 2).

As in [11], (3.1.1), we see that

Ω2
S ⊂ (mS,P · y2 + mS,P · y(m−1)/2

3 ) dy2 ∧ dy3 = mS,P · ωS ,

because for arbitrary elements ϕ1 and ϕ2 of the set of generators

{ym
2 , y

m
3 , y

2
2y3, y2y

(m+1)/2
3 }

of the ring O
µm

S♯ we have

dϕ1 ∧ dϕ2 ∈
(
(y2, y3)y2 + (y2, y3)y

(m−1)/2
3

)
dy2 ∧ dy3.

Thus the image of the homomorphism

δ : H0(OX(−KX)) ↠ ωS ⊗ CP → (gr1C ω∗)♯ ⊗ CP ♯ ,

is equal to (gr1C ω∗)♯ ⊗ CP ♯ if m = 3, and C · y2Ω−1
P if m ⩾ 5.

Ifm ⩾ 5, this implies that the coefficient of y2Ω−1
P in the image σ of σ in gr1C ω∗ is

nonzero and hence nowhere vanishing. If m = 3, then the coefficients of y2Ω−1
P and

y3Ω−1
P are independent and hence σ is a general global section of gr1C ω∗ ≃ OC⊕OC .

Then the proof of Lemma (2.12.5) in [2] shows that D is Du Val and that its graph
is as given in type (k3A) in Theorem 5.1.

Lemma 5.3. In the notation of § 5.4 there exists a deformation (Xλ, Cλ ≃ P1)
of (X,C) which is trivial outside R such that for λ ̸= 0 the germ (Xλ, Cλ) has
a cyclic quotient singularity at Q, and is of type (kAD), case (5.22), if m ⩾ 5 and
type (k2A2), case (5.22), if m = 3.

Proof. Let (Xλ, Cλ) be the twisted extension [6], (1b.8.1), of the germ

(Xλ, R) = {γ − λw2 = 0} ⊃ (Cλ, R) = (w1-axis)

by u = (w2, w4). Then in gr1Cλ
O we have w1w3 = λw2 for λ ̸= 0. Since gr1C ω∗ =

OC · w2Ω−1
R ⊕ OC · w4Ω−1

R at R, we have

gr1Cλ
ω∗ = OCλ

· w3Ω−1
R ⊕ OCλ

· w4Ω−1
R

at R, where w3Ω−1
R = (λw1)−1w2Ω−1

R . Thus

gr1Cλ
ω∗ = (R) ⊕̃

(
−1 +

m+ 3
2

P ♯

)
. (5.18)

For λ ̸= 0 the germ (Xλ, Cλ) is either of type (kAD) or (k2A2). Comparing (5.18)
with (5.31) in the first case, and in view of § 5.7 in the second, we see that (Xλ, Cλ)
is (kAD) if m ⩾ 5, and (k2A2) if m = 3. The lemma is proved.
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5.5. Case (kAD). The configuration of singular points on (X,C) is the following:
a type (IA) point P of odd index m ⩾ 3 and a type (IA) point Q of index 2.
According to [6], (A.3), [2], (2.13), and [8] we can write

(X,C, P ) = (C3
y1,y2,y3

, (y1-axis), 0)/µm

(
1,
m+ 1

2
,−1

)
,

(X,C,Q) =
(
{β = 0} ⊂ C4

z1,...,z4
, (z1-axis), 0

)
/µ2(1, 1, 1, 0),

where β = β(z1, . . . , z4) is a semi-invariant with wt(β) ≡ 0 mod 2.
For a general divisor S ∈ |−2KX | we have S ∩ C = {P} and S is given by

y1 = ξ(y2, y3) with ξ ∈ (y2, y3)2 such that wt(ξ) ≡ 1 modm. Thus

S ≃ C2
y2,y3

/µm

(
m+ 1

2
,−1

)
, ωS = (OS♯,P ♯ dy2 ∧ dy3)µm ,

ωS ⊗ CP = C · y2 dy2 ∧ dy3 ⊕ C · y(m−1)/2
3 dy2 ∧ dy3. (5.19)

Then
gr0C ω∗ =

(
−1 +

m+ 1
2

P ♯ +Q♯

)
≃ OC(−1), (5.20)

where an ℓ-free ℓ-basis at P and Q, respectively, can be written as follows:

Ω−1
P = (dy1 ∧ dy2 ∧ dy3)−1 and Ω−1

Q =
(

dz1 ∧ dz2 ∧ dz3
∂β/∂z4

)−1

.

Hence H0(C, gr0C ω∗) = 0 and

H0(X,OX(−KX)) = H0(X,IC ⊗̃ OX(−KX)), (5.21)

where IC is the defining ideal of C in X.
As in [2], Lemma (2.13.3), we distinguish two subcases:

ℓ(Q) ⩽ 1, iQ(1) = 1, gr1C O ≃ O ⊕ O(−1); (5.22)

ℓ(Q) = 2, iQ(1) = 2, gr1C O ≃ O(−1)⊕ O(−1). (5.23)

5.6. Subcase (5.23). This is treated similarly to § 5.4. Since ℓ(Q) = 2, we have

β ≡ z2
1z4 mod(z2, z3, z4)2.

As in [2], Lemma (2.13.4), we can arrange that

gr1C ω∗ = (0) ⊕̃
(
−1 +

m+ 3
2

P ♯

)
, (5.24)

where
(y2 · Ω−1

P , z2 · Ω−1
Q ) and (y3 · Ω−1

P , z3 · Ω−1
Q ) (5.25)

form an ℓ-free ℓ-basis at P and Q for (0) and (−1+(m+3)/2P ♯), respectively, and

β ≡ z2
1z4 + c1z

2
3 + c2z2z3 + c3z

2
2 mod(z4, z2

3 , z2z3, z
2
2)(z2, z3, z4)
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for some c1, c2, c3 ∈ C such that (c1, c2, c3) ̸= 0 if m = 3 by the classification
of 3-fold terminal singularities (see [15], Theorem (6.1)), and c1 ̸= 0 if m ⩾ 5
(see [2], Lemma (2.12.6), and [8], Remark 2). The rest of the argument is the same
as § 5.4 (for type (k3A)), except that we use [2], Lemma (2.13.5), instead of [2],
Lemma (2.12.6).

Remark 5.4. We note that the lowest power of the µ2-invariant variable z4 that
appears in β (that is, the axial multiplicity for (X,P )) remains the same for the
defining equation of D♯ under the elimination of variable of wt ≡ 1 mod 2. Thus
the graph ∆(D,C) is as given for type (kAD) in Theorem 5.1.

Lemma 5.5. In the situation of § 5.5 with (5.23), let (Xλ, Cλ) be the twisted exten-
sion of the germ

(Xλ, Q) = {β − λz4 = 0}/µ2 ⊃ (Cλ, Q) = (z1-axis)/µ2

by u = (z1z2, z1z3) (see [6], Definition (1b.8.1)). Then for λ ̸= 0 the germ (Xλ, Cλ)
is of type (k3A).

Proof. When 0 < |λ| ≪ 1, a small neighbourhood Xλ ∋ Q has two singular points
on Cλ: a cyclic quotient at Q and a Gorenstein point at (

√
λ, 0, 0, 0). The lemma

is proved.

5.7. Subcase (5.22). Note that in this case m ⩾ 5 (see [2], Lemma (2.13.10),
and [8]). Since ℓ(Q) ⩽ 1, we have

β ≡ z4 mod(z2
2 , z3, z4)(z2, z3, z4)(

β ≡ (z1z3 + z2
2) mod(z2

2 , z3, z4)(z2, z3, z4), respectively
)
.

By [2], Lemma (2.13.10), we have

gr1C O =
(
m− 1

2
P ♯ +Q♯

)
⊕̃ (−1 + P ♯ +Q♯)(

gr1C O =
(
m− 1

2
P ♯

)
⊕̃ (−1 + P ♯ +Q♯), respectively

)
.

(5.26)

Tensoring these with (5.20) we obtain

gr1C ω∗ = (1) ⊕̃
(
−1 +

m+ 3
2

P ♯

)
(

gr1C ω∗ = (Q♯) ⊕̃
(
−1 +

m+ 3
2

P ♯

)
, respectively

)
,

(5.27)

where (y2Ω−1
P , z3Ω−1

Q ) ((y2Ω−1
P , z4Ω−1

Q ), respectively) is the ℓ-free ℓ-basis for the first
ℓ-summand of gr1C ω∗ and (y3Ω−1

P , z2Ω−1
Q ) for the second. Take the ideal J ⊂ I

as in [2], Lemmas (2.13.10) and (2.13.11). Thus

(I /J ) ⊗̃ ω∗ =
(
−1 +

m+ 3
2

P ♯

)
, H0(X,OX(−KX)) = H0(F2(ω∗,J )),

J ♯ = (y2
3 , y2) at P and J ♯ = (z2

2 , z3, z4) at Q.
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Then by Lemma (2.13.11) in [2] we have

gr2(ω∗,J ) = (0) ⊕̃
(
−1 +

m+ 5
2

P ♯ +Q♯

)
,

where

y2 · Ω−1
P , y2

3 · Ω−1
P , z3 · Ω−1

Q , z2
2 · Ω−1

Q (z4 · Ω−1
Q , respectively) (5.28)

form an ℓ-free ℓ-basis at P and Q. Thus we investigate

H0(OX(−KX)) = H0(F 2(ω∗,J )) → gr2C(ω∗,J )

via the induced homomorphism

H0(OX(−KX)) → gr2(ω∗,J ) → (gr2(ω∗,J ))♯ ⊗ CP ♯ ,

which, since (y1 − ξ) · (gr2(ω∗,J ))♯ ⊗ CP ♯ = 0, factors as

H0(OX(−KX)) → ωS → (gr2(ω∗,J ))♯ ⊗ CP ♯ ,

and further to

δ : H0(OX(−KX)) ↠ ωS ⊗ CP → (gr2(ω∗,J ))♯ ⊗ CP ♯ ,

since Ω2
X ⊂ mS,P · ωS as in the (k3A) case.

The image of δ is generated by y2 · Ω−1
P if m > 5, and by y2 · Ω−1

P and y2
3 · Ω−1

P

if m = 5 (see (5.19) and (5.28)). Hence if σS is chosen to be general, the image
σ of σ in gr2(ω∗,J ) globally generates the direct summand OC if m > 5 and
a general global section of gr2(ω∗,J ) ≃ OC ⊕ OC if m = 5. Hence

σ ≡

{
(λP y2 + µP y

2
3)Ω−1

P at P ,
(λQz3 + µQz

2
2)Ω−1

Q ((λQz3 + µQz4)Ω−1
Q , respectively) at Q,

where

m ⩾ 7 =⇒ λP (P )λQ(Q) ̸= 0,
m = 5 =⇒ λP (P ) and µP (P ) are independent,

and λQ(Q) and µQ(Q) are independent.

These mean that the corresponding D ∈ |−KX | is smooth outside P and Q and D
is Du Val at P and Q by Computation (2.13.6) in [2]. See Remark 5.4 for further
details.

Lemma 5.6. In the situation of § 5.5 with (5.22), let (Xλ, Cλ) be the twisted exten-
sion (see [6], Definition (1b.8.1)) of the germ (Xλ, P ) = (X,P ) ⊃ (Cλ, P ) = (C,P )
by u = (y(m−1)/2

1 y2 + λy1y3, y1, y3). Then for λ ̸= 0 the germ (Xλ, Cλ) is of
type (k2A2).
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Proof. It is clear that (Xλ, Cλ) is of type (k2A2) or (kAD), subcase (5.22), because
ℓ(Q) ⩽ 1. In either case, there is only one nonzero section s (up to constant
multiplication) of gr1C O (cf. (5.31)). Since s = y

(m−1)/2
1 y2 ∈ gr1C O at P (up to

a constant), we have an extension

sλ = y
(m−1)/2
1 y2 + λy1y3 = y1(y

(m−3)/2
1 y2 + λy3) ∈ gr1Cλ

O

on (Cλ, P ), which generates (P ♯) ⊂ gr1Cλ
O. In view of (5.26) the germ (Xλ, Cλ) is

of type (k2A2) by § 5.7. The lemma is proved.

Lemma 5.7. In the situation of § 5.5 with (5.22) and ℓ(Q) = 1, let (Xλ, Cλ) be
the twisted extension (see [6], Definition (1b.8.1)) of the germ

(Xλ, Q) = {β − λz4 = 0}/µ2 ⊃ (Cλ, Q) = (z1-axis)/µ2

by u = (z1z2, z4). Then for λ ̸= 0 the germ (Xλ, Cλ) is of type (kAD) and ℓ(Q) = 0.

In fact, a global section s of gr1C O extends to the section sλ = y4 of gr1Cλ
O

at Q, and sλ vanishes at P ♯ to order (m − 1)/2 > 1 by § 5.7. Thus (Xλ, Cλ) is of
type (kAD).

5.8. Case (k2A2). This case comes from Lemmas (2.13.1) and (2.13.9) in [2].
The configuration of singular points on (X,C) is the following: a type (IA) point P
of odd index m ⩾ 3 and a type (IA) point Q of index 2. According to [6], (A.3),
[2], (2.13), and [8] we can write

(X,C, P ) =
(
{α = 0} ⊂ C4

y1,...,y4
, (y1-axis), 0

)
/µm(1, a,−1, 0),

(X,C,Q) =
(
{β = 0} ⊂ C4

z1,...,z4
, (z1-axis), 0

)
/µ2(1, 1, 1, 0),

where a is an integer prime tom such thatm/2 < a < m, and α and β are invariants
with

α = y1y3 − α1(y2, y3, y4), α1 ∈ (y2, y3)2 + (y4),

β = z1z3 − β1(z2, z3, z4), β1 ∈ (z2, z3)2 + (z4).

Then
gr0C ω∗ = (−1 + aP ♯ +Q♯) ≃ OC(−1), (5.29)

where an ℓ-free ℓ-basis at P and Q, respectively, can be written as follows:

Ω−1
P =

(
dy1 ∧ dy2 ∧ dy3

∂α/∂y4

)−1

and Ω−1
Q =

(
dz1 ∧ dz2 ∧ dz3

∂β/∂z4

)−1

.

Hence H0(C, gr0C ω∗) = 0 and

H0(X,OX(−KX)) = H0(X,IC ⊗̃ OX(−KX)), (5.30)

where IC is the defining ideal of C in X.
As in the argument in [2], Theorem (2.13.8) and Lemma (2.13.9), we have

gr1C O = L ⊕̃ gr0C ω and gr1C ω∗ = L ⊗̃ (gr0C ω∗) ⊕̃ (0), (5.31)
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where L is an ℓ-invertible sheaf such that L = (P ♯ +Q♯) ((P ♯), (Q♯), (0)) if y4 ∈ α
and z4 ∈ β (y4 ∈ α and z4 /∈ β, y4 /∈ α and z4 ∈ β, y4 /∈ α and z4 /∈ β, respectively).
We also see that y3Ω−1

P (y4Ω−1
P ) and y2Ω−1

P form an ℓ-free ℓ-basis for gr1C ω∗ at P
if y4 ∈ α (y4 /∈ α, respectively).

For a general divisor S ∈ |−2KX | we have S ∩ C = {P} and S in X is given by

γ := y2a−m
1 + y2

2 + y2m−2a
3 + · · · = 0, (5.32)

with wt(γ) ≡ 2a modm. Let Ω be a generator of the dualizing sheaf ωS♯ of S♯

at P ♯. Then
ωS = (OS♯,P ♯Ω)µm , wt(Ω) ≡ −a modm (5.33)

and
ωS ⊗ CP = C · y2Ω⊕ C · ym−a

3 Ω. (5.34)

Lemma 5.8. The induced map

Ω2
S → ωS ⊗ CP (5.35)

is zero, where Ω2
S is the sheaf of holomorphic 2-forms on S .

Proof. We have

Ω = ±dy1 ∧ dy2
∆3,4

= · · · = ±dy3 ∧ dy4
∆1,2

, where ∆i,j :=

∣∣∣∣∣∣∣∣
∂α

∂yi

∂α

∂yj

∂γ

∂yi

∂γ

∂yj

∣∣∣∣∣∣∣∣ . (5.36)

Note that wt(∆i,j) ≡ 2a − wt(yi) − wt(yj) and wt(Ω) ≡ −a modm. Since
ωS = (OS♯Ω)µm , it is sufficient to show that for any ϕ1, ϕ2 ∈ C{y1, . . . , y4}µm

the inclusion
dϕ1 ∧ dϕ2 ∈ mS,0 · (OS♯Ω)µm (5.37)

holds. By (5.36) the form dϕ1 ∧ dϕ2 is a linear combination of the following:

∂(ϕ1, ϕ2)
∂yi ∂yj

dyi ∧ dyj =
∂(ϕ1, ϕ2)
∂yi ∂yj

∆k,lΩ, {i, j, k, l} = {1, . . . , 4}.

Set
Ξ[i, j, k, l] :=

∂ϕ1

∂yi
· ∂ϕ2

∂yj
· ∂α
∂yk

· ∂γ
∂yl

, {i, j, k, l} = {1, . . . , 4}.

Since ∂(ϕ1, ϕ2)/(∂yi ∂yj)∆k,l are linear combinations of Ξ[i, j, k, l], it is sufficient
to show that the following holds:

Ξ[i, j, k, l]
∣∣
S♯ ∈ (mS♯)wt=0 · (OS♯)wt=a. (5.38)

First we note that (5.38) holds if {1, 3} ⊂ {i, j, k}. Suppose, for example, that i = 1
and j = 3. Then

∂ϕ1

∂y1
,
∂ϕ2

∂y3
∈ mS♯ , wt

(
∂ϕ1

∂y1
· ∂ϕ2

∂y3

)
≡ 0 and wt

(
∂α

∂yk
· ∂γ
∂yl

)
≡ a
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(because {wt(yk),wt(yl)} = {0, a}). Thus,

∂ϕ1

∂y1
· ∂ϕ2

∂y3
∈ (mS♯)wt=0 and

∂α

∂yk
· ∂γ
∂yl

∈ (OS♯)wt=a.

Therefore, l = 3 or 1.
Let l = 3. Then wt(∂γ/∂y3) ≡ 2a+ 1 and

wt
(
∂ϕ1

∂yi

)
,wt

(
∂ϕ2

∂yj

)
,wt

(
∂α

∂yk

)
≡ −1,−a, 0

up to permutations of i, j and k. We claim that any product Π of three monomials
of weights −1, −a and 2a+1 belongs to (mS♯)wt=0 · (OS♯)wt=a. This is obvious if Π
is divisible by y4, y1y3 or y2. So it is enough to consider the case when Π is a power
of y1 or y3. In the former case Π is divisible by ym−1

1 · ym−a
1 · y2a+1−m

1 = ym
1 · ya

1 ,
and in the latter Π is divisible by y3 · ya

3 · y2m−2a−1
3 = ym

3 · ym−a
3 , which settles the

claim.
Finally, let l = 1. Similarly to the previous case, we show that any product Π

of monomials of weights −a, 1 and 2a− 1 belongs to (mS♯)wt=0 · (OS♯)wt=a. Again
we can assume that Π is a power of y1 or y3. In the latter case, Π is divisible
by ya

3 · ym−1
3 · y2m−2a+1

3 = y3m−a
3 = ym

3 · y2m−a
3 . Similarly, in the former case Π is

divisible by ya
1 . By (5.32), the monomial y2a−m

1 belongs to (y2, y3)mS♯ , and we have
ya
1 ∈ (mS♯)wt=0 · (OS♯)wt=a as a > 2a−m. This concludes the proof of Lemma 5.8.

By Lemma 5.8 the homomorphism δ is factored as in other cases:

δ : H0(OX(−KX)) ↠ ωS ⊗ CP → (gr1C ω∗)♯ ⊗ CP ♯ . (5.39)

Thus we see that δ is surjective if and only if a = m − 1 and y4 ∈ α. If δ is
not surjective, then y2Ω−1

P generates its image, which is the second summand (0)
of gr1C ω∗, and hence σ is a nowhere vanishing section. The remainder of the proof
is the same as [2], Lemma (2.13.9). This concludes the proof of Theorem 5.2.

Proposition 5.9. Let (X,C) be an extremal curve germ whose central fibre C is
reducible. Suppose that C contains a component C of type (k2A2) and another com-
ponent C ′ of type (k1A) meeting at a point P of index m > 2. Assume further that
(X,C) satisfies condition (∗) in Theorem 1.3. Then a general member D ∈ |−KX |
is Du Val in a neighbourhood of C ∪ C ′ .

Proof. The (k2A2) case of Theorem 5.2, considered in § 5.8, shows that a general
member D (⊃ C) of |−KX | is Du Val in a neighbourhood of C. If D ̸⊃ C ′, then
D ∩ C ′ = {P} because otherwise D contains a Gorenstein point P ′ of X and so
D ·C ′ > 1, which contradicts D ·C ′ = −KX ·C ′ < 1 by [6], (2.3.1), and [9], (3.1.1).
Thus we can assume that D ⊃ C ′. We use the notation in § 5.8. In view of (IA)
and (IA∨) in [6], (A.3), the fact that D defined by y2 + · · · = 0 contains C ′ means
that (X,C ′) is of type (IA), C ′♯ is smooth at P ♯, and either y1 or y3 is a coordinate
of C ′♯.

Lemma 5.10. The variable y3 is a coordinate of C ′♯ , and hence C ′♯ can be taken
to be the y3-axis modulo a µm-equivariant change of coordinates.
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Proof. Assume that y1 is a coordinate of C ′♯. Then I ♯
C′ is generated by

ya
1γ2 + δ2, ym−1

1 γ3 + δ3, ym
1 γ4 + δ4,

with γi ∈ OX and δi ∈ (y2, y3, y4)2O
♯
X . Thus,

I ♯
C + I ♯

C′ ⊂ (y2, y3, y4, ya
1 )

and ω♯
X⊗O♯

X/(I
♯
C +I ♯

C′) contains a nonzero µm-invariant element ym−a
1 ΩP , since

m− a < a. In view of the exact sequence

0 → gr0C∪C′ ω → gr0C ω ⊕ gr0C′ ω → (ω♯
X ⊗ O♯

X/(I
♯
C + I ♯

C′))
µm → 0,

we see that H1(gr0C∪C′ ω) ̸= 0. This implies that (X,C ∪ C ′) is a conic bundle
germ and C ∪ C ′ is a whole fibre of the conic bundle (see [9], Corollary (4.4.1)).
However, (C + C ′ ·D) < 2, and this is impossible. The lemma is proved.

From now on we assume that C ′♯ is the y3-axis. Hence y2, y1 (or y2, y4) form
an ℓ-free ℓ-basis of gr1C′ O, and y2Ω−1

P , y1Ω−1
P (or y2Ω−1

P , y4Ω−1
P ) form an ℓ-free

ℓ-basis of gr1C′ ω
∗ at P . Furthermore, we see that gr1C′(ω

∗) has a global section
σ = (y2+· · · )Ω−1

P induced by the section σ defining D. We also note that gr0C′ ω
∗ =

((m − a)P ♯) since the weight wt′ for C ′ is wt′ ≡ −wt modm. According to the
(k2A2) case of Theorem 5.2 considered in § 5.8, the divisor D is defined at P by

y2Ψ1 + ym−a
3 Ψ2 = 0,

where the Ψi are invariant functions by (5.33) and (5.34). We have the surjections

H0(OX(−KX)) ↠ ωS/Ω2
S ↠ ωS ⊗ CP

by (4.1) and (4.2) for the first case and by Lemma 5.8 for the second. In particular,
Ψ2(P ) ̸= 0. Since C ′ = (y3-axis)/µm, we have D ̸⊃ C ′. This contradicts our
assumption. Thus, we have shown that a general elephant D of (X,C) is Du Val
in a neighbourhood of C ∪ C ′. Proposition 5.9 is proved.

§ 6. Proof of the main theorem

Notation 6.1. Let (X,C) be an extremal curve germ with reducible central fibre
C such that on each irreducible component Ci of C there exists at most one point
of index > 2. Let {Pa}a∈A be the collection of such points. For each Ci without
points of index > 2, choose one general point of Ci. Let {Pb}b∈B be the collection
of such points. For each i ∈ A ∪ B, let Si ∈ |−2K(X,Pi)| be a general element on
the germ (X,Pi), and set S =

∑
i∈A∪B Si. Then S extends to an element |−2KX |

by Theorem (7.3) in [6].

Proof of the Main Theorem 1.3. Take a general element σi ∈ OSi(−KX), and

σS :=
∑

i

σi ∈ OS(−KX).
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By Proposition 4.2, (i) or (ii), the section σS modΩ2
S lifts to

s ∈ H0(X,OX(−KX)).

Let Cmain ⊂ C be the union of the irreducible components of type (IC), (IIB),
(kAD), (k3A) and (k2A2).

By Theorem 5.2 the divisor D := {s = 0} ⊃ Cmain is Du Val in a neighbourhood
of Cmain and, for each irreducible component C of Cmain, the graph ∆(D,C) is
as described in Theorem 5.1 by Theorem 5.2. If Cmain = ∅, then we are done by
Propositions 3.1 and 3.2. So we assume Cmain ̸= ∅ and each irreducible component
C ⊂ C intersects Cmain (because singular points of C are non-Gorenstein on X,
see [6], Corollary (1.15), and [9], Lemma (4.4.2)). Then D is normal and Cmain is
connected. If C ̸⊂ D, then

C ∩D ⊂ Cmain ∩D,

and D is Du Val in a neighbourhood of C as well, because C · D < 1 (see [6],
(0.4.11.1)) and D is a Cartier divisor outside Cmain (see [6], Corollary (1.15)).

Suppose Cmain contains a component of one of the types (IC), (IIB), (kAD)
or (k3A) and let C ⊂ D. Let υ : D → D0 be the contraction of Cmain and let
P0 := υ(Cmain). Then the point P0 ∈ D0 is Du Val of type D or E (using the fact
that υ is crepant and Theorem 5.1). Apply Lemma 2.3 to D0. We conclude that
the surface D0 has only Du Val singularities and the same is true for D.

If C meets Cmain at an index 2 point, then D ̸⊃ C by Lemma 4.3. The case
where Cmain consists of curves of type (k2A2) and C intersects Cmain at a point P
of index m > 2 is treated in Proposition 5.9. Theorem 1.3 is proved.

Proof of Corollary 1.4. If Ci ⊂ C is of type (IIB), then it contains a point P of
type cAx/4, and all other components Cj ⊂ C passing through P are of types
(IIA) or (II∨). But according to [6], Theorems (6.4) and (9.4), P is the only
non-Gorenstein point on Cj . Since X is not Gorenstein at any intersection point
Ci∩Cj by [6], Corollary (1.15), and [9], Lemma (4.4.2), all the components Ck ⊂ C
must pass through P . This proves (i).

From now on we can assume that C = Ci ∪ Cj . We can also assume that Cj is
not of type (k2An,m), n,m ⩾ 3 (otherwise there is nothing to prove). Thus (X,C)
satisfies condition (∗) in Theorem 1.3. Let f : (X,C) → (Z, o) be the corresponding
contraction. Consider a general member D ∈ |−KX | and the Stein factorization

fD : D ⊃ C → f ′DZ ∋ oZ → f(D) ∋ o. (6.1)

By Theorem 1.3 the surface D has only Du Val singularities. The contraction
f ′ : D → DZ is crepant, and the point DZ ∋ oZ is Du Val. Now we note that the
germs (D,Ci) and (D, Cj) are as described by Theorem 5.1. Thus the whole config-
uration of ∆(D,C) is one of the Dynkin diagrams A, D or E. In particular, ∆(D,C)
has no vertices of valency ⩾ 4 and at most one vertex, say v, of valency 3. On the
other hand, by Theorem 5.2 the configuration of ∆(D,C) is obtained by ‘gluing’
the configurations of ∆(D,Ci) described in Theorem 5.1 along one connected com-
ponent of the white subgraph. Since the whole configuration of ∆(D,C) is Du Val,
at most one component of C is of type (IC), (IIB), (kAD) or (k3A).
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For (ii) it is enough to note that all the singularities along Ci are of type cA
and so the extremal germs cD/m, cAx/2, cE/2, (IIA), and (II∨) do not occur as
a component of (X,C). A similar argument is applied in (iii) but in this case the
singularities cD/2 and cAx/2 are allowed, see [8]. It remains to prove (iv).

6.1. Let T be a point of Cj . It is easy to observe that a twisted extension
(Xj,λ, Cj,λ) (see [6], (1b.8.1)) of the germ (Xj,λ, T ) ⊃ (Cj,λ, T ) by u in a neigh-
bourhood of Cj,λ can naturally contain a neighbourhood of Ci if

(a) T /∈ Ci or
(b) (Xj,λ, T ) ⊃ (Cj,λ, T ) is a trivial deformation, that is, Xj,λ = Xj and

Cj,λ = Cj .
We can make successive deformations of (X,C) in a neighbourhood of Cj , which

are trivial on a neighbourhood of Ci, in such a way that (X,Cj) deforms as follows:
1) from (kAD) of case (5.23) to (k3A), as treated in Lemma 5.5;
2) from (k3A) to (k2A2) or (kAD) of case (5.22), as treated in Lemma 5.3;
3) from (kAD) of case (5.22) to (k2A2), as treated in Lemma 5.6;

and ultimately to (X,Cj) of type (k2A2). Indeed, we use (a) when T is the type (III)
point /∈ Ci for deformation 2); we apply (b) when T is the index m point for
deformation 3).

6.2. For deformation 1), we need to take the index 2 point Q with ℓ(Q) = 2 as T .
Suppose Q ∈ Ci, in which case the divisor D cannot be Du Val because ∆(D,Cj)
of type Dk with k ⩾ 8 and ∆(D,Ci) of type Aq with q ⩾ 4 are connected at the
index 2 point Q. So Q /∈ Ci and (a) applies, and we are left with the case when Cj

is of type (k2A2). It remains to eliminate the case where both components of C
are of type (k2A2). This follows from Lemma 6.4 below. The corollary is proved.

Lemma 6.2. Let (X,C) be an extremal curve germ such that any component
Ci ⊂ C is of type (k2A). Assume that a general member D ∈ |−KX | is Du Val.
Then a general hyperplane section H ∈ |OX |C passing through C has only cyclic
quotient singularities and the pair (H,C) is log canonical and purely log terminal
outside Sing(C).

Remark 6.3. If in the conditions of Lemma 6.2 the germ (X,C) is a Q-conic bundle,
then its base surface is smooth. Indeed, if the base surface is singular, then by
Theorem (1.3) in [10] each component Ci ⊂ C must be locally imprimitive.

Proof of Lemma 6.2. Let f : (X,C) → (Z, o) be the corresponding contraction.
Note that D ⊃ C. Consider the Stein factorization (6.1). It is easy to see that
the configuration ∆(D,C) is a linear chain. Therefore, DZ ∋ oZ is a (Du Val)
singularity of type A. Then the arguments in the proof of Proposition 2.6 in [12]
work and show that the pair (X,D + H) is log canonical. Since D ⊃ C, the pair
(X,H) is purely log terminal by Bertini’s theorem. Hence H is normal and by the
inversion of adjunction the pair (H,C) is log canonical. Moreover, C = D ∩ H
and KH +C is a Cartier divisor on H. By the classification of two-dimensional log
canonical pairs (see [3], Theorem 4.15) the singularities of H are cyclic quotients
and the pair (H,C) is purely log terminal outside Sing(C). The lemma is proved.

Lemma 6.4. Let (X,C) be an extremal curve germ, where C is reducible and has
exactly two components. Then both components cannot be of type (k2A2).
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Proof. Assume the contrary. The computation below is very similar to that in [7],
Proposition 2.6. Let C = C1∪C2, let C1∩C2 = {P0}, and let Pi ∈ Ci for i = 1, 2 be
the non-Gorenstein point other than P0. Let H ∈ |OX |C be a general hyperplane
section passing through C. According to Lemma 6.2 the surface H has only cyclic
quotient singularities. Consider the minimal resolution µ : H̃ → H and write

KH̃ = µ∗KH −Θ, (6.2)

where Θ is an effective Q-divisor with support in the exceptional locus (the codis-
crepancy divisor). Let C̃i be the proper transform of Ci. ThenKH̃ · C̃i<KH ·Ci<0.
Hence C̃i is a (−1)-curve on H̃. Moreover,

Θ · C̃i = 1 +KH · Ci < 1.

Since H is a Cartier divisor on X such that (X,H) is purely log terminal, the
singularities of H are of type T (see [5]). Hence

(H ∋ Pi) ≃ (C/µm2
i pi

(1,mipiai − 1) ∋ 0)

for some positive mi, pi and ai such that ai < mi and gcd(mi, ai) = 1. Here mi

is the index of Pi. Write Θ = Θ0 + Θ1 + Θ2 so that Supp(Θi) = µ−1(Pi). Com-
putations with weighted blowups (see [2], (10.1)–(10.3)) show that the coefficients
of Θi in the ends of the chain Supp(Θi) are equal to (mi−ai)/mi and ai/mi. Since
C̃1 and C̃2 meet different ends of the chain Supp(Θ0), up to permutating P1 and
P2 and changing the generators of µm2

i pi
we have

Θ1 · C̃1 =
a1

m1
, Θ0 · C̃1 =

m0 − a0

m0
, Θ0 · C̃2 =

a0

m0
, Θ2 · C̃2 =

m2 − a2

m2
.

Set
δ1 := a0m1 − a1m0 and δ2 := a2m0 − a0m2. (6.3)

Then by (6.2)

−KH · C1 =
a0

m0
− a1

m1
=

δ1
m0m1

> 0, −KH · C2 =
a2

m2
− a0

m0
=

δ2
m0m2

> 0.

Further, put
∆i := m2

0p0 +m2
i pi −m0p0mipiδi, i = 1, 2. (6.4)

Then
C2

i =
−∆i

m2
0p0m2

i pi
, C1 · C2 =

1
m2

0p0
.

Since the configuration is contractible, we have ∆i > 0 and

∆1∆2 −m2
1p1m

2
2p2 ⩾ 0. (6.5)

Assume that m0 > 2. Since Ci is of type (k2A2), m1 = m2 = 2. Then a1 = a2 = 1
and (6.3) implies

δ1 = 2a0 −m0 > 0 and δ2 = m0 − 2a0 > 0,
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which is impossible. Hence m0 = 2. Then a0 = 1 and (6.4) can be written as
follows

∆i = m2
i pi − 2p0(mipiδi − 2) > 0, i = 1, 2,

where mipiδi − 2 > 0. Then (6.5) reads

2p0(m1p1δ1 − 2)(m2p2δ2 − 2) ⩾ (m1p1δ1 − 2)m2
2p2 + (m2p2δ2 − 2)m2

1p1.

Combining these inequalities we obtain

m2
1p1

m1p1δ1 − 2
> 2p0 ⩾

m2
2p2

m2p2δ2 − 2
+

m2
1p1

m1p1δ1 − 2
>

m2
1p1

m1p1δ1 − 2
.

The contradiction proves the lemma.
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