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RATE OF CONVERGENCE IN THE "CIRCLE FORMATION" PROBLEM

UDC 513.7

A. M. LEONTOVIC

Abstract. We consider transformations obtained from local homogeneous rules
of motion of polygons in the plane for which regular polygons are stationary (the so-
called "circle formation" problem). These transformations are studied for initial
states that are close to regular polygons. A method of determination of the rate of
convergence to regular polygons is presented; on this basis we obtain estimates of
the highest rate of convergence.

Figures: 1. Bibliography: 4 items.

Introduction

The "circle formation" problem was formulated in [7], This problem deals with

the motion of polygons in the plane in accordance with local homogeneous rules of

motion of their vertices that are invariant with respect to motions of the plane. A rule

of motion is specified by a vector function /(r_,, · · · , rQ, · · · , r^j that depends on

2& + 1 vectors *•_£, · « · , rQ, · · · , r, and is invariant with respect to motions of the

plane (see (1.3)—(1.4)). It is possible to consider either the case of discrete time, when

the position of a polygon with vertices A v · · · , An at the instant / + 1 is determined

on the basis of the position of the polygon at the instant t as follows:

* ( 0 , · . · , A ( t ) , . . . , A i + k ( t ) ) , i = l , . . . , n, ( * )

or the case of continuous time, when the following system of differential equations is

studied:

±Α(ί) = f(Ai-k(t), . . . . At{f), . . . . Ai+k{t)), i = 1, . . . , „. (**)

Both these case are analyzed in almost the same way (though for continuous time we

have some minor simplifications). For definiteness, in the Introduction we shall con-

sider the case of continuous time only.

Thus the motion of a vertex will depend on its position and the position of a small

number (k from the left and k from the right) of neighboring vertices (the local property),
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90 Α. Μ. LEONTOVIC

the rules of motion are the same for all the vertices (the homogeneity property), and the

motion of a vertex relative to its neighbors depends only on its position with respect

to 2k neighboring vertices (invariance of the rules with respect to motions of the plane).

In [ l ] , various examples were considered of rules of vertex motion. In all these

examples the vertex A{ moves to a point A\ that is equidistant from the neighboring

vertices A{_ 1 and A{+1. The point A\ is taken differently for different rules. It can

be a point whose distance to the vertices /L_ l and Λ ·+ 1 is equal to a prescribed

number d, or a point such that the angle ΔΑ ._^A .A . + 1 is equal to η — 2π/η, where η

is the number of vertices of the polygon, or such that this angle is equal to the average

of the angles at the vertices ^ z-_ 1 ( Ai and A .+l, or such that the cosines of these

angles are averaged, or a point A . that lies on a circle of given radius R that passes

through the vertices A{_ ^ and Ai + 1, or a point that halves the segment connecting

the points equidistant from the vertices A. . and A . + . and lying on two circles, one

of which passes through the vertices A{_2, Ai_l and Λ· + 1 , and the other through the

vertices A._^, A.+i and A . + 2 (for more details see §5). I n [ l ] , computer simulation

results are presented for these rules and their linear combinations. For all the initial

states used in the simulation, with appropriate choice of the parameters, convergence

took place to a regular polygon, i.e., "circle formation."

A polygon with η vertices r v · · « , rn can be represented by a vector r = (r1? · · · , r^)

of 2#-dimensional space R n. Then the rules of motion (**) will specify in R n a

dynamical system Tf (just as (*) specifies in R n a transformation T). The question

arises of the behavior of the trajectories of this dynamical system, and also of the

form of the overall pattern. It is evident that the answer will be strongly dependent on

the function /. Of special interest are functions / such that for t —> <» almost all the

trajectories converge to points corresponding to regular polygons. With such rules of

motion, the polygons tend more and more to regular polygons for almost all initial posi-

tions, i.e. we have "circle formation."

In studying a dynamical system, we must first of all find fixed points in R K , i.e.

stationary polygons. In general, the form of such polygons for some function / can be

most diverse; moreover, such polygons may not exist at all. However, it follows from

the homogeneity of the rules and their invariance with respect to motions that there

exist natural models of stationary polygons, namely starlike regular polygons, i.e.

polygons (possibly self-intersecting) in which all the sides are the same and all the

angles are the same. It is evident that even if such polygons are not stationary, they

will in any case go over into self-similar polygons.

A starlike regular polygon is determined by the length of its sides and the magni-

tude of the angle between neighboring sides. This angle can be equal to π — 2πΙ/η, 1 =

1, 2, · • · , [n/2]; the vertices can be numbered either clockwise or counter-clockwise.

For / = 1 the polygon will be regular. For an / > 1 that is not a divisor of η the

polygon will be self-intersecting. If / is a divisor of n, the polygon will be an n-

polygon with n/1 distinct vertices forming a regular «//-polygon, and at each of these



THE "CIRCLE FORMATION" PROBLEM 91

vectices we have / merging vertices of an «-polygon. The set of points of Ρ η that

are starlike regular polygons with vertex angles equal to π - 2πΙ/η, Ι = 1,· «·, [n/2],

will be denoted by V4 if the vertices are numbered clockwise, and by Vn_t if they are

numbered counter-clockwise. It is easy to see that all these sets are four-dimensional

subspaces of R2n. It is evident that Vf = Ur f>QVj W), i= 1, · · · , n- 1, where V] (d)

denotes a three-dimensional manifold of points of V^{d) that are polygons with a side

length d.

For many functions / it is easy to prove that all stationary polygons are starlike

regular polygons. If the function / is invariant not only with respect to motions, but

also to stretching (for more details, see §1) we shall say that the rule is dimensionless

and assume that the set 31 of fixed points of the dynamical system consists of a num-

ber of subspaces V4 (in all the available examples we have either $ft = V. , or 31 =

U " " 1 ^ 4 , or 31 = u i 1

( " " 1 ) / 2 V 4 ) . If the rule of motion is not dimensionless, we shall

assume that 31 consists of a number of manifolds V . {d,). For definiteness we shall

henceforth consider dimensionless rules of motion.

For all / such that V. C 5ft let us consider a stable manifold Γ. and an unstable

manifold Γ. (i.e. sets of points ρ of R n such that the trajectory Τ ρ converges to

VJ for t —» + oo in the case of Γ,, and for / —> - °o in the case of Γ,) . It is of

interest to study the mutual position of these manifolds, and obtain Smale's diagram [2].

First of all it is necessary to find the dimension of these manifolds. For this pur-

pose it is useful to study a linear system of differential equations that is a lineariza-

tion of the system (**) in the vicinity of the points of V, , and find its eigenvalues. As

a result of the invariance of dimensionless rules with respect to motion and stretching,

four eigenvalues of the linearized system must be equal to zero (for dimensionless

rules, three eigenvalues must always be equal to zero). Suppose that the real parts of

the other eigenvalues are nonzero (precisely this is the general case); thus let the

number of eigenvalues with positive real part be equal to ρ,, and with negative real

part to ρί , so that pl + p^ = 2n - 4. (It follows from the invariance of the rules with

respect to motion and stretching that the eigenvalues, and hence also the numbers

pl and pl, depend only on /, and not on the neighborhood of which point of V4 the

linear system is studied.) It is easy to see [3] that dimF, = p. +4.

Thus it is important to be able to find the eigenvalues of the corresponding linear

systems. This can be done as follows (§§3 and 4). In R2n = R2 χ · · · χ R2 let us

consider the following coordinate system: The Ith component r. of the vector r =

(fj, · · · , rn) e R n will be written in a coordinate system in the plane, obtained from

a fixed coordinate system by rotation by an angle 2πί/η, I = 1, · · · , η - 1. It easily

follows from the homogeneity of the rules that the 2n χ 2η matrix A of any such

linear system will consist of η matrices B.. (of dimension 2 χ 2), and that all the

matrices standing in the same diagonal (more precisely, for which the difference

between the numbers i and /' modulo η is the same) are the same; if i — j = I

(modulo «), then
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It hence easily follows that the matrix Λ commutes with the matrix 21 in which for

/ ^ 1 we have

The matrix 21 has η distinct eigenvalues, to each of which there corresponds a two-

dimensional (complex) proper subspace. From the commutativity with 21 it follows that

these two-dimensional subspaces will be invariant for all the matrices for which the

matrices B.. depend only on the difference i— j (modulo »). Therefore the problem of

finding the eigenvalues of the matrix A reduces to finding the eigenvalues of matrices

acting in these two-dimensional subspaces, i.e. to the solving of quadratic equations.

Of particular interest is the case that all the eigenvalues, apart from four, have

negative real parts, i.e. p, = 2n — 4 and p. = 0. In this case (in any event for points

ρ that are close to V*) we have Τ ρ —* VJ for t —* °o. If this occurs for / = 1, then

the polygons that are close to regular ones will become even closer, i.e. we are solving

the "circle formation" ("rounding") problem. The quantity ReX , where λ is

the eigenvalue with a negative real part that is maximal, characterizes the rate of con-

vergence to a regular polygon (see [3]); the more this quantity differs from zero, the

faster will be the convergence. In §5 we obtain for the examples under consideration

an asymptotic formula for the rate of convergence for η —* <». This asymptotic expres-

sion is of great interest, since the values of η under consideration are fairly large (of

the order of 20 or 100), and it can be assumed that for such η the asymptotic formulas

will yield values close to the true values. The obtained rates of convergence are in

good agreement with the computer simulation results [ l ] ; in some cases the asymptotic

expression for the rate of convergence was predicted on the basis of the simulation

results. (Let us only note that for polygons that are very unlike regular polygons the

rate of convergence is often higher. At first a fast process of "crude rounding" is

taking place, and then, when the system is close to linear, we have a slow process of

"precise rounding" [ l]).

In §§6—8 we obtain asymptotic estimates of the rate of convergence. In §6 an

asymptotic expression of this rate is obtained for a fixed function / for η —> <». In

§7 we obtain an estimate of the maximum value of the rate of convergence for a fixed

(though very large) n. In §8 we study in more detail the case k = 1, when the depen-

dence on each of the neighbors is the same.

l)Let us note that in the case of a transformation Τ the matrix of the corresponding linear
transformation will have the same property.

2)This commutativity is an algebraic manifestation of the geometrical fact that the dyna-
mical system Τ is invariant with respect to cyclic replacment of indices

(ri /·„).*(/·,·,..., r n , n,..., /-,_,).
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Let us formulate an hypothesis with regard to the location of the manifolds F^ and

Γ7. This will be done for the case that the cosines of the angles are averaged, although

it seems to us that this hypothesis (perhaps with some modifications) is of a general

character. For this rule we have Ν = [}γη~ 1 ) / 2 W*. It is possible to prove (see §5)

that p7 = 2(/ - 1). In particular, the points of attraction will be only points belonging

to V^ (i.e. regular polygons). It is natural to assume (although this has not been proved

at all) that Ύ% ρ —»V\ for t —» °° for all points ρ € R 2 n \U / > ? r J" .

Let us assume that this hypothesis is true. It would seem that in this case for

t —> oo all the trajectories of the manifold Γ, must converge to V*. It would hence

follow that for s £ I the subspaces V^ do not intersect with F j .

But this is not the case. Indeed, let us consider a subspace W , {d being a divisor

of the number n) consisting of polygons with n/d distinct vertices at each of which d

vertices are merging, i.e. W^ = \r = (r^ . . ·,' r j : τ\ = Γ

ζ·+Μ/^> ζ = 1> · * '» " ! · ^ 1S evl~

dent that all these subspaces are invariant with respect to Τ . In fact, in a subspace

W , (of dimension 2n/d) there acts the same dynamical system as in Τ with the only

difference that η has been replaced by n/d. Next, Vld C Wd, I = 1,· · · , n/d - 1. It is

evident that for a dynamical system bounded on W^, the quantity V^ plays the same

role as V/

1 for the entire dynamical system Τ . Hence if all the manifolds F , contain

Vj, the manifolds Γ, ,, / = 1, 2,. . · , will contain the subspace V\.

Therefore it is justifiable to assume that F will contain V , if and only if both η

and s are divisible by d, and that Γ will contain V if and only if η and / are

divisible by s. However, we have not been able to prove this.

The "circle formation" problem has arisen in connection with the biological pro-

cess of morphogenesis [4], It seems, however, that the "circle formation" problem

yields also an interesting example of a dynamical system (or transformation); it is there-

fore useful to study it thoroughly (the same applies also to the "rectification" problem

[4], and in general to problems with local homogeneous rules).

The author is very grateful to I. I. Pjateckir-Sapiro and V. M. Alekseev for useful

discussions and valuable advice.

§ 1 . Transformation rule

Let us consider a vector function f(r_,, · « « , rQ, · · ·, r.) that depends on 2& + 1

vectors τ_., ·· · , rQ, · · · , r. (all the vectors are assumed to belong to the plane R ) .

Such a function / specifies the rules of motion of the vertices of closed polygons. The

time can be either discrete or continuous. In the case of discrete time we assign a rule

of transformation of polygons. Thus the position of the vertices of the «-polygon

A j · · . An at the instant t + 1 will depend on the position of the vertices at the instant

/ as follows:

*(/), . . . , Al+k(f))» (1.1)

3) The subscript i is defined modulo n; in the following this will not be especially
mentioned.
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For continuous time the transformation rule (1.1) is replaced by a dynamical system

described by the following system of differential equations:

± At (t) = f(A^k(t)t . . . , At+k(i)). (1.2)
at

The formulas (1.1) and (1.2) specify the rules of motion of the vertices of any

polygon. These rules are homogeneous, i.e. they are the same for all the vertices; they

are also local, since the motion of a vertex depends only on the positions of this vertex

and its nearest neighbors (k from the right and k from the left). For the motion of a

vertex with respect to its neighbors to depend only on the mutual position of the vertex

and its neighbors, without depending on its position in the plane, the function / will

be everywhere assumed to be invariant with respect to motions (without reflections) in

the following sense: For any vectors τ_,, · · <, r., p, and any rotation A we have

fir-k + o, . . . , rfe + p)=/(r_ f e, . . . , rk) + p, (1.3)

f(Ar~kt ..., Ark) = Af{r^ . . . , rk). d . 4 )
The problem under consideration and the function / are said to be dimensionless

if A in (1.4) can be a similarity transformation (without reflections), and symmetrical

if Λ is a rotation and reflection. For a symmetrical problem the motion of a vertex will

depend equally on the right and left neighbors.

In §5 we present examples of various functions /. By taking all their possible

linear combinations, we obtain a sufficently large set of various rules of motion of

polygons. In all the examples under consideration the function / is symmetrical.

For each discrete-time problem (with a function / ) it is possible to find a continu-

ous-time problem with a function f(r_k · · · , rQ, · · · , rfe) - rQ, and by considering a

family of discrete-time problems with functions (1 - a)rQ + af(r_k, · · · , rQ, · · · , r^), we

can see that for σ —• 0 such problems approximate the corresponding continuous-time

problem.

In the following we shall consider only the case of the transformation (1.1). The

system (1.2) can be studied in the same way, though sometimes this involves minor

simplifications.

The totality of vectors r_·, · · · , r, , i.e. a {2k + l)-sectional plane broken line,

can be represented as a point of (4k + 2)-dimensional space /? 2 = β χ · . . χ / ? 2 .

Therefore the function / is defined on R , taking its values in R2, i.e. /:

R —> R . Here it is possible that the function / is defined not on the entire space

J? 2 . In all the available examples the function / is defined if r^£r_l. It is often

sufficient (for example, in studying the asymptotic behavior for η —» <χ>) to require that

the function / be defined in a neighborhood of points of £ representing broken

lines whose vertices lie on the same straight line at equal distances from one another;

any vertex lies between neighboring vertices, so that the angles between neighboring

sections are equal to π, and not 0.

4) Here and in the following all the angles are in a counter-clockwise direction.
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To each ordered set of vectors r p . . . , r , i.e. to each plane closed rc-polygon (in

which some of the vertices may coincide) it is possible to assign in a natural manner a

vector of the 2«-dimensional space R2n = R2 χ · · · χ R2; conversely, any vector of the

space R2n = R2 χ · - •< χ R2 can be represented by an «-polygon. Then the rules of

motion of the vertices expressed by formula (1.1) will define a transformation Τ acting

in £ 2 " . 5 ) This transformation acts not on the entire space R2n, but on those parts for

which the right-hand side in (1.1) is defined. Let us denote by 3R the set of points of

R2n for which the right-hand side in (1.1) is not defined. In all the examples under

consideration we have

η

gR=0ani, where SWi= { r= (/Ί, . . . , r n ) : r<_i = r i + i } ;
i—i

on 531. the rule of motion of the z'th vertex is not defined. In the open manifold R "\3)l

the transformation Τ is everywhere defined and continuous. In general the transforma-

tion Τ cannot be extended in a continuous manner to the entire space R n. Let us

also note that Τ is not necessarily a one-to-one mapping (yet if Τ is close to a

dynamical system in the above sense, then it will be a one-to-one mapping).

In the space R n there acts a group @ induced by the group of motions (without

reflections) of the plane R2 (the elements of this group are likewise called motions).

In fact, to any motion g of the plane R there corresponds a transformation G by the

following rule:

G(rlt · . . , rn) = {grit · · · , grn). (1.5)

From (1.3) and (1.4) it follows that the action of the group © commutes with the trans-

formation T. If g in (1.5) can represent not only the motion of the plane, but any

similarity transformation (without reflection), we shall denote the resulting group by

®; it is evident that for a dimensionless problem the actions of this group commute

with T. The groups ® and ® fiber the space R n into orbits, all of which are three-

dimensional for the group © and four-dimensional for the group ®, apart from a

single two-dimensional orbit consisting of points of the form (r, r, · - · , r).

Since © and Τ commute, it follows that Τ carries orbits into orbits. Hence it can

be assumed that the transformation Τ acts on a (2« - 3)-dimensional (open) manifold

M 2 n ~ 3 = {R2n\W)/®. Such a point of view is often useful. For example, in R2n the

set of fixed points for Τ is necessarily a union of ©-orbits; hence there cannot be any

isolated fixed points. On the other hand, the fixed points in Μ are in general

isolated points. In the same way, for a dimensionless problem it is useful to represent

the transformation Τ acting on a (2« - 4)-dimensional manifold M2n~4 = (R2"\9Jl)/©.7 )

5) Similarly, formula (1.2) will specify in R n a dynamical system Tt with continuous time.
6) In a similar way we shall define the action of the groups ® and (§ί in the space R .
7) The homogeneity of the rules causes Τ to commute with a group of transformations Z n

consisting of cyclic permutations 7;·: (r\, · · · , rn) -* (rj +y, · · · , rn, · · · , r .),·/ = 0, 1, · · ·, η ~ 1.
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Our task is to study the transformation T. In [ l ] , numerical results were obtained

for particular cases, and several theorems were proved. In the present paper this

problem is studied from a more general point of view. Unfortunately we were unable to

obtain any global results. This paper is devoted to a study of the transformation Τ in

the vicinity of fixed points.

§2. Fixed points

Thus we must find at first the fixed points, i.e. stationary polygons. By virtue of

the homogeneity of the rules it is natural to seek the stationary polygons among the

"locally regular" polygons, in which all the angles and all the sides are equal. Such

polygons will be called quasiregular polygons. From the homogeneity of the rules and

formulas (1.3)—(1.4) it is evident that even if such polygons are not stationary, they

are in any case transformed into similar polygons. ' Therefore it is important to

describe all quasiregular polygons.

This can be easily done (see [ l l) . The vertices of any such polygonal line lie on the

same circle as the vertices of a regular polygon (we shall assume that in this polygon

the vertices are numbered in a clockwise direction), though their numeration'is not the

usual one, i.e., between vertices that are neighbors in a polygonal line, we have in a

regular polygon the (s - l)th vertex, where s = 1, 2, · · «, η - I, n. Such polygonal lines

are called quasiregular polygons of order s. For s = 1, · · · , η — 1, they form in R n a

four-dimensional manifold (subspace) V = U Q i , ^ V {d), where V (d) is a three-

dimensional (for d > 0) manifold of quasiregular polygons of order s with a side length

equal to d. Each manifold V {d) {s = 1, 2, · . . , « - 1, n; 0 < d < oo) is an orbit of the

group ©, and for d > 0 all of them are nonintersecting. The manifolds V^(0), as well

as V , represent the same two-dimensional subspace V formed by points (r, r, · · · , r);

as noted above, they constitute a singular orbit.

For s = 1 and s = η - 1, quasiregular polygons are regular; for s = 1 the vertices

are numbered clockwise, and for s = η — 1 they are numbered counter-clockwise (in the

following, only quasiregular polygons of first order will be called regular polygons).

For's = n, all the vertices merge. If s is divisible by n, a quasiregular polygon will

form a regular n/s-polygon traversed s times, i.e. 5 vertices of an «-polygon will

merge at each vertex of this n/s -polygon. If 1 < s < « - 1 and (s, n) = 1, the polygon

will be a starlike regular (self-intersecting) polygon. For (s, n) = d, d vertices of the

polygon will merge into one vertex of a quasiregular polygon of order s/d that has

n/d vertices; for d < s < η ~ d this polygon with n/d vertices will be a starlike regular

(self-intersecting) polygon. Quasiregular polygons of order s and order η - s are

8) Hence in the case of a dimensionless problem a point of Μ η~ that is a quasiregular
polygon will be a fixed point; but in R n such a point is not necessarily fixed, although it goes
over into a point of its <g-orbit. In this connection let us note that to each fixed point of R n

there corresponds a fixed point of Μ n~ (or Μ η~ ). The converse may not be true. But if
on a®-orbit (®-orbit), corresponding to a fixed point of Μ η~ (Μ n~ ) we have at least one
fixed point, then all the points of this orbit will be fixed.
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mirror symmetrical. The vertex angles of a quasiregular polygon of order s are equal to

77· - 2ns/η for 5 < n/2, and to η + 2π{η - s)/n for 5 > n/2. Let us note that the sub-

spaces V2 and V^/2 ^ e *n £ ^ ε intersection of the 3JL.

We shall be interested in the case that only quasiregular polygons can be stationary.

It is assumed that in the manifold M 2 r 2~ 3 (or Μ in the case of a dimensionless

problem) the fixed points are isolated points. Thus in the case of a dimensionless

problem it is assumed that the set 31 of fixed points of the transformation Τ consists

of a number of subspaces V\ One of them must be the subspace V^, i.e. all the regular

polygons are stationary. In the general case it will be assumed that 31 consists of a

finite number of manifolds V (d ), one of which is the manifold V Ad) for some

positive d.

Let us note that the function / can be such that the set 31 has the above-described

form for all n, or for only some «, for example, one value of n, or even for no value of

η at all.

In Table 1 of §5 we shall list the form of the sets 31 for the examples under con-

sideration.

§ 3 . Linearization

For studying the transformation Τ in the neighborhood of a fixed point r € 31 C

R2n\Sl, it is necessary to consider a linear transformation A^ that is a linearization of

Τ in the neighborhood of the point r, i.e.

Aro = lim -(T(r + Bp)~-r), p£R2n. (3.1)
ε-»ο ε

It is assumed that this limit exists; for this we must require that the function / be con-

tinuously differentiable. In all the available examples the function / is differentiable

(even infinitely many times) at all the points, apart from a finite number of manifolds of

codimension 1.

For studying the behavior of the transformation Τ in the neighborhood of the point

r, we must first of all find the eigenvalues of A . It is evident that if r 1 and r2 belong

to the same S-orbit (or ©-orbit in the case of a dimensionless problem), the transforma-

tions A j and A _ will be conjugate, and hence they will have the same eigenvalues.

Since by virtue of the assumptions made in §2 the set 31 consists of finitely many

orbits, we must calculate the eigenvalues of finitely many operators. Next, it is evi-

dent that the tangents to 31 (i.e. to the orbit) of a vector are invariant with respect to

A . Therefore several eigenvalues, i.e. four for the dimensionless problem and three in

the general case, must be equal to unity.

Let r° e3l and let Vl and V (Vl C V) be sufficiently small neighborhoods of the

point r (such that V intersects with only one connectivity component of the set 31).

As was noted above, all the operators A , τ € 31 Π V, have the same eigenvalues. Let

us denote by Λ the set of all eigenvalues, apart from those whose corresponding
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eigenvectors are tangent to 31" (as we noted above, the eigenvalues that do not belong

to Λ must be equal to unity). Let λ be the maximum eigenvalue of this set. Next
* J max °

let us denote by Γ a set of points ρ e V χ such that T*p e V for all integers t > 0,

and by Γ + C Γ a set of points ρ &Vλ such that Tlp € V for all t > 0, and Tlp —• 31

for t —» oo (so that for all the points of Γ the trajectories originating at them will

tend to 31 Π V, whereas all the trajectories beginning in V J X F will originate at V).

After these remarks we evidently obtain (see [3])

Theorem 3.1. 1) Let s be the number of eigenvalues in Λ that are larger than 1,

and 5_ the number of eigenvalues smaller than 1. Then Γ will contain an open sub-

set of a manifold of dimension s. + 3 {s- + 4 in the case of a dimensionless problem),

whereas Γ is contained in a manifold of dimension 2n - s^. If s^ + s_ = 2n - 3 (2n — 4

in the case of a dimensionless problem)}' then Γ = Γ, and the trajectories Ttp for

all ρ € V apart from an open subset of a manifold of dimension 2 / 2 - 5 , will originate

at V. In particular, if s γ = 0, all the trajectories T*p, ρ € V v will tend to 31Π V

when t —* <*>.
2) Let A < 1 (ζ.e. s. = 0). Then the quantity A will specify the rate of

max 1 * J max r i J '

convergence of the trajectories Tlp to 31, i.e. for any positive e there exists a con-

stant c dependent on ρ and e, but not on t, such that the distance between the vector
T*p and 31 does not exceed c(\\ I + e)*. If the maximum eigenvalue is simple, it is' ' m a x 1 ' ° r

possible to set € equal to zero, and for almost all ρ € V the distance between Tlp and

31 will be asymptotically {for t —» <») proportional to |λ | ' .
max1

Remark. A similar theorem holds also for a dynamical system, with the only dif-

ference that instead of equating |λ I to one, we must equate ReA to zero; here
1 b ' max1 ' Ί max '

λ is an eigenvalue belonging to Λ that has maximal real part; we must also replace

|λ I' by exp{i · ReA }. Let us also note that in going over from a transformation
1 max1 ; r m ax & &

to the corresponding dynamical system (as described in §1), the eigenvalue λ is

replaced by λ - 1. It is likewise evident that in the transformations approximating a

dynamical system (with functions (1 - a)rQ + af), the quantity λ is replaced by 1 - σ +

σλ; hence if ReA < 1, then in the case of a sufficiently small σ the corresponding

eigenvalue will be smaller than 1 (even if |A| > 1); only the eigenvalues A with ReA>l

do not permit convergence for any positive σ.

It is evident from this theorem that the quantity r = r(/) = - 1/1η|λ | is very

characteristic, i.e., if | A m a J < 1, then r will be the time during which 31 is approxi-

mated roughly e times; hence it is natural in our case to say that τ is the "rounding

time." If |A I -v. 1, then τ ~ (1 - |A I ) " 1 .
1 max1 ' ' max1

Thus it is important to be able to find the eigenvalues of the transformation Af.

For this purpose let us find the matrix A of this transformation. Let r € V^(d) C V*.

V denoting a neighborhood of the point r . In the region V we shal l use the following
9) Thus Λ is the set of all eigenvalues of the corresponding linear operator acting in a space

tangent to the manifold M2n~ or Λί .
10) So that the absolute values of all the eigenvalues belonging to A are distinct from 1.
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system of coordinates. To a point r € ΪΙ there corresponds a quasiregular polygon of

order s with vertices r.,. . . , r that has its center at the point 0. In the plane let us

consider the following η systems of coordinates: In the z'th system of coordinates the

origin coincides with the point r., the first unit vector £>. j is perpendicular to the

ray Or., and the second unit vector £>. 2 is directed along this ray, the angle between

the first and the second unit vector being equal to π/2 (and not 3π/2; see footnote 4).

Thus the z'th coordinate system is rotated with respect to the first system by an angle

2π(ζ - l)/n. Suppose that to a vector r 6 V there corresponds in the plane a polygon

with vertices τ., · · · , r . Let us denote the coordinates of the vector r. in the z'th
Ι ' η ι

coordinate system by <x. and β^. Then we can take as the coordinates of the vector r

the numbers α. β., . .«, α , β . Thus we have described the coordinate system in V.

The origin of coordinates coincides with the point r . The unit vectors of this system

will be denoted by h. . and h. 2, i - 1, . . . , n.

Let us find the form of the matrix A in this coordinate system. Let A = | |β ..||, i,

j = 1, · · · , n, where
11 «12 \

b?h

is a 2 χ 2 matrix. It easily follows from the homogeneity of the rules that all the

matrices β .. for which i - j = I (modulo n) ate equal:

Matrices possessing these properties will be called 2-circulants (since a matrix Β =

\b{.||, i, j = 1, · · · , n, in which b .. = b, for i - j = I (modulo «), is called a circulant).11^

Thus it follows from the homogeneity of the rules that the matrix Λ is a 2-circulant.

Since the rules are local, it follows that

ΰΓ = Ο for |/ |>Jfe, ν ,μ = 1,2. (3.2)

Next, the vectors tangent to V (̂cO (VJ in the case of a dimensionless problem) are

invariant with respect to A . It is evident that the vectors tangent to V^(d) will be

all possible linear combinations of vectors ζ0, ζ5 and ζε, whereas the vectors tangent

to V will be linear combinations of vectors £Q, ζ~, ζ and ζ , where

ζ ο = ( 1 , 1 , . . . , 1 , 0 , 0 , . . . , 0 ) ,

ζ ο = ( 0 , 0 , . . . , 0 , 1 , 1 , . . . , 1 ) ,

r (\ ™ c 2 j x s ο 2 π (η — \) s Λ . 2 ns . 2 π (η — l ) s \
Qs= 1, cos — , . . . ,cos i — , 0 , s : n — , . . . , s:n i i—] ,

\ η η η η j
C (n. .2ns . 2n(n-l)s . 2 ns 2 π (η — 1) s \

ζ5 = 0, — sin — , . . . , — sin * '—, 1, cos — , . . . , cos * — )
\ η η η η J

I D A matrix | | β Ι ; | | , i, j = 1, · · · , n, where \Bij are s χ s matrices, such that B.. depends
only on the difference i - j modulo n, will be called an s-circulant. lJ
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(to the vectors ζ5 and ζ5 there correspond polygons obtained from r by parallel

shift, to the vector ζ0 there correspond polygons obtained by rotation, and to the vec-

tor ζ0 there correspond polygons obtained by stretching). This yields the following

conditions:
k ft

S tir-i. 2 *f=°. (3-3)

2 tf'cos — + 2 i>'2 sin — = 1, 2 6? Icos^+ £ &f sin 2iLs = 0,
/=—ft " /=—ft n i**—k n ι—— ft rt

(3.4)
ft ft ft ft

S ,21 - 23X/S , χ-, ,22 2 l l /s , v~i i l l · 2 l l/s , r̂-i ,12 2jl/S Λfe/ sin \- y 6/ cos = 1 , — ν b\ sin h y &/ cos = 0 ;
— n i—^-k n —k n ik n

for a dimensionless problem we have the additional conditions

ft k

2 bf = 1, 2 # 2 = 0 · (3<5)

z=-ft / = - *
It is easy to see that in the case of a symmetrical problem we have

It is easy to prove also the converse, i.e., if a matrix A is a 2-circulant of order

2« and it satisfies the conditions (3.2)—(3.4), then there exists a function f(r_k, ··· ,rk)

that satisfies the conditions (1.3)—(1.4) and such that a quasiregular «-polygon of order

s will be stationary and the matrix of a linearized transformation in the neighborhood

of this polygon will be the matrix A. If, moreover, the condition (3.5) is also satisfied,

then the function / will be dimensionless, whereas if (3.5) holds it will be symmetrical.

With the aid of (3.1) it is possible to express the coefficients of the matrix A in

terms of the function /. After simple calculations we obtain

, *l.v). ν, μ = 1, 2, I = - k, . . · , k, (3.7)

where ^ = (df/dr )\ 0 0 is a matrix (of second order, since / and r, are vectors
r-k''"'rk

in R2) constructed from the first-order partial derivatives of the function / with respect

to the /th vector variable, taken for r. = r., / = - & , · · · , k where (as mentioned above)

the points r_,, · · -, r , form 2& + 1 successive vertices of a regular polygon of order

s, and hl l and 6>̂  2 are the unit vectors of the above-contructed /th coordinate sys-

tem in the plane. Let us recall that f(r_ki · · · , r/i) = ?Q·

§4. Calculation of eigenvalues

In this section we shall describe a method of calculation of the eigenvalues of a

2-circulant.12^

12) Theorem 4.1 is well known to experts. Unfortunately the author was unable to find a
reference. In view of the importance and simplicity of this theorem, we shall present its proof
in full.
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Theorem 4.1. The eigenvalues of the 2-circulant A are λ̂  l and λ{ 2, I = 0,

1, · • · , η - 1, where λ, and λ. 2 satisfy the following second-degree equation:

Fi{l) = λ2 - (β,11 + βΓ) λ + β,ηβ22 - ffi1 = 0, (4.1)

where

β Γ = 2 & Γ * " · ν, μ = 1 , 2 .
7=ο

Remark. In the case of an arbitrary s-circulant, the eigenvalues will be the eigen-

values of the matrices | |/3^ μ | | , ν, μ = 1, · - · , s, where

n-i _t· ?£ί/ί

β Γ = % b T e n (1 = 0 , 1 , . . . , n - l ) .
f-o

Proof of Theorem 4.1. Let us consider a complex space C n and take a basis in

it. The matrix A can be regarded as the matrix of a linear operator acting in this space.

In the proof of the theorem we shall mainly rely on

Lemma 4.1. For a 2'drculant A the two-dimensional subspaces π,, / = 0, 1, . . . ,

η - 1, spanned over the vectors

. 2ΛΙ . 2Jt(n—1)1

r\i = ( l , e \ . . . , e n , 0 , 0 , . . . , 0 ) ,

. znl 2n(/t—l)/

η ι = ( 0 , 0 , . . . , 0 , 1 , e n , . . . , e n ),

will be invariant with respect to A.

Proof. Indeed, we have

>4η, =

By performing similar calculations for Afj^, we obtain

Ax\i = βζη

η < + βΓη,, i4 i , '= βΡηι + β?2η/, <4·

whence An-̂  C ττ .̂ This completes the proof of the lemma.

After this lemma the proof of the theorem is obvious. Indeed, the matrix of the

operator A, bounded in an invariant subspace π,, will be in accordance with (4.2) a s

follows:

β}1 βζ

12

β,21 β?2
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and therefore the characteristic equation of an operator A, bounded in a subspace π,,

will be (4.1). Hence follows the validity of the thoerem.

It is easy to find the eigenvectors ζ. . and ζ, 2 corresponding to the eigenvalues

λ, . and λ, 2- In fact, it follows from (4.2) that as eigenvectors we can take, for

example, the vectors

h.v = Ρ/'η/ + (β/1 -λ/, ν)η/, ν = 1, 2. (4.3)

Since

. 2π (n—/

ne n =

and the bv^ are real numbers, it follows that the coefficients, and hence also the roots

of the /th and (» - /)th equation (4.1) are conjugate; for definiteness, let

λη-/,ι = λ/,χ, λη_/,2 = λ/>2, / = 0, 1, . . . , Π — 1. (4.4)

It hence follows from (4.3) that

irt-u = E/,ii £/ir-/,2 = ξ<,2» / = 0, 1, . . . , η — 1.

From these relations (and from (4.3)) follows the invariance of A with respect to the

two-dimensional real subspace Π^ v C R2n, spanned over the vectors

\ 4 ) + Re ((β}1 - λ,,ν) η/),

~ (Sl.v - E»-/.v) = j . (ξ/, ν - ξΐ.ν) = Im (fiV|f) + fal ((β?1 - λ,.ν) η,).

If λ, ν is real, it will be a double eigenvalue and Π, ν will be the corresponding

proper subspace (of dimension 2). If λ. ν is complex the operator A will act in Π» ν

as an elliptical rotation.

By virtue of (3.2), β1?^ will assume the simpler form

£ , 2JT/7

β 7 μ = 2 &?** n » ν , μ = 1, 2 , / = 0 , 1, . . . , n — 1. ( 4 . 5 )
/—fe

In the case of a symmetrical problem it evidently follows from (3.<5) that β^ and

β22 are real, whereas /3,12 and β21 are purely imaginary. Therefore the equation (4.1)

will have real coefficients. Hence the eigenvalues λ. j and λ. ~ are either both real

or both complex conjugate. Using (4.4), we find that each eigenvalue is double, i.e. in

the first case we have λ̂  j = λ _ . j and λ̂  2 = ̂ n _^ 2 , whereas in the second case

we have λ. . = λ _ . _ and λ. 2 = λ _ . . .

It is often necessary to find eigenvalues that are close to unity. They are easy to

calculate if we know the values of the characteristic polynomial and its derivative for

λ = 1. In fact, if F{\) = λ + ρλ + q is a characteristic polynomial with roots λ, and
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then (as can be easily seen)

(4.6)

This formula is often useful. For example, knowing Φ and Ω we can find how many

Sti

2
2

^ 7 0

'χ/

1/
\ 1 2 i
\
\
\
\
\

f Φ

(4.7)

Figure 1

roots have an absolute value larger than unity. For real Φ and Ω we have plotted the

results in Figure 1. Below we shall also use the following result, easily obtained from

(4.6). Let Φ and Ω depend on n, and for η —» °° let Φ ~ c1n~Kl, Φ ~ c 2 «~ K 2 , cχ £ 0,

c_ ^ 0, κ. > 0, κ, > 0. Let Ιλ.Ι < | A J . 1 3 ) Hence

1 — Ι λ2 Κ c/r-x,where κ = max (κ2, κχ — κ2), c > 0.

Next let us write

ο-ι _ , dF, (λ)
ί—-=φ, F/(1)=OS(9)=O(9),

η άλ

Using (4.6), we can find the roots λ. l and λ, 2 , / = 0, 1,.«., η - 1. It follows from

(4.5) that Φ and Ω are trigonometric polynomials of φ, the first of degree 2k and the

second of degree k. Let

2k k

Φ (φ) = X1 f.eiw, Ω (φ) = y 1 ω te'™, ft — f; (s), o); = ω,· (s).

i=—zk j=—k

It follows from (4.1) and (4.5) that

k

^-r-bfbf-r), / = -2/s, ... ,2ft,
r=—k

(0/ = — bj — bj , j = — fe, . . . , k,

( 4 . 8 )

( 4 . 9 )

where

13) In the following this will be assumed throughout.
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Hence we can see that /. and ω. are real coefficients. It follows from (3.6) that in the

case of a symmetrical problem we have /. = / _ . and α>. = ω_ .; therefore φ and Ω will

be real even functions.

The polynomials Φ and Ω cannot be arbitrary. In fact, /. and ω. must be real

and such that the equations (4.8) and (4.9) have real solutions b1^, ν, μ = 1, 2, / =

- & , · · · , k, satisfying the conditions (3.3) and (3-4). For a dimensionless problem the

solutions must additionally satisfy the condition (3.5), and for a symmetrical problem,

the condition (3.6). It follows from (3.3) and (3.4) that F Al) = F (1) = 0, i.e.

Φ8(0) = 0, (4.10)

= 0, (4.11)

and from (3.5) it follows that

dF0(k)
= 0,

dl

i.e.

Ω5(0) = 0. (4.12)

§5. Examples

Now let us apply our results to the rules of motion considered in [ l ] . There rules

were obtained from geometrical considerations, i.e. angles, or their cosines, or curva-

ture radii, were averaged, or it was tried (by vertex motion) to set a prescribed value of

the side length, or angle, or curvature radius. In all the subsequent examples the point

/ = /(r_£? · ·«» rk) will lie on a straight line perpendicular to the vector r^ - r_ l that

passes through the point lA{r^ + r_.) and such that the distance between the point /

and the points r_ 1 and r^ is the same:

l/-ri| = l/-/--i|. (5.1)

The following functions /. were considered in [ll (with the use of (5.1) the defini-

tions given below determine these functions uniquely):

1) (rule of setting a prescribed side length) / = / I(' '_ γ, rQ, r^) is determined from

the condition

j i - l r i — r_x | | , 0

2) (rule of setting a prescribed angle) f = f2 m(r_ \> ro> ri^ IS determined from the

condition

m
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3) (rule of averaging of angles) / = f3ir_2, τ_ y rQ, ry rj is determined from the

condition

Ζ r_1f8'
ii = T · Ζ r-i'Vi + ^ p (Ζ r-f-\U +

4) (rule of averaging of cosines of angles) / = / 4 (r_ 2 , τ_ r rQ, rv r2) is determined

from the conditions

cos /_ r_jj\ — Τ · cos /_ r_xr(/l -f ~^ (cos Ζ '-a'-iO + c°sZ '(A^)

and 0 < /r_ -J £ γ < π;
5) (rule of averaging of curvature radii)

/ = h (r-2, r_lt r0, rlt r 2) = — (/6

+ (r_2, r_ l f r 0 , r l f r 2) + /, (r_2, r_ l f r 0, r l f r2)),

where the point /, lies on a circle passing through the points r_ ^ τχ and r ± 2 ;

6) (rule of setting a prescribed curvature radius) / = / 6(r_ 1, rQ, r^) lies on a circle

of radius max {R, XA \ τl - r_ l \ \, with 0 < L r_ ^&r ^ < π.

By taking the weighted mean of these functions and of the function fQ = rQ, i.e. by

setting

f = (\ — o1 — a2 — a3 — σ4—σ6—σβ)τ0 + σ ^ + σ ^ + σ 3 / 3 +σ 4 / 4 +σ δ / 5 ^ σ6/6,
(5.2)

we can obtain a suffiently large collection of various rules of motion of polygons.

In [l] the results of a computer simulation for the functions f v f2 n, /4, / and

their linear combinations were presented. The simulation showed that in the case of

sufficiently small σ., σ2, σ, and σ, we have convergence to a regular polygon for a

wide class of initial states. For the function (1 - !7)rQ + σΛ. it was shown in [ll with

the aid of simple geometrical considerations that for any σ there may be no conver-

gence to a regular polygon even if the initial states are arbitrarily close to a regular

polygon.

For the functions under consideration it is easy to find fixed points on the basis

of geometrical considerations. With the aid of elementary (though cumbersome) calcula-

tions it is possible to find the coefficients b"^. These results are listed in Table 1.

Since all the functions under consideration are symmetrical, it follows from (3.6) that it

suffices to calculate bjl and b^2 for / > 0, and bj2 and b21 for / > 1. In the table

it is assumed that r 6 V . Let us note that the same numbers stand in the columns for

6j and bj1. This is a consequence of (5.1); more precisely, it follows from (5.1) that

b\2 = bj1tg{ns/n). It also follows from (5.1) that bj1 = b\ 2 = 0 for / > 1. For a func-
tion / of the form (5.2) the coefficients bK^ are linear combinations of the coefficients

bvf in Table 1.

For a function / of the form (5.2) and σ2

2 + σ\ + σ^ + σ2 + σ2^ ̂  0, all the fixed

points will be quasiregular polygons, and for σ^ = 0 and σ, = 0 the problem will be

dimensionless. As we noted above, any function of the form (5.2) is symmetrical. Let

us note that if η is not divisible by m, then for / = (1 - a2)rQ + <x2/2 there will be no
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fixed points in R2n\W (in this c a s e fixed points are those of the form (r, · . . ,r) for

which the function /_, is not defined).
' 2 ,m

Knowing the coefficients b^, we can find the functions Φ(φ) and Ω{φ). After

calculations, we obtain for a function / of the form (5.2) the formulas
ns

Φ,(<Ρ) =

Ω5(φ) = 2αχ + 4σ2 (s in-i)* + 2(σ3 + σ4) ( s i n |

Ι

·!«.*•]( 1 +
s i n Τ — s i n —

2ns
1 + 2 cos

sin —

—- I — sin —

(5.3)

(5.4)
2ns

Using (5.3)—(5.4) and (4.6), we can calculate the eigenvalues.

Let σβ > 0. It then follows from (5.4) that Qs{0) < 0. From Figure 1 (§4) it is

easy to see that the absolute value of one of the roots AQ j and AQ 2 is larger than 1.

This is true for all s. It hence follows from Theorem 3.1 that for t —> °° there is no

convergence of Tl

p to 5̂ . The same applies to the case that σ, < 0 and σ, = cu = σ, =

σ, = σ, = 0, since in this case we have Φε{φ) < 0 for φ = 2πΙ/η, s < I < η - s. There-

fore we shall henceforth assume that σ, = 0.

Let s = 1 (and hence m = n), i.e. we study polygons that are close to regular. Let

σι ,σ 2 , Oy σ4 and σ, be nonnegative. It follows from (5-3) and (5.4) that in this case

Φ > 0 and Ω > 0 for all k £ 0, 1, η — 1. From this result and from Figure 1 it follows that if σ^,

σ2, σ , σ4 and σ are sufficiently small, then all the eigenvalues in Λ will be smaller than unity

(if σ2 + σ, + o^ + σ, > 0), i.e. the polygons close to regular polygons will converge to regu-

lar polygons. It is possible to find the rate of convergence and the rounding time r. In

fact, since σ^, σ2, ο\, σ4 and σ, are sufficiently small, all the eigenvalues will be

real and positive; it is easy to see that in this case λ = λ _ ο = λ ~_. By study-
r J m a x 2 , 2 n— 2 , 2 } }

ing the asymptotic behavior of Φ and Ω for s = 1, / = 2, η —> °o, and using (4.6), we
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obtain after some calculations (let us recall that λ is positive, so that |λ

ReA = λ )
max max

3 σ2 (σχ 4- σ2 -f σ3 -f σ4 + σ5)
2 σι

+ ο3 -f σ4'+ «Β)

if

^ ( 1 + 0 (η-*)),
V «

if

χ ( 1 + 0 («-*)), if ^ = 0, σ 2 > 0 ,

, if σ1=(Τ2=0,

(Let us note that for σ1 = 0 and σ 2 > 0 the radicand must be smaller than 1 and

larger than 14 ·)

In particular (see also [li), by setting σι = σ 3 = σΑ = σ5 = σ& - 0 and σ 2 =

cos(277s/n) in (5.2), we obtain

(5-6)

In the case of arbitrary s, if σ, = σ 6 = 0 and σν σ2, σ^ and σ4 are positive and

sufficiently small, we easily find from (5.3)—(5-4) and Figure 1 that there exist

min{2(s - 1), 2(n - s - 1)} eigenvalues larger than unity. This result was mentioned

in the Introduction.

§6. Estimation of rate of convergence in the case of a fixed function

In this and the subsequent sections we shall consider the action of a transforma-

tion in a small neighborhood of the point r° e 31. Let r° e ^ . As it follows from

Theorem 3.1, if |λ | < 1, then all the trajectories originating in this neighborhood

will converge to 31 Π V* and the quantity 1 - | A m a J will determine the rate of conver-

gence. In particular, if 5 = 1, then 1 - | A m a J will determine the rate of convergence

to a regular polygon. Therefore it is of interest to estimate how large this quantity

can be.

Suppose we are given a function f(r_k,> · · , rfc) such that regular «-polygons will

be stationary for all sufficiently large n. In this section we shall find an asymptotic

expression for the rate of convergence to a regular «-polygon for «—•<».

A broken line with vertice s r_k, · · · ,rfe is said to be {d, φ)-regular if each sec-

tion of this line has a length d and each angle is equal to φ. The set of all {d, φ)~

regular polygonal lines forms a three-dimensional manifold J ^ ^ C R . I n particular,

14) These results are mentioned in part in l l j .
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the manifold j , Q consists of polygonal lines all whose vertices lie on the same straight

line, the distance between each vertex and the next being equal to d.

Theorem 6.1. Suppose that the function /(r ., · · · , r,) is five times continuously

differentiable in a neighborhood of the manifold 9^ Q C R4k+2, d> 0, and let v\{d) e 31

for all sufficiently large n. Then

*t (6.1)

where D is a constant that depends on f and s, but not on n.

Proof. The theorem will be proved on the assumption that the function / is

analytic in a neighborhood of the manifold fP^ Q . However, it follows from the proof

that it suffices to require fivefold continuous differentiability.

For each η it is possible to calculate the matrix A of the linear transformation

A , r € V^{d). The elements of this matrix depend on n. Let us write θ = 2ns/n. Since

/ is an analytic function, it follows from (3.7) that the coefficients b.^, u, μ = 1, 2,

and / = - k, ·««, k, are likewise analytically dependent on Θ, and they can be expanded

in a power series in Θ: b^{d) = 2*L_ f e^.0>.

For θ = 2ns/n the coefficients bv^{0) satisfy the conditions (3.3) and (3.4); it

follows from the analyticity that these conditions hold for all Θ. Next, from (1.3)—(1.4)

it is easy to obtain

If the points r_fe, . . . , rk form a (d, Θ)-regular broken line, θ = 2ns/η, then

/(r_,, · .· , rQ, · 4., r.) = rQ; it follows from the analyticity that this is true not only for

θ = 2ns/η, but for all Θ. Hence we find with the aid of (3.4) that the coefficients

satisfy also the following conditions:

k k k / k

2 lbi (Θ) = — ctg — ^ bi (Θ), V| Ibi (Θ) = — c tg — / V bT1 (Θ) —
2 2 "̂ «J ^ J 2 2 1 · ^ - '

/ = - * /»=-A /=—fe \/«=-ft
Let us write B^m = Σ ^ = _ Λ . b\^m. It follows from (6.2) that

B]% = 0 for / + / 7 Z odd. (6.4)

From (3.3), (3.4) and (6.3) we obtain the following equations:

-βο,ο = If Bjfl = 0 for / ^> 0, Β]ίϋ = 0 for / ̂ > 0,

β!2 _ Λ D22 _ 1 Dl2 _ J_Dll n22 _ 1 n21 ( 6 # 5 )
•°ο,ο — υ, £>ο,ο — ι, £>ι,ι — £»o,2» ^-Ί,ι — ~ Oo,2t w-v/

Dl2 Λ ο22 Λ D " pl2 D21 n22
A>,2 — U, £»0,2 = U, £>!,! = £$2,0, £ > l t l = £J2,().

Let us prove that
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where the constant D depends only on / and s, but not on n. For this purpose we

shall expand <bs(4ns/n) and Qs{4ns/n) in power series in 1/n. It is evident that the

coefficients of these series are polynomials in Βνμ . It easily follows from (6.4) that

only the coefficients of even powers of 1/n are nonzero. After simple calculations we

obtain from (6.5) the formulas

) ^ Qs

\ η J \ η

From these relations and from Theorem 3.1 and formula (4.7) we obtain (6.6). From

(6.6) we obtain (6.1), which completes the proof of the theorem.

In the case 5 = 1 we shall study convergence to regular polygons. Theorem 6.1

asserts in this case that for η —> oo the rounding time τ increases not slower than « 4 .

Let us note that in general τ ^ enι .

It follows from Theorem 6.1 that although there exists a sequence of functions,

(for example, the functions f2 of §5) for which r ->- en2, there does not exist any

single such function /. It is of interest to ascertain how the rounding time can vary

for η —* °o in the case of a sequence of functions / that depend on n. We shall say

that this sequence is smooth if the coefficients b^, as functions of θ = 2ns/n, are

four times continuously differentiable with respect to θ in a neighborhood of the point

θ = 0. We have

Theorem 6.2. // / ( r . , · · · , r,) is a smooth sequence of functions and if

) &fi, d > 0, for sufficiently large n, then

where D is a constant that depends on the sequence f and on s, but not on n.

Theorem 6.2 can be proved in the same way as Theorem 6.1, with the only differ-

ence that in general the condition (6.3) does not hold.

§7 . Maximum rate of convergence

By virtue of Theorem 6.2 we can hope that the maximum value of the rate of con-

vergence for fixed η will decrease as « with increasing n. This result does not

follow from Theorem 6.2, since the sequence of functions / that maximize the rate of

convergence for fixed η may not be smoothly dependent on n. In this section we shall

calculate by another method the maximum rate of convergence, thus obtaining a number

of bounds for the constant D in Theorem 6.2 (not given in §6).

Let us denote the maximum value of the rate of convergence for fixed η by £,(«).

As we noted in §3,

15) This assertion apparently contradicts formula (5.4); as a matter of fact, the function f.
of §5 does not satisfy the conditions of Theorem 6.1, since it is not differentiable at the points
of the manifold *S , g.
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£*(«)= max (1 — | ^ a x | ) , (7-1)
AeM

where M, denotes a set of matrices of order 2n that are 2-circulants and satisfy the

conditions (3.2)—(3.4). In the same way it is possible to find the highest rate of con-

vergence in the case of a dimensionless problem, a symmetrical problem, and a dimen-

sionless symmetrical problem. The corresponding quantities will be denoted by S.k n ,

£ L and £ ? S ; for finding them, we must consider in (7.1) instead of M, „ the sets
k, η k, η ° κ.,η

Μ? , Μ? and M?S , which denote the sets of 2-circulants of order 2n that satisfyk,n' k,n k,n' J

respectively the conditions (3.2)—(3.5), the conditions (3.2)—(3.4) and (3.6), and the

conditions (3.2)—(3.6). In this section we shall obtain asymptotic estimates for these

quantities for η —» <». Thus we shall prove

Theorem 7.1. We have the following inequalities:

Γ ( ) ( 7 · 2 >

where Ds . = 2Σ._ 1 / ΐ αη^ D zs β constant that depends on k, but not on n.

Proof. First we shall prove the left-hand sides of (6.2)—(6.4). Let

/ = (1 — an) r0 + onf2in, an = cos —,
η

and let A be the matrix of the corresponding linear transformation. It is evident that

A belongs to M, , as well as to Mr and Λί, (it is the linear transformation

matrix for a function / that is a &-fold superposition of the function / ). But the

eigenvalues of A are the &th powers of the eigenvalues of A. It hence follows from

(5.6) that for Ak we have

k n*\% f ι - £ £)' (ι + £

From this formula we can obtain the left-hand sides of (7.2)—(7.4).

For proving the right-hand sides of (7.2)—(7.4), we shall estimate the eigenvalues

λ2 j and λ2 2 . Let us recall that |λ 2 J < |λ 2 2 | .

In the following we shall need some lemmas relating to the quadratic trinomial

(with complex coefficients) F(\) = λ2 + ρλ + q, whose roots λχ and λ2, |λχj < | λ 2 | , do

not exceed unity in absolute value (it is appropriate to compare these lemmas with

Figure 1). Let α = F ( l ) and β = F'( l) .

l 6 ) l t 1S evident that the rounding time decreases precisely k times; the functions J and
/ yield the same nile of transformation of polygons; only the unit of time for J^ is equal to
h units of time for /.
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Lemma 7.1. \α\ < 4, \β\ < 4.

Proof. We have

| β | = | 2 + ρ | = |2—λ!—λ2 | ^ 2 + 1 + 1=4.

This proves the lemma.

Lemma 7.2. |λ2 | > 1 - lARe β.

Proof. It is easy to see from (4.6) that at least one of the roots λ. and λ- is not

smaller in absolute value than |1 - β/2\. But

—β/2) = 1— i Re β.11

This proves the lemma

It follows from the lemma that

Lemma 7.3.

Proof. We can have the following two cases:

1) |/32/4| < \a\. Then V2 \β\ < χ/Τ^Τ· H e n c e <7-5) yields (7.6).

2) \β2/4\ > | α | . Then

It is easy to see that

(7.5)

( 7 · 6 )

(7.7)

Since | 2\/α/β\ < 1, we obtain from (4.6) and (7.7) the formula

λ,Ι = ' - 1 + - V r, f±\' Γ. \2/—1

7 = 1

that

This completes the proof of the lemma.

Let us note that if α = β2/4, then Aj = λ2 = 1 - \fa.

Now let us estimate (A- _|, assuming that |λ j < 1. It follows from Lemma 7.1
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| Φ ( φ ) | < 4 , | Ω ( φ ) | < 4 for φ = 2rt//n, / = 0, 1, . . . , η— 1. (7.8)

Lemma 7.4. Suppose that the function Φ{φ) = Σ2_* 7 , f .et}'^ satisfies the condi-

tion (7.8), and that Μ = m a x 0 < j 2?7.|Φ(</>)|. Then there exists a constant C that

depends on k, but not on n, and such that

M < 4 f l + - ) . (7.9)

Proof. Let

- Μ — < Φ ^ 2 π (ζ + V
η η

By virtue of (7.8) we have

Μ — 4<|Φ(φ)|

r
2Π/

— Γ ) | < Φ(φ) — Φ f—
η / \ \ η

Next, from the inversion formula

we find that

Hence

2Π

/=— i

(7.10)

(7.11)

1)Λί. (7.12)

From (7.10) and (7.12) follows (7.9). This completes the proof of the lemma.

Let us note that this lemma is applicable not only to the function Φ(φ), but also

to the function Ώ,(φ). In this case

|ω/|<Λί, j = —k, . . . ,k.

Let us prove the right-hand side of (7.2). Let us expand

a series in φ:

(7.13)

j — — ζ &
/.e1

j
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Φ (Φ) = {ΣΛ-ίτ'ϋΛ1/ +S2

ι / /

By using (4.10) and (4.11) (for s = 1), we obtain

2 * 2 * \2 2 *

-Τ(Γ) S
From this formula and (7.14) it follows that

From the latter and (7.11) and (7.9), we obtain

^ j 3 + Ο (

(7.14)

(7.15)

f )3 D,.
Using Lemma 7.3, we find that

which proves formula (7.2).

Let us prove the right-hand side of (7.3). Let us expand Ω(0) = Σ . , ω .e z ; in

a series in n:

/ / 1 I 7 I
It follows from (4.12) that Σ. , ω . = 0, whence we obtain with the aid of (7.9) and

(7.13) the formula

Σ ΛΛ / Ι V η

With the use of Lemma 7.2 we find that



THE "CIRCLE FORMATION" PROBLEM 115

« J '
whence follows (7.3).

Let us prove the right-hand side of (7.4). In this case, as was noted in §4, the

function Φ (φ) (just as Ω(0)) will be real. Instead of (7.15) we hence obtain

φ / 4 « ^ _ 1 / 2 π ^ 2f t

whence

τ)-Ϊ(Τ)\Σ

η j

Using Lemma 7.3, we obtain (7.4).

Thus we have completed the proof of Theorem 7.1.

Let us note that in (7.3) and (7.4) the quantity η occurs in the same power in both

the right and the left sides of the inequalities; only the constants (which depend on k)

in front of η ate different. In the case of (7.2) the situation is worse, i.e. the right-

hand side has the order n~ , and the left-hand side the order n~ . It would be

desirable to elucidate the true asymptotic behavior of £,(«).

In the formulas (7.3) and (7.4) it would be desirable to sharpen the dependence of

the constant in front of (2π/η) on k. It is easy to see that 4D2 , ~ 8k /3 and

\J2~D . _, *v 16k "^/\f\0 for k —> oe. It is true (in any case for (7.4)) that for k —> «>

this constant is asymptotically proportional to k .

From (7.2)—(7.4) we can obtain estimates for the rounding time r. For example, in

the case of a symmetrical problem the minimum value for τ is asymptotically propor-

tional to n2 for η—> t».

§8. The case of a symmetrical problem, k = 1

Of greater interest is undoubtedly the case of small k, for example, k = 1 or

2, and a symmetrical problem. (Let us note that all the available examples are

of this type.) In this section we obtain a more exact estimate of the quantity £,(«),

i.e. the maximum rate of convergence in the case of a symmetrical problem with k = 1.

In this case formula (7.4) goes over into the following inequality:

(8.1)

In (8.1) it is very easy to reduce the constant \J 34 to γ/3. In this section we

shall prove

Theorem 8.1. For η —• <»,
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Proof. Since k = 1, we obtain Φ(φ) = fQ + f\ei4> + ί_ιβ~ίφ + f2e
il4> + f 2ε~ί2φ,

and since the problem is "symmetrical" we have /_ χ ={γ and /_ 2 =fr By virtue of (4.10)

we have fQ = - 2fl - 2/2; hence

φ(φ) = _ 4

From (4.11) it easily follows that

( ^ 2 (8.2)

whence

(8.3)

Since the eigenvalues are not larger than unity in absolute value, we obtain (by

setting / = n/2) from (7.8) and (8.3) the formula

/ 2 < . ' , .
4 [ cos — 1

V nj

(8.4)

Next, since we are considering a "symmetrical problem," it follows that ω_ l =

j and Ω(0) = ω 0 + 2CDJCOS<£. By setting Ω(0) = ω 0 + 2ωι - ω, we easily find that

Ω(φ)=ω — 4ωχ ^ ί η - ^ ] 2 . (8.5)

From this formula and (7.8) it follows that

0<ω<4. (8.6)

For brevity let us write b^ = al and b^ = a2. By virtue of (3.3) we have

1 — bl1 = 2%, (8.7)

and from (4.9) it follows that

1 — bf = ω -h 2α2. (8.8)

Next, from (4.8) and (8.7)-(8.8) we have

fi = — 4α 1α 2 — c^to, fz = ĉ Oa — bfbf.

Using (8.2), we hence obtain

j cos —
\ n
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whence

/ 2 = α χ α 2 f- ο^ω . (8.9)

cos — 4 cos —

\ ηJ \ η)

From (4.9) it follows that o>1 = - a^ - α 2 . From (8.9) we hence obtain

4 ' " \ n,

The root of this quadratic (in tXj) equation must be rea l . Hence

i (ω — 4(ΰ!)2 — 4/2 fcos - ? > 0. (8.10)

Now let us write 0 = Απ/η. From (8.3) and (8.5) we obtain

'4JT

* (τ)
= (0 — 4(0!) ( s i n — ) 2 , c = ^ , (8.11)

sin —
V η J

and by virtue of (8.6) we have

0<G)<C. (8.12)

By using Theorem 4.1 and formula (4.6), we obtain from (8.11)

Λ2 — 1 — ( ± I / 1 Δ ] 2 > j 51Π —

But by (8.4), (8.10) and (8.12) we have for sufficiently large η

Therefore the eigenvalues λ2 χ and λ2 2 will be real. It hence follows from (8.13) that

^ijf sin UV +0 (

where e = 48/2/(c - 4ω : )
2 .

From (8.10) and (8.12) we obtain

n / ye \ η)

(8.14)
2
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It is easy to see that the function (1 - γ/1 - i)/\J7 increases with e. It hence follows

from (8.4) and (8.14)-(8.15) that

From this formula and from the left-hand side of (8.1) follows the theorem.
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